JP5532521B2 - Solid oxide fuel cell assembly - Google Patents

Solid oxide fuel cell assembly Download PDF

Info

Publication number
JP5532521B2
JP5532521B2 JP2010222105A JP2010222105A JP5532521B2 JP 5532521 B2 JP5532521 B2 JP 5532521B2 JP 2010222105 A JP2010222105 A JP 2010222105A JP 2010222105 A JP2010222105 A JP 2010222105A JP 5532521 B2 JP5532521 B2 JP 5532521B2
Authority
JP
Japan
Prior art keywords
fuel cell
solid oxide
oxide fuel
current collector
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010222105A
Other languages
Japanese (ja)
Other versions
JP2012079488A (en
Inventor
めぐみ 島津
晃 川上
修一郎 西願
真登 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2010222105A priority Critical patent/JP5532521B2/en
Publication of JP2012079488A publication Critical patent/JP2012079488A/en
Application granted granted Critical
Publication of JP5532521B2 publication Critical patent/JP5532521B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、固体酸化物型燃料電池セル集合体に関する。   The present invention relates to a solid oxide fuel cell assembly.

固体酸化物型燃料電池(Solid Oxide Fuel Cell:以下「SOFC」とも言う)は、電解質として酸化物イオン導電性固体電解質を用い、その両側に電極を取り付け、一方の側に燃料ガスを供給し、他方の側に空気を供給して、比較的高温で発電反応を生じさせて発電を行う燃料電池である。   A solid oxide fuel cell (hereinafter also referred to as “SOFC”) uses an oxide ion conductive solid electrolyte as an electrolyte, attaches electrodes on both sides thereof, and supplies fuel gas on one side, This is a fuel cell that generates power by supplying air to the other side and generating a power generation reaction at a relatively high temperature.

この種の燃料電池では、単一の燃料電池セル(単セル)では、得られる電力が少ないので、特許文献1に示すように、複数の燃料電池セルを平行に並べて、集電体により電気的に直列に接続して必要な電力を得るようにしている。   In this type of fuel cell, since a single fuel cell (single cell) obtains less electric power, as shown in Patent Document 1, a plurality of fuel cells are arranged in parallel and electrically connected by a current collector. Are connected in series to obtain the necessary power.

特許文献1には、円筒状に形成された固体電解質の内周面に空気電極(+極)が、また外周面には燃料電極(−極)が形成され、内周側の空気電極が端部において固体電解質から筒状に延出されている燃料電池セル(単セル)が開示されている。この特許文献1の燃料電池では、複数の燃料電池セル(単セル)をハウジング内に平行に並べ、ハウジング内部に供給する燃料ガスが外部に漏れないように、ハウジングの開放された部分をガスで気密にシールしている。各単セルの外周面には集電体が取り付けられ、この集電体の端部が、一方の空気電極側でガラスから気密に延出して、接続用集電部材を介して隣接する単セルの空気電極に接続されている。特許文献1の燃料電池では、このようにして複数の単セルを直列に接続してスタック化して固体電解質型燃料電池を構成している。   In Patent Document 1, an air electrode (+ electrode) is formed on the inner peripheral surface of a solid electrolyte formed in a cylindrical shape, and a fuel electrode (-electrode) is formed on the outer peripheral surface. A fuel battery cell (single cell) is disclosed which extends in a cylindrical shape from a solid electrolyte in the part. In the fuel cell of Patent Document 1, a plurality of fuel cells (single cells) are arranged in parallel in the housing, and the opened portion of the housing is made of gas so that fuel gas supplied into the housing does not leak to the outside. It is airtightly sealed. A current collector is attached to the outer peripheral surface of each single cell, and the end of this current collector extends airtightly from the glass on one air electrode side and is adjacent to each other via a current collecting member for connection. Connected to the air electrode. In the fuel cell of Patent Document 1, a plurality of single cells are connected in series and stacked to form a solid oxide fuel cell.

このような構造の集電体に、導電性を向上させるために銀メッキを施すことがある。この場合、銀メッキに沿って、すなわち銀メッキの膜厚断面方向に対して電流が流れる。   The current collector having such a structure may be subjected to silver plating in order to improve conductivity. In this case, a current flows along the silver plating, that is, the film thickness cross-sectional direction of the silver plating.

特許文献2には、燃料電池セル(単セル)と集電体を積層させることによって、複数の単セルを接続してスタック化し固体電解質型燃料電池を構成する際に用いる集電体が開示されている。耐熱合金材料からなる集電体の表面に、Cr3−xからなる組成のクロム酸化物層を介して銀メッキ層が形成されている集電体を用いることにより、燃料電池の運転温度における耐熱性と導電性を実現することができる。
なおここで、耐熱合金材料の表面にNiメッキ層を形成し、このNiメッキ層の上に銀メッキ層を形成することにより、銀メッキ層と耐熱合金材料の密着性を向上させる効果も得ることができることは知られている。
Patent Document 2 discloses a current collector that is used when a plurality of single cells are connected and stacked to form a solid oxide fuel cell by stacking a fuel cell (single cell) and a current collector. ing. By using a current collector in which a silver plating layer is formed on the surface of a current collector made of a heat-resistant alloy material via a chromium oxide layer having a composition made of Cr 2 O 3-x , the operating temperature of the fuel cell It is possible to achieve heat resistance and electrical conductivity.
Here, by forming a Ni plating layer on the surface of the heat resistant alloy material and forming a silver plating layer on the Ni plating layer, an effect of improving the adhesion between the silver plating layer and the heat resistant alloy material can be obtained. It is known that you can.

特開平9−274927号公報Japanese Patent Laid-Open No. 9-274927 特開2006−107936号公報JP 2006-107936 A

本発明者らが実験を行った。具体的には固体酸化物型燃料電池セル間に配置され、集電体の表層に銀が配置され、配置されている銀に沿って電流が流れるように構成される集電体を用いて、集電体の基材と銀の間に従来から知られるNiを配置させ発電運転を行った。そうしたところ表層の銀が剥離される事象が起こることを初めて発見した。
これはこれまでNiで銀の剥離問題が解消されていたのに対して、新たな課題を生じたために起こった不具合である。
鋭意研究したところ、次のような課題があることを初めて見出した。
1つ目は集電体の中での電流の流れ方に起因する。すなわち、表層の銀に沿って電流が流れるため、表層のみにある銀だけでは電流の通路断面積が小さく電気抵抗が大きいため、発熱量が大幅にアップし大幅に体積膨張の変化率がアップしたたことによると思われる。
さらに2つ目は、集電体の銀の部分が特許文献2にあるように燃料電池セルと接していないため固体酸化物型燃料電池の運転中に直接高温の空気にさらされる面積が大きく、基材と銀の間に配置されるNiが酸化したためだと思われる。酸化すると体積膨張が起こり、より銀がはがれやすい状態となったと思われる。
そこで今回、固体酸化物型燃料電池セル間に配置され、集電体の表層に銀が配置され、配置されている銀に沿って電流が流れるように構成される集電体であり、集電体の表層が固体酸化物型燃料電池セルに挟まれず空気又は酸化剤ガスにさらされている集電体を備えた固体酸化物型燃料電池集合体における集電体の銀の剥がれを防止することを目的とする。
The inventors conducted experiments. Specifically, using a current collector disposed between solid oxide fuel cells, silver disposed on the surface layer of the current collector, and configured to allow current to flow along the disposed silver, Conventionally known Ni was placed between the current collector base material and silver to perform power generation operation. As a result, we discovered for the first time that the surface silver was peeled off.
This is a problem that occurred because a new problem has arisen while the problem of silver peeling has been solved with Ni.
As a result of intensive research, we found for the first time that there were the following problems.
The first is due to the current flow in the current collector. In other words, since current flows along the surface silver, only the silver on the surface layer has a small current passage cross-sectional area and a large electrical resistance, so the amount of heat generation is greatly increased and the rate of change in volume expansion is greatly increased. It seems to be due to that.
Secondly, since the silver portion of the current collector is not in contact with the fuel cell as in Patent Document 2, the area directly exposed to high-temperature air during the operation of the solid oxide fuel cell is large. This is thought to be due to the oxidation of Ni placed between the base material and silver. When oxidized, volume expansion occurs, and it seems that silver is more easily peeled off.
Therefore, this time, the current collector is arranged between the solid oxide fuel cells, the silver is arranged on the surface layer of the current collector, and the current flows along the arranged silver. To prevent the current collector silver from peeling off in a solid oxide fuel cell assembly comprising a current collector that is exposed to air or oxidant gas without being sandwiched between solid oxide fuel cell cells With the goal.

上記課題を解決するために、本発明は、複数の固体酸化物型燃料電池セルと、
前記複数の固体酸化物型燃料電池セルを電気的に接続する集電体と、を有し、
前記集電体は表層に銀の層が配置されるとともに、
前記銀の層に沿って電流が流れるように構成され、
さらに前記銀の層に前記固体酸化物型燃料電池セルの発電のために用いられる空気または酸化剤ガスが触れるように構成される集電体である固体酸化物型燃料電池セル集合体において、
前記固体酸化物型燃料電池セル集合体の運転温度が600度から800度の際に、
前記集電体の基材と、
前記銀の層と、
の間に
を有する酸化抑制層を備えることを徴としている。
このように構成された本発明においては、基材に設けられた銀メッキ層が剥がれることがなく、燃料電池セルの信頼性を向上させることができる。
In order to solve the above problems, the present invention provides a plurality of solid oxide fuel cells,
A current collector for electrically connecting the plurality of solid oxide fuel cells,
The current collector has a silver layer disposed on the surface layer,
Configured to allow current to flow along the silver layer;
Furthermore, in the solid oxide fuel cell assembly which is a current collector configured to come into contact with the silver layer air or oxidant gas used for power generation of the solid oxide fuel cell,
When the operating temperature of the solid oxide fuel cell assembly is 600 degrees to 800 degrees,
A substrate of the current collector;
The silver layer;
Between
Further comprising an oxidation inhibiting layer having gold is a feature.
In this invention comprised in this way, the silver plating layer provided in the base material does not peel off, but the reliability of a fuel cell can be improved.

本発明によれば、固体酸化物型燃料電池セル間に配置され、集電体の表層に銀が配置され、配置されている銀に沿って電流が流れるように構成される集電体であり、集電体の表層が固体酸化物型燃料電池セルに挟まれず空気又は酸化剤ガスにさらされている集電体を備えた固体酸化物型燃料電池集合体における集電体の銀の剥がれを防止することにより、燃料電池セルの信頼性を向上させることができる。   According to the present invention, the current collector is disposed between the solid oxide fuel cells, the silver is disposed on the surface layer of the current collector, and the current is configured to flow along the disposed silver. In the solid oxide fuel cell assembly including the current collector, the surface layer of the current collector is not sandwiched between the solid oxide fuel cell cells and is exposed to air or an oxidant gas. By preventing this, the reliability of the fuel cell can be improved.

本発明の実施形態による固体酸化物型燃料電池セル集合体を示す斜視図である。1 is a perspective view showing a solid oxide fuel cell assembly according to an embodiment of the present invention. 本発明の実施形態による固体酸化物型燃料電池セル集合体を示す部分断面図である。1 is a partial cross-sectional view showing a solid oxide fuel cell assembly according to an embodiment of the present invention.

次に、添付図面を参照して、本発明の実施形態による固体酸化物型燃料電池セル集合体を説明する。図1は、本発明の実施形態による固体酸化物型燃料電池セル集合体を示す斜視図である。   Next, a solid oxide fuel cell assembly according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a perspective view showing a solid oxide fuel cell assembly according to an embodiment of the present invention.

図1に示すように、固体酸化物型燃料電池セル集合体14は、16本の燃料電池セルユニット16を備え、これらの燃料電池セルユニット16の下端側及び上端側が、それぞれ、セラミック製の下支持板68及び上支持板100により支持されている。これらの下支持板68及び上支持板100には、内側電極端子86が貫通可能な貫通穴68a及び100aがそれぞれ形成されている。   As shown in FIG. 1, the solid oxide fuel cell assembly 14 includes 16 fuel cell units 16, and a lower end side and an upper end side of each of the fuel cell units 16 are respectively made of ceramic. It is supported by the support plate 68 and the upper support plate 100. The lower support plate 68 and the upper support plate 100 are formed with through holes 68a and 100a through which the inner electrode terminal 86 can pass.

