JP5531103B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP5531103B2
JP5531103B2 JP2012536393A JP2012536393A JP5531103B2 JP 5531103 B2 JP5531103 B2 JP 5531103B2 JP 2012536393 A JP2012536393 A JP 2012536393A JP 2012536393 A JP2012536393 A JP 2012536393A JP 5531103 B2 JP5531103 B2 JP 5531103B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat transfer
transfer tube
water
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012536393A
Other languages
Japanese (ja)
Other versions
JPWO2012043380A1 (en
Inventor
宏二 和田
研介 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2012536393A priority Critical patent/JP5531103B2/en
Publication of JPWO2012043380A1 publication Critical patent/JPWO2012043380A1/en
Application granted granted Critical
Publication of JP5531103B2 publication Critical patent/JP5531103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明の実施形態は、冷媒と水等の熱媒体との間で熱交換を行う熱交換器に関する。   Embodiments described herein relate generally to a heat exchanger that performs heat exchange between a refrigerant and a heat medium such as water.

従来、給湯用に使用される水熱交換器は、冷媒が流れる伝熱管と水が流れる水用伝熱管とをろう付けにより直接接触させたり、あるいは水用伝熱管の内部に冷媒用伝熱管を挿入したりして伝熱を促進し、熱交換させていた。この種の技術が、例えば、日本国特開2006−317115号公報に開示されている。   Conventionally, a water heat exchanger used for hot water supply has a heat transfer tube through which a refrigerant flows and a water heat transfer tube through which water flows are brought into direct contact with each other by brazing, or a heat transfer tube for refrigerant is installed inside the water heat transfer tube. It was inserted to promote heat transfer and exchange heat. This type of technology is disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-317115.

しかしながら、冷媒が流れる伝熱管と水が流れる水用伝熱管とをろう付けにより直接接触させる構造や、あるいは水用伝熱管の内部に冷媒用伝熱管を挿入する構造では、製造方法や形状が複雑になる。製造方法としては、例えば炉中ろう付けである。このため、製造時の仕掛かり管理が多く発生し、生産性が悪い。ろう付け部のバラツキも発生し易くなる傾向にある。   However, in the structure in which the heat transfer tube in which the refrigerant flows and the water heat transfer tube in which the water flows are in direct contact by brazing, or the structure in which the refrigerant heat transfer tube is inserted inside the water heat transfer tube, the manufacturing method and shape are complicated. become. As a manufacturing method, it is brazing in a furnace, for example. For this reason, a lot of in-process management occurs during production, and productivity is poor. There is a tendency that variations in the brazed portion are likely to occur.

本発明は、伝熱効率を向上し、製造製を向上し、低コスト化、スペース効率のよい水熱交換器を提供することを目的とする。   An object of the present invention is to provide a water heat exchanger that improves heat transfer efficiency, improves manufacturing, reduces costs, and has good space efficiency.

本実施形態によれば、フィン群と、冷媒用伝熱管と、熱媒体用伝熱管とを備える。前記フィン群は、一方向に長いフィンを複数具備し、かつ、前記複数のフィンが互いに長手方向を揃えた姿勢で互いに隙間を存して積層される。前記冷媒用伝熱管は、前記フィンを当該フィンの積層方向に貫通するとともに前記フィンの長手方向に蛇行状に形成され、内部を冷媒が流動する。前記熱媒体用伝熱管は、前記フィンを当該フィンの積層方向に貫通して前記冷媒用伝熱管に隣接し、かつ、前記フィンの長手方向に蛇行状に形成されて内部を水が流動する。前記冷媒用伝熱管は、前記長手方向に交差する列方向にそって前記熱媒体用伝熱管の両側列に設置される。前記熱媒体用伝熱管の外径をDとし、前記冷媒用伝熱管の外径をdとし、前記冷媒用伝熱管において、前記列方向に前記熱媒体用伝熱管の両側を通る部位の中心列間距離をCとしたとき、D≧C−dとする。 According to this embodiment, the fin group, the heat transfer tube for refrigerant, and the heat transfer tube for heat medium are provided. The fin group includes a plurality of fins that are long in one direction, and the plurality of fins are stacked with a gap therebetween in a posture in which the longitudinal directions are aligned with each other. The refrigerant heat transfer tube penetrates the fins in the laminating direction of the fins and is formed in a meandering shape in the longitudinal direction of the fins, and the refrigerant flows inside. The heat transfer tube for heat medium passes through the fins in the stacking direction of the fins, is adjacent to the heat transfer tube for refrigerant, and is formed in a meandering shape in the longitudinal direction of the fins, and the water flows inside. The refrigerant heat transfer tubes are installed in both side rows of the heat transfer tube along the row direction intersecting the longitudinal direction. The outer diameter of the heat transfer tube for heat medium is D, the outer diameter of the heat transfer tube for refrigerant is d, and the central row of the refrigerant heat transfer tubes passes through both sides of the heat transfer tube for heat medium in the row direction. When the distance is C, D ≧ C−d.

第1の実施形態の熱交換器が用いられるヒートポンプ式の給湯装置を概略的に示す概略図である。It is the schematic which shows roughly the heat pump type hot water supply apparatus with which the heat exchanger of 1st Embodiment is used. 図1に示された熱交換器から、冷媒用ベンド管と水用ベンド管とが取り除かれた状態を示す斜視図である。It is a perspective view which shows the state from which the bend pipe | tube for refrigerant | coolants and the bend pipe | tube for water were removed from the heat exchanger shown by FIG. 図2中に示されるF3の方向からみた熱交換器を示す正面図である。It is a front view which shows the heat exchanger seen from the direction of F3 shown in FIG. 図2に示された熱交換器を示す平面図である。It is a top view which shows the heat exchanger shown by FIG. 図2に示された熱交換器を、断熱材を省略するとともに一部省略して示す正面図である。It is a front view which abbreviate | omits and shows the heat exchanger shown by FIG. 2 partially while omitting a heat insulating material. 図2に示されるF6−F6線に沿って示す熱交換器の断面図である。It is sectional drawing of the heat exchanger shown along F6-F6 line shown by FIG. 図2に示される熱交換器を、断熱材とベンド管とを省略するとともに一部省略した状態を示す正面図The front view which shows the state which abbreviate | omitted and partially omitted the heat insulating material and the bend pipe | tube for the heat exchanger shown by FIG. 図4中に示されるF8の範囲を示す平面図である。It is a top view which shows the range of F8 shown in FIG. 図8に示されるF9−F9線に沿って冷媒用ベンド管を切断した状態を示す断面図である。It is sectional drawing which shows the state which cut | disconnected the bend pipe | tube for refrigerant | coolants along the F9-F9 line | wire shown by FIG. 図1に示される熱交換器における、冷媒用入口と冷媒用出口との間の冷媒の温度と、水用入口と水用出口との間の水の温度とを示すグラフThe graph which shows the temperature of the refrigerant | coolant between the inlet for refrigerant | coolants, and the outlet for refrigerant | coolants in the heat exchanger shown by FIG. 第2の実施形態の熱交換器において、断熱材と冷媒用ベンド管と水用ベンド管とが取り外された状態を示す正面図である。It is a front view which shows the state from which the heat insulating material, the refrigerant | coolant bend pipe | tube, and the water bend pipe | tube were removed in the heat exchanger of 2nd Embodiment. 第3の実施形態の熱交換器の冷媒用伝熱管において、直線部の一部と冷媒用ベンド管とを示す平面図である。It is a top view which shows a part of straight part and a bend pipe | tube for refrigerant | coolants in the heat exchanger tube for refrigerant | coolants of the heat exchanger of 3rd Embodiment. 図12に示されるF13−F13線に沿って冷媒用ベンド管を切断した状態を示す断面図である。It is sectional drawing which shows the state which cut | disconnected the bend pipe | tube for refrigerant | coolants along the F13-F13 line shown by FIG.

第1の実施形態に係る熱交換器を、図1〜10を用いて説明する。図1は、本実施形態の熱交換器3が用いられるヒートポンプ式の給湯装置10を概略的に示す概略図である。熱交換器3は、一例として給湯装置10に用いられている。熱交換器3は、給湯装置10に用いられることに限定されるものではない。   The heat exchanger which concerns on 1st Embodiment is demonstrated using FIGS. FIG. 1 is a schematic view schematically showing a heat pump type hot water supply apparatus 10 in which the heat exchanger 3 of the present embodiment is used. The heat exchanger 3 is used for the hot water supply apparatus 10 as an example. The heat exchanger 3 is not limited to being used in the hot water supply device 10.

図1に示すように、給湯装置10は、圧縮機1と、熱交換器3と、内部熱交換器4と、膨張弁5と、空気熱交換器6と、送水管部8と、ポンプ9と、貯湯タンク12とを備えている。   As shown in FIG. 1, the hot water supply device 10 includes a compressor 1, a heat exchanger 3, an internal heat exchanger 4, an expansion valve 5, an air heat exchanger 6, a water supply pipe unit 8, and a pump 9. And a hot water storage tank 12.

圧縮機1と熱交換器3と内部熱交換器4と膨張弁5と空気熱交換器6とは、順次、冷媒管部2を介して接続され、冷凍サイクル11を構成している。冷凍サイクル11は、冷媒の一例として二酸化炭素(CO2)を用いる。   The compressor 1, the heat exchanger 3, the internal heat exchanger 4, the expansion valve 5, and the air heat exchanger 6 are sequentially connected via the refrigerant pipe portion 2 to constitute a refrigeration cycle 11. The refrigeration cycle 11 uses carbon dioxide (CO2) as an example of a refrigerant.

送水管部8は、当該熱交換器3に設けられている。ポンプ9は、送水管部8の一端部側に設けられている。貯湯タンク12は、送水管部8の他端部側に設けられている。ポンプ9によって送水管部8内を熱媒体である水Wが流動する。当該水Wは、送水管部8を通る際に熱交換器3を通って熱交換された後、貯湯タンク12に貯められる。熱交換器3の構造についは、後で詳細に説明する。   The water supply pipe section 8 is provided in the heat exchanger 3. The pump 9 is provided on one end side of the water supply pipe portion 8. The hot water storage tank 12 is provided on the other end side of the water supply pipe portion 8. Water W as a heat medium flows through the water supply pipe portion 8 by the pump 9. The water W is stored in the hot water storage tank 12 after undergoing heat exchange through the heat exchanger 3 when passing through the water supply pipe section 8. The structure of the heat exchanger 3 will be described later in detail.

給湯装置10では、圧縮機1から吐出された高温高圧のガス状の冷媒Lは、熱交換器3内に流入する。冷媒Lは、熱交換器3内を流れる過程で、送水管部8内を流れる水と熱交換をする。   In the hot water supply apparatus 10, the high-temperature and high-pressure gaseous refrigerant L discharged from the compressor 1 flows into the heat exchanger 3. The refrigerant L exchanges heat with water flowing in the water supply pipe section 8 in the process of flowing in the heat exchanger 3.

熱交換器3を出た冷媒Lは、水Wと熱交換することによって温度が低下しており、液状である。この冷媒Lは、ついで、内部熱交換器4に流入する。冷媒Lは、内部熱交換器4内を流れる過程で、後述する空気熱交換器6から出た冷媒Lとの間で熱交換され、さらに温度が低下する。   The refrigerant L that has exited the heat exchanger 3 has a reduced temperature due to heat exchange with the water W, and is in a liquid state. This refrigerant L then flows into the internal heat exchanger 4. In the process of flowing through the internal heat exchanger 4, the refrigerant L is heat-exchanged with the refrigerant L that has come out of the air heat exchanger 6 described later, and the temperature further decreases.

内部熱交換器4を出た冷媒Lは、膨張弁5にいたる。冷媒Lは、膨張弁5によって減圧された後、空気熱交換器6内に流入し、蒸発してガス状になる。ついで、空気熱交換器6を出た冷媒は、内部熱交換器4に流入する。内部熱交換器4に流入した冷媒は、熱交換器3を出た冷媒との間で熱交換器されて加熱される。内部熱交換器4を出た冷媒は、圧縮機1に吸い込まれる。   The refrigerant L exiting the internal heat exchanger 4 reaches the expansion valve 5. The refrigerant L is decompressed by the expansion valve 5 and then flows into the air heat exchanger 6 to evaporate into a gaseous state. Next, the refrigerant exiting the air heat exchanger 6 flows into the internal heat exchanger 4. The refrigerant that has flowed into the internal heat exchanger 4 is heated by being exchanged with the refrigerant that has exited the heat exchanger 3. The refrigerant that has exited the internal heat exchanger 4 is sucked into the compressor 1.

給湯装置10では、上記動作によって、送水管部8に供給される水Wの温度を上昇させている。熱交換器3で温度が上昇した水Wは、貯湯タンク12内に貯められる。   In the hot water supply device 10, the temperature of the water W supplied to the water supply pipe unit 8 is increased by the above operation. The water W whose temperature has risen in the heat exchanger 3 is stored in the hot water storage tank 12.

ついで、熱交換器3の構造について説明する。図2は、熱交換器3から、後述する冷媒用ベンド管32と水用ベンド管42とが取り除かれた状態を示す斜視図である。図2中、後述する断熱材50は、2点鎖線で示されている。   Next, the structure of the heat exchanger 3 will be described. FIG. 2 is a perspective view showing a state in which a refrigerant bend pipe 32 and a water bend pipe 42 described later are removed from the heat exchanger 3. In FIG. 2, a heat insulating material 50 described later is indicated by a two-dot chain line.

図3は、図2中に示されるF3の方向からみた熱交換器3を示す正面図である。図3は、熱交換器3から、冷媒用ベンド管32と水用ベンド管42とが取り除かれた状態を示している。図2,3に示すように、熱交換器3は、フィン群20と、冷媒用伝熱管30と、水用伝熱管40と、断熱材50を備えている。   FIG. 3 is a front view showing the heat exchanger 3 as seen from the direction F3 shown in FIG. FIG. 3 shows a state in which the refrigerant bend pipe 32 and the water bend pipe 42 are removed from the heat exchanger 3. As shown in FIGS. 2 and 3, the heat exchanger 3 includes a fin group 20, a refrigerant heat transfer tube 30, a water heat transfer tube 40, and a heat insulating material 50.

フィン群20は、複数のプレートフィン21を備えている。プレートフィン21は、フィンの一例である。プレートフィン21は、全て同様の構造であってよい。プレートフィン21は、一方向に長い形状の板部材であり、一例として長方形である。プレートフィン21は、一例としてアルミ材で形成されている。なお、プレートフィン21は、アルミ材に限定されるものではなく、例えば銅で形成されてもよく、好ましくは熱の伝導率が良い材料で形成される。   The fin group 20 includes a plurality of plate fins 21. The plate fin 21 is an example of a fin. The plate fins 21 may all have the same structure. The plate fins 21 are plate members that are long in one direction, and are rectangular as an example. The plate fin 21 is formed of an aluminum material as an example. The plate fin 21 is not limited to an aluminum material, and may be formed of, for example, copper, and is preferably formed of a material having good heat conductivity.

プレートフィン21において、長手方向を矢印Xで示す。長手方向Xと直交する方向を幅方向Yとする。幅方向Yは、列方向の一例である。各プレートフィン21は、互いに接触しないように、平行に積層されて配置されている。各プレートフィン21は、積層方向に同じ姿勢であり、長手方向Xをそろえるとともに、幅方向Yをそろえている。   In the plate fin 21, the longitudinal direction is indicated by an arrow X. A direction orthogonal to the longitudinal direction X is defined as a width direction Y. The width direction Y is an example of a column direction. Each plate fin 21 is laminated | stacked and arrange | positioned in parallel so that it may not contact mutually. The plate fins 21 have the same posture in the stacking direction, and have the longitudinal direction X aligned and the width direction Y aligned.

冷媒用伝熱管30は、冷媒管部2の一部を構成しており、内部を冷媒が流動する。冷媒用伝熱管30は、圧縮機1と例えば管部材2aを介して接続されるとともに、例えば管部材2bを介して内部熱交換器4と接続されている。これら管部材2a,2bも冷媒管部2の一部である。   The refrigerant heat transfer tube 30 constitutes a part of the refrigerant tube portion 2, and the refrigerant flows therein. The refrigerant heat transfer tube 30 is connected to the compressor 1 through, for example, a tube member 2a, and is connected to the internal heat exchanger 4 through, for example, a tube member 2b. These pipe members 2 a and 2 b are also part of the refrigerant pipe portion 2.

冷媒用伝熱管30は、上記された冷媒管部2においてフィン群20内を通る部分である。冷媒用伝熱管30は、分岐することがない一本の流路であって、各プレートフィン21の幅方向Yの一端部22と各プレートフィン21の幅方向Yの他端部23とを通る蛇行状に設けられるとともに、長手方向に蛇行状に設けられている。   The refrigerant heat transfer tube 30 is a portion that passes through the fin group 20 in the refrigerant tube portion 2 described above. The refrigerant heat transfer tube 30 is a single flow path that does not branch, and passes through one end 22 in the width direction Y of each plate fin 21 and the other end 23 in the width direction Y of each plate fin 21. It is provided in a meandering manner and in a meandering manner in the longitudinal direction.

図4は、熱交換器3を示す平面図である。図4では、断熱材50は、2点鎖線で示されている。図4に示されるフィン群20では、一部のプレートフィン21が図示されており、2点鎖線で示された範囲Z内のプレートフィン21は、図示が省略されている。しかしながら、実際には、範囲Z内にもプレートフィン21が積層されている。   FIG. 4 is a plan view showing the heat exchanger 3. In FIG. 4, the heat insulating material 50 is indicated by a two-dot chain line. In the fin group 20 shown in FIG. 4, some of the plate fins 21 are illustrated, and the illustration of the plate fins 21 within the range Z indicated by the two-dot chain line is omitted. However, actually, the plate fins 21 are also laminated in the range Z.

図4は、冷媒用伝熱管30のうち、一端部22に設けられる部分がフィン群20を通っている状態を示している。図4中において、後述する水用伝熱管40は、省略する。水用伝熱管40は、熱媒体用伝熱管の一例である。冷媒用伝熱管30のうち、他の部分は、他端部に設けられている。   FIG. 4 shows a state in which the portion provided at the one end portion 22 of the refrigerant heat transfer tube 30 passes through the fin group 20. In FIG. 4, a water heat transfer tube 40 described later is omitted. The water heat transfer tube 40 is an example of a heat transfer tube for a heat medium. The other part of the refrigerant heat transfer tube 30 is provided at the other end.

図2,4に示すように、冷媒用伝熱管30は、複数の冷媒用伝熱管本体31と、複数の冷媒用ベンド管32とを備えている。冷媒用伝熱管本体31の構造は、全て同じである。冷媒用ベンド管32の構造は、全て同じである。   As shown in FIGS. 2 and 4, the refrigerant heat transfer tube 30 includes a plurality of refrigerant heat transfer tube bodies 31 and a plurality of refrigerant bend tubes 32. The structure of the refrigerant heat transfer tube body 31 is the same. The structure of the refrigerant bend pipe 32 is the same.

冷媒用伝熱管本体31の構造について説明する。冷媒用伝熱管本体31は、一対の直線部33と、これら直線部33を連結する連結部34と有している。直線部33は、冷媒用直線部の一例である。直線部33は、直線状であり、図3に示すように、直線部33が延びる方向に垂直な断面形状は、内縁33a,外縁33bともに円形である。   The structure of the refrigerant heat transfer tube body 31 will be described. The refrigerant heat transfer tube body 31 includes a pair of straight portions 33 and a connecting portion 34 that connects the straight portions 33. The straight portion 33 is an example of a straight portion for refrigerant. The straight portion 33 is straight, and as shown in FIG. 3, the cross-sectional shape perpendicular to the direction in which the straight portion 33 extends is circular for both the inner edge 33a and the outer edge 33b.

各直線部33のうち一方は一端部22に配置され、他方は他端部23に配置されており、互いに平行に配置されている。一方の直線部33と他方の直線部とは、幅方向Yに対向している。   One of the linear portions 33 is disposed at the one end portion 22 and the other is disposed at the other end portion 23 and is disposed in parallel to each other. One straight line portion 33 and the other straight line portion face each other in the width direction Y.

連結部34は、一方の直線部33の一端と他方の直線部33一端とを互いが連通するように連結している。連結部34は、U字形状である。一対の直線部33と連結部34とは一体に形成されており、例えば一本の管部材に曲げ加工を施すことによって形成されている。このため、冷媒用伝熱管本体31は、各直線部33が連結部34を介して互いに連通するとともに、平面形状がU字状である。全ての冷媒用伝熱管本体31は、上記と同様の構造である。   The connecting portion 34 connects one end of one straight portion 33 and one end of the other straight portion 33 so as to communicate with each other. The connection part 34 is U-shaped. The pair of linear portions 33 and the connecting portion 34 are integrally formed, and are formed, for example, by bending a single pipe member. For this reason, as for the heat exchanger tube main body 31 for refrigerant | coolants, while each linear part 33 is mutually connected via the connection part 34, the planar shape is U-shaped. All the refrigerant heat transfer tube bodies 31 have the same structure as described above.

各冷媒用伝熱管30の冷媒用伝熱管本体31は、各直線部33が全てのプレートフィン21を通るように、フィン群20に設けられている。図3に示すように、各プレートフィン21には、冷媒用伝熱管本体31の直線部33が通る冷媒用挿通孔24が形成されている。冷媒用挿通孔24は、冷媒用伝熱管本体31の直線部33が嵌まる形状であり、冷媒用挿通孔24の縁の全域は、冷媒用伝熱管本体31の直線部33の周面に密着している。密着させるために、例えば冷媒用伝熱管本体31を拡管する。このため、冷媒用伝熱管30を通る冷媒Lの熱が各プレートフィン21に効率よく伝達される。冷媒用挿通孔24の径と、直線部33の外径dとは、同じ値である。   The refrigerant heat transfer tube main body 31 of each refrigerant heat transfer tube 30 is provided in the fin group 20 so that each straight portion 33 passes through all the plate fins 21. As shown in FIG. 3, each plate fin 21 is formed with a refrigerant insertion hole 24 through which the straight portion 33 of the refrigerant heat transfer tube body 31 passes. The refrigerant insertion hole 24 has a shape in which the straight portion 33 of the refrigerant heat transfer tube main body 31 is fitted, and the entire area of the edge of the refrigerant insertion hole 24 is in close contact with the peripheral surface of the straight portion 33 of the refrigerant heat transfer tube main body 31. doing. In order to make it adhere, for example, the heat transfer tube main body 31 for refrigerant is expanded. For this reason, the heat of the refrigerant L passing through the refrigerant heat transfer tube 30 is efficiently transmitted to each plate fin 21. The diameter of the refrigerant insertion hole 24 and the outer diameter d of the linear portion 33 are the same value.

プレートフィン21を通る各直線部33の姿勢は、各直線部33が、長手方向Xと幅方向Yとに直交する方向に平行となる姿勢である。つまり、各直線部33の中心が延びる方向は、方向X,Yに直交する。直線部33の中心とは、つまり、直線部33の軸心である。このため、全ての直線部33は、互いに平行である。図2に示すように、各冷媒用伝熱管本体31は、直線部33の他端の開口35が長手方向Xに並ぶように配置されている。直線部33の他端の開口35は、連結部34が連結されない方の開口である。   The posture of each straight portion 33 passing through the plate fin 21 is a posture in which each straight portion 33 is parallel to a direction orthogonal to the longitudinal direction X and the width direction Y. That is, the direction in which the center of each linear portion 33 extends is orthogonal to the directions X and Y. That is, the center of the straight portion 33 is the axis of the straight portion 33. For this reason, all the linear parts 33 are mutually parallel. As shown in FIG. 2, each refrigerant heat transfer tube main body 31 is arranged such that the opening 35 at the other end of the linear portion 33 is aligned in the longitudinal direction X. The opening 35 at the other end of the linear portion 33 is an opening to which the connecting portion 34 is not connected.

長手方向Xに並ぶ開口35のうち、長手方向Xの一端であって幅方向Yの一端に配置される開口35は、冷媒用入口36となっている。長手方向Xの他端であって幅方向Yの一端に配置される開口35は、冷媒用出口37となっている。冷媒用入口36は管部材2aが接続され冷媒Lが流入し、冷媒用出口37は管部材2bが接続され冷媒Lが流出する。   Of the openings 35 arranged in the longitudinal direction X, the opening 35 arranged at one end in the longitudinal direction X and at one end in the width direction Y is a refrigerant inlet 36. An opening 35 disposed at the other end in the longitudinal direction X and at one end in the width direction Y is a refrigerant outlet 37. The refrigerant inlet 36 is connected to the pipe member 2a and the refrigerant L flows in. The refrigerant outlet 37 is connected to the pipe member 2b and the refrigerant L flows out.

図5は、熱交換器3を、断熱材50を省略するとともに、直線部33の他端の開口35側から見た状態を、一部省略して示す正面図である。図4,5に示すように、冷媒用ベンド管32は、長手方向Xに隣り合う冷媒用伝熱管本体31の直線部33の開口35を連通するように連結している。各冷媒用伝熱管本体31の一対の直線部33どうしは、幅方向Yに連結部34によって連結されている。この構造によって、冷媒用伝熱管は、冷媒用入口36から冷媒用出口37まで、分岐することがない1筋つまり一本の流路、つまり1パスとなる。このため、長手方向Xに隣り合う冷媒用伝熱管本体31の直線部33どうしを連結する冷媒用ベンド管32は、図5に示すように、一端部と他端部とで交互に設けられる。   FIG. 5 is a front view of the heat exchanger 3 with the heat insulating material 50 omitted and a part of the heat exchanger 3 viewed from the opening 35 side at the other end of the linear portion 33. As shown in FIGS. 4 and 5, the refrigerant bend pipe 32 is connected so as to communicate with the opening 35 of the linear portion 33 of the refrigerant heat transfer pipe main body 31 adjacent in the longitudinal direction X. The pair of straight portions 33 of each heat transfer tube body 31 for each refrigerant are connected to each other in the width direction Y by a connecting portion 34. With this structure, the refrigerant heat transfer tube forms one line, that is, one flow path, that is, one path, that does not branch from the refrigerant inlet 36 to the refrigerant outlet 37. For this reason, as shown in FIG. 5, the refrigerant | coolant bend pipe | tube 32 which connects the linear parts 33 of the refrigerant | coolant heat exchanger tube main body 31 adjacent to the longitudinal direction X is provided alternately by the one end part and the other end part.

この構造により、冷媒用入口36と冷媒用出口37とは、複数の冷媒用伝熱管本体31と複数の冷媒用ベンド管32とによって連通し、それゆえ、冷媒用伝熱管30は、冷媒用入口36から冷媒用出口37まで、フィン群20を蛇行するように配置される。   With this structure, the refrigerant inlet 36 and the refrigerant outlet 37 are communicated with each other by the plurality of refrigerant heat transfer tube bodies 31 and the plurality of refrigerant bend tubes 32. Therefore, the refrigerant heat transfer tube 30 is connected to the refrigerant inlet. From the 36 to the refrigerant outlet 37, the fin group 20 is arranged to meander.

水用伝熱管40は、フィン群20を冷媒用伝熱管30のように蛇行して通るように、フィン群20に設けられている。水用伝熱管40は、送水管部8の一部であって、例えば管部材8aを介してポンプ9と接続され、例えば管部材8bを介し貯湯タンク12と接続されている。図2に示すように、水用伝熱管40は、各プレートフィン21において、幅方向Yの一端部22と他端部23とに設けられる冷媒用伝熱管30間を通るように設けられている。   The water heat transfer tube 40 is provided in the fin group 20 so as to meander through the fin group 20 like the refrigerant heat transfer tube 30. The water heat transfer pipe 40 is a part of the water supply pipe section 8, and is connected to the pump 9 through, for example, a pipe member 8a, and is connected to the hot water storage tank 12 through, for example, the pipe member 8b. As shown in FIG. 2, the water heat transfer tubes 40 are provided so as to pass between the refrigerant heat transfer tubes 30 provided at one end 22 and the other end 23 in the width direction Y in each plate fin 21. .

図6は、図2に示されるF6−F6線に沿って示す熱交換器3の断面図である。図6は、水用伝熱管40がフィン群20内を通る様子を幅方向Yに見る平面図である。フィン群20の一部は、2点鎖線で省略されて図示されている。また、図6中からは、説明のため、他端部23に設けられる冷媒用伝熱管30を省略している。   6 is a cross-sectional view of the heat exchanger 3 taken along line F6-F6 shown in FIG. FIG. 6 is a plan view of the water heat transfer tube 40 as viewed in the width direction Y as it passes through the fin group 20. A part of the fin group 20 is omitted from the two-dot chain line. Further, from FIG. 6, the refrigerant heat transfer tube 30 provided at the other end 23 is omitted for explanation.

図6に示すように、水用伝熱管40は、複数の水用伝熱管本体41と、複数の水用ベンド管42とを備えている。水用伝熱管本体41は、一対の直線部43と、これら直線部43を連結する連結部44と有している。直線部43は、水用直線部の一例である。直線部43は、直線状であり、図3に示すように、直線部43が延びる方向に垂直な断面形状は、内縁43a,外縁43bともに円である。   As shown in FIG. 6, the water heat transfer tube 40 includes a plurality of water heat transfer tube bodies 41 and a plurality of water bend tubes 42. The water heat transfer tube main body 41 has a pair of straight portions 43 and a connecting portion 44 that connects the straight portions 43. The straight line portion 43 is an example of a straight line portion for water. The straight portion 43 is straight, and as shown in FIG. 3, the cross-sectional shape perpendicular to the direction in which the straight portion 43 extends is a circle for both the inner edge 43 a and the outer edge 43 b.

連結部44は、U字状である。各直線部43は、互いに平行になるように配置されており、連結部44は、各直線部43の一方の開口を連結している。直線部43と連結部44とは、互いに一体に形成されており、例えば一本の管部材に曲げ加工を施すことによって形成されている。このため、水用伝熱管本体41は、各直線部43が連結部44を介して連通するとともに、平面形状がU字状である。   The connection part 44 is U-shaped. Each linear part 43 is arrange | positioned so that it may mutually become parallel, and the connection part 44 has connected one opening of each linear part 43. FIG. The straight line portion 43 and the connecting portion 44 are formed integrally with each other, and are formed by bending a single pipe member, for example. For this reason, as for the heat exchanger tube main body 41 for water, while each linear part 43 is connected via the connection part 44, the planar shape is U shape.

水用伝熱管本体41は、各直線部43が全てのプレートフィン21を通るように、フィン群20に設けられている。このため、各プレートフィン21には、水用伝熱管本体41の直線部43が通る水用挿通孔25が形成されている。水用挿通孔25は、水用伝熱管本体41の直線部43が嵌まる形状であり、それゆえ、水用挿通孔25の縁の全域は、水用伝熱管本体41の直線部43の周面に密着している。密着させるために、例えば水用伝熱管本体41を拡管する。このため、各プレートフィン21の熱が水用伝熱管40に効率よく伝達される。水用挿通孔25の径と、直線部43の外径Dとは、同じ値である。   The water heat transfer tube main body 41 is provided in the fin group 20 so that each straight portion 43 passes through all the plate fins 21. For this reason, each plate fin 21 is formed with a water insertion hole 25 through which the straight portion 43 of the water heat transfer tube body 41 passes. The water insertion hole 25 has a shape in which the straight portion 43 of the water heat transfer tube main body 41 is fitted. Therefore, the entire area of the edge of the water insertion hole 25 is the circumference of the straight portion 43 of the water heat transfer tube main body 41. It is in close contact with the surface. In order to make it adhere, for example, the heat transfer tube main body 41 for water is expanded. For this reason, the heat of each plate fin 21 is efficiently transmitted to the heat transfer tube 40 for water. The diameter of the water insertion hole 25 and the outer diameter D of the linear portion 43 are the same value.

プレートフィン21を通る直線部43の姿勢は、一例として、直線部43が、長手方向Xおよび幅方向Yと直交する方向に平行となる姿勢である。つまり、直線部43の中心は、方向X,Yと直交する方向に延びており、直線部33と平行である。直線部43の中心は、軸心である。   As an example, the posture of the straight portion 43 passing through the plate fin 21 is a posture in which the straight portion 43 is parallel to a direction orthogonal to the longitudinal direction X and the width direction Y. That is, the center of the straight line portion 43 extends in a direction orthogonal to the directions X and Y and is parallel to the straight line portion 33. The center of the straight line portion 43 is the axis.

また、図2に示すように、水用伝熱管40は、各水用伝熱管本体41の直線部43の他方の開口45が長手方向Xに並ぶように配置されている。水用伝熱管本体41の直線部43の他方の開口45は、連結部44が連結されないほうの開口である。   As shown in FIG. 2, the water heat transfer tubes 40 are arranged so that the other openings 45 of the straight portions 43 of the water heat transfer tube main bodies 41 are aligned in the longitudinal direction X. The other opening 45 of the straight portion 43 of the water heat transfer tube body 41 is an opening to which the connecting portion 44 is not connected.

水用伝熱管40の他方の開口45は、冷媒用伝熱管本体31の開口35と同じ側に開口している。長手方向Xに並ぶ開口45のうち、長手方向Xの他端部に配置される開口45は、水用入口46となっており、一端部に配置される開口45は、水用出口47となっている。水用入口46は、管部材8aが接続され、水用出口47は、管部材8bが接続される。   The other opening 45 of the water heat transfer tube 40 opens to the same side as the opening 35 of the refrigerant heat transfer tube main body 31. Of the openings 45 arranged in the longitudinal direction X, the opening 45 disposed at the other end in the longitudinal direction X serves as a water inlet 46, and the opening 45 disposed at one end serves as a water outlet 47. ing. The pipe member 8a is connected to the water inlet 46, and the pipe member 8b is connected to the water outlet 47.

水用ベンド管42は、平面形状が略U字状である。水用ベンド管42は、水用入口46と水用出口47とを除いた開口45のうち、長手方向Xに互いに隣り合うどうしを連結している。この構造により、水用入口46と水用出口47とは、複数の水用伝熱管本体41と複数の水用ベンド管42とによって連通し、それゆえ、水用伝熱管40は、水用入口46から水用出口47までフィン群20を蛇行するように設けられる。   The water bend pipe 42 is substantially U-shaped in plan view. The water bend pipe 42 connects the openings 45 excluding the water inlet 46 and the water outlet 47 adjacent to each other in the longitudinal direction X. With this structure, the water inlet 46 and the water outlet 47 are communicated with each other by the plurality of water heat transfer pipe bodies 41 and the plurality of water bend pipes 42. Therefore, the water heat transfer pipe 40 is connected to the water inlet. The fin group 20 is provided to meander from the water outlet 46 to the water outlet 47.

本実施形態では、水用伝熱管40の内径は、冷媒用伝熱管30の内径よりも大きく、水用伝熱管40の外径は、冷媒用伝熱管30の外径よりも大きい。   In the present embodiment, the inner diameter of the water heat transfer tube 40 is larger than the inner diameter of the refrigerant heat transfer tube 30, and the outer diameter of the water heat transfer tube 40 is larger than the outer diameter of the refrigerant heat transfer tube 30.

ついで、冷媒用伝熱管30と水用伝熱管40との位置関係を具体的に説明する。図7は、断熱材50とベンド管32,42とを省略するとともに一部省略した状態を示す熱交換器3の正面図である。図7に示すように、各冷媒用伝熱管本体31において、一端部22に配置される一方の直線部33と、他端部23に配置される他方の直線部33とは、幅方向Yに対向しており、直線部33の中心P1を結ぶ線は、幅方向Yに平行である。   Next, the positional relationship between the refrigerant heat transfer tube 30 and the water heat transfer tube 40 will be specifically described. FIG. 7 is a front view of the heat exchanger 3 showing a state in which the heat insulating material 50 and the bend pipes 32 and 42 are omitted and partially omitted. As shown in FIG. 7, in each refrigerant heat transfer tube main body 31, one linear portion 33 disposed at one end 22 and the other linear portion 33 disposed at the other end 23 are arranged in the width direction Y. The lines that face each other and connect the center P <b> 1 of the linear portion 33 are parallel to the width direction Y.

一端部22において、長手方向Xに並ぶ直線部33の中心P1をつなぐ線は、長手方向Xに平行である。他端部23において、長手方向Xに並ぶ直線部33の中心P1をつなぐ線は、長手方向Xに平行である。長手方向Xに隣り合う冷媒用伝熱管本体31の直線部33は、一端部22と他端部23とにおいて、長手方向Xに等間隔離間して配置されている。具体的には、一端部22と他端部23とにおいて長手方向Xに隣り合う直線部33間のパイプピッチは、長さBである。言い換えると、長手方向Xに隣り合う直線部33の中心P1間の距離は、長さBである。なお、長手方向Xに互いに隣り合う一対の直線部33の全ての組み合わせにおいて、ピッチ間距離Bは、同じ値である。   In one end portion 22, a line connecting the centers P <b> 1 of the linear portions 33 aligned in the longitudinal direction X is parallel to the longitudinal direction X. In the other end portion 23, a line connecting the centers P <b> 1 of the linear portions 33 aligned in the longitudinal direction X is parallel to the longitudinal direction X. The linear portions 33 of the refrigerant heat transfer tube main body 31 adjacent to each other in the longitudinal direction X are arranged at equal intervals in the longitudinal direction X at the one end portion 22 and the other end portion 23. Specifically, the pipe pitch between the linear portions 33 adjacent to each other in the longitudinal direction X at the one end portion 22 and the other end portion 23 is the length B. In other words, the distance between the centers P1 of the linear portions 33 adjacent in the longitudinal direction X is the length B. In all combinations of a pair of linear portions 33 adjacent to each other in the longitudinal direction X, the inter-pitch distance B has the same value.

長手方向Xに並ぶ水用伝熱管本体41の直線部43の中心P2を結ぶ線は、長手方向Xに平行である。直線部43は、長手方向Xに隣り合う冷媒用伝熱管本体31の直線部33の間に配置されており、具体的には、直線部43の中心P2は、直線部43を長手方向Xに挟む一対の冷媒用伝熱管本体31の直線部33の中心P1間の中心に配置されるとともに、幅方向Yに直線部43を挟む一対の直線部33の中心P1間の中心に配置されている。   A line connecting the centers P <b> 2 of the straight portions 43 of the water heat transfer tube main bodies 41 aligned in the longitudinal direction X is parallel to the longitudinal direction X. The straight line portion 43 is disposed between the straight line portions 33 of the refrigerant heat transfer tube body 31 adjacent to each other in the longitudinal direction X. Specifically, the center P2 of the straight line portion 43 has the straight line portion 43 in the longitudinal direction X. It arrange | positions in the center between center P1 of the linear part 33 of a pair of refrigerant | coolant heat exchanger tube main bodies 31 pinched | interposed, and is arrange | positioned in the center between the centers P1 of a pair of linear part 33 which pinches | interposes the linear part 43 in the width direction Y. .

それゆえ、直線部33,43は、互いに、千鳥状に配置されている。このため、各プレートフィン21の幅方向Yの長さを短縮化することができる。また、上記配置構造のため、水用伝熱管40は、冷媒用伝熱管30に隣接して配置される。   Therefore, the straight portions 33 and 43 are arranged in a staggered manner with respect to each other. For this reason, the length of the width direction Y of each plate fin 21 can be shortened. Further, because of the arrangement structure, the water heat transfer tube 40 is disposed adjacent to the refrigerant heat transfer tube 30.

複数の直線部43は、長手方向Xに等間隔離間して配置されている。具体的には、長手方向Xに隣り合う直線部43間のパイプピッチは、長さAである。言い換えると、長手方向Xに隣り合う直線部43の中心P2間の距離は、長さAである。なお、長手方向Xに互いに隣り合う一対の直線部43の全ての組み合わせにおいて、ピッチ間距離Aは、同じ
値である。本実施形態では、長さAは、長さBと同じ長さである、つまりA=Bである。
The plurality of linear portions 43 are arranged at equal intervals in the longitudinal direction X. Specifically, the pipe pitch between the straight portions 43 adjacent in the longitudinal direction X is the length A. In other words, the distance between the centers P2 of the linear portions 43 adjacent in the longitudinal direction X is the length A. In all combinations of a pair of linear portions 43 adjacent to each other in the longitudinal direction X, the inter-pitch distance A has the same value. In the present embodiment, the length A is the same length as the length B, that is, A = B.

また、1つの冷媒用伝熱管30において、幅方向Yに対向する、一端部22に配置される一方の直線部33の中心P1と、他端部23に配置される他方の直線部33の中心P1とは、長さC離間している。幅方向Yに対向する一対の直線部33の全ての組み合わせにおいて、中心間距離Cは、同じ値である。   Further, in one refrigerant heat transfer tube 30, the center P <b> 1 of one linear portion 33 disposed at the one end portion 22 and the center of the other linear portion 33 disposed at the other end portion 23, which are opposed in the width direction Y. It is separated from P1 by a length C. In all combinations of the pair of linear portions 33 facing in the width direction Y, the center-to-center distance C has the same value.

本実施形態では、B>Cである。B>Cであることによって、長手方向Xに隣接する直線部33間の距離よりも、幅方向Yに隣接する直線部33と直線部43との間の距離が短くなるので、直線部33と直線部43間での熱交換が効率よく行われる。なお、B≧Cであれば、直線部33と直線部43と間の距離が短くなるので、直線部33と直線部43と間での熱交換が効率よく行われる。なお、全ての直線部33と全ての直線部43とは、互いに平行であるので、図7に示される直線部33,34の相対位置関係は、全てのプレートフィン21においても同じである。   In the present embodiment, B> C. Since B> C, the distance between the straight portion 33 and the straight portion 43 adjacent in the width direction Y is shorter than the distance between the straight portions 33 adjacent in the longitudinal direction X. Heat exchange between the straight portions 43 is efficiently performed. If B ≧ C, the distance between the straight portion 33 and the straight portion 43 is shortened, so that heat exchange between the straight portion 33 and the straight portion 43 is performed efficiently. Since all the straight portions 33 and all the straight portions 43 are parallel to each other, the relative positional relationship between the straight portions 33 and 34 shown in FIG. 7 is the same for all the plate fins 21.

各プレートフィン21において、隣接する直線部33間には、熱遮断手段が設けられている。本実施形態では、直線部33は方向X,Yに隣接するので、長手方向Xと幅方向Yとに互いに隣接する直線部33間に熱遮断手段が設けられている。熱遮断手段は、直線部33どうしでプレートフィン21を介して熱交換が行われることを抑制する機能を有している。本実施形態では、図2に示すように、各プレートフィン21において互いに隣り合う直線部33間に、一例として切り込み26が形成されている。   In each plate fin 21, a heat blocking means is provided between adjacent linear portions 33. In the present embodiment, since the straight portion 33 is adjacent to the directions X and Y, a heat blocking means is provided between the straight portions 33 adjacent to each other in the longitudinal direction X and the width direction Y. The heat blocking means has a function of suppressing heat exchange between the straight portions 33 via the plate fins 21. In the present embodiment, as shown in FIG. 2, a cut 26 is formed as an example between the straight portions 33 adjacent to each other in each plate fin 21.

長手方向Xに隣り合う直線部33間に形成される各切込み26は、幅方向Yに延びている。幅方向Yに隣り合う直線部33間に形成される各切り込み26は、長手方向Xに隣り合う直線部43間に設けられるとともに、長手方向Xに延びている。   Each cut 26 formed between the linear portions 33 adjacent in the longitudinal direction X extends in the width direction Y. Each notch 26 formed between the linear portions 33 adjacent in the width direction Y is provided between the linear portions 43 adjacent in the longitudinal direction X and extends in the longitudinal direction X.

各切り込み26は、プレートフィン21を貫通している。切り込み26によって、互いに隣り合う直線部33がプレートフィン21を介して熱交換されることが抑制される。なお、切り込み26は、プレートフィン21の水用挿通孔25に達していない。   Each cut 26 penetrates the plate fin 21. The cuts 26 suppress heat exchange between the linear portions 33 adjacent to each other via the plate fins 21. The notch 26 does not reach the water insertion hole 25 of the plate fin 21.

つぎに、冷媒用ベンド管32の形状と、水用ベンド管42の形状とについて具体的に説明する。上記したように、A=B>Cとなっている。そして、幅方向Yに対向する一対の直線部33を通す冷媒用挿通孔24間の最短距離Eは、水用伝熱管本体41の外径Dよりも短くなっている。水用伝熱管本体41の外径Dは、水用挿通孔34の内径Dである。このため、冷媒用ベンド管32は水用伝熱管40に接触しないように、かつ、水用ベンド管42は、冷媒用伝熱管30に接触しないように、考慮されている。   Next, the shape of the refrigerant bend pipe 32 and the shape of the water bend pipe 42 will be specifically described. As described above, A = B> C. The shortest distance E between the refrigerant insertion holes 24 through which the pair of straight portions 33 facing in the width direction Y is passed is shorter than the outer diameter D of the water heat transfer tube body 41. The outer diameter D of the water heat transfer tube main body 41 is the inner diameter D of the water insertion hole 34. Therefore, it is considered that the refrigerant bend tube 32 does not contact the water heat transfer tube 40 and the water bend tube 42 does not contact the refrigerant heat transfer tube 30.

図8は、図4中に示されるF8の範囲を示す平面図である。図8は、冷媒用ベンド管32と、長手方向Xに隣接する一対の直線部33の一部を示している。冷媒用ベンド管32は、全て図8に示す構造と同様であるので、図8に示される冷媒用ベンド管32を代表して説明する。   FIG. 8 is a plan view showing the range of F8 shown in FIG. FIG. 8 shows a part of the refrigerant bend pipe 32 and a pair of linear portions 33 adjacent to each other in the longitudinal direction X. The refrigerant bend pipes 32 are all the same as the structure shown in FIG. 8, and therefore the refrigerant bend pipe 32 shown in FIG. 8 will be described as a representative.

図9は、図8に示されるF9−F9線に沿って冷媒用ベンド管32を切断した状態を示す断面図である。図8,9に示すように、冷媒用ベンド管32は、幅方向Yの最大幅lr1が、冷媒用伝熱管本体31の外径dよりも小さくなる扁平形である。最大幅lr1は、冷媒用ベンド管32が、水用ベンド管42に接触することがないように考慮されて設定されている。   FIG. 9 is a cross-sectional view showing a state in which the refrigerant bend pipe 32 is cut along the line F9-F9 shown in FIG. As shown in FIGS. 8 and 9, the refrigerant bend pipe 32 has a flat shape in which the maximum width lr <b> 1 in the width direction Y is smaller than the outer diameter d of the refrigerant heat transfer pipe body 31. The maximum width lr1 is set so that the refrigerant bend pipe 32 does not contact the water bend pipe.

水用ベンド管42の形状は、冷媒用ベンド管32に対して大きさの違いはあるが、構造は同様である。このため、図8,9を利用して、水用ベンド管42を説明する。なお、図8,9において、水用伝熱管40に係る構造を示す符号は、括弧内に記す。図8,9に示すように、水用ベンド管42は、幅方向Yの最大幅lr2が、直線部43の外径Dよりも小さくなる扁平形である。最大幅lr2は、水用ベンド管42が冷媒用ベンド管32に接触することがないように考慮されて設定されている。このように、本実施形態では、冷媒用ベンド管32との幅lr1と水用ベンド管42の幅lr2とが、互いに上記のように考慮されて設定されているので、幅lr1,lr2とを外径d,Dに対して大きく変更することが抑制される。   Although the shape of the water bend pipe 42 is different from that of the refrigerant bend pipe 32, the structure is the same. Therefore, the water bend pipe 42 will be described with reference to FIGS. In FIGS. 8 and 9, reference numerals indicating structures related to the water heat transfer tubes 40 are shown in parentheses. As shown in FIGS. 8 and 9, the water bend pipe 42 has a flat shape in which the maximum width lr <b> 2 in the width direction Y is smaller than the outer diameter D of the linear portion 43. The maximum width lr2 is set in consideration so that the water bend pipe 42 does not contact the refrigerant bend pipe 32. Thus, in the present embodiment, the width lr1 of the refrigerant bend pipe 32 and the width lr2 of the water bend pipe 42 are set in consideration of each other as described above. Large changes to the outer diameters d and D are suppressed.

図5示すように、冷媒用ベンド管32は、水用伝熱管40を回避して、つまり接触しないように、長手方向Xに隣り合う一対の直線部33を連結する。同様に水用ベンド管42は、冷媒用伝熱管30を回避して、つまり接触しないように、長手方向Xに隣り合う一対の直線部43を連結する。   As shown in FIG. 5, the refrigerant bend pipe 32 connects a pair of linear portions 33 adjacent to each other in the longitudinal direction X so as to avoid the water heat transfer pipe 40, that is, so as not to contact. Similarly, the water bend pipe 42 connects the pair of linear portions 43 adjacent to each other in the longitudinal direction X so as to avoid the refrigerant heat transfer pipe 30, that is, so as not to contact.

図4に示すように、各冷媒用伝熱管本体31において、幅方向Yに対向する直線部33の一端は、連結部34によって互いに連結されている。連結部34は、冷媒用ベンド管32のように、水用伝熱管40に接触しないように、長手方向Xにそう最大幅が直線部33の外径dよりも小さく設定されており、扁平形である。   As shown in FIG. 4, in each refrigerant heat transfer tube main body 31, one end of the linear portion 33 facing the width direction Y is connected to each other by a connecting portion 34. The connecting portion 34 is set to have a maximum width smaller than the outer diameter d of the linear portion 33 in the longitudinal direction X so as not to contact the water heat transfer tube 40 like the refrigerant bend tube 32, and is flat. It is.

図2に示すように、断熱材50は、熱交換器3の全ての外面全体を覆うように設けられている。さらに、図2に示すように、断熱材50は、冷媒用伝熱管30と水用伝熱管40とを覆う大きさを有している。   As shown in FIG. 2, the heat insulating material 50 is provided so as to cover the entire outer surface of the heat exchanger 3. Furthermore, as shown in FIG. 2, the heat insulating material 50 has a size that covers the heat transfer pipe 30 for refrigerant and the heat transfer pipe 40 for water.

図3中では、熱交換器3において開口35,45が見えるように、断熱材50の一部が断面されている。断熱材50は、熱伝導率の低い材料で形成されている。なお、断熱材50は、熱交換器3の全ての面を覆うように構成されることに限定されない。例えば、熱交換器3においてベンド管32,42が設けられる側の側面と、連結部34,44が設けられる側の側面とが外側から見えるように開口する形状であってもよい。   In FIG. 3, a part of the heat insulating material 50 is sectioned so that the openings 35 and 45 can be seen in the heat exchanger 3. The heat insulating material 50 is formed of a material having low thermal conductivity. In addition, the heat insulating material 50 is not limited to being comprised so that all the surfaces of the heat exchanger 3 may be covered. For example, the heat exchanger 3 may have a shape that opens so that a side surface on the side where the bend pipes 32 and 42 are provided and a side surface on the side where the connecting portions 34 and 44 are provided can be seen from the outside.

つぎに、熱交換器3の動作を説明する。熱交換器3内に流入した冷媒Lは、冷媒用入口36から冷媒用伝熱管30内に流入し、冷媒用出口37に向かって冷媒用伝熱管30内を流動する。冷媒用伝熱管30は、一本の流路であるので、冷媒Lは、各プレートフィン21の一端部22と他端部23とを交互に流れる。この際、冷媒Lの熱は、フィン群20つまり各プレートフィン21に伝達される。   Next, the operation of the heat exchanger 3 will be described. The refrigerant L that has flowed into the heat exchanger 3 flows into the refrigerant heat transfer tube 30 from the refrigerant inlet 36 and flows in the refrigerant heat transfer tube 30 toward the refrigerant outlet 37. Since the refrigerant heat transfer tube 30 is a single flow path, the refrigerant L alternately flows through the one end 22 and the other end 23 of each plate fin 21. At this time, the heat of the refrigerant L is transmitted to the fin group 20, that is, each plate fin 21.

熱交換器3内に流入した水Wは、水用入口46から水用伝熱管40内に流入し、水用出口47に向かって水用伝熱管40内を流動する。このとき、冷媒用入口36と水用出口47とが互いに隣接して設けられ、かつ、冷媒用出口37と水用入口46とが互いに隣接して設けられるため、冷媒Lの流れと水Wの流れが互いに逆となる。水Wが水用伝熱管40内を流動する際に、当該水Wには、各プレートフィン21に伝達された冷媒Lの熱が伝達される。   The water W that has flowed into the heat exchanger 3 flows into the water heat transfer tube 40 from the water inlet 46 and flows in the water heat transfer tube 40 toward the water outlet 47. At this time, since the refrigerant inlet 36 and the water outlet 47 are provided adjacent to each other, and the refrigerant outlet 37 and the water inlet 46 are provided adjacent to each other, the flow of the refrigerant L and the water W The flows are opposite to each other. When the water W flows in the water heat transfer tube 40, the heat of the refrigerant L transmitted to each plate fin 21 is transmitted to the water W.

冷媒用出口37を出た冷媒Lは、ついで、内部熱交換器4に導かれる。水用出口47を出た水Wは、貯湯タンク12に導かれる。   The refrigerant L that has exited the refrigerant outlet 37 is then guided to the internal heat exchanger 4. The water W exiting the water outlet 47 is guided to the hot water storage tank 12.

図10は、熱交換器3における、冷媒用入口36と冷媒用出口37と間の冷媒Lの温度と、水用入口46と水用出口47との間の水Wの温度とを示すグラフを示している。グラフGは、冷媒Lと水Wとの温度勾配を示している。図10に示されるグラフにおいて横軸は、冷媒用伝熱管30と水用伝熱管40とにおける位置を示しており、縦軸は、温度を示している。冷媒Lにおいて冷媒用入口36の温度をT1とし、冷媒用出口37の温度をT2とする。水Wにおいて水用入口46の温度をt1とし、水用出口47の温度をt2とする。   FIG. 10 is a graph showing the temperature of the refrigerant L between the refrigerant inlet 36 and the refrigerant outlet 37 and the temperature of the water W between the water inlet 46 and the water outlet 47 in the heat exchanger 3. Show. The graph G shows the temperature gradient between the refrigerant L and the water W. In the graph shown in FIG. 10, the horizontal axis indicates the position in the refrigerant heat transfer tube 30 and the water heat transfer tube 40, and the vertical axis indicates the temperature. In the refrigerant L, the temperature of the refrigerant inlet 36 is T1, and the temperature of the refrigerant outlet 37 is T2. In the water W, the temperature of the water inlet 46 is t1, and the temperature of the water outlet 47 is t2.

熱交換器3の上記動作によって、図10に示すように、冷媒Lの温度は、冷媒用入口36から冷媒用出口37まで流れる過程において低下する、つまりT1>T2。水Wの温度は、水用入口46から水用出口47まで流れる過程で上昇する、つまりt2>t1。   By the above operation of the heat exchanger 3, as shown in FIG. 10, the temperature of the refrigerant L decreases in the process of flowing from the refrigerant inlet 36 to the refrigerant outlet 37, that is, T1> T2. The temperature of the water W rises in the process of flowing from the water inlet 46 to the water outlet 47, that is, t2> t1.

温度効率をεとすると、ε=(t2−t1)/(T1−t1)となり、上記構造によって、εは、促進される。   When the temperature efficiency is ε, ε = (t2−t1) / (T1−t1), and ε is promoted by the above structure.

このように構成される熱交換器3では、冷媒用伝熱管30がフィン群20つまり各プレートフィン21に接続され、かつ、水用伝熱管40がフィン群20つまり各プレートフィン21に接続されることによって、冷媒Lから水Wへの熱伝達が、フィン群20を介して行われる。   In the heat exchanger 3 configured as described above, the refrigerant heat transfer tube 30 is connected to the fin group 20, that is, each plate fin 21, and the water heat transfer tube 40 is connected to the fin group 20, that is, each plate fin 21. Thus, heat transfer from the refrigerant L to the water W is performed via the fin group 20.

さらに、長手方向Xに並んで配置される直線部33間のパイプピッチBは、幅方向Yに並ぶ直線部33間の長さCよりも大きい。このため、長手方向Xに隣接する直線部33間の距離よりも、幅方向Yに並ぶ直線部33間の距離が小さくなるので、伝熱効率が向上する。なお、B≧Cであっても同様の効果が得られる。   Further, the pipe pitch B between the straight portions 33 arranged side by side in the longitudinal direction X is larger than the length C between the straight portions 33 arranged in the width direction Y. For this reason, since the distance between the linear parts 33 arranged in the width direction Y becomes smaller than the distance between the linear parts 33 adjacent to each other in the longitudinal direction X, the heat transfer efficiency is improved. The same effect can be obtained even when B ≧ C.

また、冷媒用伝熱管30と水用伝熱管40とを直接接続する必要がなくなるので、熱交換器3を作成する際の製造性が向上し、低コスト化できる。   Further, since it is not necessary to directly connect the refrigerant heat transfer tube 30 and the water heat transfer tube 40, the productivity in producing the heat exchanger 3 is improved, and the cost can be reduced.

また、本実施形態では、冷媒Lの熱容量流量と水Wの熱容量流量の比が、ほぼ1:1とすべく、冷媒用伝熱管30の管内全面積と冷媒用伝熱管の管内全面積との比が、ほぼ1:1となるように、冷媒Lの圧力損失が低い特性を生かして冷媒用伝熱管30の外径を水用伝熱管40の外径よりも小さくし、水用伝熱管40を一対の冷媒用伝熱管30で幅方向Yに挟んでいる。そして、長手方向Xにそう直線部33のパイプピッチBと直線部43のパイプピッチAとを同じとしたことによって、熱交換器3は、熱伝達量のバランスがよくなる構造となり、それゆえ、伝熱効率が高められる。   In this embodiment, the ratio between the heat capacity flow rate of the refrigerant L and the heat capacity flow rate of the water W is approximately 1: 1 so that the total area in the tube of the refrigerant heat transfer tube 30 and the total area in the tube of the heat transfer tube for refrigerant are The outer diameter of the refrigerant heat transfer tube 30 is made smaller than the outer diameter of the water heat transfer tube 40 by taking advantage of the characteristic that the pressure loss of the refrigerant L is low so that the ratio is approximately 1: 1. Is sandwiched in the width direction Y by a pair of refrigerant heat transfer tubes 30. Further, by making the pipe pitch B of the straight line portion 33 and the pipe pitch A of the straight line portion 43 the same in the longitudinal direction X, the heat exchanger 3 has a structure in which the balance of the heat transfer amount is improved, and therefore, the heat transfer amount. Thermal efficiency is increased.

また、冷媒用伝熱管30の連結部34を扁平形にすることによって、各水用伝熱管本体41と各冷媒用伝熱管本体31とを各プレートフィン21に挿入する際に、冷媒用伝熱管本体31の連結部34が水用伝熱管40に接触するなど干渉することがないので、作業効率を向上することができる。   Moreover, when the connection part 34 of the refrigerant | coolant heat exchanger tube 30 is made flat, when inserting each water heat exchanger tube main body 41 and each refrigerant | coolant heat exchanger tube main body 31 in each plate fin 21, it becomes a refrigerant | coolant heat exchanger tube. Since the connection part 34 of the main body 31 does not interfere with the water heat transfer tube 40 or the like, the working efficiency can be improved.

同様に、冷媒用ベンド管32と水用ベンド管42とが扁平形であることによって、冷媒用ベンド管32が水用伝熱管40に接触するなど干渉することがなく、かつ、水用ベンド管42が冷媒用伝熱管30に接触するなど干渉することがないので、冷媒用ベンド管32と水用ベンド管42との取付作業の効率が向上する。さらに、冷媒用伝熱管30と水用伝熱管40とをより一層接近させることができるので、伝熱効率が向上する。   Similarly, since the refrigerant bend pipe 32 and the water bend pipe 42 are flat, the refrigerant bend pipe 32 does not interfere with the water heat transfer pipe 40 and does not interfere with the water bend pipe. Since 42 does not interfere with contact with the refrigerant heat transfer tube 30 or the like, the efficiency of attaching the refrigerant bend tube 32 and the water bend tube 42 is improved. Furthermore, since the refrigerant heat transfer tube 30 and the water heat transfer tube 40 can be brought closer to each other, the heat transfer efficiency is improved.

また、冷媒用伝熱管30は、各プレートフィン21の一端部22と他端部23とを交互に流れる一本の流れを有する構造であるので、水用伝熱管40を挟んで一端部22と他端部23を流れる冷媒Lの量は同じとなる。このため、効率よく熱交換が行われる。   In addition, the refrigerant heat transfer tube 30 has a structure having a single flow that alternately flows through the one end portion 22 and the other end portion 23 of each plate fin 21, and therefore, the one end portion 22 across the water heat transfer tube 40. The amount of refrigerant L flowing through the other end 23 is the same. For this reason, heat exchange is performed efficiently.

また、冷媒用入口36と水用出口47とをフィン群20の長手方向Xの一端部に設けて互いに隣接させるとともに、冷媒用出口37と水用入口46とをフィン群20の長手方向Xの他端部に設けて互いに隣接させることによって、冷媒の流れと水の流れとが互いに逆向きとなる。このため、冷媒Lから水Wへの熱伝達を効率よく促進することができる。   Further, the refrigerant inlet 36 and the water outlet 47 are provided at one end in the longitudinal direction X of the fin group 20 so as to be adjacent to each other, and the refrigerant outlet 37 and the water inlet 46 are arranged in the longitudinal direction X of the fin group 20. By providing at the other end and adjoining each other, the refrigerant flow and the water flow are opposite to each other. For this reason, heat transfer from the refrigerant L to the water W can be efficiently promoted.

また、各プレートフィン21において、冷媒用伝熱管30の直線部33と水用伝熱管40の直線部43とが千鳥状に配置されることによって、各プレートフィン21の幅方向Yの長さを短縮化できる。さらに、千鳥状に配置されることによって、1つの直線部43が2つの直線部33と対向するようになるので、冷媒Lから水Wへの熱の伝達効率が向上する。   Moreover, in each plate fin 21, the linear part 33 of the refrigerant | coolant heat exchanger tube 30 and the linear part 43 of the water heat exchanger tube 40 are arrange | positioned in zigzag form, The length of the width direction Y of each plate fin 21 is made. Can be shortened. Furthermore, since the one linear part 43 comes to oppose the two linear parts 33 by arrange | positioning in zigzag form, the heat transfer efficiency from the refrigerant | coolant L to the water W improves.

また、各プレートフィン21には、長手方向Xに隣り合う直線部43間と、幅方向Yに隣り合う直線部33間とに、スリット26が形成されることによって、冷媒Lの凝縮潜熱は、水用伝熱管40のみに効率よく伝熱されるので、熱交換性能が向上する。   Further, the slits 26 are formed in each plate fin 21 between the linear portions 43 adjacent to each other in the longitudinal direction X and between the linear portions 33 adjacent to each other in the width direction Y, whereby the condensation latent heat of the refrigerant L is Since heat is efficiently transferred only to the water heat transfer tube 40, the heat exchange performance is improved.

また、断熱材50によって、フィン群20と周囲の空気との間で熱交換が行われることが抑制される。このため、フィン群20を介した冷媒Lと水Wとの熱交換が効率よく行われるようになる。   Further, the heat insulating material 50 suppresses heat exchange between the fin group 20 and the surrounding air. For this reason, heat exchange between the refrigerant L and the water W via the fin group 20 is efficiently performed.

つぎに、第2の実施形態に係る熱交換器を、図11を用いて説明する。なお、本実施形態において第1の実施形態と同様の機能を有する構成は、第1の実施形態と同一の符号を付して説明を省略する。本実施形態では、冷媒用伝熱管30の直線部33と水用伝熱管40の直線部43との相対位置関係が、第1の実施形態と異なる。他の構造は、第1の実施形態と同様であってよい。上記異なる点について、具体的に説明する。   Next, a heat exchanger according to the second embodiment will be described with reference to FIG. In the present embodiment, configurations having functions similar to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted. In the present embodiment, the relative positional relationship between the straight portion 33 of the refrigerant heat transfer tube 30 and the straight portion 43 of the water heat transfer tube 40 is different from that of the first embodiment. Other structures may be the same as those in the first embodiment. The above different points will be specifically described.

図11は、本実施形態の熱交換器3において、断熱材50と冷媒用ベンド管32と水用ベンド管42とが取り外された状態を示す正面図である。図11に示すように、本実施形態では、直線部33と直線部43との相対位置関係は、B≧Cとなる相対位置関係に代えて、D≧C−dとなる。   FIG. 11 is a front view showing a state in which the heat insulating material 50, the refrigerant bend pipe 32, and the water bend pipe 42 are removed in the heat exchanger 3 of the present embodiment. As shown in FIG. 11, in the present embodiment, the relative positional relationship between the linear portion 33 and the linear portion 43 is D ≧ C−d instead of the relative positional relationship where B ≧ C.

直線部33と直線部43との相対位置関係が、D≧C−dを満たすと、直線部33は、水用伝熱管40に近づく。このため、本実施形態では、第1の実施形態と同様の作用と効果とを得ることができる。また、直線部33と直線部43との相対位置関係は、第1の実施形態で説明されたB≧Cと、本実施形態で説明されたD≧C−dと同時に満たしてもよい。   When the relative positional relationship between the straight portion 33 and the straight portion 43 satisfies D ≧ Cd, the straight portion 33 approaches the water heat transfer tube 40. For this reason, in this embodiment, the same operation and effect as those of the first embodiment can be obtained. Further, the relative positional relationship between the straight line portion 33 and the straight line portion 43 may be satisfied simultaneously with B ≧ C described in the first embodiment and D ≧ C−d described in the present embodiment.

つぎに、第3の実施形態に係る熱交換器を、図12,13を用いて説明する。なお、第1の実施形態と同様の機能を有する構成は、第1の実施形態と同一の符号を付して説明を省略する。本実施形態では、冷媒用ベンド管32と水用ベンド管42と連結部34とが、第1の実施形態と異なる。他の構造は、第1の実施形態と同様であってよい。上記異なる構造を具体的に説明する。   Next, a heat exchanger according to the third embodiment will be described with reference to FIGS. In addition, the structure which has the same function as 1st Embodiment attaches | subjects the code | symbol same as 1st Embodiment, and abbreviate | omits description. In the present embodiment, the refrigerant bend pipe 32, the water bend pipe 42, and the connecting portion 34 are different from those of the first embodiment. Other structures may be the same as those in the first embodiment. The different structure will be specifically described.

図12は、本実施形態の冷媒用伝熱管30において、直線部33の一部と冷媒用ベンド管32とを示す平面図である。図12は、直線部33の一部と冷媒用ベンド管32とを、第1の実施形態で用いられた図8と同様に見ている。図13は、図12に示されるF13−F13線に沿って冷媒用ベンド管32を切断した状態を示す断面図である。図13に示すように、本実施形態では、冷媒用ベンド管32は、扁平形ではなく、断面が円となる形状である。冷媒用のベンド管32の外径dr1は、直線部33の外径dよりも小さい。つまりd>dr1。冷媒用ベンド管32の外径dr1は、冷媒用ベンド管32が水用伝熱管40に接触することがないように考慮して設定されている。   FIG. 12 is a plan view showing a part of the straight portion 33 and the refrigerant bend pipe 32 in the refrigerant heat transfer pipe 30 of the present embodiment. FIG. 12 shows a part of the straight portion 33 and the refrigerant bend pipe 32 as in FIG. 8 used in the first embodiment. FIG. 13 is a cross-sectional view showing a state in which the refrigerant bend pipe 32 is cut along the line F13-F13 shown in FIG. As shown in FIG. 13, in the present embodiment, the refrigerant bend pipe 32 is not flat but has a circular cross section. The outer diameter dr1 of the bend pipe 32 for refrigerant is smaller than the outer diameter d of the straight portion 33. That is, d> dr1. The outer diameter dr1 of the refrigerant bend pipe 32 is set in consideration so that the refrigerant bend pipe 32 does not contact the water heat transfer pipe 40.

水用ベンド管42の形状は、冷媒用ベンド管32に対して大きさの違いはあるが、構造は同様である。このため、図12,13を利用して、水用ベンド管42を説明する。なお、図12,13において、水用伝熱管40に係る構造を示す符号は、括弧内に記す。   Although the shape of the water bend pipe 42 is different from that of the refrigerant bend pipe 32, the structure is the same. For this reason, the water bend pipe 42 will be described with reference to FIGS. In FIGS. 12 and 13, reference numerals indicating structures related to the water heat transfer tubes 40 are shown in parentheses.

図12,13に示すように、水用ベンド管42は、断面形状が円となる形状である。水用ベンド管42の外径dr2は、直線部43の外径Dよりも小さい。水用ベンド管42の外径dr2は、水用ベンド管42が冷媒用伝熱管30に接触しないように考慮されて設定されている。   As shown in FIGS. 12 and 13, the water bend pipe 42 has a circular cross section. The outer diameter dr <b> 2 of the water bend pipe 42 is smaller than the outer diameter D of the linear portion 43. The outer diameter dr2 of the water bend pipe 42 is set in consideration so that the water bend pipe 42 does not contact the refrigerant heat transfer pipe 30.

各冷媒用伝熱管本体31において、幅方向Yに対向する直線部33の一端を連結する連結部34は、断面が円となる形状である。連結部34の外径は、冷媒用ベンド管32が水用伝熱管40に接触しないように、考慮されて設定されている。   In each refrigerant heat transfer tube main body 31, the connecting portion 34 that connects one end of the linear portion 33 facing the width direction Y has a circular cross section. The outer diameter of the connecting portion 34 is set in consideration so that the refrigerant bend pipe 32 does not contact the water heat transfer pipe 40.

本実施形態では、第1の実施形態と同様の作用と効果とを得ることができる。なお、本実施形態で説明された、冷媒用ベンド管32と水用ベンド管42と連結部34との構造は、第2の実施形態で説明された熱交換器3に用いられてもよい。この場合、第2の実施形態と同様の作用と効果とを得ることができる。   In the present embodiment, the same operation and effect as in the first embodiment can be obtained. The structures of the refrigerant bend pipe 32, the water bend pipe 42, and the connecting portion 34 described in the present embodiment may be used in the heat exchanger 3 described in the second embodiment. In this case, the same operation and effect as in the second embodiment can be obtained.

第1〜3の実施形態によれば、伝熱効率を向上し、製造製を向上し、低コスト化、スペース効率のよい熱交換器を提供することができる。   According to the first to third embodiments, it is possible to improve heat transfer efficiency, improve manufacturing, and provide a heat exchanger with low cost and good space efficiency.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (3)

一方向に長いフィンを複数具備し、かつ、前記複数のフィンが互いに長手方向を揃えた姿勢で互いに隙間を存して積層されるフィン群と、
前記フィンを当該フィンの積層方向に貫通するとともに前記フィンの長手方向に蛇行状に形成され、内部を冷媒が流動する冷媒用伝熱管と、
前記フィンを当該フィンの積層方向に貫通して前記冷媒用伝熱管に隣接し、かつ、前記フィンの長手方向に蛇行状に形成されて内部を熱媒体が流動する熱媒体用伝熱管と
を具備し、
前記冷媒用伝熱管は、前記長手方向に交差する列方向にそって前記熱媒体用伝熱管の
両側列に設置され、
前記熱媒体用伝熱管の外径をDとし、
前記冷媒用伝熱管の外径をdとし、
前記冷媒用伝熱管において、前記列方向に前記熱媒体用伝熱管の両側を通る部位の中心列間距離をCとしたとき、
D≧C−dとする
ことを特徴とする熱交換器。
A plurality of fins that are long in one direction, and the plurality of fins are stacked with a gap between each other in a posture in which the longitudinal directions are aligned with each other; and
A refrigerant heat transfer tube that penetrates the fin in the laminating direction of the fin and is formed in a meandering shape in the longitudinal direction of the fin, and in which the refrigerant flows;
A heat transfer tube for a heat medium that passes through the fin in the laminating direction of the fin and is adjacent to the heat transfer tube for the refrigerant, and is formed in a meandering shape in the longitudinal direction of the fin and the heat medium flows inside. And
The refrigerant heat transfer tubes are installed on both side rows of the heat transfer tube along the row direction intersecting the longitudinal direction,
The outer diameter of the heat transfer tube for the heat medium is D,
The outer diameter of the refrigerant heat transfer tube is d,
In the refrigerant heat transfer tube, when the distance between the central rows of the portions passing through both sides of the heat transfer tube for the heat medium in the row direction is C,
A heat exchanger, wherein D ≧ Cd.
前記冷媒用伝熱管は、全ての前記フィンを当該フィンの積層方向に貫通するとともに、前記両側列に設置された部位が互いに連通する1流路で形成され、The refrigerant heat transfer tube is formed of a single flow path that penetrates all the fins in the laminating direction of the fins and that the portions installed in the both side rows communicate with each other.
前記熱媒体用伝熱管は、全ての前記フィンを当該フィンの積層方向に貫通するとともに、1流路で形成される、The heat transfer tube for the heat medium penetrates all the fins in the stacking direction of the fins and is formed by one flow path.
ことを特徴とする請求項1記載の熱交換器。The heat exchanger according to claim 1.
前記長手方向に並ぶ前記冷媒用伝熱管のパイプピッチをBとしたとき、When the pipe pitch of the refrigerant heat transfer tubes arranged in the longitudinal direction is B,
B≧CとするB ≧ C
ことを特徴とする請求項1または請求項2記載の熱交換器。The heat exchanger according to claim 1 or 2, characterized in that.
JP2012536393A 2010-09-29 2011-09-22 Heat exchanger Expired - Fee Related JP5531103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012536393A JP5531103B2 (en) 2010-09-29 2011-09-22 Heat exchanger

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010219903 2010-09-29
JP2010219903 2010-09-29
JP2012536393A JP5531103B2 (en) 2010-09-29 2011-09-22 Heat exchanger
PCT/JP2011/071619 WO2012043380A1 (en) 2010-09-29 2011-09-22 Heat exchanger

Publications (2)

Publication Number Publication Date
JPWO2012043380A1 JPWO2012043380A1 (en) 2014-02-06
JP5531103B2 true JP5531103B2 (en) 2014-06-25

Family

ID=45892831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012536393A Expired - Fee Related JP5531103B2 (en) 2010-09-29 2011-09-22 Heat exchanger

Country Status (2)

Country Link
JP (1) JP5531103B2 (en)
WO (1) WO2012043380A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6450596B2 (en) * 2015-01-13 2019-01-09 東芝キヤリア株式会社 Plate heat exchanger and refrigeration cycle apparatus
FR3071901B1 (en) * 2017-10-03 2019-10-25 Naval Group COMPRESSED DEPRIMOGENIC DEVICE WITH ELBOWS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000213814A (en) * 1999-01-25 2000-08-02 Matsushita Electric Ind Co Ltd One-can two-circuit type heat source device
JP2003240457A (en) * 2002-02-08 2003-08-27 Toyo Radiator Co Ltd Heat exchanger for hot-water supply

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000213814A (en) * 1999-01-25 2000-08-02 Matsushita Electric Ind Co Ltd One-can two-circuit type heat source device
JP2003240457A (en) * 2002-02-08 2003-08-27 Toyo Radiator Co Ltd Heat exchanger for hot-water supply

Also Published As

Publication number Publication date
WO2012043380A1 (en) 2012-04-05
JPWO2012043380A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
KR101090225B1 (en) Heat exchanger
US20070095514A1 (en) Tube for heat exchanger and method of manufacturing the same
US10113817B2 (en) Heater core
CN213120197U (en) Double-row bending type heat exchanger
KR101977817B1 (en) Heat exchanger
WO2011136047A1 (en) Vehicle interior heat exchanger
KR20150074749A (en) Heat Exchanger
JP2007170718A (en) Heat exchanger
JP2020094791A5 (en)
JP2020094792A5 (en)
JP5531103B2 (en) Heat exchanger
JP2010121925A (en) Heat exchanger
JP2009264686A (en) Heat exchanger and heat pump type heating device
JP2006329537A (en) Heat exchanger
US20060048930A1 (en) Heat exchanger
JP2015059669A (en) Laminated heat exchanger
JP6413760B2 (en) Heat exchanger and heat exchanger unit using the same
KR20130065174A (en) Heat exchanger for vehicle
JP2008298311A (en) Gas cooler for hot water supply system
KR101110859B1 (en) Fin-tube for a heat exchanger
KR20150074748A (en) Heat exchanger
JP2003097891A (en) Heat exchanger
CN108507236B (en) Heat exchanger and air conditioner with same
JP2005351520A (en) Heat exchanger
JP2010223492A (en) Water heat exchanger and heat pump type water heater

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5531103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees