JP5530970B2 - Electrode wire for wire electric discharge machining and manufacturing method thereof - Google Patents

Electrode wire for wire electric discharge machining and manufacturing method thereof Download PDF

Info

Publication number
JP5530970B2
JP5530970B2 JP2011085256A JP2011085256A JP5530970B2 JP 5530970 B2 JP5530970 B2 JP 5530970B2 JP 2011085256 A JP2011085256 A JP 2011085256A JP 2011085256 A JP2011085256 A JP 2011085256A JP 5530970 B2 JP5530970 B2 JP 5530970B2
Authority
JP
Japan
Prior art keywords
wire
zinc
layer
electrode
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011085256A
Other languages
Japanese (ja)
Other versions
JP2011177886A (en
Inventor
晃一 橋詰
雅一 吉本
伸幸 鷲尾
洋一郎 木本
弘史 佐藤
伊豆井功夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Cable Co Ltd
Original Assignee
Oki Electric Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Cable Co Ltd filed Critical Oki Electric Cable Co Ltd
Priority to JP2011085256A priority Critical patent/JP5530970B2/en
Publication of JP2011177886A publication Critical patent/JP2011177886A/en
Application granted granted Critical
Publication of JP5530970B2 publication Critical patent/JP5530970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Metal Extraction Processes (AREA)
  • Coating With Molten Metal (AREA)

Description

本発明は、放電によって被加工物(加工対象物)を加工するワイヤ放電加工に用いられるワイヤ放電加工用電極線およびその製造方法並びにその電極線を用いた放電加工方法に関するものである。   The present invention relates to a wire electric discharge machining electrode wire used in wire electric discharge machining for machining a workpiece (workpiece) by electric discharge, a manufacturing method thereof, and an electric discharge machining method using the electrode wire.

ワイヤ放電加工とは放電加工用電極線と被加工物との間で放電を起こさせ、放電によって引き起こされる熱エネルギーによって被加工物を切断していくもので、特に金型等の複雑な形状を有する金属加工に適している。   Wire EDM is a process in which an electric discharge is generated between an EDM electrode wire and the workpiece, and the workpiece is cut by the thermal energy caused by the electric discharge. Suitable for metal processing.

このような放電加工において、a)加工速度が速いこと、b)被加工物の表面の仕上がり状態や寸法精度が良好であること、c)電極線と被加工物との相対位置を計測する位置決め性が良好であること、d)電極線を連続的に走行させた時の金属粉の発生量が少ないこと等が要求される。   In such electric discharge machining, a) the machining speed is high, b) the finished state and dimensional accuracy of the surface of the workpiece are good, and c) positioning for measuring the relative position between the electrode wire and the workpiece. D) that the amount of metal powder generated when the electrode wire is continuously run is small.

この電極線として、従来から広く使われているものに、電極線が亜鉛濃度35〜40重量%の黄銅単一体より製作されたものがある。この黄銅単一体の電極線は、亜鉛含有量を40重量%以上に増やすと、体心立方格子の金属間化合物を作り展延性や靭性が低下し、冷間伸線加工ができないという理由により製作できない。   As this electrode wire, one that has been widely used conventionally is one in which the electrode wire is made of a single brass having a zinc concentration of 35 to 40% by weight. This brass single electrode wire is manufactured because, when the zinc content is increased to 40% by weight or more, an intermetallic compound of a body-centered cubic lattice is formed, and the ductility and toughness are lowered, so that cold drawing cannot be performed. Can not.

そこで、亜鉛濃度35〜40重量%の黄銅単一体の電極線よりも放電加工速度を速くしようとする研究が種々行われてきているが、電極線の組成中の亜鉛濃度が高いほど、放電加工速度を向上できることは良く知られている。   Therefore, various studies have been made to increase the electric discharge machining speed as compared with a single electrode wire of brass having a zinc concentration of 35 to 40% by weight. The higher the zinc concentration in the composition of the electrode wire, the higher the electric discharge machining. It is well known that speed can be improved.

この方法として、電極線の表層のみ亜鉛濃度が40重量%以上の銅−亜鉛合金層、あるいはその上に更に亜鉛層を設ける方法が知られている。   As this method, a method of providing a copper-zinc alloy layer having a zinc concentration of 40% by weight or more only on the surface layer of the electrode wire, or further providing a zinc layer thereon is known.

日本特許第3718617号には、表層に亜鉛濃度が40重量%以上の銅−亜鉛合金層、あるいはその上に亜鉛層を設けた多孔性電極線が開示されている。   Japanese Patent No. 3718617 discloses a copper-zinc alloy layer having a zinc concentration of 40% by weight or more on the surface layer, or a porous electrode wire provided with a zinc layer thereon.

この電極線表面にクラックを有する多孔性電極線は、溶融めっきにより銅含有芯線の表層に銅−亜鉛合金層、あるいはその上に亜鉛層を設け、伸線加工することによって表層に積極的にクラックを形成させ、電極線の表面積を大きくし、放電加工時に加工液との接触面積を増加させ、冷却速度を一層早くして加工速度を改善することが記載されている。   A porous electrode wire having cracks on the surface of the electrode wire is provided with a copper-zinc alloy layer on the surface layer of the copper-containing core wire by hot dip plating, or a zinc layer on the surface, and the surface layer is actively cracked by wire drawing. And increasing the surface area of the electrode wire, increasing the contact area with the machining fluid during electrical discharge machining, and further increasing the cooling rate to improve the machining rate.

さらに、国際公開番号WO2009/028117には上記発明の問題点を解決する方法として、次の構造の電極線が開示されている。
― 銅または銅合金の芯線に対して、その表面から溶融した亜鉛が熱拡散して形成された銅−亜鉛合金内層(亜鉛濃度50〜80重量%)と芯線自体の銅が溶融した亜鉛に拡散して形成された銅−亜鉛合金外層(亜鉛濃度81〜100重量%)からなる。(外層が拡散によって生成された2層の銅−亜鉛合金層の上に亜鉛層が設けられた3層構造)
― 拡散合金層よりも亜鉛層が厚い
― 亜鉛層の厚さは外径の1.2%以上であり、電極線の最表層にはクラックが存在しない。
Further, International Publication No. WO2009 / 028117 discloses an electrode wire having the following structure as a method for solving the problems of the invention.
-Copper or copper alloy core wire diffused into the molten zinc from the copper-zinc alloy inner layer (zinc concentration 50-80 wt%) formed by thermal diffusion of molten zinc from its surface and the core wire itself A copper-zinc alloy outer layer (zinc concentration of 81 to 100% by weight) formed. (Three-layer structure in which a zinc layer is provided on two copper-zinc alloy layers whose outer layers are produced by diffusion)
-The zinc layer is thicker than the diffusion alloy layer-The thickness of the zinc layer is 1.2% or more of the outer diameter, and there is no crack in the outermost layer of the electrode wire.

日本特許第3718617号Japanese Patent No. 3718617 WO2009/028117号WO2009 / 0281117

従来の銅または銅合金芯線の外周面に亜鉛層と拡散合金層を設け、伸線することによって得られる高速加工用電極線は、加工速度を向上することができるものの、加工速度以外の放電加工に必要な他の特性が悪くなるという問題点が生じる。   The electrode wire for high-speed machining obtained by providing a zinc layer and a diffusion alloy layer on the outer peripheral surface of a conventional copper or copper alloy core wire and drawing can improve the machining speed, but it is an electric discharge machining other than the machining speed. This causes a problem that other characteristics necessary for the above-mentioned are deteriorated.

また、電極線表層にクラックを形成するという技術も知られているが、電極線表層にクラックが形成されることによって、次のような問題点が生じる。
a)ワイヤ放電加工は、電極線と被加工物との間で放電を行わせながら、被加工物を溶断して糸鋸式の加工を行うものであるが、電極線の表層にクラックがあることによって、放電が不安定になり、被加工物の表面の仕上がり状態が悪くなる。
b)ワイヤ放電加工機に被加工物と電極線の相対位置を認識させるため、被加工物と電極線との間で電気的な導通を利用しているが、電極線の表層にクラックがあることによって接触面積が少なくなり、位置決め精度が悪くなる。
c)冷間伸線加工によって表層にクラックが生じるほど表層が脆いため、放電加工時に電極線を連続的に走行させた場合に加工機のガイド、プーリー等との摩擦・擦れ等により金属粉の発生量が多くなり、メンテナンス性を悪化させる。
d)表層にクラックがあることによって、取り扱い時または加工時に断線が発生し易くなり信頼性が悪くなる。
Moreover, although the technique of forming a crack in an electrode line surface layer is also known, the following problems arise when a crack is formed in an electrode line surface layer.
a) Wire electrical discharge machining is a process in which a workpiece is melted and a saw blade type machining is performed while electric discharge is performed between the electrode wire and the workpiece, but there is a crack in the surface layer of the electrode wire. As a result, the discharge becomes unstable, and the finished state of the surface of the workpiece becomes worse.
b) In order to make the wire electrical discharge machine recognize the relative position between the workpiece and the electrode wire, electrical conduction is used between the workpiece and the electrode wire, but there is a crack in the surface layer of the electrode wire. As a result, the contact area is reduced and the positioning accuracy is deteriorated.
c) Since the surface layer is so brittle that cracks are generated in the surface layer due to cold wire drawing, the metal powder is caused by friction and rubbing with the guide and pulley of the processing machine when the electrode wire is continuously run during electric discharge machining. The amount generated increases, and the maintainability deteriorates.
d) Since there are cracks in the surface layer, disconnection is likely to occur during handling or processing, resulting in poor reliability.

それに対して拡散合金層を有していながら電極線の最表層にクラックを生じさせない対策も知られているが、この構造は亜鉛層の厚さを外径の1.2%以上にすることにより、拡散合金層のクラックを亜鉛層で被覆することによって、電極線の最表層にクラックを存在させなくする構造のために、最表層の亜鉛層がどうしても厚くなり、図4に示したように放電加工中に亜鉛の蒸発消耗によって線径が細り、入側と出側で加工溝巾の差が生じることにより、放電加工面がテーパー状になり、加工精度の面で問題が生じる。   On the other hand, there is also known a countermeasure that does not cause cracks in the outermost layer of the electrode wire while having a diffusion alloy layer, but this structure makes the thickness of the zinc layer 1.2% or more of the outer diameter. By covering the cracks of the diffusion alloy layer with the zinc layer, the outermost zinc layer is inevitably thickened due to the structure in which the outermost layer of the electrode wire is not cracked, and as shown in FIG. During machining, the wire diameter is reduced due to the evaporation and consumption of zinc, and a difference in the machining groove width occurs between the entry side and the exit side, so that the electric discharge machining surface becomes tapered, causing a problem in terms of machining accuracy.

また、亜鉛層と拡散合金層が厚いことによりにより0.1−0.3mmφ等の要求される所定の直径の電極線を得るために、伸線加工すると亜鉛層を含めた拡散合金層が芯線から剥離し易くなる。
亜鉛層を含めた拡散合金層が剥離し易い電極線を用いてワイヤ放電加工を行うと、剥離片が電極線と被加工物の間でブリッジを形成することによって短絡が起こり、放電回数の減少による加工速度の低下や、放電が不安定になることにより、図5の模式図に示すように放電痕の集中による微細スジが、電極線の移動方向に沿って加工面に存在するようになる。
In addition, in order to obtain an electrode wire having a required diameter of 0.1-0.3 mmφ or the like due to the thick zinc layer and the diffusion alloy layer, when the wire drawing is performed, the diffusion alloy layer including the zinc layer becomes a core wire. It becomes easy to peel from.
When wire EDM is performed using an electrode wire that easily peels off the diffusion alloy layer including the zinc layer, a short circuit occurs due to the peeled piece forming a bridge between the electrode wire and the workpiece, reducing the number of discharges. As shown in the schematic diagram of FIG. 5, fine streaks due to the concentration of discharge traces are present on the processed surface along the movement direction of the electrode lines. .

本発明はこれらの問題点を解決するためになされたもので、亜鉛の消耗による加工精度の低下、または短絡による加工速度の低下や電極線の移動方向に沿って発生する加工面の微細スジを抑えた高速加工用の放電加工用電極線を提供することを目的とする。   The present invention has been made to solve these problems, and it is possible to reduce the machining accuracy due to the consumption of zinc, the machining speed due to short circuit, and the fine streaks on the machining surface that occur along the moving direction of the electrode wire. An object of the present invention is to provide an electrode wire for electric discharge machining for high-speed machining that is suppressed.

さらに本発明は、電極線を連続的に走行させた時の金属粉の発生量が少なく、かつ電極線と被加工物との相対位置を計測する位置決め性が良好で、取り扱い時または加工時に断線が発生することがない放電加工用電極線を提供することを目的としている。   Furthermore, the present invention has a small amount of metal powder generated when the electrode wire is continuously run and has good positioning properties for measuring the relative position between the electrode wire and the workpiece, and is broken during handling or processing. It aims at providing the electrode wire for electric discharge machining which does not generate | occur | produce.

加えて本発明は、上記放電加工用電極線を製造するための方法および上記放電加工用電極線を用いた放電加工方法を提供することを目的とするものである。   In addition, an object of the present invention is to provide a method for manufacturing the electrode wire for electric discharge machining and an electric discharge machining method using the electrode wire for electric discharge machining.

発明のワイヤ放電加工用電極線の製造方法は、銅または銅合金からなる芯線を、亜鉛を所定温度に保持しているめっき槽内を最外層が所定厚を超える亜鉛層とする浸漬時間通過せしめた後冷却することにより、前記芯線と前記亜鉛が接触する境界面で相互に熱拡散させて拡散合金層を生成させて電極線のめっき母線を製造し、該めっき母線を伸線加工するワイヤ放電加工用電極線の製造方法において、前記めっき母線を前記亜鉛の展延性が良いとされる温度範囲で伸線加工することにより、クラックが存在しない亜鉛薄膜を形成し、前記亜鉛溶融めっき層は、伸線されてクラックが存在しない亜鉛薄膜とされるとともに、前記拡散合金層は、伸線されて破砕された粒状物が前記芯線の外周面に埋め込まれ、前記亜鉛薄膜と拡散合金層が前記芯線と一体化されて剥離することが抑止されることを特徴とする。 In the method for producing an electrode wire for wire electric discharge machining according to the present invention, a core wire made of copper or a copper alloy is immersed in a plating bath in which zinc is maintained at a predetermined temperature, and the outermost layer is a zinc layer having a predetermined thickness passed. A wire for producing a plating bus bar of an electrode wire by thermally diffusing each other at a boundary surface where the core wire and the zinc are in contact with each other by cooling, and producing a plating bus bar of the electrode wire, and drawing the plating bus bar In the manufacturing method of the electrode wire for electric discharge machining, a zinc thin film without cracks is formed by drawing the plated bus in a temperature range in which the zinc spreadability is good. The zinc thin film is drawn and has no cracks, and the diffusion alloy layer is formed by embedding a drawn and crushed granular material in the outer peripheral surface of the core wire, and the zinc thin film and the diffusion alloy layer are Characterized in that is inhibited by peeling integrated with the line.

さらに、本発明のワイヤ放電加工用電極線の製造方法は、前記拡散合金層の破砕された粒状物は、大きな垂直方向の面圧を受けて前記芯線の外周面に深く埋め込まれることを特徴とする。   Furthermore, in the method for manufacturing an electrode wire for wire electric discharge machining according to the present invention, the crushed granular material of the diffusion alloy layer receives a large vertical surface pressure and is deeply embedded in the outer peripheral surface of the core wire. To do.

さらに、本発明のワイヤ放電加工用電極線の製造方法は、前記拡散合金層の破砕された粒状物は、伸線前断面積から伸線後断面積を差し引いた縮減断面積を伸線前断面積で除したものに100を乗じた伸線加工率の高い伸線加工を受けて、前記芯線の外周面に深く埋め込まれることを特徴とする。   Furthermore, in the method of manufacturing an electrode wire for wire electric discharge machining according to the present invention, the granular material obtained by pulverizing the diffusion alloy layer has a reduced cross-sectional area obtained by subtracting a cross-sectional area after drawing from a pre-drawing cross-sectional area before drawing. It is characterized in that it is drawn deeply in the outer peripheral surface of the core wire after undergoing wire drawing with a high wire drawing rate obtained by multiplying the area divided by 100.

本発明のワイヤ放電加工用電極線は、銅または銅合金からなる芯線を、亜鉛を所定温度に保持しているめっき槽内を最外層が所定厚を超える亜鉛層とする浸漬時間通過せしめた後冷却することにより、前記芯線と前記亜鉛が接触する境界面で相互に熱拡散させて拡散合金層を生成させて電極線のめっき母線を製造し、該めっき母線を伸線加工するワイヤ放電加工用電極線であり、前記めっき母線は、前記亜鉛の展延性が良いとされる温度範囲で伸線加工され、クラックが存在しない亜鉛薄膜が形成されており、前記亜鉛溶融めっき層は、伸線されてクラックが存在しない亜鉛薄膜とされるとともに、前記拡散合金層は、伸線されて破砕された粒状物が前記芯線の外周面に埋め込まれ、前記亜鉛薄膜と拡散合金層が前記芯線と一体化されて剥離することが抑止されていることを特徴とする。   The electrode wire for wire electric discharge machining of the present invention is obtained by allowing a core wire made of copper or a copper alloy to pass through a dipping time in which a zinc layer whose outermost layer exceeds a predetermined thickness is passed through a plating tank holding zinc at a predetermined temperature. For wire electrical discharge machining, by cooling, the core wire and the zinc contact each other at the interface where the core wire is in contact with each other to thermally diffuse to produce a diffusion alloy layer to produce a plating bus bar of the electrode wire, and wire-drawing the plating bus bar It is an electrode wire, and the plated bus is drawn at a temperature range in which the spreadability of the zinc is good, a zinc thin film free from cracks is formed, and the zinc hot-dip plated layer is drawn The zinc alloy thin film is free from cracks, and the diffusion alloy layer is formed by drawing and pulverizing granular materials embedded in the outer peripheral surface of the core wire, and the zinc thin film and the diffusion alloy layer are integrated with the core wire. Being peeled Wherein the Rukoto is suppressed.

さらに、本発明のワイヤ放電加工用電極線は、前記拡散合金層の破砕された粒状物は、大きな垂直方向の面圧を受けて前記芯線の外周面に深く埋め込まれていることを特徴とする。   Furthermore, the electrode wire for wire electric discharge machining according to the present invention is characterized in that the granular material in which the diffusion alloy layer is crushed is subjected to a large vertical surface pressure and is deeply embedded in the outer peripheral surface of the core wire. .

さらに、本発明のワイヤ放電加工用電極線は、前記熱拡散合金層は、破砕された粒状物が稠密状態で集合された層として形成されていることを特徴とする。   Furthermore, the electrode wire for wire electric discharge machining of the present invention is characterized in that the heat diffusion alloy layer is formed as a layer in which crushed granular materials are gathered in a dense state.

さらに、本発明のワイヤ放電加工用電極線は、前記拡散合金層の破砕された粒状物は、伸線前断面積から伸線後断面積を差し引いた縮減断面積を伸線前断面積で除したものに100を乗じた伸線加工率の高い伸線加工を受けて、前記芯線の外周面に深く埋め込まれていることを特徴とする。   Furthermore, the electrode wire for wire electric discharge machining of the present invention is obtained by dividing the reduced granular area obtained by subtracting the post-drawing cross-sectional area from the pre-drawing cross-sectional area by the pre-drawing cross-sectional area. It is characterized in that it is drawn deeply in the outer peripheral surface of the core wire after being subjected to wire drawing with a high wire drawing rate that is multiplied by 100.

本発明によれば、簡単な設備および製造工程により、外周面の銅―亜鉛の熱拡散層の破砕された粒状物が稠密状態で集合された層として形成されて芯線に埋め込まれることにより、芯線と亜鉛溶融めっき層とが熱拡散合金層により一体化されて剥離を抑止できる。   According to the present invention, the crushed granular material of the copper-zinc heat diffusion layer on the outer peripheral surface is formed as a densely assembled layer and embedded in the core wire by a simple facility and manufacturing process. And the hot dip galvanized layer are integrated by the heat diffusion alloy layer, and delamination can be suppressed.

このことにより、放電加工中に被加工物と電極線との短絡を防止することができるため、放電回数の減少による加工速度の低下や、放電が不安定になることにより放電痕の集中による微細スジが電極線の移動方向に沿って加工面に発現することを抑止できる高速加工用電極線の提供が可能になる。   This makes it possible to prevent a short circuit between the workpiece and the electrode wire during electric discharge machining. It is possible to provide an electrode wire for high-speed machining that can prevent streaks from appearing on the machining surface along the moving direction of the electrode wire.

また、従来の加工方法は、荒加工では外周面に亜鉛層と銅−亜鉛拡散合金層を有する構造の高速加工用電極線を、仕上げ加工には黄銅単一体の電極線を使用するなど、加工プロセス間で電極線を交換していたが、本発明の電極線は高速加工だけでなく、精密加工にも使用できるため、加工プロセス間の電極線の交換は必要なくなり、停止時間/交換時間が節約できる。   In addition, the conventional machining method uses a high-speed machining electrode wire with a zinc layer and a copper-zinc diffusion alloy layer on the outer peripheral surface for rough machining, and uses a brass single electrode wire for finishing. Although the electrode wire was exchanged between processes, the electrode wire of the present invention can be used not only for high-speed machining but also for precision machining. Can save.

本発明の電極線の断面図Sectional view of the electrode wire of the present invention 本発明のめっき母線の断面図Sectional view of the plating bus bar of the present invention めっき母線の径方向の亜鉛濃度および層厚を示す図Diagram showing the zinc concentration and layer thickness in the radial direction of the plating bus 放電加工中の電極線の状態を示した図The figure which showed the state of the electrode wire during electric discharge machining 加工面のスジの模式図Schematic diagram of streaks on machined surface 伸線加工中にめっき母線が受ける応力方向を示す図Diagram showing the direction of stress applied to the plating bus bar during wire drawing 溶融めっきおよび伸線装置を示す図Diagram showing hot dipping and wire drawing equipment 亜鉛層厚の異なる電極線の潤滑液温度と電極線外周面のクラック発生との関係図Relationship diagram between lubricating liquid temperature of electrode wires with different zinc layer thickness and occurrence of cracks on outer peripheral surface of electrode wires 電極線の亜鉛層厚と加工溝巾との関係図Relationship diagram between electrode wire zinc layer thickness and machining groove width 拡散合金層の粒状物が芯線に埋め込まれた状態の写真(デジタルマイクロスコープ1000倍)Photo of the diffusion alloy layer granular material embedded in the core wire (digital microscope 1000 times) 潤滑液種類と短絡発生回数との関係図Relationship diagram between lubricant type and number of occurrences of short circuit 電極線の移動方向に発生するスジの写真(デジタルマイクロスコープ40倍)Photo of streaks in the direction of electrode wire movement (digital microscope 40x) 短絡回数と加工速度の関係図Relationship between number of shorts and machining speed 拡散合金層の粒状物が芯線に埋め込まれた状態の写真(デジタルマイクロスコープ1000倍)Photo of the diffusion alloy layer granular material embedded in the core wire (digital microscope 1000 times) 加工率と短絡発生回数との関係図Relationship diagram between processing rate and number of shorts 伸線ダイス内部でのめっき母線の流れ図Flow chart of plating bus inside the wire drawing die 潤滑液の違いによる拡散合金層の粒状物と芯線との境界線長との関係図Relationship diagram between the length of boundary line between granular material and core wire of diffusion alloy layer due to difference in lubricating liquid

本発明のワイヤ放電加工用電極線は、外周面に拡散合金層とその上に亜鉛層を有する従来の電極線の前述の問題点を解決するためになされたものである。   The electrode wire for wire electric discharge machining of the present invention is made to solve the above-mentioned problems of the conventional electrode wire having a diffusion alloy layer on the outer peripheral surface and a zinc layer thereon.

拡散合金層を有する従来技術のワイヤ放電加工用電極線の製造方法は、銅または銅合金からなる芯線の外周面に電気めっきまたは溶融めっきにより、亜鉛の外側金属層を形成し、この線材を熱処理することによって、亜鉛めっき層と芯線の間で相互に熱拡散により生成された拡散合金層を有する線材を伸線加工により断面積を縮小して得られる。   In the conventional method of manufacturing an electrode wire for wire electric discharge machining having a diffusion alloy layer, an outer metal layer of zinc is formed on the outer peripheral surface of a core wire made of copper or a copper alloy by electroplating or hot dipping, and the wire is heat-treated. By doing so, a wire rod having a diffusion alloy layer generated by mutual thermal diffusion between the galvanized layer and the core wire can be obtained by reducing the cross-sectional area by wire drawing.

ここで、問題は、拡散合金層が体心立方格子の金属間化合物である亜鉛濃度40%以上の銅−亜鉛拡散合金層になっており、硬く、脆い性質のため、芯線と拡散合金層の変形特性が異なることによって伸線加工中に拡散合金層が砕けて電極線表面にクラックを発現させてしまい、破砕した拡散合金層が芯線から剥離して、被加工物と電極線との短絡を起し、加工速度の低下や加工面の品質低下を起こしてしまうことである。   Here, the problem is that the diffusion alloy layer is a copper-zinc diffusion alloy layer having a zinc concentration of 40% or more, which is an intermetallic compound of a body-centered cubic lattice, and is hard and brittle. Due to the different deformation characteristics, the diffusion alloy layer breaks during wire drawing, causing cracks on the surface of the electrode wire, and the crushed diffusion alloy layer peels off the core wire, causing a short circuit between the workpiece and the electrode wire. That is, the processing speed is lowered and the quality of the processed surface is lowered.

本出願人は、改善された拡散合金層を有する電極線を実現するために研究を重ねるうちに、次の3つの方法を用いることにより、芯線と亜鉛溶融めっき層とが熱拡散合金層により一体化されて剥離が抑止され、かつ電極線表面にクラックが存在しない電極線が経済的に得られることを発見した。
(1) めっき母線の亜鉛層を薄くしても、亜鉛層が拡散合金層のクラックを覆うことにより、電極線最表面にクラックが発現しないことを可能にするため、伸線加工中の亜鉛の温度を亜鉛の展延性が良い100〜150℃の温度で伸線加工を行う。
(2) 伸線ダイスとめっき母線の摩擦抵抗を増大してダイス壁面と母線の境界に大きな垂直方向の面圧を発生させて、拡散合金層を確実に破砕して粒状物とし、その粒状物を芯線外周面に楔のように深く埋め込ませることを目的として、通常伸線に使用されている油性の伸線潤滑液よりも摩擦抵抗が大きくなる水を伸線潤滑液に用いる。
(3) 拡散合金層が芯線に埋め込まれる時間を長く、また、ダイスを通過するパスの回数を多くして、拡散合金層を確実に破砕して粒状物とし、その粒状物を芯線外周面に深く埋め込ませることを目的として、伸線加工率を大きくして伸線加工を行う。
While the applicant has conducted research to realize an electrode wire having an improved diffusion alloy layer, the core wire and the zinc hot-dip plating layer are integrated with the heat diffusion alloy layer by using the following three methods. It has been found that an electrode wire that is prevented from being peeled off and has no cracks on the electrode wire surface can be obtained economically.
(1) Even if the zinc layer of the plating bus bar is thinned, the zinc layer covers the cracks of the diffusion alloy layer so that no cracks appear on the outermost surface of the electrode wire. Wire drawing is performed at a temperature of 100 to 150 ° C. at which the zinc has good ductility.
(2) The frictional resistance between the wire drawing die and the plating bus bar is increased to generate a large vertical surface pressure at the boundary between the die wall surface and the bus bar, and the diffusion alloy layer is reliably crushed into a granular material. In order to embed the wire in the outer peripheral surface of the core wire deeply like a wedge, water having a higher frictional resistance than that of an oil-based wire drawing lubricant usually used for wire drawing is used for the wire drawing lubricant.
(3) The time for the diffusion alloy layer to be embedded in the core wire is lengthened, and the number of passes through the die is increased so that the diffusion alloy layer is reliably crushed into a granular material. For the purpose of embedding deeply, the wire drawing is performed by increasing the wire drawing rate.

上記(1)の方法は、WO2009/028117号によれば、伸線加工において電極線表面にクラックを生じさせないためには、亜鉛層の厚さは、電極線の外径の1.2%以上を必要とすると記載されている。しかし、亜鉛層が厚いと亜鉛の蒸発消耗によって加工精度が悪くなるのと、伸線加工で剥離片が発生し易くなるという問題が生じる。   According to the method of (1), according to WO2009 / 0281117, the thickness of the zinc layer is 1.2% or more of the outer diameter of the electrode wire in order not to cause cracks on the surface of the electrode wire in wire drawing. It is stated that it is necessary. However, if the zinc layer is thick, if the processing accuracy deteriorates due to the evaporation and consumption of zinc, there arises a problem that peeling pieces are likely to be generated in the wire drawing.

本発明は、亜鉛層が薄膜でも電極線表面にクラックを生じさせないため、亜鉛の展延性が良好な温度で伸線加工を行うことによって解決したものである。   The present invention solves the problem by performing the wire drawing at a temperature at which the spreadability of zinc is good because the surface of the electrode wire is not cracked even if the zinc layer is a thin film.

亜鉛は常温では脆いが、100〜150℃では展性や延性が増大する。この性質を利用して、めっき母線の亜鉛層が100〜150℃の温度で伸線されるように、めっき母線と伸線ダイスの壁面での摩擦熱の発生による温度上昇を見込んで、伸線潤滑液の温度を75℃以上100℃以下にすることにより、亜鉛層が拡散合金層のクラックを完全に覆うことにより電極線最表面にクラックが発現しないようにしたものである。   Zinc is brittle at room temperature, but malleability and ductility increase at 100 to 150 ° C. Using this property, the zinc wire of the plating bus bar is drawn at a temperature of 100 to 150 ° C., so that the temperature rise is expected due to the generation of frictional heat on the wall surface of the plating bus bar and the drawing die. By setting the temperature of the lubricating liquid to 75 ° C. or more and 100 ° C. or less, the zinc layer completely covers the cracks in the diffusion alloy layer, so that no cracks appear on the outermost surface of the electrode wire.

上記(2)の方法は、油性の伸線潤滑液よりも摩擦抵抗が大きくなる水を伸線潤滑液に用いることにより、伸線加工で破砕した拡散合金層の粒状物が芯線の銅または銅合金に深く埋め込まれることによって、亜鉛薄膜と熱拡散合金層が芯線と一体化して剥離しないようにしたものである。   In the above method (2), the granular material of the diffusion alloy layer crushed by the wire drawing is made of copper or copper having a friction resistance larger than that of the oil-based wire drawing lubricant. By being deeply embedded in the alloy, the zinc thin film and the heat diffusion alloy layer are integrated with the core wire so as not to peel off.

金属間化合物である体心立方格子の拡散合金層は、展延性がないために伸線加工中に破砕して粒状物になり、芯線から亜鉛層と拡散合金層が剥離し易くなる。放電加工中に亜鉛層と拡散合金層が剥離すると、電極線と被加工物が短絡し、放電回数の減少による加工速度の低下や、放電が不安定になることにより微細スジが電極線の移動方向に沿って加工面に発生するようになる。
本発明は、拡散合金層の破砕した粒状物と芯線との境界線長が、その境界線長を有する同一の電極線の長さより1.20倍以上に長くなるように、拡散合金層の粒状物を芯線に深く埋め込むことによって、亜鉛薄膜と拡散合金層を芯線と一体化させ、芯線からの亜鉛薄膜と拡散合金層の剥離を抑止する構造のワイヤ放電加工用電極線とその製造方法、およびその電極線を用いた放電加工方法である。
Since the diffusion alloy layer having a body-centered cubic lattice, which is an intermetallic compound, is not malleable, it is crushed into a granular material during wire drawing, and the zinc layer and the diffusion alloy layer are easily peeled off from the core wire. If the zinc layer and the diffusion alloy layer are peeled off during electrical discharge machining, the electrode wire and the workpiece are short-circuited, the machining speed is reduced due to a decrease in the number of discharges, and the fine streaks move due to unstable discharge. It occurs on the machined surface along the direction.
In the present invention, the grain size of the diffusion alloy layer is set so that the boundary line length between the crushed granular material of the diffusion alloy layer and the core wire is 1.20 times longer than the length of the same electrode wire having the boundary line length. An electrode wire for wire electric discharge machining having a structure in which the zinc thin film and the diffusion alloy layer are integrated with the core wire by deeply embedding an object in the core wire, and delamination of the zinc thin film and the diffusion alloy layer from the core wire is suppressed, and a manufacturing method thereof, and This is an electric discharge machining method using the electrode wire.

一体化させる原理は次による。
伸線加工中にめっき母線が受ける応力は、図6に示すように母線内部と母線表層部では異なる。
伸線加工中は、めっき母線表層部では、伸線ダイス拘束により伸線ダイスとめっき母線の境界に大きな垂直方向の面圧が発生する。これに対して、めっき母線内部では引き抜き力の影響による引張応力が作用する。
図16に伸線中に、ダイス内部でどのようにめっき母線が変形していくかのメタルフローを模式的に示す。
図16の伸線前の格子線の縦軸は伸線加工後に湾曲を起している(先進現象)。これは、めっき母線と伸線ダイス壁間の摩擦が原因であり、摩擦抵抗が大きいほど、表層部は垂直方向の面圧を受けて、長さ方向の変形量は中心部の変形量に比べて小さくなる。従って、めっき母線の表層部に発生する垂直方向の面圧を大きくするためには摩擦力(変形抵抗)が大きい方が良い。
The principle of integration is as follows.
As shown in FIG. 6, the stress applied to the plating bus during wire drawing differs between the inside of the bus and the surface of the bus.
During the wire drawing process, a large vertical surface pressure is generated at the boundary between the wire drawing die and the plating bus wire due to wire drawing die restraint at the surface portion of the plating bus wire. On the other hand, tensile stress due to the influence of the drawing force acts inside the plating bus bar.
FIG. 16 schematically shows a metal flow of how the plating bus bar is deformed inside the die during wire drawing.
The vertical axis of the grid line before drawing in FIG. 16 is curved after drawing (advanced phenomenon). This is due to the friction between the plating bus bar and the drawing die wall. The greater the frictional resistance, the more the surface layer receives vertical surface pressure, and the amount of deformation in the length direction is smaller than the amount of deformation in the center. Become smaller. Therefore, in order to increase the vertical surface pressure generated in the surface layer portion of the plating bus, it is better that the frictional force (deformation resistance) is large.

この原理を活用して、接触面の摩擦力を大きくして、破砕された粒状物を芯線に埋め込む面圧を大きくし、深く埋め込むために、伸線潤滑液として通常用いられている油性タイプ潤滑液(振り子式測定法による動摩擦係数 約0.1)を用いずに、油性タイプ潤滑液よりも潤滑機能の低い水(振り子式測定法による動摩擦係数 約0.36)を使用するものである。   Utilizing this principle, the frictional force of the contact surface is increased, the surface pressure for embedding the crushed granular material in the core wire is increased, and the oil-based lubrication usually used as a wire drawing lubricating liquid to embed deeply. Without using a liquid (dynamic friction coefficient by a pendulum type measurement method of about 0.1), water (dynamic friction coefficient by a pendulum type measurement method of about 0.36) having a lubricating function lower than that of an oil-type lubricating liquid is used.

上記(3)の方法は、伸線加工における加工率を94.0%以上にすることによって、伸線加工で破砕した拡散合金層の粒状物が、芯線に深く埋め込まれることによって、亜鉛層と拡散合金層が芯線と一体化して剥離を抑止したものである。   In the method (3), by setting the processing rate in the wire drawing to 94.0% or more, the granular material of the diffusion alloy layer crushed by the wire drawing is embedded deeply in the core wire, The diffusion alloy layer is integrated with the core wire to prevent peeling.

加工率は下記の式によって求まる。
加工率(%)=〔(伸線前断面積―伸線後断面積)/伸線前断面積〕×100
The processing rate is obtained by the following formula.
Processing rate (%) = [(cross-sectional area before wire drawing−cross-sectional area after wire drawing) / cross-sectional area before wire drawing] × 100

拡散合金層は芯線と変形特性が異なるために(拡散合金層の方が伸度は低い)、伸線加工により拡散合金層が破砕して粒状物になり、亜鉛薄膜と拡散合金層が芯線から剥離し易くなる。   Because the diffusion alloy layer has different deformation characteristics from the core wire (the diffusion alloy layer has a lower elongation), the diffusion alloy layer is crushed into particles by drawing, and the zinc thin film and the diffusion alloy layer are separated from the core wire. It becomes easy to peel.

この方法は伸線前の初期のめっき母線外径と伸線後の最終製品径の差を大きくして(加工率を高めることによって)、破砕した拡散合金層が芯線に埋め込まれる時間を長くすること、またダイスを通過するパスの回数を多くすることによって、伸線加工後の拡散合金層を破砕して形成した粒状物と芯線との境界線長が、その境界線長を有する同一の電極線の長さより1.20倍以上長くすることにより拡散合金層の粒状物を芯線に深く埋め込ませることによって、亜鉛層と拡散合金層が芯線と一体化して剥離を抑止したものである。   This method increases the difference between the initial plating bus outer diameter before wire drawing and the final product diameter after wire drawing (by increasing the processing rate), and lengthens the time during which the crushed diffusion alloy layer is embedded in the core wire. In addition, by increasing the number of passes through the dice, the boundary line length between the granular material formed by crushing the diffusion alloy layer after drawing and the core wire has the same boundary length. By making the granular material of the diffusion alloy layer deeply embedded in the core wire by making it longer than the length of the wire by 1.20 times or more, the zinc layer and the diffusion alloy layer are integrated with the core wire to prevent peeling.

以下、本発明の実施の形態について説明する。
図7は本発明のワイヤ放電加工用電極線1の製造方法を実施するための設備を模式的に示したもので、図2のめっき母線5の伸線装置13とアニーラー14は、図示のように巻取り装置15の前に設置しても良いし、又は本設備とは別に設置して、巻き取った後に伸線加工しても良い。
Embodiments of the present invention will be described below.
FIG. 7 schematically shows equipment for carrying out the method of manufacturing the electrode wire 1 for wire electric discharge machining of the present invention. The wire drawing device 13 and the annealer 14 of the plating bus 5 in FIG. May be installed in front of the winding device 15, or may be installed separately from the present equipment and may be drawn after winding.

また、溶融めっきの温度と浸漬時間を調整することによって、拡散合金層である銅−亜鉛合金層7と亜鉛層8の層厚を変化させることが可能であり、その傾向は次の通りである。
(1) 拡散合金層(銅−亜鉛合金層)
・同一温度であれば、浸漬時間が短いほど拡散合金層が薄くなる。
・同一浸漬時間であれば、温度が低いほど拡散合金層が薄くなる。
(2) 亜鉛層
・同一温度であれば、浸漬時間が短いほど亜鉛層が厚くなる。
・同一浸漬時間であれば、温度が低いほど亜鉛層が厚くなる。
Moreover, it is possible to change the layer thickness of the copper-zinc alloy layer 7 which is a diffusion alloy layer, and the zinc layer 8 by adjusting the temperature and immersion time of hot dipping, and the tendency is as follows. .
(1) Diffusion alloy layer (copper-zinc alloy layer)
-At the same temperature, the shorter the immersion time, the thinner the diffusion alloy layer.
-If the immersion time is the same, the lower the temperature, the thinner the diffusion alloy layer.
(2) If the zinc layer is at the same temperature, the shorter the immersion time, the thicker the zinc layer.
-If the immersion time is the same, the lower the temperature, the thicker the zinc layer.

図1の本発明の電極線1を得るためのめっき母線5は、上記知見に基づいて創作されたもので、溶融めっきの温度や浸漬時間を適切に選んで、拡散合金層7の厚さ、亜鉛層8の厚さを調整することにより、図3に示すような亜鉛濃度勾配を有する銅または銅合金からなる芯線6、拡散合金層7、亜鉛溶融めっき層8の3層構成のめっき母線5を得ることができる。   The plating bus 5 for obtaining the electrode wire 1 of the present invention shown in FIG. 1 is created based on the above knowledge, and the thickness of the diffusion alloy layer 7 is selected by appropriately selecting the temperature and immersion time of the hot dipping. By adjusting the thickness of the zinc layer 8, a plating bus 5 having a three-layer structure of a core wire 6 made of copper or a copper alloy having a zinc concentration gradient as shown in FIG. Can be obtained.

次いでめっき母線5を伸線加工して、その断面を縮小することにより、図1に示したような銅または銅合金からなる芯線2と伸線により破砕された粒状の拡散合金層3が芯線に埋め込まれた層および亜鉛層4から構成される所定の直径のワイヤ放電加工用電極線1が得られる。   Next, the plated bus 5 is drawn and the cross section is reduced, whereby the core wire 2 made of copper or copper alloy as shown in FIG. 1 and the granular diffusion alloy layer 3 crushed by drawing are formed into the core wire. A wire electric discharge machining electrode wire 1 having a predetermined diameter constituted by the buried layer and the zinc layer 4 is obtained.

本発明の電極線1は、伸線工程における次の3つの方法を組み合わせることによって本発明の構造の高速加工用電極線1が得られるが、まず、最初に個々の方法による効果について記載する。   The electrode wire 1 of the present invention can be obtained by combining the following three methods in the wire drawing process to obtain the high-speed machining electrode wire 1 having the structure of the present invention. First, effects of the individual methods will be described.

なお、放電加工特性は、三菱電機製ワイヤ放電加工機 SX10を使用して、荒加工条件を用いて実施した。(被加工物:材質SKD−11 厚さ50mm)   In addition, the electric discharge machining characteristics were carried out using roughing conditions using a wire electric discharge machine SX10 manufactured by Mitsubishi Electric. (Workpiece: Material SKD-11, thickness 50mm)

Figure 0005530970
Figure 0005530970

方法1の効果
この方法による効果を確認するため、溶解、鋳造、伸線工程を経た線径0.9mmの黄銅線(銅60%/亜鉛40%)のめっき前母線9を図7の製造設備を使用して、溶融めっき浴の温度や浸漬時間を調整し、拡散合金層7が同一厚で亜鉛層8の異なる下表の3種類のめっき母線5を製造した。
Effect of Method 1 In order to confirm the effect of this method, the pre-plating bus 9 of a brass wire (copper 60% / zinc 40%) having a wire diameter of 0.9 mm that has undergone the melting, casting, and wire drawing steps is manufactured as shown in FIG. Was used to adjust the temperature and immersion time of the hot dipping bath, and the three types of plating bus bars 5 shown in the table below with the same thickness of the diffusion alloy layer 7 and different zinc layers 8 were produced.

Figure 0005530970
Figure 0005530970

次に、これらの3種類のめっき母線5を3種類の温度の異なる油性タイプ伸線潤滑液を用いて伸線加工をして、亜鉛層4厚の割合が異なる3種類(亜鉛層厚の割合が外径の0.6%、1.2%、2.4%)の直径0.25mmφの電極線1を製作した。
このようにして製造した9種類の電極線について、次の評価を行った。
a)亜鉛層厚の異なる電極線の潤滑液温度と伸線加工後の電極線外周面のクラック発生との関係
b)電極線の亜鉛層厚と加工溝幅との関係
Next, these three types of plated bus bars 5 are drawn using three types of oil-type wire drawing lubricants having different temperatures, and three types of zinc layer 4 having different thickness ratios (ratio of zinc layer thickness) Electrode wire 1 having a diameter of 0.25 mm and having an outer diameter of 0.6%, 1.2%, and 2.4%.
The following evaluation was performed about nine types of electrode wires manufactured in this way.
a) Relationship between the lubricant temperature of electrode wires having different zinc layer thicknesses and the occurrence of cracks on the outer peripheral surface of the electrode wires after wire drawing b) Relationship between the zinc layer thickness of the electrode wires and the machining groove width

評価結果について図8、図9に示す。
図8から明らかなように、潤滑液温度が75℃乃至100℃の場合は、いずれの亜鉛層厚でも伸線加工後に電極線表面にクラックが発現しないが、潤滑液温度が20℃の場合は、亜鉛層厚が薄い(外径の0.6%)めっき母線5は伸線加工後に電極線表面にクラックが発現してしまう。
また、図9から明らかなように、亜鉛層厚が厚い程、亜鉛の蒸発温度が低いために放電開始と同時に蒸発・飛散してしまうことによって、図4に示すように線径が細り、入り側と出側の被加工物の加工溝巾に差が生じてしまうため、放電加工面がテーパー状になってしまい加工精度が悪くなる。この結果から、亜鉛層厚の薄いめっき母線を伸線潤滑液の温度を75℃以上100℃以下で伸線加工することによって、加工精度が良く、電極線の外周面にクラックが生じない電極線1が得られる。
The evaluation results are shown in FIGS.
As is clear from FIG. 8, when the lubricating liquid temperature is 75 ° C. to 100 ° C., no cracks appear on the surface of the electrode wire after wire drawing at any zinc layer thickness, but when the lubricating liquid temperature is 20 ° C. In the plating bus bar 5 having a thin zinc layer thickness (0.6% of the outer diameter), cracks appear on the surface of the electrode wire after wire drawing.
As is clear from FIG. 9, the thicker the zinc layer, the lower the evaporation temperature of the zinc, and the more the zinc layer evaporates and scatters at the start of the discharge. Since a difference occurs in the machining groove width of the workpiece on the side and the outlet side, the electric discharge machining surface becomes tapered, resulting in poor machining accuracy. From this result, an electrode wire with good processing accuracy and no cracks on the outer peripheral surface of the electrode wire by drawing a plated bus with a thin zinc layer at a temperature of the drawing lubricant at 75 ° C. or more and 100 ° C. or less. 1 is obtained.

方法2の効果:
この方法による効果を確認するため、方法1と同じ拡散合金層7が同一厚で亜鉛層厚8が異なる3種類のめっき母線5を製造した。次に、これらのめっき母線5を伸線潤滑液として温度20℃の油性タイプ潤滑液および水を用いて伸線加工を行い、めっき層厚(亜鉛層4+拡散合金層3)が異なる3種類(めっき層厚の割合が外径の1.5%、2.1%、3.3%)の直径0.25mmφの電極線1を製作した。
このようにして製造した6種類の電極線について、次の評価を行った。
a)潤滑液種類と拡散合金層の粒状物が芯線に埋め込まれた状態
b)めっき層厚の異なる電極線の潤滑液種類と短絡回数との関係
c)短絡の有無と加工面のスジ発生との関係
d)短絡回数と加工速度との関係
e)潤滑液種類の違いによる拡散合金層の粒状物と芯線との境界線長との関係
Effect of Method 2:
In order to confirm the effect of this method, three types of plated bus bars 5 having the same diffusion alloy layer 7 as in Method 1 but different zinc layer thickness 8 were manufactured. Next, wire-drawing is performed using these plated buses 5 as a wire drawing lubricant, using an oil-type lubricant and water at a temperature of 20 ° C., and the plating layer thickness (zinc layer 4 + diffusion alloy layer 3) is different from three types ( An electrode wire 1 having a diameter of 0.25 mmφ having a plating layer thickness ratio of 1.5%, 2.1%, and 3.3% of the outer diameter was manufactured.
The six types of electrode wires thus manufactured were evaluated as follows.
a) State of lubricating liquid and diffusion alloy layer granular material embedded in core wire b) Relation between type of lubricating liquid of electrode wire with different plating layer thickness and number of short circuits c) Presence of short circuit and generation of streaks on machined surface D) Relationship between the number of short circuits and processing speed e) Relationship between the boundary line length between the granular material of the diffusion alloy layer and the core wire due to the difference in the type of lubricating liquid

評価結果について図10、図11、図12、図13、図17に示す。
図10の写真に示すように伸線潤滑液に水を用いた電極線は拡散合金層3の粒状物が芯線2に深く埋め込まれた状態であるが、油性タイプ伸線潤滑液を用いた電極線は拡散合金層3の粒状物が芯線2から浮いた状態である。
図17に図10の拡散合金層3の粒状物が芯線2に深く埋め込まれた状態の電極線、および拡散合金層3の粒状物が芯線2から浮いた状態の電極線について、拡散合金層粒状物と芯線との境界線長を示す。
境界線長の測定はKEYENCE社製デジタルマイクロスコープVHX−900の周囲長計測機能を用いて実施した。
測定結果は、図17に示すように、破砕された拡散合金層3の粒状物が芯線2に深く埋め込まれた状態の境界線長は、その境界線長を有する同一の電極線より1.20〜1.22倍長くなっているのに対して、破砕された拡散合金層3の粒状物が芯線2から浮いた状態の境界線長は、その境界線長を有する同一の電極線の長さに対して1.10〜1.11倍であり、拡散合金層3の粒状物が深く埋め込まれている電極線の方が境界線長は長くなる。
また、図11に示すように、水を用いて伸線加工した境界線長の長い電極線はめっき厚が厚くても、放電加工中に亜鉛層と拡散合金層が芯線と一体化して剥離しないため、電極線と被加工物間で短絡が発生しない。
図12に示すように短絡が発生する電極線(めっき厚は外径の2.1%、油性タイプ潤滑液使用)は、加工面に放電痕の集中による微細スジが発生するが、短絡が発生しない電極線(めっき厚は外径の2.1%、水潤滑液使用)は加工面に微細スジが発生しない。
図13に示すように短絡回数が多いほど、放電回数が減少することにより加工速度が低下する。
この結果から、伸線潤滑液に水を用いることによって短絡の発生を抑止できることにより、加工面にスジの発生が無く、加工速度低下が生じない電極線が得られる。
The evaluation results are shown in FIG. 10, FIG. 11, FIG. 12, FIG.
As shown in the photograph of FIG. 10, the electrode wire using water for the wire drawing lubricant is in a state where the granular material of the diffusion alloy layer 3 is deeply embedded in the core wire 2, but the electrode using the oil-based wire drawing lubricant The wire is in a state where the granular material of the diffusion alloy layer 3 is lifted from the core wire 2.
FIG. 17 shows the diffusion alloy layer granularity for an electrode wire in which the granular material of the diffusion alloy layer 3 in FIG. 10 is deeply embedded in the core wire 2 and an electrode wire in which the granular material of the diffusion alloy layer 3 is lifted from the core wire 2. Indicates the boundary length between the object and the core wire.
The measurement of the boundary line length was carried out using the circumference measurement function of a digital microscope VHX-900 manufactured by KEYENCE.
As shown in FIG. 17, the measurement result shows that the boundary line length in the state in which the granular material of the crushed diffusion alloy layer 3 is deeply embedded in the core wire 2 is 1.20 from the same electrode line having the boundary line length. The boundary line length in the state in which the crushed particles of the diffusion alloy layer 3 are lifted from the core wire 2 is the length of the same electrode line having the boundary line length, while being ˜1.22 times longer The electrode line in which the granular material of the diffusion alloy layer 3 is deeply embedded is 1.10 to 1.11 times larger than the boundary line length.
Moreover, as shown in FIG. 11, even when the electrode wire having a long boundary line length drawn with water has a large plating thickness, the zinc layer and the diffusion alloy layer are not integrated with the core wire and peeled off during the electric discharge machining. Therefore, a short circuit does not occur between the electrode wire and the workpiece.
As shown in FIG. 12, the electrode wire (plating thickness is 2.1% of the outer diameter, using oil type lubricant) causes fine streaks due to concentration of discharge traces on the processed surface, but a short circuit occurs. The electrode wire (plating thickness is 2.1% of the outer diameter, using water lubricant) does not generate fine streaks on the processed surface.
As shown in FIG. 13, as the number of short circuits increases, the number of discharges decreases and the machining speed decreases.
From this result, it is possible to suppress the occurrence of a short circuit by using water as the wire drawing lubricating liquid, thereby obtaining an electrode wire that does not generate streaks on the processed surface and does not cause a decrease in the processing speed.

方法3の効果:
この方法による効果を確認するため、最終製品径が0.25mmφの電極線1を製作するにあたって、加工率が92.3%、93.8%、95.7%、97.8%になるように選定した直径のめっき前母線9を用いて、方法1と同じ方法でめっき母線5を製造した。次に、これらのめっき母線5を温度20℃の油性タイプ潤滑液を用いて伸線加工して、めっき厚(亜鉛層4+拡散合金層3)が異なる3種類(外径の1.5%、2.1%、3.3%)の直径0.25mmφの電極線を製作した。
このようにして製造した12種類の電極線について、次の評価を行った。
a)加工率と拡散合金層の粒状物が芯線に埋め込まれた状態
b)伸線加工率と短絡回数との関係
c)短絡の有無と加工面のスジ発生との関係
d)短絡回数と加工速度との関係
e)伸線加工率による拡散合金層の粒状物と芯線との境界線長との関係
Effect of Method 3:
In order to confirm the effect of this method, when manufacturing the electrode wire 1 having a final product diameter of 0.25 mmφ, the processing rates are 92.3%, 93.8%, 95.7%, 97.8%. The plating bus 5 was manufactured by the same method as the method 1 using the pre-plating bus 9 having the diameter selected in (1). Next, these plated buses 5 are drawn using an oil-type lubricant at a temperature of 20 ° C., and three types with different plating thicknesses (zinc layer 4 + diffusion alloy layer 3) (1.5% of the outer diameter, 2.1%, 3.3%) electrode wires having a diameter of 0.25 mmφ were manufactured.
The following evaluation was performed on the 12 types of electrode wires thus manufactured.
a) State of processing rate and diffusion alloy layer granular material embedded in core wire b) Relationship between wire drawing processing rate and number of short circuits c) Relationship between presence / absence of short circuit and generation of streaks on processed surface d) Number of short circuits and processing Relation with speed e) Relation with the length of boundary line between granular material and core wire of diffusion alloy layer by wire drawing ratio

評価結果について図14、図15に示す。
図14の写真はいずれも外径に対するめっき厚さが2.1%の母線を伸線加工して製作した電極線である。伸線加工率が93.8%、95.7%および97.8%の電極線1は温度20℃の油性タイプ潤滑液を用いても、拡散合金層の粒状物が芯線2に深く埋め込まれた状態であるが、加工率が92.3%の電極線は(外径に対するめっき厚さ割合2.1%および3.3%の電極線)拡散合金層3の粒状物が芯線2から浮いた状態である。
図14の上記拡散合金層3の粒状物が芯線2に深く埋め込まれている状態の電極線、および上記拡散合金層3の粒状物が芯線2から浮いた状態の電極線について、拡散合金層粒状物と芯線との境界線長を方法2と同方法で測定した。測定結果は、破砕された拡散合金層3の粒状物が芯線に深く埋め込まれた状態の境界線長は、その境界線長を有する同一の電極線の長さに対して1.21〜1.23倍長くなっているが、破砕された拡散合金層3の粒状物が芯線2から浮いた状態の境界線長は、その境界線長を有する同一の電極線の長さに対して1.10〜1.12倍であり、加工率の高い電極線の方が境界線長は長くなる。
また、図15に示すように、伸線加工率を高くして伸線加工した境界線長の長い電極線はめっき厚が厚くても、放電加工中に亜鉛層と拡散合金層が芯線と一体化して剥離しないため、電極線と被加工物間で短絡が発生しない。
この結果から、加工率を高くして伸線加工をすることにより、短絡の発生を抑止できることができ、加工面にスジの発生が無く、加工速度の低下を生じない電極線が得られる。
The evaluation results are shown in FIGS.
Each of the photographs in FIG. 14 is an electrode wire manufactured by drawing a bus having a plating thickness of 2.1% with respect to the outer diameter. In the electrode wire 1 having a drawing rate of 93.8%, 95.7%, and 97.8%, even if an oil type lubricating liquid having a temperature of 20 ° C. is used, the granular material of the diffusion alloy layer is embedded in the core wire 2 deeply. However, the electrode wire with a processing rate of 92.3% (electrode wire with a plating thickness ratio of 2.1% and 3.3% with respect to the outer diameter) has the granular material of the diffusion alloy layer 3 floating from the core wire 2. It is in the state.
For the electrode wire in which the granular material of the diffusion alloy layer 3 in FIG. 14 is deeply embedded in the core wire 2 and the electrode wire in which the granular material of the diffusion alloy layer 3 is lifted from the core wire 2, the diffusion alloy layer granularity The boundary line length between the object and the core wire was measured by the same method as in Method 2. As a result of the measurement, the boundary line length in the state where the granular material of the crushed diffusion alloy layer 3 is deeply embedded in the core wire is 1.21 to 1 with respect to the length of the same electrode line having the boundary line length. Although it is 23 times longer, the boundary length in the state where the crushed particles of the diffusion alloy layer 3 are lifted from the core wire 2 is 1.10 with respect to the length of the same electrode wire having the boundary length. It is ˜1.12 times, and the boundary line length is longer for the electrode wire having a higher processing rate.
In addition, as shown in FIG. 15, the electrode layer having a long boundary line length that has been drawn at a higher drawing rate, even if the plating thickness is thick, the zinc layer and the diffusion alloy layer are integrated with the core wire during electric discharge machining. Therefore, no short circuit occurs between the electrode wire and the workpiece.
From this result, it is possible to suppress the occurrence of a short circuit by performing a wire drawing process with a high processing rate, and it is possible to obtain an electrode wire in which no streaking occurs on the processed surface and the processing speed does not decrease.

本発明は、前述の3つの方法を組み合わせた多数の形態によって実施することができる。
表1にいくつかの本発明の実施例を示す。ここでの実施例は3つの方法の2つ乃至3つを含んだものであり(本発明が適用された条件は太字・斜線で示す)、比較例は3つの方法のいずれも含まないものである。
The present invention can be implemented in a number of forms combining the three methods described above.
Table 1 shows some examples of the present invention. The example here includes two to three of the three methods (conditions to which the present invention is applied are shown in bold and diagonal lines), and the comparative example does not include any of the three methods. is there.

表1から明らかなように、本発明の方法を少なくとも2つ取り入れたものは(実施例1〜4)、いずれも良好な結果が得られているのに対し、3つの方法のいずれも含まない比較例1および2は電極線と被加工物との間で短絡が発生するため、加工面に微細加工スジが発生し、また被加工物と電極線が短絡することにより放電回数が減少することによって加工速度も低下している。   As is clear from Table 1, those incorporating at least two methods of the present invention (Examples 1 to 4) all gave good results, but none of the three methods. In Comparative Examples 1 and 2, since a short circuit occurs between the electrode wire and the workpiece, fine machining streaks occur on the processed surface, and the number of discharges decreases due to a short circuit between the workpiece and the electrode wire. As a result, the processing speed also decreases.

また、本発明の実施例の電極線は、比較例3の黄銅単一体(銅60%/亜鉛40%)の電極線より加工速度が約20%向上している。   Moreover, the processing speed of the electrode wire of the example of the present invention is about 20% higher than the electrode wire of the brass single body of Comparative Example 3 (copper 60% / zinc 40%).

以上の実施例および比較例では、放電加工用電極線の外径が0.25mmのものが示されているが、いかなる外径のもの、例えば0.1〜0.3mmの外径の電極線においても同様の品質を確保することができる。   In the above examples and comparative examples, the outer diameter of the electrode wire for electric discharge machining is shown as 0.25 mm, but any outer diameter, for example, an electrode wire with an outer diameter of 0.1 to 0.3 mm is shown. The same quality can be ensured in

Figure 0005530970
Figure 0005530970

本発明のワイヤ放電加工用電極線は、銅または銅合金からなる芯線の外周面に亜鉛溶融めっき層が形成され、前記亜鉛溶融めっき層と前記芯線の間で相互に熱拡散により生成された拡散合金層を有する母線が伸線加工されたワイヤ放電加工用電極線において、前記亜鉛溶融めっき層と前記拡散合金層の伸線加工時における展延性の差異に基づき、前記亜鉛溶融めっき層は、伸線されてクラックが存在しない亜鉛薄膜とされるとともに、前記拡散合金層は、伸線されて破砕された粒状物が前記芯線の外周面に埋め込まれ、前記亜鉛薄膜と拡散合金層が前記芯線と一体化されて剥離することが抑止されている。In the electrode wire for wire electric discharge machining of the present invention, a zinc hot-dip plating layer is formed on the outer peripheral surface of a core wire made of copper or a copper alloy, and diffusion generated by thermal diffusion between the zinc hot-dip plating layer and the core wire. In the electrode wire for wire electric discharge machining in which a bus bar having an alloy layer is drawn, the zinc hot-dip plating layer is formed on the basis of a difference in ductility between the zinc hot-dip plating layer and the diffusion alloy layer during wire drawing. The zinc alloy thin film is formed with no cracks and the diffusion alloy layer is drawn and crushed particles are embedded in the outer peripheral surface of the core wire, and the zinc thin film and the diffusion alloy layer are formed with the core wire. It is prevented from being integrated and peeled off.

さらに、本発明のワイヤ放電加工用電極線は、前記クラックが存在しない亜鉛薄膜は、伸線加工時に熱の影響を受けて亜鉛の展延性が良いとされる温度範囲で伸線されて形成されたものである。Furthermore, the electrode wire for wire electric discharge machining according to the present invention is formed by drawing the zinc thin film free from cracks in a temperature range in which zinc is easily stretched by the influence of heat during wire drawing. It is a thing.

さらに、本発明のワイヤ放電加工用電極線は、前記拡散合金層の破砕された粒状物は、大きな垂直方向の面圧を受けて前記芯線の外周面に深く埋め込まれている。Furthermore, in the electrode wire for wire electric discharge machining of the present invention, the granular material in which the diffusion alloy layer is crushed is subjected to a large vertical surface pressure and is deeply embedded in the outer peripheral surface of the core wire.

さらに、本発明のワイヤ放電加工用電極線は、前記拡散合金層の破砕された粒状物は、伸線前断面積から伸線後断面積を差し引いた縮減断面積を伸線前断面積で除したものに100を乗じた伸線加工率の高い伸線加工を受けて、前記芯線の外周面に深く埋め込まれている。Furthermore, the electrode wire for wire electric discharge machining of the present invention is obtained by dividing the reduced granular area obtained by subtracting the post-drawing cross-sectional area from the pre-drawing cross-sectional area by the pre-drawing cross-sectional area. The resulting wire is subjected to wire drawing with a high wire drawing rate obtained by multiplying it by 100, and is deeply embedded in the outer peripheral surface of the core wire.

本発明のワイヤ放電加工用電極線の製造方法は、銅または銅合金からなる芯線を、亜鉛を所定温度に保持しているめっき槽内を最外層が所定厚を超える亜鉛層とする浸漬時間通過せしめた後冷却することにより、前記芯線と亜鉛が接触する境界面で相互に熱拡散させて拡散合金層を生成させて電極線のめっき母線を製造し、該めっき母線を伸線加工するワイヤ放電加工用電極線の製造方法において、前記拡散合金層を破砕して形成した粒状物を芯線外周面に埋め込むことにより、前記亜鉛薄膜と拡散合金層が前記芯線と一体化して該薄膜が剥離することを抑止する。In the method for producing an electrode wire for wire electric discharge machining according to the present invention, a core wire made of copper or a copper alloy is immersed in a plating bath in which zinc is maintained at a predetermined temperature, and the outermost layer is a zinc layer having a predetermined thickness passed. Wire discharge for producing a plating bus bar of the electrode wire by drawing the alloying wire layer by thermally diffusing each other at the boundary surface where the core wire and zinc contact each other by cooling after caulking In the manufacturing method of the processing electrode wire, the zinc thin film and the diffusion alloy layer are integrated with the core wire and the thin film is peeled off by embedding a granular material formed by crushing the diffusion alloy layer in an outer peripheral surface of the core wire. Is suppressed.

また、本発明のワイヤ放電加工用電極線の製造方法は、銅または銅合金からなる芯線を、亜鉛を所定温度に保持しているめっき槽内を最外層が所定厚を超える亜鉛層とする浸漬時間通過せしめた後冷却することにより、前記芯線と前記亜鉛が接触する境界面で相互に熱拡散させて拡散合金層を生成させて電極線のめっき母線を製造し、該めっき母線を伸線加工するワイヤ放電加工用電極線の製造方法において、前記めっき母線を前記亜鉛の展延性が良いとされる温度範囲で伸線加工することにより、クラックが存在しない亜鉛薄膜を形成する。In addition, the method for producing an electrode wire for wire electric discharge machining according to the present invention includes immersing a core wire made of copper or a copper alloy so that the outermost layer is a zinc layer having a predetermined thickness inside a plating tank holding zinc at a predetermined temperature. By allowing the core wire and the zinc to contact with each other at a boundary surface where the core wire and the zinc contact with each other to produce a diffusion alloy layer and producing a plating bus bar of the electrode wire by cooling after passing through the time, the plating bus bar is drawn In the wire electric discharge machining electrode wire manufacturing method, a zinc thin film free from cracks is formed by drawing the plated bus bar in a temperature range in which the zinc spreadability is good.

さらに、ワイヤ放電加工用電極線の製造方法は、前記めっき母線を前記亜鉛の展延性が良いとされる温度範囲で伸線加工するにあたり、前記めっき母線の前記亜鉛層が伸線加工中に100〜150℃になる温度で伸線加工する。Furthermore, in the method of manufacturing the electrode wire for wire electric discharge machining, the zinc layer of the plating bus bar is drawn during the wire drawing process when the plating bus wire is drawn in a temperature range in which the zinc spreadability is good. Drawing is performed at a temperature of ˜150 ° C.

さらに、本発明のワイヤ放電加工用電極線の製造方法は、前記めっき母線を前記亜鉛の展延性が良いとされる温度範囲で伸線加工するにあたり、ダイスと線材の境界に循環供給する伸線潤滑液の循環貯留槽内温度を75℃乃至100℃に温度管理する。Furthermore, in the method for manufacturing an electrode wire for wire electric discharge machining according to the present invention, the wire drawing is performed so as to circulate and supply to the boundary between the die and the wire when the plated bus is drawn in a temperature range in which the zinc spreadability is good. The temperature in the circulating storage tank of the lubricating liquid is controlled to 75 ° C. to 100 ° C.

さらに、本発明のワイヤ放電加工用電極線の製造方法は、前記伸線潤滑液として水を用いることにより、前記ダイスと前記線材の摩擦抵抗を増大してダイスと線材の境界に大きな垂直方向の面圧を発生させて、前記拡散合金層を確実に破砕して粒状物とし、該粒状物を芯線外周面に強く埋め込む。Furthermore, the method for manufacturing an electrode wire for wire electric discharge machining according to the present invention increases the frictional resistance between the die and the wire by using water as the wire drawing lubricating liquid, so that a large vertical direction is formed at the boundary between the die and the wire. A surface pressure is generated, and the diffusion alloy layer is reliably crushed into a granular material, and the granular material is strongly embedded in the outer peripheral surface of the core wire.

さらに、本発明のワイヤ放電加工用電極線の製造方法は、伸線前断面積から伸線後断面積を差し引いた縮減断面積を伸線前断面積で除したものに100を乗じた伸線加工率が所定値を下回らないように伸線加工制御することにより、前記拡散合金層を確実に破砕して粒状物とし、該粒状物を芯線外周面に深く埋め込む。Furthermore, in the method for manufacturing an electrode wire for wire electric discharge machining according to the present invention, a wire drawing obtained by multiplying a reduced cross-sectional area obtained by subtracting a post-drawing cross-sectional area from a pre-drawing cross-sectional area by a cross-sectional area before drawing is multiplied by 100. By controlling the wire drawing process so that the processing rate does not fall below a predetermined value, the diffusion alloy layer is surely crushed into a granular material, and the granular material is deeply embedded in the outer peripheral surface of the core wire.

さらに、本発明のワイヤ放電加工用電極線の製造方法は、前記所定値を94.0%以上とした。Furthermore, in the method for manufacturing an electrode wire for wire electric discharge machining according to the present invention, the predetermined value is 94.0% or more.

本発明のワイヤ放電加工用電極線は、銅または銅合金からなる芯線の外周面に亜鉛溶融めっき層が形成されており、前記芯線と前記亜鉛溶融めっき層との間に熱拡散合金層を成形したワイヤ放電加工用電極線であって、前記熱拡散合金層は、破砕された粒状物が稠密状態で集合された層として形成されていることにより、前記芯線と前記亜鉛溶融めっき層とが前記熱拡散合金層により一体化されて剥離が抑止される。In the electrode wire for wire electric discharge machining of the present invention, a zinc hot dip plating layer is formed on the outer peripheral surface of a core wire made of copper or a copper alloy, and a heat diffusion alloy layer is formed between the core wire and the zinc hot dip plating layer. The electrode wire for wire electric discharge machining, wherein the thermal diffusion alloy layer is formed as a layer in which crushed granular materials are gathered in a dense state, whereby the core wire and the zinc hot-dip plated layer are It is integrated by the heat diffusion alloy layer and delamination is suppressed.

さらに、本発明のワイヤ放電加工用電極線は、前記破砕された熱拡散合金層の粒状物と前記芯線との境界線長が、その境界線長を有する同一の電極線の長さより1.20倍以上長い。Furthermore, in the electrode wire for wire electric discharge machining of the present invention, the boundary line length between the crushed particles of the heat diffusion alloy layer and the core wire is 1.20 from the length of the same electrode wire having the boundary line length. More than twice as long.

本発明のワイヤ放電加工用電極線の製造方法は、銅または銅合金を溶融亜鉛めっきすることにより、前記芯線と前記亜鉛溶融めっき層との間で相互に熱拡散させて拡散合金層を成形させて電極線のめっき母線を製造し、該めっき母線を伸線加工するワイヤ放電加工用電極線の製造方法において、伸線加工後の前記拡散合金層を破砕して形成した粒状物と前記芯線との境界線長が、その境界線長を有する同一の電極線の長さより1.20倍以上長い。The method of manufacturing an electrode wire for wire electric discharge machining according to the present invention includes forming a diffusion alloy layer by hot diffusing galvanizing copper or a copper alloy to thermally diffuse between the core wire and the zinc hot dip plating layer. In the manufacturing method of the electrode wire for wire electric discharge machining, which produces a plating bus bar of the electrode wire and wire-draws the plating bus wire, the granular material formed by crushing the diffusion alloy layer after the wire drawing processing, and the core wire Is longer than the length of the same electrode line having the boundary line length by 1.20 times or more.

本発明の放電加工方法は、銅または銅合金からなる芯線の外周に亜鉛溶融めっき層が形成されており、前記芯線と前記亜鉛溶融めっき層との間に熱拡散合金層を成形したワイヤ放電加工用電極線によって放電加工する放電加工方法であって、前記熱拡散合金層は、破砕された粒状物が稠密状態で集合された層として形成されていることにより、前記芯線と前記亜鉛溶融めっき層とが前記熱拡散合金層により一体化されて剥離が抑止されているワイヤ放電加工用電極線を用いて放電加工する。The electrical discharge machining method of the present invention is a wire electrical discharge machining in which a zinc hot-dip plated layer is formed on the outer periphery of a core wire made of copper or a copper alloy, and a heat diffusion alloy layer is formed between the core wire and the zinc hot-dip plated layer An electric discharge machining method for performing an electric discharge machining using an electrode wire, wherein the thermal diffusion alloy layer is formed as a layer in which crushed granular materials are gathered in a dense state, whereby the core wire and the zinc hot-dip plated layer Are subjected to electric discharge machining using an electrode wire for wire electric discharge machining which is integrated by the heat diffusion alloy layer and delamination is suppressed.

1 ワイヤ放電加工用電極線
2 銅または銅合金からなる芯線
3 伸線により破砕された粒状の拡散合金層
4 亜鉛層
5 めっき母線
6 銅または銅合金からなる芯線
7 拡散合金層
8 亜鉛溶融めっき層
9 めっき前母線(芯線)
10 プレヒータ−
11 フラックス槽
12 溶融めっき装置
13 伸線装置
14 アニーラー
15 巻取り装置
DESCRIPTION OF SYMBOLS 1 Electrode wire for wire electric discharge machining 2 Core wire made of copper or copper alloy 3 Granular diffusion alloy layer crushed by drawing 4 Zinc layer 5 Plating bus 6 Core wire made of copper or copper alloy 7 Diffusion alloy layer 8 Zinc hot-dip plating layer 9 Busbar before plating (core wire)
10 Preheater
DESCRIPTION OF SYMBOLS 11 Flux tank 12 Hot dipping apparatus 13 Wire drawing apparatus 14 Annealer 15 Winding apparatus

Claims (7)

銅または銅合金からなる芯線を、亜鉛を所定温度に保持しているめっき槽内を最外層が所定厚を超える亜鉛層とする浸漬時間通過せしめた後冷却することにより、前記芯線と前記亜鉛が接触する境界面で相互に熱拡散させて拡散合金層を生成させて電極線のめっき母線を製造し、該めっき母線を伸線加工するワイヤ放電加工用電極線の製造方法において、
前記めっき母線を前記亜鉛の展延性が良いとされる温度範囲で伸線加工することにより、クラックが存在しない亜鉛薄膜を形成し、
前記亜鉛溶融めっき層は、伸線されてクラックが存在しない亜鉛薄膜とされるとともに、前記拡散合金層は、伸線されて破砕された粒状物が前記芯線の外周面に埋め込まれ、前記亜鉛薄膜と拡散合金層が前記芯線と一体化されて剥離することが抑止されることを特徴とするワイヤ放電加工用電極線の製造方法。
The core wire and the zinc are cooled by allowing the core wire made of copper or a copper alloy to pass through a plating bath in which zinc is maintained at a predetermined temperature and then cooling the core wire so that the outermost layer has a zinc layer exceeding a predetermined thickness. In the method of manufacturing an electrode wire for wire electric discharge machining, which produces a diffusion bus layer by thermally diffusing each other at a contact interface to produce a plating bus wire of the electrode wire, and drawing the plating bus wire,
By drawing the plated bus in a temperature range in which the ductility of the zinc is good, a zinc thin film without cracks is formed,
The zinc hot-dip plated layer is a zinc thin film that is drawn and does not have cracks, and the diffusion alloy layer is formed by drawing and pulverizing particulate matter embedded in the outer peripheral surface of the core wire. a method of manufacturing features and to Ruwa unpleasant electrical discharge machining electrode wire that diffusion alloy layer is prevented that the peeling is integrated with the core wire.
前記拡散合金層の破砕された粒状物は、大きな垂直方向の面圧を受けて前記芯線の外周面に深く埋め込まれることを特徴とする請求項に記載されたワイヤ放電加工用電極線の製造方法。 2. The electrode wire for wire electric discharge machining according to claim 1 , wherein the pulverized granular material of the diffusion alloy layer receives a large vertical surface pressure and is deeply embedded in the outer peripheral surface of the core wire. Method. 前記拡散合金層の破砕された粒状物は、伸線前断面積から伸線後断面積を差し引いた縮減断面積を伸線前断面積で除したものに100を乗じた伸線加工率の高い伸線加工を受けて、前記芯線の外周面に深く埋め込まれることを特徴とする請求項1又は2に請求項に記載されたワイヤ放電加工用電極線の製造方法。 The pulverized granular material of the diffusion alloy layer has a high wire drawing ratio obtained by multiplying the reduced cross-sectional area obtained by subtracting the post-drawing cross-sectional area from the pre-drawing cross-sectional area by the pre-drawing cross-sectional area by 100. 3. The method of manufacturing an electrode wire for wire electric discharge machining according to claim 1, wherein the wire wire is subjected to wire drawing and is deeply embedded in an outer peripheral surface of the core wire. 4. 銅または銅合金からなる芯線を、亜鉛を所定温度に保持しているめっき槽内を最外層が所定厚を超える亜鉛層とする浸漬時間通過せしめた後冷却することにより、前記芯線と前記亜鉛が接触する境界面で相互に熱拡散させて拡散合金層を生成させて電極線のめっき母線を製造し、該めっき母線を伸線加工するワイヤ放電加工用電極線であり、
前記めっき母線は、前記亜鉛の展延性が良いとされる温度範囲で伸線加工され、クラックが存在しない亜鉛薄膜が形成されており、
前記亜鉛溶融めっき層は、伸線されてクラックが存在しない亜鉛薄膜とされるとともに、前記拡散合金層は、伸線されて破砕された粒状物が前記芯線の外周面に埋め込まれ、前記亜鉛薄膜と拡散合金層が前記芯線と一体化されて剥離することが抑止されていることを特徴とするワイヤ放電加工用電極線。
The core wire and the zinc are cooled by allowing the core wire made of copper or a copper alloy to pass through a plating bath in which zinc is maintained at a predetermined temperature and then cooling the core wire so that the outermost layer has a zinc layer exceeding a predetermined thickness. It is an electrode wire for wire electrical discharge machining that produces a diffusion bus layer by thermally diffusing each other at a contact interface to produce a plating bus bar of the electrode wire, and wire-drawing the plating bus bar,
The plated bus is drawn in a temperature range in which the spreadability of the zinc is good, and a zinc thin film free from cracks is formed,
The zinc hot-dip plated layer is a zinc thin film that is drawn and does not have cracks, and the diffusion alloy layer is formed by drawing and pulverizing particulate matter embedded in the outer peripheral surface of the core wire. And an electrode wire for wire electric discharge machining, wherein the diffusion alloy layer is prevented from being integrated with and peeled off from the core wire.
前記拡散合金層の破砕された粒状物は、大きな垂直方向の面圧を受けて前記芯線の外周面に深く埋め込まれていることを特徴とする請求項に記載されたワイヤ放電加工用電極線。 5. The electrode wire for wire electric discharge machining according to claim 4 , wherein the pulverized granular material of the diffusion alloy layer is deeply embedded in the outer peripheral surface of the core wire under a large vertical surface pressure. . 前記熱拡散合金層は、破砕された粒状物が稠密状態で集合された層として形成されていることを特徴とする請求項に記載されたワイヤ放電加工用電極線。 6. The electrode wire for wire electric discharge machining according to claim 5 , wherein the heat diffusion alloy layer is formed as a layer in which crushed granular materials are gathered in a dense state. 前記拡散合金層の破砕された粒状物は、伸線前断面積から伸線後断面積を差し引いた縮減断面積を伸線前断面積で除したものに100を乗じた伸線加工率の高い伸線加工を受けて、前記芯線の外周面に深く埋め込まれていることを特徴とする請求項又はに記載されたワイヤ放電加工用電極線。
The pulverized granular material of the diffusion alloy layer has a high wire drawing ratio obtained by multiplying the reduced cross-sectional area obtained by subtracting the post-drawing cross-sectional area from the pre-drawing cross-sectional area by the pre-drawing cross-sectional area by 100. The electrode wire for wire electric discharge machining according to claim 5 or 6 , wherein the electrode wire is deeply embedded in an outer peripheral surface of the core wire after being drawn.
JP2011085256A 2010-02-02 2011-04-07 Electrode wire for wire electric discharge machining and manufacturing method thereof Active JP5530970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011085256A JP5530970B2 (en) 2010-02-02 2011-04-07 Electrode wire for wire electric discharge machining and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010020826 2010-02-02
JP2010020826 2010-02-02
JP2011085256A JP5530970B2 (en) 2010-02-02 2011-04-07 Electrode wire for wire electric discharge machining and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010175130A Division JP4931028B2 (en) 2010-02-02 2010-08-04 Electrode wire for wire electric discharge machining, method for producing the same, and electric discharge machining method using the electrode wire

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014044916A Division JP2014133300A (en) 2010-02-02 2014-03-07 Method of manufacturing electrode wire for wire electric discharge machining

Publications (2)

Publication Number Publication Date
JP2011177886A JP2011177886A (en) 2011-09-15
JP5530970B2 true JP5530970B2 (en) 2014-06-25

Family

ID=44689981

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011085256A Active JP5530970B2 (en) 2010-02-02 2011-04-07 Electrode wire for wire electric discharge machining and manufacturing method thereof
JP2014044916A Pending JP2014133300A (en) 2010-02-02 2014-03-07 Method of manufacturing electrode wire for wire electric discharge machining

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014044916A Pending JP2014133300A (en) 2010-02-02 2014-03-07 Method of manufacturing electrode wire for wire electric discharge machining

Country Status (1)

Country Link
JP (2) JP5530970B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3083466B1 (en) * 2018-07-03 2020-12-18 Thermocompact Sa ELECTRODE WIRE WITH POROUS LAYER FOR ELECTROEROSION

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127921A (en) * 1983-01-11 1984-07-23 Sumitomo Electric Ind Ltd Production of composite electrode wire for wire cut electric discharge machining
JPS618228A (en) * 1984-06-22 1986-01-14 Sumitomo Electric Ind Ltd Preparation of composite electrode-wire for wire electric discharge
JP2008296298A (en) * 2007-05-30 2008-12-11 Oki Electric Cable Co Ltd Electrode wire for wire electric discharge machining
WO2009028117A1 (en) * 2007-12-10 2009-03-05 Oki Electric Cable Co., Ltd. Electrode wire for wire electric discharging, method for manufacturing the electrode wire, and apparatus for manufacturing bus line there of

Also Published As

Publication number Publication date
JP2011177886A (en) 2011-09-15
JP2014133300A (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP4931028B2 (en) Electrode wire for wire electric discharge machining, method for producing the same, and electric discharge machining method using the electrode wire
JP5042229B2 (en) Electrode wire for wire electric discharge machining, its manufacturing method and its bus bar manufacturing apparatus
JP5845326B2 (en) Electrode wire for wire electrical discharge machining
KR101292343B1 (en) Wire electrode for electro discharge machining and thesame methode
JP2018516769A (en) Scale-like microstructured electrode wire material and its production method and use
KR101486028B1 (en) Electrode wire for electrical discharge machining
JP6908773B2 (en) Manufacturing method of organized plated electrode wire
KR20070115938A (en) Magnesium weld line
TW201812035A (en) Free cutting copper alloy casting and method for manufacturing the same
JP2019531915A (en) EDM wire coated with alloy
JP2008296298A (en) Electrode wire for wire electric discharge machining
JP5530970B2 (en) Electrode wire for wire electric discharge machining and manufacturing method thereof
KR20170120547A (en) Sn-PLATED MATERIAL FOR ELECTRONIC COMPONENT
JP3627626B2 (en) Electrode wire for wire electrical discharge machining
JP6119495B2 (en) Saw wire and core wire
KR100268963B1 (en) Electrode making method for edm
JP5863675B2 (en) Continuous casting method of copper or copper alloy
KR101041358B1 (en) Manufacturing method of Brass wire for electrical discharge machining
CN112469523A (en) Electrode wire with porous layer for electric discharge machining
JP7260267B2 (en) Electrode wire for wire electric discharge machining
KR20140100796A (en) Wire electrode for electro discharge machining and thesame methode
JP2005254408A (en) Electrode wire for electric discharge machining, and manufacturing method thereof
JP7296757B2 (en) Copper alloys, copper products and electronic equipment parts
CN116676551A (en) Tin-plated brass and production method thereof
JP4323704B2 (en) Electrode wire for wire electrical discharge machining

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5530970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350