JP5533548B2 - Stacked battery - Google Patents

Stacked battery Download PDF

Info

Publication number
JP5533548B2
JP5533548B2 JP2010234719A JP2010234719A JP5533548B2 JP 5533548 B2 JP5533548 B2 JP 5533548B2 JP 2010234719 A JP2010234719 A JP 2010234719A JP 2010234719 A JP2010234719 A JP 2010234719A JP 5533548 B2 JP5533548 B2 JP 5533548B2
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
collector foil
active material
tab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010234719A
Other languages
Japanese (ja)
Other versions
JP2012089338A (en
Inventor
秀明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010234719A priority Critical patent/JP5533548B2/en
Priority to KR1020110106208A priority patent/KR101286910B1/en
Publication of JP2012089338A publication Critical patent/JP2012089338A/en
Application granted granted Critical
Publication of JP5533548B2 publication Critical patent/JP5533548B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、正極と負極とを積層して形成される積層型電池に関するものである。   The present invention relates to a stacked battery formed by stacking a positive electrode and a negative electrode.

従来から、正極と負極とがセパレータを介して積層され、電解質とともに外装材の内部に収容して形成されたリチウムイオン電池などの積層型電池が知られている。   2. Description of the Related Art Conventionally, a stacked battery such as a lithium ion battery in which a positive electrode and a negative electrode are stacked via a separator and accommodated in an exterior material together with an electrolyte is known.

特許文献1には、複数の正極用金属箔及び負極用金属箔がセパレータを介して交互に積層されたリチウム二次電池が開示されている。このリチウム二次電池では、正極用金属箔から延設されたタブどうしと、負極用金属箔から延設されたタブどうしをそれぞれ接合して端子部を形成している。また、関連する先行技術文献として、特許文献2がある。   Patent Document 1 discloses a lithium secondary battery in which a plurality of positive electrode metal foils and negative electrode metal foils are alternately stacked via separators. In this lithium secondary battery, the tabs extended from the positive electrode metal foil and the tabs extended from the negative electrode metal foil are joined to form a terminal portion. Moreover, there exists patent document 2 as related prior art literature.

特開2002−75312号公報JP 2002-75312 A 特開平7−326336号公報JP 7-326336 A

しかしながら、引用文献1に記載の積層型電池では、集電箔から電極タブへ流れる電流経路が、活物質層と集電箔との界面層に対して偏っているため、電流が集電箔と電極タブとの接合領域に集中しやすい。パルス状の大電流が繰り返して流される際などには、接合領域の近傍が局所的に発熱する。これにより、熱溶着されたラミネートパックのシール部が劣化したり、接合領域の近傍の活物質が劣化して静電容量が低下したりするおそれがある。   However, in the stacked battery described in Cited Document 1, the current path flowing from the current collector foil to the electrode tab is biased with respect to the interface layer between the active material layer and the current collector foil. It tends to concentrate on the joint area with the electrode tab. When a pulsed large current is repeatedly applied, the vicinity of the junction region generates heat locally. Thereby, there exists a possibility that the seal | sticker part of the laminate pack heat-welded may deteriorate, or the active material of the vicinity of a joining area | region may deteriorate, and an electrostatic capacitance may fall.

本発明は、上記の問題点に鑑みてなされたものであり、積層型電池の劣化や静電容量の低下を防止することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to prevent deterioration of a stacked battery and a decrease in capacitance.

本発明は、電極を形成する電極集電箔がセパレータを介して積層され、電解質とともに外装材の内部に収容される積層型電池に関するものである。積層型電池は、電極集電箔の外縁部の少なくとも二辺に分散して配置される接合領域で当該電極集電箔と接合され外装材から外部に引き出される電極タブを備えることを特徴とする。   The present invention relates to a stacked battery in which an electrode current collector foil for forming an electrode is stacked via a separator and is housed in an exterior material together with an electrolyte. The multilayer battery includes an electrode tab that is joined to the electrode current collector foil and is drawn out from the exterior material in a joint region that is dispersed and arranged on at least two sides of the outer edge of the electrode current collector foil. .

本発明では、電極集電箔と電極タブとを接合する接合領域に流れる電流を分散させることによって、接合領域への電流の集中を防止し、接合領域近傍の発熱を抑制することができる。これにより、ラミネートパックのシール部や、接合領域の近傍の活物質などの各部分が劣化することを抑制できる。したがって、積層型電池の劣化や静電容量の低下を防止できる。   In the present invention, by dispersing the current flowing in the bonding region where the electrode current collector foil and the electrode tab are bonded, current concentration in the bonding region can be prevented and heat generation in the vicinity of the bonding region can be suppressed. Thereby, it can suppress that each part, such as the seal part of a laminate pack, and the active material of the vicinity of a joining area | region, deteriorates. Therefore, it is possible to prevent the deterioration of the stacked battery and the decrease in capacitance.

(a)は、本発明の第1の実施の形態に係る積層型電池の正面図であり、(b)は、図1(a)における左側面図をラミネートパックを除いた状態で示す図である。(A) is a front view of the laminated battery which concerns on the 1st Embodiment of this invention, (b) is a figure which shows the left view in FIG. 1 (a) in the state except a laminate pack. is there. 本発明の第1の実施の形態に係る積層型電池の正極,セパレータ,及び負極を分解した状態の正面図である。It is a front view of the state which decomposed | disassembled the positive electrode, separator, and negative electrode of the laminated battery which concern on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る正極の正面図である。It is a front view of the positive electrode which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る正極の正面図である。It is a front view of the positive electrode which concerns on the 3rd Embodiment of this invention.

以下、図面を参照して、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施の形態)
以下、図1及び図2を参照して、本発明の第1の実施の形態について説明する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.

まず、図1を参照して、積層型電池100の全体構成について説明する。   First, the overall configuration of the stacked battery 100 will be described with reference to FIG.

図1(a)に示すように、積層型電池100は、外装材としてのラミネートパック1と、ラミネートパック1から外部に引き出される一対の電極としての正極電極10と負極電極20とを備える。積層型電池100は、ラミネート型のリチウムイオン二次電池のセルである。   As shown in FIG. 1A, the stacked battery 100 includes a laminate pack 1 as an exterior material, and a positive electrode 10 and a negative electrode 20 as a pair of electrodes drawn out from the laminate pack 1. The laminated battery 100 is a cell of a laminated lithium ion secondary battery.

ラミネートパック1は、略矩形に形成された一対のラミネートフィルムが対向して設けられ、外周の四辺が熱溶着によって接合されたものである。ラミネートパック1は、中央部が表裏両面に向けて凸状に形成される凸部2を有し、凸部2の内部に空間を有する容器状に形成される。   The laminate pack 1 has a pair of laminate films formed in a substantially rectangular shape so as to face each other, and the four sides of the outer periphery are joined by heat welding. The laminate pack 1 is formed in a container shape having a convex portion 2 whose central portion is convex toward both the front and back surfaces, and a space inside the convex portion 2.

図1(b)では、積層型電池100の内部構造を詳細に説明するために、ラミネートパック1を除いた状態を示している。ラミネートパック1の内部には、セパレータ30を介して積層された正極電極10と負極電極20とが、電解質40とともに収容される。単一の正極電極10と負極電極20とを積層するのではなく、複数の正極電極10と負極電極20とを交互に積層してもよい。正極電極10及び負極電極20については、図2を参照しながら後で詳細に説明する。   FIG. 1B shows a state in which the laminate pack 1 is removed in order to explain the internal structure of the stacked battery 100 in detail. Inside the laminate pack 1, the positive electrode 10 and the negative electrode 20 that are stacked via the separator 30 are accommodated together with the electrolyte 40. Instead of laminating the single positive electrode 10 and the negative electrode 20, a plurality of positive electrodes 10 and negative electrodes 20 may be alternately laminated. The positive electrode 10 and the negative electrode 20 will be described in detail later with reference to FIG.

セパレータ30は、内部に微小孔が形成される多孔質フィルムの絶縁膜である。セパレータ30は、正極電極10と負極電極20との間に設けられ、両者を隔離して短絡を防止する。   The separator 30 is a porous film insulating film in which micropores are formed. The separator 30 is provided between the positive electrode 10 and the negative electrode 20, and isolates both to prevent a short circuit.

電解質40は、リチウムイオンが移動可能な電解液である。電解質40は、ラミネートパック1の内部に充填され、セパレータ30に含浸されている。リチウムイオンは、セパレータ30の微小孔を通過して正極電極10と負極電極20との間を行き来する。これにより、正極電極10と負極電極20との間に電流が発生する。   The electrolyte 40 is an electrolytic solution in which lithium ions can move. The electrolyte 40 is filled in the laminate pack 1 and impregnated in the separator 30. The lithium ions pass between the positive electrode 10 and the negative electrode 20 through the minute holes of the separator 30. As a result, a current is generated between the positive electrode 10 and the negative electrode 20.

ラミネートパック1の内部は、電解質40が充填された状態で減圧され、真空になっている。電解質40は、液体状の電解液に限られず、電解液を含んだ半固体状の高分子ゲルなどであってもよい。   The inside of the laminate pack 1 is evacuated and vacuumed while being filled with the electrolyte 40. The electrolyte 40 is not limited to a liquid electrolyte solution, and may be a semi-solid polymer gel containing the electrolyte solution.

次に、主に図2を参照して、正極電極10及び負極電極20について詳細に説明する。   Next, the positive electrode 10 and the negative electrode 20 will be described in detail mainly with reference to FIG.

正極電極10は、薄板状の金属箔で形成される正極集電箔11と、正極集電箔11の表面に設けられる正極活物質12と、正極集電箔11と接合領域15,16で接合される正極電極タブ13とを備える。   The positive electrode 10 is joined by a positive current collector foil 11 formed of a thin metal foil, a positive electrode active material 12 provided on the surface of the positive current collector foil 11, and the positive current collector foil 11 and the joining regions 15 and 16. The positive electrode tab 13 is provided.

正極集電箔11は、例えば、アルミニウムなどの金属によって形成される。正極集電箔11は、矩形状に形成される活物質配設部11aと、活物質配設部11aの一辺から突出するように延設されるタブ接合部11bとを有する。タブ接合部11bは、活物質配設部11aの一辺の端部から、その一辺の幅の半分より小さな幅に形成される。   The positive electrode current collector foil 11 is formed of a metal such as aluminum, for example. The positive electrode current collector foil 11 has an active material disposing portion 11a formed in a rectangular shape and a tab joint portion 11b extending so as to protrude from one side of the active material disposing portion 11a. The tab joint portion 11b is formed to have a width smaller than half of the width of one side from the end portion of one side of the active material disposing portion 11a.

正極活物質12は、例えば、コバルト酸リチウムやマンガン酸リチウムなどのリチウム遷移金属酸化物によって形成される。正極活物質12は、活物質配設部11aの全体に設けられる。よって、正極集電箔11には、タブ接合部11bを除いた全面に正極活物質12が設けられる。   The positive electrode active material 12 is formed of, for example, a lithium transition metal oxide such as lithium cobalt oxide or lithium manganate. The positive electrode active material 12 is provided on the entire active material disposition portion 11a. Therefore, the positive electrode current collector foil 11 is provided with the positive electrode active material 12 on the entire surface excluding the tab joint portion 11b.

正極電極タブ13は、ラミネートパック1から外部に引き出される電極部13aと、電極部13aから正極集電箔11の一辺に沿って延設される延設部13bとを有するL字状に形成される。正極電極タブ13は、接合領域15及び接合領域16によって正極集電箔11と接合される。   The positive electrode tab 13 is formed in an L shape having an electrode portion 13 a drawn out from the laminate pack 1 and an extending portion 13 b extending from the electrode portion 13 a along one side of the positive electrode current collector foil 11. The The positive electrode tab 13 is bonded to the positive electrode current collector foil 11 by the bonding region 15 and the bonding region 16.

電極部13aは、正極集電箔11のタブ接合部11bより小さな幅に、かつタブ接合部11bより長く形成される。電極部13aは、正極電極タブ13が正極集電箔11に接合された状態で、長さ方向の略半分が、正極集電箔11のタブ接合部11bから突出するように配置される。   The electrode portion 13a is formed with a width smaller than the tab joint portion 11b of the positive electrode current collector foil 11 and longer than the tab joint portion 11b. The electrode portion 13 a is arranged so that approximately half of the length direction protrudes from the tab joint portion 11 b of the positive electrode current collector foil 11 in a state where the positive electrode tab 13 is bonded to the positive electrode current collector foil 11.

延設部13bは、正極集電箔11の活物質配設部11aの一辺の全長と略同一の長さに形成される。延設部13bは、電極部13aの幅方向の一端に沿って、電極部13aより小さな幅に形成される。延設部13bは、正極電極タブ13が正極集電箔11に接合された状態で、正極集電箔11の活物質配設部11aの一辺に沿うように配置される。   The extending portion 13 b is formed to have a length substantially the same as the entire length of one side of the active material disposing portion 11 a of the positive electrode current collector foil 11. The extending portion 13b is formed with a width smaller than that of the electrode portion 13a along one end in the width direction of the electrode portion 13a. The extending portion 13 b is disposed along one side of the active material disposing portion 11 a of the positive electrode current collector foil 11 in a state where the positive electrode tab 13 is bonded to the positive electrode current collector foil 11.

接合領域15,16は、正極集電箔11の外縁部11cの少なくとも二辺に分散して配置される。ここで、外縁部11cは、正極集電箔11の外周に沿って設けられ、接合領域15,16を形成可能な幅をもつ領域である。   The joining regions 15 and 16 are arranged in a distributed manner on at least two sides of the outer edge portion 11 c of the positive electrode current collector foil 11. Here, the outer edge portion 11 c is a region provided along the outer periphery of the positive electrode current collector foil 11 and having a width capable of forming the bonding regions 15 and 16.

接合領域15は、正極電極タブ13の電極部13aと、正極集電箔11のタブ接合部11bとを、正極集電箔11の幅方向に渡って接合する。接合領域15は、タブ接合部11bの略中央と、電極部13aの長さ方向の下端近傍とを接合する。   The joining region 15 joins the electrode portion 13 a of the positive electrode tab 13 and the tab joint portion 11 b of the positive current collector foil 11 across the width direction of the positive current collector foil 11. The joining region 15 joins the approximate center of the tab joining part 11b and the vicinity of the lower end in the length direction of the electrode part 13a.

接合領域16は、正極電極タブ13の延設部13bと、正極集電箔11の活物質配設部11aとを、正極集電箔11の長さ方向に渡って接合する。接合領域16は、接合領域15と直交するように形成される。接合領域16は、活物質配設部11aの角部と、延設部13bの下端とを接合する。接合領域16は、正極電極タブ13において接合領域15から最も離間した位置に設けられる。   The joining region 16 joins the extending portion 13 b of the positive electrode tab 13 and the active material disposing portion 11 a of the positive current collector foil 11 over the length direction of the positive current collector foil 11. The bonding region 16 is formed so as to be orthogonal to the bonding region 15. The joining area | region 16 joins the corner | angular part of the active material arrangement | positioning part 11a, and the lower end of the extension part 13b. The bonding region 16 is provided at a position farthest from the bonding region 15 in the positive electrode tab 13.

同様に、負極電極20は、薄板状の金属箔で形成される負極集電箔21と、負極集電箔21の表面に設けられる負極活物質22と、負極集電箔21と接合領域25,26で接合される負極電極タブ23とを備える。   Similarly, the negative electrode 20 includes a negative electrode current collector foil 21 formed of a thin metal foil, a negative electrode active material 22 provided on the surface of the negative electrode current collector foil 21, a negative electrode current collector foil 21 and a bonding region 25, 26 and a negative electrode tab 23 joined at 26.

負極集電箔21は、例えば、銅などの金属によって形成される。負極集電箔21は、矩形状に形成される活物質配設部21aと、活物質配設部21aの一辺から突出するように延設されるタブ接続部21bとを有する。タブ接続部21bは、活物質配設部21aの一辺の端部から、その一辺の幅の半分より小さな幅に形成される。   The negative electrode current collector foil 21 is formed of a metal such as copper, for example. The negative electrode current collector foil 21 has an active material disposing portion 21a formed in a rectangular shape, and a tab connecting portion 21b extending so as to protrude from one side of the active material disposing portion 21a. The tab connecting portion 21b is formed to have a width smaller than half of the width of one side from the end of one side of the active material disposing portion 21a.

負極活物質22は、例えば、ハードカーボンやグラファイトなどの炭素系材料によって形成される。負極活物質22は、活物質配設部21aの全体に設けられる。よって、負極集電箔21には、タブ接続部21bを除いた全面に負極活物質22が設けられる。   The negative electrode active material 22 is formed of, for example, a carbon-based material such as hard carbon or graphite. The negative electrode active material 22 is provided on the entire active material disposition portion 21a. Therefore, the negative electrode current collector foil 21 is provided with the negative electrode active material 22 on the entire surface excluding the tab connection portion 21b.

負極電極タブ23は、ラミネートパック1から外部に引き出される電極部23aと、電極部23aから負極集電箔21の一辺に沿って延設される延設部23bとを有するL字状に形成される。負極電極タブ23は、接合領域25及び接合領域26によって負極集電箔21の外縁部21cと接合される。負極電極タブ23及び接合領域25,26の具体的な構成は、正極電極タブ13と同様であるため、ここでは説明を省略する。   The negative electrode tab 23 is formed in an L shape having an electrode part 23 a drawn out from the laminate pack 1 and an extending part 23 b extending from the electrode part 23 a along one side of the negative electrode current collector foil 21. The The negative electrode tab 23 is bonded to the outer edge portion 21 c of the negative electrode current collector foil 21 by the bonding region 25 and the bonding region 26. Since the specific configuration of the negative electrode tab 23 and the joining regions 25 and 26 is the same as that of the positive electrode tab 13, the description thereof is omitted here.

次に、積層型電池100の作用について説明する。正極電極10と負極電極20とは同様の作用であるため、ここでは、正極電極10についてのみ説明する。   Next, the operation of the stacked battery 100 will be described. Since the positive electrode 10 and the negative electrode 20 have the same action, only the positive electrode 10 will be described here.

まず、比較例として、接合領域15のみが設けられて接合領域16が設けられない場合について説明する。   First, as a comparative example, a case where only the bonding region 15 is provided and the bonding region 16 is not provided will be described.

接合領域15のみによって正極電極タブ13と正極集電箔11とが接合される場合には、正極集電箔11と正極電極タブ13との間を流れる電流の経路が、正極活物質12と正極集電箔11との界面層に対して一箇所に偏っている。そのため、正極集電箔11と正極電極タブ13との間を流れる全ての電流は、接合領域15に集中することとなる。   When the positive electrode tab 13 and the positive electrode current collector foil 11 are bonded only by the bonding region 15, the path of the current flowing between the positive electrode current collector foil 11 and the positive electrode electrode tab 13 is the positive electrode active material 12 and the positive electrode current collector. It is biased to one place with respect to the interface layer with the current collector foil 11. Therefore, all currents flowing between the positive electrode current collector foil 11 and the positive electrode tab 13 are concentrated in the bonding region 15.

例えば、充電又は放電によって、パルス状の大電流が正極電極10に繰り返し流れる場合などには、接合領域15の近傍が局所的に発熱する。これにより、熱溶着されているラミネートパック1のシール部が劣化したり、接合領域15の近傍の正極活物質12が劣化して静電容量が低下したりするおそれがあった。   For example, when a pulsed large current repeatedly flows through the positive electrode 10 due to charging or discharging, the vicinity of the bonding region 15 generates heat locally. As a result, there is a possibility that the seal part of the laminate pack 1 that is thermally welded deteriorates, or the positive electrode active material 12 in the vicinity of the bonding region 15 deteriorates and the capacitance decreases.

これに対して、積層型電池100では、接合領域15,16の二か所で正極電極タブ13と正極集電箔11とが接合される。   On the other hand, in the stacked battery 100, the positive electrode tab 13 and the positive electrode current collector foil 11 are joined at the two joint regions 15 and 16.

二つの接合領域15,16が設けられると、正極集電箔11と正極電極タブ13との間を流れる電流は、二方向へ分散されるため、正極集電箔11と正極電極タブ13との接合領域15,16のうち一方への電流の集中が緩和される。よって、正極集電箔11と正極電極タブ13との接合領域15,16の近傍の発熱を抑制することができる。したがって、熱溶着されていたラミネートパック1のシール部や、接合領域16の近傍の正極活物質12などの各部分が劣化することを抑制でき、積層型電池100の劣化や静電容量の低下を防止できる。   When the two joining regions 15 and 16 are provided, the current flowing between the positive electrode current collector foil 11 and the positive electrode tab 13 is distributed in two directions. Current concentration on one of the junction regions 15 and 16 is alleviated. Therefore, heat generation in the vicinity of the joining regions 15 and 16 between the positive electrode current collector foil 11 and the positive electrode tab 13 can be suppressed. Therefore, it is possible to suppress the deterioration of each part such as the seal part of the laminate pack 1 that has been thermally welded and the positive electrode active material 12 in the vicinity of the bonding region 16, and the deterioration of the stacked battery 100 and the decrease in the capacitance can be prevented. Can be prevented.

以上の実施の形態によれば、以下に示す効果を奏する。   According to the above embodiment, the following effects are obtained.

正極集電箔11と正極電極タブ13との接合領域15,16、及び負極集電箔21と負極電極タブ23との接合領域25,26に流れる電流を二方向へ分散させることによって、接合領域15,16,25,26への電流の集中を防止し、接合領域15,16,25,26近傍の発熱を抑制することができる。これにより、ラミネートパック1のシール部や、接合領域16の近傍の正極活物質12や負極活物質22などの各部分の劣化を抑制することができ、積層型電池100の劣化や静電容量の低下を防止できる。   By dispersing the current flowing in the junction regions 15 and 16 between the positive electrode current collector foil 11 and the positive electrode tab 13 and the junction regions 25 and 26 between the negative electrode current collector foil 21 and the negative electrode tab 23 in two directions, the junction region is obtained. Concentration of current to 15, 16, 25, 26 can be prevented, and heat generation in the vicinity of the junction regions 15, 16, 25, 26 can be suppressed. Thereby, deterioration of each part, such as the seal part of the laminate pack 1 and the positive electrode active material 12 and the negative electrode active material 22 in the vicinity of the bonding region 16, can be suppressed. Decrease can be prevented.

(第2の実施の形態)
以下、図3を参照して、本発明の第2の実施の形態に係る正極電極110について説明する。なお、以下に示す各実施形態では前述した実施の形態と同様の構成には同一の符号を付し、重複する説明は適宜省略する。
(Second Embodiment)
Hereinafter, with reference to FIG. 3, a positive electrode 110 according to a second embodiment of the present invention will be described. In the following embodiments, the same reference numerals are given to the same components as those in the above-described embodiments, and the overlapping description will be omitted as appropriate.

第2の実施の形態は、正極集電箔111における正極活物質112が設けられる領域が第1の実施の形態とは相違する。負極電極(図示省略)は、正極電極110と同様に構成されるため、ここでは、正極電極110についてのみ説明する。   The second embodiment is different from the first embodiment in the region where the positive electrode active material 112 in the positive electrode current collector foil 111 is provided. Since the negative electrode (not shown) is configured in the same manner as the positive electrode 110, only the positive electrode 110 will be described here.

正極電極110は、薄板状の金属箔で形成される正極集電箔111と、正極集電箔111の表面の一部に設けられる正極活物質112と、正極集電箔111と接合領域115,116で接合される正極電極タブ13とを備える。   The positive electrode 110 includes a positive electrode current collector foil 111 formed of a thin plate-shaped metal foil, a positive electrode active material 112 provided on a part of the surface of the positive electrode current collector foil 111, a positive electrode current collector foil 111 and a bonding region 115, And a positive electrode tab 13 joined at 116.

正極集電箔111は、例えば、アルミニウムなどの金属によって形成される。正極集電箔111は、矩形状に形成される活物質配設部111aと、活物質配設部111aの隣り合う二辺に渡って突出するタブ接続部111bとを有する。タブ接続部111bは、活物質配設部111aから外周に向かって延設される。タブ接続部111bは、活物質配設部111aの一辺の端部から、隣り合う他の一辺の幅の半分より小さな幅に渡って連続してL字状に形成される。   The positive electrode current collector foil 111 is formed of a metal such as aluminum, for example. The positive electrode current collector foil 111 includes an active material disposing portion 111a formed in a rectangular shape, and a tab connecting portion 111b protruding over two adjacent sides of the active material disposing portion 111a. The tab connection part 111b is extended toward the outer periphery from the active material arrangement | positioning part 111a. The tab connecting portion 111b is formed in an L shape continuously from the end of one side of the active material disposing portion 111a over a width smaller than half of the width of the other adjacent side.

正極活物質112は、例えば、コバルト酸リチウムやマンガン酸リチウムなどのリチウム遷移金属酸化物によって形成される。正極活物質112は、活物質配設部111aの全体に設けられる。よって、正極集電箔111には、L字状のタブ接続部111bを除いた全面に正極活物質112が設けられる。   The positive electrode active material 112 is formed of, for example, a lithium transition metal oxide such as lithium cobalt oxide or lithium manganate. The positive electrode active material 112 is provided on the entire active material disposition portion 111a. Therefore, the positive electrode current collector foil 111 is provided with the positive electrode active material 112 on the entire surface excluding the L-shaped tab connection portion 111b.

接合領域115,116は、正極集電箔111の外縁部111cの少なくとも二辺に分散して配置される。接合領域115,116は、ともに正極電極タブ13と正極集電箔111のタブ接続部111bとを接合する。即ち、接合領域115,116は、正極集電箔111のタブ接続部111bに設けられ、活物質配設部111aには設けられない。   The bonding regions 115 and 116 are arranged in a distributed manner on at least two sides of the outer edge portion 111c of the positive electrode current collector foil 111. Both the joining regions 115 and 116 join the positive electrode tab 13 and the tab connecting portion 111 b of the positive current collector foil 111. That is, the joining regions 115 and 116 are provided in the tab connection portion 111b of the positive electrode current collector foil 111, and are not provided in the active material disposing portion 111a.

接合領域115は、正極電極タブ13の電極部13aと、正極集電箔111のタブ接続部111bにおける一方の端部近傍とを、正極集電箔111の幅方向に渡って接合する。接合領域115は、タブ接続部111bの略中央と、電極部13aの長さ方向の下端近傍とを接合する。   The joining region 115 joins the electrode portion 13 a of the positive electrode tab 13 and the vicinity of one end portion of the tab connection portion 111 b of the positive current collector foil 111 in the width direction of the positive current collector foil 111. The joining region 115 joins the approximate center of the tab connecting portion 111b and the vicinity of the lower end in the length direction of the electrode portion 13a.

接合領域116は、正極電極タブ13の延設部13bと、正極集電箔111のタブ接続部111bにおける他方の端部近傍とを、正極集電箔111の長さ方向に渡って接合する。接合領域116は、接合領域115と直交するように形成される。接合領域116は、正極電極タブ13において接合領域115から最も離間した位置に設けられる。   The joining region 116 joins the extending portion 13 b of the positive electrode tab 13 and the vicinity of the other end of the tab connection portion 111 b of the positive current collector foil 111 over the length direction of the positive current collector foil 111. The bonding region 116 is formed to be orthogonal to the bonding region 115. The bonding region 116 is provided at a position farthest from the bonding region 115 in the positive electrode tab 13.

充電又は放電によって正極電極110に電流が流れると、接合領域115,116に電流が集中して流れる。このとき、接合領域115,116が分散して設けられるため、電流は二方向へ分散して流れる。   When a current flows through the positive electrode 110 by charging or discharging, the current concentrates on the junction regions 115 and 116. At this time, since the junction regions 115 and 116 are provided in a distributed manner, the current flows in two directions.

また、接合領域115,116は、ともに正極活物質112から離間して設けられる。これにより、電流によって接合領域115,116の近傍が発熱しても、正極活物質112に熱が伝達されることが抑制される。よって、接合領域115,116の発熱に起因して正極活物質112が劣化して静電容量が低下することを防止できる。   In addition, the bonding regions 115 and 116 are both provided away from the positive electrode active material 112. As a result, even if the vicinity of the junction regions 115 and 116 generates heat due to the current, heat is suppressed from being transmitted to the positive electrode active material 112. Accordingly, it is possible to prevent the positive electrode active material 112 from being deteriorated due to the heat generation of the bonding regions 115 and 116 and the capacitance from being lowered.

以上の実施の形態によれば、接合領域115,116がともに正極集電箔111のタブ接続部111bに設けられることによって、正極集電箔111と正極電極タブ13との接合時に正極活物質112が劣化することを防止できる。したがって、正極活物質112の劣化に起因する静電容量の低下や、正極電極タブ13の接合時に正極活物質112が剥離することによる正極電極110と負極電極との短絡を防止することができる。   According to the above embodiment, the bonding regions 115 and 116 are both provided in the tab connection portion 111 b of the positive electrode current collector foil 111, so that the positive electrode active material 112 is bonded to the positive electrode current collector foil 111 and the positive electrode tab 13. Can be prevented from deteriorating. Therefore, it is possible to prevent a decrease in electrostatic capacitance due to deterioration of the positive electrode active material 112 and a short circuit between the positive electrode 110 and the negative electrode due to peeling of the positive electrode active material 112 when the positive electrode tab 13 is joined.

(第3の実施の形態)
以下、図4を参照して、本発明の第3の実施の形態について説明する。
(Third embodiment)
The third embodiment of the present invention will be described below with reference to FIG.

第3の実施の形態は、単一の接合領域215がL字状に形成される点で、これまでの実施の形態とは相違する。負極電極(図示省略)は、正極電極210と同様に構成されるため、ここでもまた、正極電極210についてのみ説明する。   The third embodiment is different from the previous embodiments in that a single junction region 215 is formed in an L shape. Since the negative electrode (not shown) is configured in the same manner as the positive electrode 210, only the positive electrode 210 will be described here.

正極電極210は、薄板状の金属箔で形成される正極集電箔111と、正極集電箔111の表面の一部に設けられる正極活物質112と、正極集電箔111と接合領域215で接合される正極電極タブ13とを備える。   The positive electrode 210 includes a positive electrode current collector foil 111 formed of a thin metal foil, a positive electrode active material 112 provided on a part of the surface of the positive electrode current collector foil 111, and the positive electrode current collector foil 111 and the bonding region 215. And a positive electrode tab 13 to be joined.

接合領域215は、L字状に形成される正極電極タブ13に倣ってL字状に連続して形成される。接合領域215は、正極集電箔111の外縁部111cの隣り合う二辺に渡ってL字状に連続して形成される。   The joining region 215 is continuously formed in an L shape following the positive electrode tab 13 formed in an L shape. The junction region 215 is continuously formed in an L shape over two adjacent sides of the outer edge portion 111 c of the positive electrode current collector foil 111.

接合領域215は、L字状に連続して形成されるため、二つの接合領域が別々に形成される場合と比較すると、接合領域215の端部における電位勾配が緩やかになり、局所的な電流の集中を緩和することができる。   Since the junction region 215 is continuously formed in an L shape, the potential gradient at the end of the junction region 215 becomes gentler than that in the case where the two junction regions are formed separately, and the local current Can be relaxed.

また、接合領域215は、正極活物質112の外周からの距離が、どの位置においても等しくなるように等距離だけ離間して設けられる。接合領域215が正極活物質112から一定の距離だけ離間しているため、接合領域215の部分によって電位が異なることはなく、接合領域215のどこであっても同じ電位となる。これにより、接合領域215の部分による電流の偏りが抑制される。   In addition, the bonding region 215 is provided at an equal distance so that the distance from the outer periphery of the positive electrode active material 112 is equal at any position. Since the junction region 215 is separated from the positive electrode active material 112 by a certain distance, the potential does not vary depending on the portion of the junction region 215 and is the same potential anywhere in the junction region 215. Thereby, current bias due to the portion of the junction region 215 is suppressed.

以上の実施の形態によれば、接合領域215がL字状に連続して形成されるため、電流が集中しやすい接合領域215の端部における電位勾配を緩やかにし、電流集中を緩和することができる。これにより、前述した他の実施の形態と比べて、電流を均一に分散させることができる。その結果、正極集電箔111と正極電極タブ13との接合領域215の近傍の発熱をより低減することができる。   According to the above embodiment, since the junction region 215 is continuously formed in an L-shape, the potential gradient at the end of the junction region 215 where current tends to concentrate can be moderated to reduce current concentration. it can. As a result, the current can be evenly distributed as compared with the other embodiments described above. As a result, heat generation in the vicinity of the bonding region 215 between the positive electrode current collector foil 111 and the positive electrode tab 13 can be further reduced.

本発明は上記の実施の形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。   The present invention is not limited to the above-described embodiment, and it is obvious that various modifications can be made within the scope of the technical idea.

例えば、上述した各実施の形態では、正極集電箔11,111,負極集電箔21,正極活物質12,112,及び負極活物質22の材料を例示したが、これに限られるものではなく、リチウムイオンの移動によって充放電可能であればどのような材料であってもよい。   For example, in each of the above-described embodiments, the materials of the positive electrode current collector foils 11 and 111, the negative electrode current collector foil 21, the positive electrode active materials 12 and 112, and the negative electrode active material 22 are exemplified, but the present invention is not limited thereto. Any material may be used as long as it can be charged and discharged by movement of lithium ions.

また、上述した各実施の形態では、正極電極と負極電極とは同様の構成である。これに限らず、正極電極と負極電極とのいずれか一方のみに、上述した構成を適用してもよい。   Moreover, in each embodiment mentioned above, the positive electrode and the negative electrode are the same structures. However, the configuration described above may be applied to only one of the positive electrode and the negative electrode.

100 積層型電池
1 ラミネートパック(外装材)
10 正極電極(電極)
11 正極集電箔(電極集電箔)
12 正極活物質(活物質)
13 正極電極タブ(電極タブ)
15 接合領域
16 接合領域
20 負極電極(電極)
21 負極集電箔(電極集電箔)
22 負極活物質(活物質)
23 負極電極タブ(電極タブ)
25 接合領域
26 接合領域
30 セパレータ
40 電解質
100 Laminated battery 1 Laminate pack (exterior material)
10 Positive electrode (electrode)
11 Positive electrode current collector foil (electrode current collector foil)
12 Positive electrode active material (active material)
13 Positive electrode tab (electrode tab)
15 Bonding region 16 Bonding region 20 Negative electrode (electrode)
21 Negative electrode current collector foil (electrode current collector foil)
22 Negative electrode active material (active material)
23 Negative electrode tab (electrode tab)
25 Joining region 26 Joining region 30 Separator 40 Electrolyte

Claims (3)

電極を形成する電極集電箔がセパレータを介して積層され、電解質とともに外装材の内部に収容される積層型電池であって、
前記電極集電箔の外縁部の少なくとも二辺に分散して配置される接合領域で当該電極集電箔と接合され、前記外装材から外部に引き出される電極タブを備えることを特徴とする積層型電池。
An electrode current collector foil that forms an electrode is laminated via a separator, and is a laminated battery that is housed in an exterior material together with an electrolyte,
A laminated type comprising an electrode tab that is joined to the electrode current collector foil in a joint region that is dispersed and arranged on at least two sides of the outer edge of the electrode current collector foil, and is drawn out from the exterior material battery.
前記電極集電箔は、
活物質が設けられる活物質配設部と、
前記活物質配設部の外縁から延設されるタブ接合部と、を有し、
前記接合領域は、前記タブ接合部に形成されることを特徴とする請求項1に記載の積層型電池。
The electrode current collector foil is
An active material disposition portion where an active material is provided;
A tab joint extending from the outer edge of the active material disposition portion,
The stacked battery according to claim 1, wherein the joining region is formed in the tab joining portion.
前記接合領域は、前記電極集電箔における前記外縁部の隣り合う二辺に渡ってL字状に連続して形成されることを特徴とする請求項1又は2に記載の積層型電池。   3. The stacked battery according to claim 1, wherein the joining region is continuously formed in an L shape over two adjacent sides of the outer edge portion of the electrode current collector foil.
JP2010234719A 2010-10-19 2010-10-19 Stacked battery Expired - Fee Related JP5533548B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010234719A JP5533548B2 (en) 2010-10-19 2010-10-19 Stacked battery
KR1020110106208A KR101286910B1 (en) 2010-10-19 2011-10-18 Laminate type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010234719A JP5533548B2 (en) 2010-10-19 2010-10-19 Stacked battery

Publications (2)

Publication Number Publication Date
JP2012089338A JP2012089338A (en) 2012-05-10
JP5533548B2 true JP5533548B2 (en) 2014-06-25

Family

ID=46140516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010234719A Expired - Fee Related JP5533548B2 (en) 2010-10-19 2010-10-19 Stacked battery

Country Status (2)

Country Link
JP (1) JP5533548B2 (en)
KR (1) KR101286910B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032628B2 (en) * 2013-05-31 2016-11-30 パナソニックIpマネジメント株式会社 Thin battery
KR102074995B1 (en) * 2015-07-27 2020-02-07 주식회사 엘지화학 Battery Cell Having Improved Design Freedom in Positioning of Electrode Lead
JP6460414B2 (en) * 2016-09-12 2019-01-30 トヨタ自動車株式会社 battery
JP2021034349A (en) * 2019-08-29 2021-03-01 株式会社日立製作所 Secondary cell and electrically-driven system in wheel
JP7468424B2 (en) 2021-03-25 2024-04-16 トヨタ自動車株式会社 Method for estimating battery deterioration state
JP7297037B2 (en) * 2021-11-30 2023-06-23 Apb株式会社 Secondary battery module

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4228376B2 (en) 1999-08-12 2009-02-25 株式会社ジーエス・ユアサコーポレーション battery
JP3773391B2 (en) 2000-03-31 2006-05-10 三菱電機株式会社 Battery manufacturing method and battery or electrode body thereof
JP2002289166A (en) * 2001-03-27 2002-10-04 Sanyo Electric Co Ltd Manufacturing method of battery
JP2005129497A (en) * 2003-09-30 2005-05-19 Sanyo Electric Co Ltd Electrode plate for alkaline storage battery, its manufacturing method, and alkaline storage battery
KR100731436B1 (en) * 2005-11-29 2007-06-21 삼성에스디아이 주식회사 Pouch type Lithium Secondary Battery
JP2008091100A (en) 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Square lithium-ion battery
US8304112B2 (en) * 2008-12-01 2012-11-06 Tai-Her Yang Electrode plate multi-end sides to single end side current collector of an electricity storage/discharge device

Also Published As

Publication number Publication date
JP2012089338A (en) 2012-05-10
KR101286910B1 (en) 2013-07-16
KR20120040671A (en) 2012-04-27

Similar Documents

Publication Publication Date Title
JP5533548B2 (en) Stacked battery
JP2006252855A (en) Thin secondary battery for high-current discharge and battery module
JP2018125142A (en) Power storge module
JP2018133201A (en) Power storage module
JP2016178025A (en) Power storage element
JPWO2017038042A1 (en) Stacked battery
JP2012204305A (en) Battery cell
JP2014060045A (en) Electrode structure of secondary battery
JP2014038801A (en) Power storage device
JP5676095B2 (en) Multilayer secondary battery
KR101658973B1 (en) Pouch type secondary battery and secondary battery module comprising the same
JP2012059696A (en) Secondary battery and manufacturing method thereof
KR101921730B1 (en) Secondary Battery
JP6630747B2 (en) Battery module with improved cooling structure
JP2019145262A (en) Secondary cell
JP2017120743A (en) Power storage device
WO2019039409A1 (en) Layered battery
WO2013031642A1 (en) Accumulator device
JP2012190696A (en) Battery
JP6631214B2 (en) Electrode assembly
CN108701867B (en) Laminated nonaqueous electrolyte secondary battery
JP2014146467A (en) Power storage device
JP7405687B2 (en) Energy storage element
WO2022224386A1 (en) Method for manufacturing electrochemical cell
JP7304369B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R151 Written notification of patent or utility model registration

Ref document number: 5533548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees