JP5532212B2 - Method for producing hologram - Google Patents

Method for producing hologram Download PDF

Info

Publication number
JP5532212B2
JP5532212B2 JP2009274164A JP2009274164A JP5532212B2 JP 5532212 B2 JP5532212 B2 JP 5532212B2 JP 2009274164 A JP2009274164 A JP 2009274164A JP 2009274164 A JP2009274164 A JP 2009274164A JP 5532212 B2 JP5532212 B2 JP 5532212B2
Authority
JP
Japan
Prior art keywords
hologram
exposure
amount
light
recording material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009274164A
Other languages
Japanese (ja)
Other versions
JP2011118075A (en
Inventor
牧夫 倉重
知枝 高野倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2009274164A priority Critical patent/JP5532212B2/en
Publication of JP2011118075A publication Critical patent/JP2011118075A/en
Application granted granted Critical
Publication of JP5532212B2 publication Critical patent/JP5532212B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Holo Graphy (AREA)

Description

本発明は、ホログラムの作製方法に関し、特に、所定の回折効率を持つホログラムの作製方法に関するものである。   The present invention relates to a method for producing a hologram, and more particularly to a method for producing a hologram having a predetermined diffraction efficiency.

ホログラムを例えば光学素子として用いる場合、あるいは複製原版として用いる場合に、その回折効率を予め決めた所定値に制御することが求められる。   For example, when a hologram is used as an optical element, or when used as a duplicate master, it is required to control the diffraction efficiency to a predetermined value.

ホログラムの回折効率を決定するための指標として、ホログラム材料の屈折率変調量及び膜厚、また、記録時の波長及び露光角度があげられる。記録波長及び露光角度は目的とする設計仕様に応じて決定され、膜厚もホログラム材料の物性によりある範囲での膜厚に制限される。そこで、ホログラムの回折効率を制御するためにホログラム材料の屈折率変調量を制御することが行われている。屈折率変調量の制御のために一般的に行われている方法に、記録時の物体光強度と参照光強度の比を変えること、また、特にフォトポリマーの場合は、記録時の露光量を飽和露光量未満の所定値にすることで屈折率変調量を制御している。   As an index for determining the diffraction efficiency of the hologram, there are a refractive index modulation amount and a film thickness of the hologram material, a recording wavelength and an exposure angle. The recording wavelength and the exposure angle are determined according to the intended design specifications, and the film thickness is also limited to a certain range depending on the physical properties of the hologram material. Therefore, in order to control the diffraction efficiency of the hologram, the refractive index modulation amount of the hologram material is controlled. The method generally used for controlling the refractive index modulation amount is to change the ratio of the object light intensity and the reference light intensity at the time of recording. The refractive index modulation amount is controlled by setting a predetermined value less than the saturation exposure amount.

このように、一般的に行われている方法に、記録時の物体光強度と参照光強度の比を変えることにより屈折率変調量を制御する方法がある。物体光強度と参照光強度が等しいときが干渉縞の光変調量が最大であり、そこから比をずらすことにより干渉縞の光変調量を小さくし、ホログラム材料中の屈折率変調量も同時に小さくすることで達成される。   As described above, as a generally performed method, there is a method of controlling the refractive index modulation amount by changing the ratio of the object light intensity and the reference light intensity at the time of recording. When the object light intensity is equal to the reference light intensity, the light modulation amount of the interference fringe is the maximum. By shifting the ratio from there, the light modulation amount of the interference fringe is reduced, and the refractive index modulation amount in the hologram material is simultaneously reduced. Is achieved.

しかしながら、物体光強度と参照光強度の比が大きい場合、干渉縞の光変調量が小さすぎて安定的に物質移動が起こらず、その結果、作製されたホログラムの干渉縞にノイズが多く含まれやすい。   However, when the ratio of the object light intensity and the reference light intensity is large, the amount of light modulation of the interference fringes is too small and mass transfer does not occur stably, and as a result, the interference fringes of the produced hologram contain a lot of noise. Cheap.

また、別の方法として、特にフォトポリマーの場合は、記録時の露光量を飽和露光量未満にすることで、屈折率変調量をその飽和露光時の屈折率変調量より小さくする方法がある。この場合、飽和露光量未満であるため、露光の度に屈折率変調量がバラツキやすく、また、光の強度分布により屈折率変調量に分布が出来てしまう。   As another method, particularly in the case of a photopolymer, there is a method of making the refractive index modulation amount smaller than the refractive index modulation amount at the saturation exposure by making the exposure amount at the time of recording less than the saturation exposure amount. In this case, since it is less than the saturated exposure amount, the refractive index modulation amount tends to vary with each exposure, and the refractive index modulation amount is distributed due to the light intensity distribution.

特開平6−301322号公報JP-A-6-301322

P.ハリハラン著,吉川浩・羽倉弘之訳「ホログラフィーの原理」(オトロニクス社,平成16年3月30日第1版第1刷発行),pp.30〜36P. Hari Haran, translated by Hiroshi Yoshikawa and Hiroyuki Hakura, "Principles of Holography" (Otronics, first edition, published on March 30, 2004), pp. 30-36

本発明は従来技術のこのような状況に鑑みてなされたものであり、その目的は、ホログラムの屈折率変調量を正確に制御でき、屈折率変調量のバラツキ、分布が出来難く、ノイズの少ないホログラムの作製方法を提供することである。   The present invention has been made in view of such a situation in the prior art, and its purpose is to accurately control the refractive index modulation amount of the hologram, making it difficult to vary and distribute the refractive index modulation amount, and to reduce noise. It is to provide a method for producing a hologram.

上記課題は、露光前にホログラム材料が感度を持つ波長の光を照射することにより解決
できる。
The above problem can be solved by irradiating light having a wavelength with which the hologram material has sensitivity before exposure.

すなわち、本発明のホログラムの作製方法は、ホログラム記録材料にホログラムを記録するための干渉露光前に、前記ホログラム記録材料が感度を持つ波長の光で飽和露光量未満の所定値だけ予備露光しておき、その後に、残りの感度が飽和するような露光量でホログラムの干渉露光を行うことで、ホログラム干渉縞の屈折率変調量の最大値を制御することを特徴とする方法である。   That is, in the hologram manufacturing method of the present invention, before the interference exposure for recording the hologram on the hologram recording material, the hologram recording material is pre-exposed for a predetermined value less than the saturation exposure amount with light having a sensitivity wavelength. Thereafter, the maximum value of the refractive index modulation amount of the hologram interference fringes is controlled by performing interference exposure of the hologram with an exposure amount that saturates the remaining sensitivity.

あるいは、また、本発明のホログラムの作製方法は、ホログラム記録材料が感度を持つ波長の光での飽和露光量未満の予備露光量と、前記ホログラム記録材料の残りの感度が飽和するような露光量でホログラムを干渉露光させた場合のホログラム干渉縞の最大屈折率変調量との関係を求め、その予備露光量とホログラム干渉縞の最大屈折率変調量との関係から所望のホログラム干渉縞の屈折率変調量に対する予備露光量を求め、前記ホログラム記録材料と同一特性のホログラム記録材料に求めた予備露光量だけ予備露光をし、その後に前記予備露光をした前記ホログラム記録材料の残りの感度が飽和するような露光量でホログラムの干渉露光を行うことを特徴とする方法である。   Alternatively, the method for producing a hologram of the present invention includes a pre-exposure amount less than a saturated exposure amount with light having a wavelength with which the hologram recording material is sensitive, and an exposure amount at which the remaining sensitivity of the hologram recording material is saturated. The relationship between the maximum refractive index modulation amount of the hologram interference fringe when the hologram is subjected to interference exposure with the above, and the refractive index of the desired hologram interference fringe is determined from the relationship between the preliminary exposure amount and the maximum refractive index modulation amount of the hologram interference fringe. A pre-exposure amount with respect to the modulation amount is obtained, and the pre-exposure amount obtained for the hologram recording material having the same characteristics as the hologram recording material is pre-exposed, and then the remaining sensitivity of the hologram recording material subjected to the pre-exposure is saturated. In this method, interference exposure of the hologram is performed with such an exposure amount.

これらにおいて、前記ホログラム記録材料はフォトポリマーからなることが望ましい。   In these, the hologram recording material is preferably made of a photopolymer.

また、前記予備露光の光がインコヒーレントな光であることが望ましく、照度が均一な散乱光であることが望ましい。   The preliminary exposure light is preferably incoherent light, and is preferably scattered light with uniform illuminance.

本発明のホログラム作製方法によると、ホログラム記録材料の屈折率変調量の上限量が制限されるため、ホログラム記録材料本来の屈折率変調量より小さな値の範囲にて、屈折率変調量を所望の値に正確に制御できる。また、従来技術のように記録条件により屈折率変調量を制御する必要がないため、干渉縞の光変調量を大きく、また、飽和露光量で露光することで、屈折率変調量のバラツキ、分布なしに、また、ノイズが少なく、均一にホログラムを記録できるため、記録安定性や品質面で優れたホログラムを作製することができる。   According to the hologram manufacturing method of the present invention, since the upper limit of the refractive index modulation amount of the hologram recording material is limited, the desired refractive index modulation amount can be set within a range of values smaller than the original refractive index modulation amount of the hologram recording material. The value can be precisely controlled. In addition, since there is no need to control the refractive index modulation amount according to the recording conditions as in the prior art, the light modulation amount of the interference fringes is increased, and exposure with a saturated exposure amount results in variations and distribution of the refractive index modulation amount. Further, since the hologram can be recorded uniformly with little noise, a hologram excellent in recording stability and quality can be produced.

本発明に基づき予備露光するための配置の1例を示す図である。It is a figure which shows an example of the arrangement | positioning for preliminary exposure based on this invention. 予備露光後に透過型ホログラムを記録する工程を説明するための図である。It is a figure for demonstrating the process of recording a transmission type hologram after preliminary exposure. 記録された透過型ホログラムを再生する工程を説明するための図である。It is a figure for demonstrating the process of reproducing | regenerating the recorded transmission hologram. 本発明の実施例で用いてホログラム記録材料のフォトポリマーの予備露光量と最大屈折率変調量の関係を示す図である。It is a figure which shows the relationship between the pre-exposure amount of the photopolymer of a hologram recording material used in the Example of this invention, and the maximum refractive index modulation amount. 本発明の1実施例の透過型ホログラム原版の予備露光量を求めるための過程を説明するための図である。It is a figure for demonstrating the process for calculating | requiring the preliminary exposure amount of the transmission type hologram original plate of one Example of this invention. 予備露光後に反射型ホログラムを記録する工程を説明するための図である。It is a figure for demonstrating the process of recording a reflection type hologram after preliminary exposure. 記録された反射型ホログラムを再生する工程を説明するための図である。It is a figure for demonstrating the process of reproducing | regenerating the recorded reflection type hologram. 本発明の別の実施例の反射型ホログラム原版の予備露光量を求めるための過程を説明するための図である。It is a figure for demonstrating the process for calculating | requiring the preliminary exposure amount of the reflection type hologram original plate of another Example of this invention.

以下に、実施例に基づいて本発明のホログラムの作製方法について説明する。   Hereinafter, a method for producing a hologram of the present invention will be described based on examples.

本発明の基本原理は、ホログラム記録材料として特にフォトポリマーを用いる場合、ホログラムの干渉露光前に、予めそのホログラム記録材料が感度を持つ波長の光で飽和露光量未満の所定値だけ露光しておき、その後に、残りの感度が飽和するような露光量でホロ
グラム干渉露光を行うことで、屈折率変調量の最大値を制御することである。
The basic principle of the present invention is that, in particular, when a photopolymer is used as the hologram recording material, before the interference exposure of the hologram, the hologram recording material is exposed in advance to a predetermined value less than the saturated exposure amount with light having a wavelength with which the hologram recording material has sensitivity. Then, the maximum value of the refractive index modulation amount is controlled by performing hologram interference exposure with an exposure amount that saturates the remaining sensitivity.

図4は、特許文献1の実施例1のホログラム記録材料のフォトポリマーの予備露光量と最大屈折率変調量の関係を示す図である。ここで言う予備露光とは、図1に示すように、ホログラム記録材料1にホログラムの干渉記録前に、記録材料1全面に均一に光を照射することを意味し、図1の場合は、紫外線ランプ2からの紫外光を散乱板3を介して一様な紫外線散乱光4として照射する。なお、紫外線散乱光4は強度が面内で均一なものが好ましく、インコヒーレントな光を用いる。紫外線ランプ2の他、紫外線LEDでもよい。このホログラム記録材料1を予備露光する紫外線散乱光4の光量が予備露光量である。   FIG. 4 is a diagram showing the relationship between the pre-exposure amount of the photopolymer of the hologram recording material of Example 1 of Patent Document 1 and the maximum refractive index modulation amount. The pre-exposure here means that the entire surface of the recording material 1 is uniformly irradiated with light before the hologram recording is performed on the hologram recording material 1, as shown in FIG. Ultraviolet light from the lamp 2 is irradiated as uniform ultraviolet scattered light 4 through the scattering plate 3. The ultraviolet scattered light 4 preferably has a uniform intensity in the plane, and incoherent light is used. In addition to the ultraviolet lamp 2, an ultraviolet LED may be used. The amount of the ultraviolet scattered light 4 for pre-exposing the hologram recording material 1 is the pre-exposure amount.

最大屈折率変調量とは、ホログラムを記録するための参照光と物体光の強度比が1:1のとき、すなわち光の干渉により生ずる干渉縞の明暗の変調量が最大となる条件で、上記のようにして予備露光したホログラム記録材料1にその飽和露光量以上の光を照射してホログラムを記録したときに得られる干渉縞の屈折率変調量であり、予備露光後のホログラム記録材料1が出し得る最大の屈折率変調量を表す。   The maximum refractive index modulation amount is when the intensity ratio of the reference light and object light for recording the hologram is 1: 1, that is, on the condition that the light and dark modulation amount of the interference fringes generated by the light interference is maximized. The hologram recording material 1 preliminarily exposed as described above is the refractive index modulation amount of the interference fringes obtained when the hologram is recorded by irradiating light exceeding the saturation exposure amount. This represents the maximum amount of refractive index modulation that can be produced.

図4のホログラム記録材料1は、上記のように、特許文献1の実施例1の材料、すなわち、以下の組成物を調製してなるフォトポリマーである。   As described above, the hologram recording material 1 in FIG. 4 is a photopolymer obtained by preparing the material of Example 1 of Patent Document 1, that is, the following composition.

◎ラジカル重合性化合物(a)
BPFL−A:9, 9−ビス(4−アクリロキシジエトキシフェニル)フルオレン
900mg
◎カチオン重合性化合物(b)
CAT−1:3, 4−エポキシシクロヘキシルメチル−3',4' −エポキシシクロヘキサンカルボキシレート「ユニオンカーバイト社、UVR−6110」 900mg
◎光ラジカル重合開始剤系(c) 、光カチオン重合開始剤系(d)
DYE−1:3, 9−ジエチル−3' −カルボキシメチル−2, 2' −チアカルボシアニン、ヨウ素塩 5mg
DPI・CF3 SO3 :ジフェニルヨードニウム・トリフルオロメタンスルホン酸塩・
60mg
TPS・SbF6 :チバガイギー社製、トリアリールスルホニウム・ヘキサフルオロアンチモネート系化合物 80mg
◎高分子結合剤
P−1:メチルメタクリレート/エチルアクリレート/アクリル酸の共重合体(共重合比=45/49/6) 500mg
◎溶解・分散に使用した溶媒
DCE……ジクロロエタン 1500mg
MEK……メチルエチルケトン 1500mg
このような組成からなる材料(屈折率nは1.51)を膜厚40μmにて用いてホログラム記録材料1とし、種々の予備露光量(図4の横軸)で予備露光を行った記録材料1に対し、物体光及び参照光強度は1mW/cm2 、露光量を30mJ/cm2 とした。そのホログラム記録材料1の予備露光量と最大屈折率変調量の関係は図4のようになった。
◎ Radically polymerizable compound (a)
BPFL-A: 9,9-bis (4-acryloxydiethoxyphenyl) fluorene
900mg
◎ Cationically polymerizable compound (b)
CAT-1: 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate “Union Carbide, UVR-6110” 900 mg
◎ Photo radical polymerization initiator system (c), Photo cationic polymerization initiator system (d)
DYE-1: 3,9-diethyl-3′-carboxymethyl-2,2′-thiacarbocyanine, iodine salt 5 mg
DPI, CF 3 SO 3 : Diphenyliodonium, trifluoromethanesulfonate,
60mg
TPS · SbF 6 : Ciba Geigy, triarylsulfonium hexafluoroantimonate compound 80 mg
◎ Polymer binder P-1: Copolymer of methyl methacrylate / ethyl acrylate / acrylic acid (copolymerization ratio = 45/49/6) 500 mg
◎ Solvent used for dissolution / dispersion DCE …… dichloroethane 1500mg
MEK …… Methyl ethyl ketone 1500mg
A material having such a composition (refractive index n is 1.51) is used as a hologram recording material 1 with a film thickness of 40 μm, and the recording material is subjected to pre-exposure with various pre-exposure amounts (horizontal axis in FIG. 4). In contrast, the intensity of object light and reference light was 1 mW / cm 2 , and the exposure amount was 30 mJ / cm 2 . The relationship between the pre-exposure amount of the hologram recording material 1 and the maximum refractive index modulation amount is as shown in FIG.

図4の予備露光量と最大屈折率変調量の関係から明らかなように、予備露光量がある量を超えると急激に最大屈折率変調量が低下することが分かる。ホログラム記録材料1に応じてこのような図4のような特性を測定しておき、実際のホログラム干渉露光によるホログラム干渉縞の屈折率変調量を所望の値に制御するように予備露光量を選ぶ。その選択過程を図5を参照にして説明する。   As is apparent from the relationship between the pre-exposure amount and the maximum refractive index modulation amount in FIG. 4, it can be seen that the maximum refractive index modulation amount rapidly decreases when the pre-exposure amount exceeds a certain amount. Such characteristics as shown in FIG. 4 are measured according to the hologram recording material 1, and the pre-exposure amount is selected so as to control the refractive index modulation amount of the hologram interference fringes by the actual hologram interference exposure to a desired value. . The selection process will be described with reference to FIG.

図5の予備露光量と最大屈折率変調量(Δn)の関係を示す曲線は図4と同じ(同じ材
料)で同じ膜厚である。コゲルニークの結合波理論(非特許文献1)によると、Δnが0.01のときの回折効率は約100%となり(非特許文献1の式(3.8)から)、透過型ホログラム原版としては適さない。最も透過型ホログラムの複製を安定的に行うには、透過型ホログラム原版の回折効率を約50%とすることで、0次光と1次光(参照光と物体光)の比を1:1とすることができ有効である。上記材料で膜厚40μmの場合、回折効率を50%とするためのΔnは0.005と必要であり、図5の縦軸の最大屈折率変調量が0.005の場合、予備露光量と最大屈折率変調量の関係を示す曲線との交点の横軸の予備露光量を読むと、予備露光のための紫外光は11mJ/cm2 となり、図1の予備露光のための紫外線散乱光4の照射光量を11mJ/cm2 とすればよいことが分かる。
The curves showing the relationship between the pre-exposure amount and the maximum refractive index modulation amount (Δn) in FIG. 5 are the same (same material) and the same film thickness as those in FIG. According to Kogelnik's coupled wave theory (Non-Patent Document 1), the diffraction efficiency when Δn is 0.01 is about 100% (from the equation (3.8) of Non-Patent Document 1). Not suitable. In order to most stably replicate the transmission hologram, the diffraction efficiency of the transmission hologram master is set to about 50%, so that the ratio of the 0th order light to the 1st order light (reference light and object light) is 1: 1. And can be effective. When the film thickness is 40 μm using the above material, Δn for setting the diffraction efficiency to 50% is required to be 0.005, and when the maximum refractive index modulation amount on the vertical axis in FIG. When the pre-exposure amount on the horizontal axis at the intersection with the curve indicating the relationship of the maximum refractive index modulation amount is read, the ultraviolet light for pre-exposure becomes 11 mJ / cm 2 , and the ultraviolet scattered light 4 for pre-exposure in FIG. It can be seen that the amount of irradiation light may be 11 mJ / cm 2 .

他の種類のホログラム記録材料1(フォトポリマーに限らず、銀塩乳剤、重クロムゼラチン)の場合も図5と同様の関係が得られるので、その関係を示す曲線を用いて同様に、得ようとするΔnから予備露光量が求まる。   For other types of hologram recording materials 1 (not limited to photopolymers, silver salt emulsions, heavy chromium gelatin), the same relationship as in FIG. 5 can be obtained. A preliminary exposure amount is obtained from Δn.

図2は、予備露光後にホログラムを記録する工程を説明するための図であり、ここでは透過型ホログラムの記録工程を説明する。図1のような配置で予備露光した後のホログラム記録材料1’に対して、同じ面側からホログラム記録材料1’が感度を持つ波長λの同一光源からのレーザー光である物体光5と参照光6を入射させ、ホログラム記録材料1’中で干渉縞を記録し、後処理を行い、ホログラム1”を作製する。この際のレーザー光としては波長λ:532nmのDPSSレーザーからのレーザー光を用い、物体光5及び参照光6の強度は1mW/cm2 で、露光量は30mJ/cm2 とした。 FIG. 2 is a diagram for explaining a process of recording a hologram after preliminary exposure. Here, a process of recording a transmission hologram will be described. For the hologram recording material 1 ′ after the pre-exposure in the arrangement as shown in FIG. 1, see the object light 5 which is a laser beam from the same light source having the wavelength λ with which the hologram recording material 1 ′ has sensitivity from the same surface side. The light 6 is incident, interference fringes are recorded in the hologram recording material 1 ′, post-processing is performed, and a hologram 1 ″ is produced. As a laser beam at this time, a laser beam from a DPSS laser having a wavelength λ: 532 nm is used. The intensity of the object beam 5 and the reference beam 6 was 1 mW / cm 2 and the exposure amount was 30 mJ / cm 2 .

図3は、このようにして作製したホログラム1”を再生する工程を説明するための図であり、ホログラム1”に対して、記録のときに用いた波長λと同じ波長の再生照明光7をホログラム1”を記録したときの参照光6と反対方向に進行するように、記録時と反対側の面から入射させると、再生照明光7の入射側と反対側に再生光8が回折された。   FIG. 3 is a diagram for explaining a process of reproducing the hologram 1 ″ produced in this way. The reproduction illumination light 7 having the same wavelength as the wavelength λ used for recording is applied to the hologram 1 ″. When incident from the surface opposite to the recording side so as to travel in the direction opposite to the reference light 6 when the hologram 1 ″ is recorded, the reproduction light 8 is diffracted to the opposite side to the incident side of the reproduction illumination light 7. .

上記のような条件にて透過型ホログラム原版1”を作製したところ、再現性良く品質の安定した透過型ホログラム原版を作製することができた。   When the transmission hologram master 1 ″ was manufactured under the above-described conditions, a transmission hologram master having a high reproducibility and a stable quality could be manufactured.

次に、上記と同じホログラム記録材料1を用いて、図1のような予備露光をして、反射型ホログラムを作製する実施例について説明する。膜厚を同じ40μmとすると、予備露光量と最大屈折率変調量の関係は図4のようになる。   Next, a description will be given of an embodiment in which the same hologram recording material 1 as described above is used and preliminary exposure as shown in FIG. If the film thickness is 40 μm, the relationship between the pre-exposure amount and the maximum refractive index modulation amount is as shown in FIG.

反射型ホログラムの回折効率は、非特許文献1の式(3.14)の関係にあり、例えば回折効率50%の反射型ホログラムを得ようとすると、Δnは0.003程度必要であり、図8に示すように、図8の縦軸の最大屈折率変調量Δnが0.003の場合、予備露光量と最大屈折率変調量の関係を示す曲線との交点の横軸の予備露光量を読むと、予備露光のための紫外光は12mJ/cm2 となり、図1の予備露光のための紫外線散乱光4の照射光量を12mJ/cm2 とすればよいことが分かる。 The diffraction efficiency of the reflection hologram is in the relationship of the expression (3.14) of Non-Patent Document 1. For example, if an attempt is made to obtain a reflection hologram having a diffraction efficiency of 50%, Δn needs to be about 0.003. As shown in FIG. 8, when the maximum refractive index modulation amount Δn on the vertical axis in FIG. 8 is 0.003, the preliminary exposure amount on the horizontal axis at the intersection of the preliminary exposure amount and the curve indicating the relationship between the maximum refractive index modulation amount is Read as ultraviolet light for preexposure is understood that there may be 12 mJ / cm 2, and the irradiation amount of ultraviolet scattered light 4 for preexposure of Figure 1 and 12 mJ / cm 2.

図6は、予備露光後に反射型ホログラムを記録する工程を説明するための図であり、図1のような配置で予備露光した後のホログラム記録材料1’に対して、お互いに反対側の面にホログラム記録材料1’が感度を持つ波長λの同一光源からのレーザー光である物体光5と参照光6を入射させ、ホログラム記録材料1’中で干渉縞を記録し、後処理を行い、ホログラム1aを作製する。この際のレーザー光としては波長λ:532nmのDPSSレーザーからのレーザー光を用い、物体光5及び参照光6の強度は1mW/cm2 で、露光量は30mJ/cm2 とした。 FIG. 6 is a diagram for explaining a process of recording a reflection hologram after pre-exposure, and surfaces opposite to each other with respect to the hologram recording material 1 ′ after pre-exposure in the arrangement as shown in FIG. The object light 5 and the reference light 6 which are laser beams from the same light source having the wavelength λ with which the hologram recording material 1 ′ has sensitivity are incident on the hologram recording material 1 ′, and interference fringes are recorded in the hologram recording material 1 ′. The hologram 1a is produced. In this case, laser light from a DPSS laser having a wavelength λ of 532 nm was used as the laser light, the intensity of the object light 5 and the reference light 6 was 1 mW / cm 2 , and the exposure amount was 30 mJ / cm 2 .

図7は、このようにして作製したホログラム1aを再生する工程を説明するための図で
あり、ホログラム1aに対して、記録のときに用いた波長λと同じ波長の再生照明光7をホログラム1aを記録したときの参照光6と反対方向に進行するように、記録時と反対側の面から入射させると、再生照明光7の入射側に再生光8が回折された。
FIG. 7 is a diagram for explaining a process of reproducing the hologram 1a produced as described above. The hologram 1a is adapted to reproduce the reproduction illumination light 7 having the same wavelength as the wavelength λ used for recording. When the light is made incident from the surface opposite to the recording side so as to travel in the direction opposite to the reference light 6 when recording, the reproduction light 8 is diffracted on the incident side of the reproduction illumination light 7.

上記のような条件にて反射型ホログラム原版1bを作製したところ、再現性良く品質の安定した反射型ホログラム原版を作製することができた。   When the reflection hologram master 1b was manufactured under the above conditions, a reflection hologram master with stable reproducibility and quality could be manufactured.

以上、本発明のホログラムの作製方法を実施例に基づき説明したが、本発明はこれら実施例に限定されず種々の変形が可能である。   The hologram manufacturing method of the present invention has been described based on the embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made.

以上の本発明のホログラム作製方法によると、ホログラム記録材料の屈折率変調量の上限量が制限されるため、ホログラム記録材料本来の屈折率変調量より小さな値の範囲にて、屈折率変調量を所望の値に正確に制御できる。また、従来技術のように記録条件により屈折率変調量を制御する必要がないため、干渉縞の光変調量を大きく、また、飽和露光量で露光することで、屈折率変調量のバラツキ、分布なしに、また、ノイズが少なく、均一にホログラムを記録できるため、記録安定性や品質面で優れたホログラムを作製することができる。   According to the hologram manufacturing method of the present invention described above, the upper limit amount of the refractive index modulation amount of the hologram recording material is limited. Therefore, the refractive index modulation amount is set within a range of values smaller than the original refractive index modulation amount of the hologram recording material. It can be accurately controlled to a desired value. In addition, since there is no need to control the refractive index modulation amount according to the recording conditions as in the prior art, the light modulation amount of the interference fringes is increased, and exposure with a saturated exposure amount results in variations and distribution of the refractive index modulation amount. Further, since the hologram can be recorded uniformly with little noise, a hologram excellent in recording stability and quality can be produced.

1…ホログラム記録材料
1’…予備露光した後のホログラム記録材料
1”、1a…作製されたホログラム
2…紫外線ランプ
3…散乱板
4…紫外線散乱光
5…物体光
6…参照光
7…再生照明光
8…再生光
DESCRIPTION OF SYMBOLS 1 ... Hologram recording material 1 '... Hologram recording material 1 "after pre-exposure, 1a ... Prepared hologram 2 ... Ultraviolet lamp 3 ... Scattering plate 4 ... Ultraviolet scattered light 5 ... Object light 6 ... Reference light 7 ... Reproduction illumination Light 8 ... Reproducing light

Claims (4)

ホログラム記録材料が感度を持つ波長の光での飽和露光量未満の予備露光量と、前記ホログラム記録材料の残りの感度が飽和するような露光量でホログラムを干渉露光させた場合のホログラム干渉縞の最大屈折率変調量との関係を求め、その予備露光量とホログラム干渉縞の最大屈折率変調量との関係から所望のホログラム干渉縞の屈折率変調量に対する予備露光量を求め、前記ホログラム記録材料と同一特性のホログラム記録材料に求めた予備露光量だけ予備露光をし、その後に前記予備露光をした前記ホログラム記録材料の残りの感度が飽和するような露光量でホログラムの干渉露光を行うことを特徴とするホログラムの作製方法。 The hologram interference fringes when the hologram is subjected to interference exposure at a pre-exposure amount less than the saturation exposure amount with light having a wavelength with which the hologram recording material has sensitivity and an exposure amount at which the remaining sensitivity of the hologram recording material is saturated. The relationship between the maximum refractive index modulation amount is obtained, the pre-exposure amount with respect to the refractive index modulation amount of the desired hologram interference fringe is obtained from the relationship between the preliminary exposure amount and the maximum refractive index modulation amount of the hologram interference fringe, and the hologram recording material Pre-exposure is performed for the hologram recording material having the same characteristics as that of the hologram recording material, and the hologram is subjected to interference exposure with an exposure amount that saturates the remaining sensitivity of the hologram recording material subjected to the preliminary exposure. A method for producing a featured hologram. 前記ホログラム記録材料がフォトポリマーからなることを特徴とする請求項記載のホログラムの作製方法。 Hologram manufacturing method of claim 1, wherein the hologram recording material is characterized by comprising the photopolymer. 前記予備露光の光がインコヒーレントな光であることを特徴とする請求項1又は2記載のホログラムの作製方法。 3. The hologram manufacturing method according to claim 1, wherein the preliminary exposure light is incoherent light. 前記予備露光の光が照度が均一な散乱光であることを特徴とする請求項1からの何れか1項記載のホログラムの作製方法。 The method for manufacturing a hologram according to any one of claims 1 to 3, wherein the light of the preliminary exposure is illuminance uniform scattered light.
JP2009274164A 2009-12-02 2009-12-02 Method for producing hologram Active JP5532212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009274164A JP5532212B2 (en) 2009-12-02 2009-12-02 Method for producing hologram

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009274164A JP5532212B2 (en) 2009-12-02 2009-12-02 Method for producing hologram

Publications (2)

Publication Number Publication Date
JP2011118075A JP2011118075A (en) 2011-06-16
JP5532212B2 true JP5532212B2 (en) 2014-06-25

Family

ID=44283511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009274164A Active JP5532212B2 (en) 2009-12-02 2009-12-02 Method for producing hologram

Country Status (1)

Country Link
JP (1) JP5532212B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014092559A (en) * 2012-10-31 2014-05-19 Dainippon Printing Co Ltd Production method of volume hologram
CN112378626B (en) * 2020-11-19 2023-01-20 苏州大学 Volume Bragg grating refractive index modulation degree measuring method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0594014A (en) * 1991-10-02 1993-04-16 Nissan Motor Co Ltd Photosensitive resin composition for hologram
JPH06202547A (en) * 1993-01-07 1994-07-22 Toyo Ink Mfg Co Ltd Production of hologram
JP2005293815A (en) * 2004-03-10 2005-10-20 Ricoh Co Ltd Optical pickup device/diffraction optical element, and method for manufacturing diffraction optical element

Also Published As

Publication number Publication date
JP2011118075A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
Lawrence et al. Photopolymer holographic recording material
Bjelkhagen Silver-Halide recording materials: For Holography and their processing
JP3075090B2 (en) Hologram photosensitive recording material, hologram photosensitive recording medium, and hologram manufacturing method using the same
US3580657A (en) Blazed surface hologram
KR100296083B1 (en) Method of manufacturing hologram using photosensitive recording material, photosensitive recording medium and this photosensitive recording medium
JPH05107999A (en) Photosensitive composition for volumetric hologram recording
Wadle et al. Holographic diffusers
Ohe et al. A novel dry photopolymer for volume‐phase holograms
JP5532212B2 (en) Method for producing hologram
JP3161230B2 (en) Holographic photosensitive recording material and holographic photosensitive recording medium
JP3075082B2 (en) Hologram photosensitive recording material, hologram photosensitive recording medium, and hologram manufacturing method using the same
Bruder et al. Full-color self-processing holographic photopolymers with high sensitivity in red-the first class of instant holographic photopolymers
JP3405465B2 (en) Manufacturing method of color hologram
JP3180566B2 (en) Hologram photosensitive recording material, hologram photosensitive recording medium, and hologram manufacturing method using the same
JP2000047552A (en) Photosensitive composition for volume-phase type hologram and recording medium for hologram
JP2000122515A (en) Wavelength converting composition for reproduced light from volume phase type hologram
Yamaguchi et al. Development of a Fringe Printer With 0.35 μm Pixel Pitch
KR20230024571A (en) Curved holographic optical element using transparent blocks and manufacturing method
JPH06332355A (en) Hologram, hologram working method and swelling film for the same
JP4334653B2 (en) Hologram replication method
JP2005077866A (en) Method for making phase modulation type hologram
KR20220055919A (en) Multi-notch filter and manufacturing method thereof
Gallego et al. Analysis of the fabrication of diffractive optical elements in photopolymers
KR20230029278A (en) Holographic optical element and manufacturing method thereof
Calixto et al. Light-Sensitive Materials: Silver Halide Emulsions, Photoresist, and Photopolymers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140408

R150 Certificate of patent or registration of utility model

Ref document number: 5532212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150