燃料電池セルユニット16には、集電体102及び外部端子99が取り付けられている。この集電体102は、燃料電池セルユニット16の両端部にある内側電極端子86と外側電極層92を電気的に接続するためのものである。
集電体の組成は後で詳述するが、基材上に酸化抑制層である金の層を介して銀の層が表層に位置している。
銀の層は固体酸化物型燃料電池セルと接していない部分を有し、従来あったようにセルどうしで挟まれる形ではなく、セルを把持する部分を有し、セルの発電のために用いられる空気または酸化剤ガスにさらされる部分を有している。
A current collector 102 and an external terminal 99 are attached to the fuel cell unit 16. The current collector 102 is for electrically connecting the inner electrode terminal 86 and the outer electrode layer 92 at both ends of the fuel cell unit 16.
Although the composition of the current collector will be described in detail later, a silver layer is positioned on the surface of the base material via a gold layer that is an oxidation-suppressing layer.
The silver layer has a portion that is not in contact with the solid oxide fuel cell, and is not sandwiched between cells as in the past, but has a portion that grips the cell and is used for power generation of the cell Part exposed to air or oxidant gas.

次に図2により燃料電池セルユニット16について説明する。図2は、本発明の実施形態による固体電解質型燃料電池(SOFC)の燃料電池セルユニットを示す部分断面図である。
図2に示すように、燃料電池セルユニット16は、燃料電池セル84と、この燃料電池セル84の上下方向端部にそれぞれ接続された内側電極端子86とを備えている。
燃料電池セル84は、上下方向に延びる管状構造体であり、内部に燃料ガス流路88を形成する円筒形の第2の電極である内側電極層90と、円筒形の第1の電極である外側電極層92と、第2の電極である内側電極層90と第1の電極である外側電極層92との間にある電解層94とを備えている。この内側電極層90は、燃料ガスが通過する燃料極であり、(−)極となり、一方、外側電極層92は、空気と接触する空気極であり、(+)極となっている。
Next, the fuel cell unit 16 will be described with reference to FIG. FIG. 2 is a partial cross-sectional view showing a fuel cell unit of a solid oxide fuel cell (SOFC) according to an embodiment of the present invention.
As shown in FIG. 2, the fuel cell unit 16 includes a fuel cell 84 and inner electrode terminals 86 respectively connected to the vertical ends of the fuel cell 84.
The fuel battery cell 84 is a tubular structure that extends in the vertical direction, and is an inner electrode layer 90 that is a cylindrical second electrode that forms a fuel gas flow path 88 therein, and a cylindrical first electrode. The outer electrode layer 92 includes an inner electrode layer 90 as a second electrode and an electrolytic layer 94 between the outer electrode layer 92 as a first electrode. The inner electrode layer 90 is a fuel electrode through which fuel gas passes and becomes a (−) electrode, while the outer electrode layer 92 is an air electrode in contact with air and becomes a (+) electrode.

燃料電池セル16の上端側と下端側に取り付けられた内側電極端子86は、同一構造であるため、ここでは、上端側に取り付けられた内側電極端子86について具体的に説明する。内側電極層90の上部90aは、電解層94と外側電極層92に対して露出された外周面90bと上端面90cとを備えている。内側電極端子86は、導電性のシール材96を介して内側電極層90の外周面90bと接続され、さらに、内側電極層90の上端面90cとは直接接触することにより、内側電極層90と電気的に接続されている。また、内側電極端子86は、突出した筒状部分86aと平坦面86bを備え、筒状部分86aの内部には、内側電極層90の燃料ガス流路88と連通する燃料ガス流路98が形成されている。   Since the inner electrode terminal 86 attached to the upper end side and the lower end side of the fuel cell 16 has the same structure, the inner electrode terminal 86 attached to the upper end side will be specifically described here. The upper portion 90a of the inner electrode layer 90 includes an outer peripheral surface 90b and an upper end surface 90c exposed to the electrolytic layer 94 and the outer electrode layer 92. The inner electrode terminal 86 is connected to the outer peripheral surface 90b of the inner electrode layer 90 through a conductive sealing material 96, and is further in direct contact with the upper end surface 90c of the inner electrode layer 90, thereby Electrically connected. The inner electrode terminal 86 includes a protruding cylindrical portion 86a and a flat surface 86b, and a fuel gas channel 98 communicating with the fuel gas channel 88 of the inner electrode layer 90 is formed inside the cylindrical portion 86a. Has been.

内側電極層90は、例えば、Niと、CaやY、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニアとの混合体、Niと、希土類元素から選ばれる少なくとも一種をドープしたセリアとの混合体、Niと、Sr、Mg、Co、Fe、Cuから選ばれる少なくとも一種をドープしたランタンガレードとの混合体、の少なくとも一種から形成される。   The inner electrode layer 90 includes, for example, a mixture of Ni and zirconia doped with at least one selected from rare earth elements such as Ca, Y, and Sc, and Ni and ceria doped with at least one selected from rare earth elements. The mixture is formed of at least one of Ni and a mixture of lanthanum garade doped with at least one selected from Sr, Mg, Co, Fe, and Cu.

電解層94は、例えば、Sr、Mgから選ばれる少なくとも一種をドープしたランタンガレートを用いることができる。   For the electrolytic layer 94, for example, lanthanum gallate doped with at least one selected from Sr and Mg can be used.

外側電極層92は、例えば、Sr、Caから選ばれた少なくとも一種をドープしたランタンマンガナイト、Sr、Co、Ni、Cuから選ばれた少なくとも一種をドープしたランタンフェライト、Sr、Fe、Ni、Cuから選ばれた少なくとも一種をドープしたランタンコバルタイト、銀、などの少なくとも一種から形成される。   The outer electrode layer 92 includes, for example, lanthanum manganite doped with at least one selected from Sr and Ca, lanthanum ferrite doped with at least one selected from Sr, Co, Ni and Cu, Sr, Fe, Ni and Cu. It is formed from at least one of lanthanum cobaltite doped with at least one selected from the group consisting of silver and silver.

電解層94に、例えばSr、Mgから選ばれる少なくとも一種をドープしたランタンガレートを用いることにより、固体電解質型燃料電池を800℃以下で作動させることができる。その結果、銀の揮発を抑制することが可能となり、電子導電性の高い銀を集電体に用いることができる。   By using, for example, lanthanum gallate doped with at least one selected from Sr and Mg for the electrolytic layer 94, the solid oxide fuel cell can be operated at 800 ° C. or lower. As a result, silver volatilization can be suppressed, and silver having high electronic conductivity can be used for the current collector.

次に、本発明を実施例を基に詳細に説明するが、本発明が以下の実施例に限定されないことはもちろんである。   Next, the present invention will be described in detail based on examples, but it is needless to say that the present invention is not limited to the following examples.

(実施例:集電体の作製)
厚さ0.3mmの耐熱合金製の基材に0.5μmの金メッキ層を形成し、その金メッキ層の上に25μmの銀メッキ層を形成し、集電体を作製し固体酸化物型燃料電池と組み合わせ固体酸化物型燃料電池セル集合体を作成した。なお、ここで金は600度から800度において、酸素ガス1モルあたりの酸化物の標準生成ギブズエネルギーがNiよりも大きく、Niに比べ酸化しにくい金属である。

耐熱合金の組成は以下の通りである。Cr=18.3(重量%、以下同じ)、Al=3.1、Si=0.3、Mn=0.2、Ni=0.1、Ti=0.1、Fe=バランスからなる合金。
(Example: Preparation of current collector)
A 0.5 μm gold plating layer is formed on a heat-resistant alloy substrate having a thickness of 0.3 mm, a 25 μm silver plating layer is formed on the gold plating layer, and a current collector is produced to produce a solid oxide fuel cell A solid oxide fuel cell assembly was prepared in combination with the above. Here, gold is a metal that has a standard Gibbs energy of oxide generation per mole of oxygen gas greater than that of Ni at 600 to 800 degrees and is less susceptible to oxidation than Ni.

The composition of the heat-resistant alloy is as follows. An alloy composed of Cr = 18.3 (% by weight, the same applies hereinafter), Al = 3.1, Si = 0.3, Mn = 0.2, Ni = 0.1, Ti = 0.1, and Fe = balance.

(比較例:集電体の作製)
厚さ0.3mmの耐熱合金製の基材に0.5μmのニッケルメッキ層を形成し、そのニッケルメッキ層の上に25μmの銀メッキ層を形成し、集電体を作製し、実施例同様に固体酸化物型燃料電池セル集合体を作成した。耐熱合金の組成は以下の通りである。Cr=18.3(重量%、以下同じ)、Al=3.1、Si=0.3、Mn=0.2、Ni=0.1、Ti=0.1、Fe=バランスからなる合金。
(Comparative example: Preparation of current collector)
A nickel plating layer of 0.5 μm is formed on a base made of a heat-resistant alloy having a thickness of 0.3 mm, a silver plating layer of 25 μm is formed on the nickel plating layer, and a current collector is produced. A solid oxide fuel cell assembly was prepared. The composition of the heat-resistant alloy is as follows. An alloy composed of Cr = 18.3 (% by weight, the same applies hereinafter), Al = 3.1, Si = 0.3, Mn = 0.2, Ni = 0.1, Ti = 0.1, and Fe = balance.

(密着性評価1)
以上のようにして作製した実施例及び、比較例の固体酸化物型燃料電池セル集合体の各集電体を大気雰囲気、850℃で1時間熱処理した。加速試験のため熱処理後、各集電体を90度に折り曲げて、銀メッキの剥がれを確認した。実施例は剥がれが認められなかった。比較例では銀メッキの剥がれが見られた。
(Adhesion evaluation 1)
The current collectors of the solid oxide fuel cell assemblies of Examples and Comparative Examples produced as described above were heat-treated at 850 ° C. for 1 hour in an air atmosphere. After the heat treatment for the acceleration test, each current collector was bent at 90 degrees to confirm peeling of the silver plating. In the examples, no peeling was observed. In the comparative example, peeling of the silver plating was observed.

(密着性評価2)
以上のようにして作製した実施例の固体酸化物型燃料電池セル集合体を、700℃、電流7Aの条件で8800時間発電試験を行った。発電試験中は、燃料電池セルの外側には空気を、内側には水素と窒素の混合ガスを流したため、集電体は空気にさらされていた。発電試験後の集電体を目視で確認したところ、銀メッキの剥がれは認められなかった。
(Adhesion evaluation 2)
The power generation test of the solid oxide fuel cell assembly of the example produced as described above was conducted for 8800 hours under the conditions of 700 ° C. and current 7A. During the power generation test, air was exposed to the outside of the fuel cell, and a mixed gas of hydrogen and nitrogen was allowed to flow inside, so that the current collector was exposed to air. When the current collector after the power generation test was visually confirmed, no peeling of the silver plating was observed.

14 固体酸化物型燃料電池セル集合体
16 燃料電池セルユニット
68 上支持板
68a 上支持板貫通穴
84 燃料電池セル
86 内側電極端子
86a 内側電極端子の筒状部分
86b 内側電極端子の平坦面
88 内側電極層の燃料ガス流路
90 内側電極層
90a 内側電極層の上部
90b 外周面
92 外側電極層
94 電解層
96 導電性のシール材
98 燃料ガス流路
99 外部端子
100 下支持板
100a 下支持板貫通穴
102 集電体
DESCRIPTION OF SYMBOLS 14 Solid oxide type fuel cell assembly 16 Fuel cell unit 68 Upper support plate 68a Upper support plate through-hole 84 Fuel cell 86 Inner electrode terminal 86a Tubular portion of inner electrode terminal 86b Flat surface of inner electrode terminal 88 Inner side Fuel gas flow path of electrode layer 90 Inner electrode layer 90a Upper part of inner electrode layer 90b Outer peripheral surface 92 Outer electrode layer 94 Electrolytic layer 96 Conductive seal material 98 Fuel gas flow path 99 External terminal 100 Lower support plate 100a Lower support plate penetration Hole 102 current collector

Claims (2)

複数の固体酸化物型燃料電池セルと、
前記複数の固体酸化物型燃料電池セルを電気的に接続する集電体と、を有し、
前記集電体は表層に銀の層が配置されるとともに、
前記銀の層に沿って電流が流れるように構成され、
さらに前記銀の層に前記固体酸化物型燃料電池セルの発電のために用いられる空気または酸化剤ガスが触れるように構成される集電体である固体酸化物型燃料電池セル集合体において、
前記固体酸化物型燃料電池セル集合体の運転温度が600度から800度の際に、
前記集電体の基材と、
前記銀の層と、の間に
を有する酸化抑制層を備えることを特徴とする固体酸化物型燃料電池セル集合体。
A plurality of solid oxide fuel cells;
A current collector for electrically connecting the plurality of solid oxide fuel cells,
The current collector has a silver layer disposed on the surface layer,
Configured to allow current to flow along the silver layer;
Furthermore, in the solid oxide fuel cell assembly which is a current collector configured to come into contact with air or oxidant gas used for power generation of the solid oxide fuel cell in contact with the silver layer,
When the operating temperature of the solid oxide fuel cell assembly is 600 degrees to 800 degrees,
A substrate of the current collector;
Between the silver layer
A solid oxide fuel cell assembly comprising an oxidation suppression layer having gold .
前記金を有する酸化抑制層が、金メッキ層であることを特徴とする請求項1に記載の固体酸化物形燃料電池セル集合体。2. The solid oxide fuel cell assembly according to claim 1, wherein the oxidation suppressing layer containing gold is a gold plating layer. 3.
JP2010222105A 2010-09-30 2010-09-30 Solid oxide fuel cell assembly Expired - Fee Related JP5532521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010222105A JP5532521B2 (en) 2010-09-30 2010-09-30 Solid oxide fuel cell assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010222105A JP5532521B2 (en) 2010-09-30 2010-09-30 Solid oxide fuel cell assembly

Publications (2)

Publication Number Publication Date
JP2012079488A JP2012079488A (en) 2012-04-19
JP5532521B2 true JP5532521B2 (en) 2014-06-25

Family

ID=46239508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010222105A Expired - Fee Related JP5532521B2 (en) 2010-09-30 2010-09-30 Solid oxide fuel cell assembly

Country Status (1)

Country Link
JP (1) JP5532521B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129246A (en) * 2017-02-10 2018-08-16 Toto株式会社 Fuel cell unit and fuel cell stack
JP7025385B2 (en) * 2019-08-30 2022-02-24 森村Sofcテクノロジー株式会社 Electrochemical cell stack with conductive member, its manufacturing method, and conductive member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPN876896A0 (en) * 1996-03-18 1996-04-18 Ceramic Fuel Cells Limited An electrical interconnect for a planar fuel cell
JP2002280026A (en) * 2001-01-09 2002-09-27 Mitsubishi Materials Corp Air electrode current collector for solid electrolyte fuel cell
JP5168623B2 (en) * 2007-12-11 2013-03-21 Toto株式会社 Fuel cell stack, fuel cell module including the same, and fuel cell including the same
JP5258381B2 (en) * 2008-05-19 2013-08-07 本田技研工業株式会社 Separator surface treatment method for solid oxide fuel cell

Also Published As

Publication number Publication date
JP2012079488A (en) 2012-04-19

Similar Documents

Publication Publication Date Title
US7150931B1 (en) Fuel cell gas separator
JP2007107090A (en) Alloy for interconnection of fuel cells
US20080220313A1 (en) Seal arrangement comprising a metallic braze for a high-temperature fuel cell stack and a method of manufacturing a fuel cell stack
US8071252B2 (en) Interconnector for high-temperature fuel cells
KR101941739B1 (en) Fuel cell stack
JP4462050B2 (en) Solid oxide fuel cell
KR20180059518A (en) Interconnect - Electrochemical Reaction Single Cell Complex, Electrochemical Reaction Cell Stack and Interconnect - Electrochemical Reaction Single Cell Complex
JPH11162478A (en) Separator for fuel cell
CN101454932A (en) Interconnector for a fuel cell stack, and method for production
WO2008018950A2 (en) Conductive coating for solid oxide fuel cell
US7175931B2 (en) Interconnector plate with openings and contact elements sealed in the openings
KR100950673B1 (en) A fabrication method and separators for planar solid oxide fuel cells
JP5532521B2 (en) Solid oxide fuel cell assembly
JP2015183252A (en) Cell stack and electrolytic module, and electrolytic apparatus
JP2019125480A (en) Cell-to-cell connection member, cell for solid oxide type fuel battery, solid oxide type fuel battery, sofc mono-generation system, and sofc co-generation system
JP2014049324A (en) Fuel battery cell with separator, and fuel battery
KR100979052B1 (en) A Separator For Planar Solid Oxide Fuel Cells, The Fuel Cell Comprising The Separator And The Method For Preparing For Them
JP6917182B2 (en) Conductive members, electrochemical reaction units, and electrochemical reaction cell stacks
JP7236966B2 (en) Electrochemical reaction cell stack
CN104969397B (en) Fuel cell pile structure object
US7575827B2 (en) Conductive coatings for PEM fuel cell electrodes
JP4136062B2 (en) Separator material
JP6773472B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
KR20150075442A (en) Metallic current collector for solid oxide fuel cell and solid oxide fuel cell comprising the same
JP5727429B2 (en) Fuel cell with separator and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5532521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140413

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees