JP5530862B2 - Membrane element - Google Patents

Membrane element Download PDF

Info

Publication number
JP5530862B2
JP5530862B2 JP2010192065A JP2010192065A JP5530862B2 JP 5530862 B2 JP5530862 B2 JP 5530862B2 JP 2010192065 A JP2010192065 A JP 2010192065A JP 2010192065 A JP2010192065 A JP 2010192065A JP 5530862 B2 JP5530862 B2 JP 5530862B2
Authority
JP
Japan
Prior art keywords
filter plate
filtration membrane
membrane
opening
mesh structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010192065A
Other languages
Japanese (ja)
Other versions
JP2012045515A (en
Inventor
憲一 齋藤
利夫 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Membrane Systems Co Ltd
Original Assignee
Yuasa Membrane Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Membrane Systems Co Ltd filed Critical Yuasa Membrane Systems Co Ltd
Priority to JP2010192065A priority Critical patent/JP5530862B2/en
Publication of JP2012045515A publication Critical patent/JP2012045515A/en
Application granted granted Critical
Publication of JP5530862B2 publication Critical patent/JP5530862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、廃水処理などにおいて固液のろ過分離に用いられる平板状膜エレメントに関する。   The present invention relates to a flat membrane element used for solid-liquid filtration separation in wastewater treatment or the like.

工場排水からの懸濁物質除去や有機系廃水処理における活性汚泥の分離において、処理槽内に複数の平板状膜エレメントを浸漬した膜ろ過装置が知られている。膜エレメント内部を吸引負圧とすることにより、被処理水は膜エレメント外部から内部に向けてろ過膜を通過し、懸濁物質はろ過膜に捕捉され、膜透過水は膜エレメント集水口から外部に取り出される。ろ過膜に捕捉された膜面堆積物は、膜エレメント下方に設けられた散気装置からの気泡によって生じる、膜に平行な処理水の流れによって膜面から離脱する。さらに、ろ過膜は定期・不定期に、膜エレメント内部から外部に向けて流体を流通させる逆洗によって、クリーニングされる。   2. Description of the Related Art A membrane filtration apparatus in which a plurality of flat plate membrane elements are immersed in a treatment tank is known for removing suspended substances from industrial wastewater and separating activated sludge in organic wastewater treatment. By setting the inside of the membrane element to suction negative pressure, the water to be treated passes through the filtration membrane from the outside to the inside of the membrane element, the suspended matter is captured by the filtration membrane, and the membrane permeated water is externally supplied from the membrane element water collection port. To be taken out. The membrane surface deposit captured by the filtration membrane is separated from the membrane surface by the flow of treated water parallel to the membrane, which is generated by bubbles from the air diffuser provided below the membrane element. Further, the filtration membrane is cleaned regularly or irregularly by backwashing in which a fluid flows from the inside of the membrane element to the outside.

膜エレメントには、樹脂製で矩形平板状のろ板の両面に、透過水の流水経路となる繊維シート等のスペーサーを介してろ過膜を配置し、周縁部をシールしたものがよく用いられる。   A membrane element is often used in which filtration membranes are disposed on both sides of a rectangular flat plate made of resin through spacers such as a fiber sheet serving as a flow path for permeated water and the periphery is sealed.

特許文献1には、表面に微小孔を設けた中空構造のろ板を使用し、中空構造内部に支持材を設けることによって、ろ板の剛性を確保しつつ軽量化を図った膜エレメントが開示されている。中空空間を透過水の流水経路とすることで、膜透過水は、スペーサーによって確保された流水経路から、ろ板表面の微小孔を通って内部の流水経路に至り、透過水流量も大きくできる。また、ろ板表面全面に膜透過水を導く微小溝を形成し、スペーサーを排した膜エレメントも開示されている。   Patent Document 1 discloses a membrane element that uses a hollow structure filter plate with micropores on its surface and provides a support material inside the hollow structure to reduce the weight while ensuring the rigidity of the filter plate. Has been. By using the hollow space as the permeate flow path, the membrane permeate flows from the flow path secured by the spacer through the micropores on the surface of the filter plate to the internal flow path, thereby increasing the permeate flow rate. There is also disclosed a membrane element in which a micro groove for guiding membrane permeated water is formed on the entire surface of the filter plate and the spacer is removed.

特許文献2には、特許文献1と同じく、表面に微小孔が設けられ支持材を有する中空構造のろ板を使用し、スペーサーを排した膜エレメントが開示されている。さらに微小孔の周りのろ過膜をろ板に直接止着することにより逆洗可能な膜エレメントが開示されている。   Patent Document 2 discloses a membrane element that uses a filter plate having a hollow structure having a micropore on the surface and has a support material, and that excludes a spacer, as in Patent Document 1. Further, a membrane element that can be backwashed by directly attaching a filtration membrane around the micropores to the filter plate is disclosed.

特許文献3には、表面に膜透過水の流水経路となる溝を形成したろ板を使用し、周縁部だけでなく面央部においてもろ過膜とろ板を接合することによって、エレメントが大型になっても、逆洗時にろ過膜の膨らみが過大となって破損することのない膜エレメントが開示されている。   In Patent Document 3, a filter plate having grooves formed on the surface to serve as a flow path for membrane permeated water is used. By joining the filter membrane and the filter plate not only at the peripheral part but also at the central part, the element becomes large. However, there has been disclosed a membrane element that does not break due to excessive swelling of the filtration membrane during backwashing.

特開平7−194947号公報JP-A-7-194947 特開平8−10587号公報Japanese Patent Laid-Open No. 8-10587 特開2008−49239号公報JP 2008-49239 A 特開2006−231139号公報JP 2006-231139 A

しかし、表面に微小孔が設けられた中空構造のろ板を使用しても、繊維シート等のスペーサーで形成される流水経路は流路断面が小さいため、膜透過水が微小孔まで流れる間の抵抗が大きく、透過水流量の増大には限界があった。スペーサーを使用しない場合には、吸引負圧によりろ過膜がろ板表面に密着する結果、流路断面はさらに小さくなり、流水量の増大の効果も小さかった。その一方で、ろ板表面に多数の孔を設けようとしても、孔同士の間隔が狭くなるとろ板の剛性が低下するという問題があった。また、ろ板表面に流水溝を形成する方法では、溝部分が折れ目となってろ板が湾曲しやすくなるという問題があった。   However, even if a hollow structure filter plate with micropores on the surface is used, the flow path formed by spacers such as fiber sheets has a small flow path cross section, so that the membrane permeated water flows to the micropores. Resistance was large and there was a limit to increase in permeate flow rate. When the spacer was not used, the filtration membrane was brought into close contact with the surface of the filter plate due to the negative suction pressure. As a result, the cross section of the flow path was further reduced, and the effect of increasing the amount of water flow was small. On the other hand, even if an attempt is made to provide a large number of holes on the surface of the filter plate, there is a problem that the rigidity of the filter plate is lowered when the interval between the holes is reduced. Moreover, in the method of forming a running water groove on the surface of the filter plate, there is a problem that the groove portion becomes a fold and the filter plate is easily bent.

そこで、本発明は、軽量であり、十分な剛性を有し、かつ透過水流量が大きな膜エレメントを提供することを課題とする。   Accordingly, an object of the present invention is to provide a membrane element that is lightweight, has sufficient rigidity, and has a large permeate flow rate.

本発明の膜エレメントは、ろ過膜と、前記ろ過膜を支持するろ板とを有する膜エレメントであって、
前記ろ板の表面は、前記ろ過膜で覆われた部分の略全体が網目構造を有し、
前記ろ板の内部には、前記網目構造の内側に流水空間を形成しており、
前記流水空間には、前記網目構造を有する面を垂直に支持する支持材が、該支持材同士の間隔をあけて設けられ、
前記ろ板表面の前記支持材の位置する部分に前記ろ過膜が接合され、
前記流水空間には、前記ろ過膜が接合された前記支持材に加えて、該支持材の間に、前記網目構造を有する面を垂直に支持し前記ろ過膜が接合されていない支持材を設けたことを特徴とする。
The membrane element of the present invention is a membrane element having a filtration membrane and a filter plate that supports the filtration membrane,
The surface of the filter plate has a network structure of substantially the entire portion covered with the filtration membrane,
Inside the filter plate, a running water space is formed inside the mesh structure ,
In the flowing water space, a support material that vertically supports the surface having the mesh structure is provided with an interval between the support materials,
The filtration membrane is joined to the portion of the filter plate where the support material is located,
In the flowing water space, in addition to the support material to which the filtration membrane is bonded, a support material that vertically supports the surface having the mesh structure and is not bonded to the filtration membrane is provided between the support materials. characterized in that was.

上記構成の膜エレメントによれば、ろ板は中空で、表面が網目構造を有することによって軽量化され、ろ過膜を通過した膜透過水は速やかに網目構造を通ってろ板内部の流水空間に導かれるので、流水量を大きくすることができる。   According to the membrane element having the above configuration, the filter plate is hollow and the surface has a network structure, so that the weight is reduced. The membrane permeated water that has passed through the filter membrane quickly passes through the network structure to the flowing water space inside the filter plate. Therefore, the amount of running water can be increased.

本発明の一実施態様として、前記網目構造の開口は、前記ろ板の厚み方向に沿って、ろ板外表面から内部に向かって漸次小さくなるように形成されていることが好ましい。あるいは、前記網目構造は一体として成形されており、前記網目構造の開口は、前記ろ板の厚さ方向に沿って、ろ板外表面から内部に向かって漸次小さくなる部分を有するように形成されていることが好ましい。このようにすれば、透過水の流水量に影響するろ板表面における開口率を大きく維持したまま、ろ板の剛性をより大きくすることができる。   As an embodiment of the present invention, it is preferable that the opening of the mesh structure is formed so as to gradually decrease from the outer surface of the filter plate toward the inside along the thickness direction of the filter plate. Alternatively, the mesh structure is integrally formed, and the opening of the mesh structure is formed so as to have a portion that gradually decreases from the outer surface of the filter plate toward the inside along the thickness direction of the filter plate. It is preferable. If it does in this way, the rigidity of a filter plate can be enlarged more, maintaining the aperture ratio in the filter plate surface which influences the flow volume of permeated water large.

本発明の別の実施態様として、前記網目構造の開口率は、前記ろ板外表面において50%以上とすることが好ましい。また、前記網目構造の開口の形状は、最も断面積の小さい部分において、幅が0.2mm以上であることが好ましい。さらに、前記網目構造の開口の形状は、前記ろ板外表面において、幅が15mm以下であることが好ましい。   As another embodiment of the present invention, the opening ratio of the network structure is preferably 50% or more on the outer surface of the filter plate. Further, it is preferable that the opening of the mesh structure has a width of 0.2 mm or more in a portion having the smallest cross-sectional area. Furthermore, it is preferable that the opening shape of the mesh structure has a width of 15 mm or less on the outer surface of the filter plate.

本発明実施態様では、前記流水空間には、前記網目構造を有する面を垂直に支持す支持材を間隔をあけて設け、前記ろ板表面の前記支持材の位置する部分前記ろ過膜が接合されているまた、前記ろ過膜と支持材の接合部の間隔は、60mm以上150mm以下であること好ましい。このようにすれば、軽量で剛性が高く流水量が多いという本発明の作用効果を維持したまま、大型であっても逆洗可能な強度を有する膜エレメントとすることができる。さらに、本発明の編目構造により逆洗の際の流水量が大きいので、膜面の洗浄を効果的に行うことができる。
In embodiments of the present invention, wherein the flowing water space, spaced a support you support surface vertically with the network structure, the filtration membrane to the location part of the support of the filter plate surface Are joined . Moreover, it is preferable that the space | interval of the junction part of the said filtration membrane and a support material is 60 mm or more and 150 mm or less. If it does in this way, it can be set as the membrane element which has the intensity | strength which can be backwashed even if it is large sized, maintaining the effect of this invention that it is lightweight, is rigid, and there is much flowing water. Furthermore, since the amount of flowing water during backwashing is large due to the stitch structure of the present invention, the membrane surface can be effectively washed.

本発明実施態様では、前記ろ過膜が接合された前記支持材に加えて、該支持材の間に、前記ろ過膜が接合されていない支持材を設けるこのろ過膜が接合されていない支持材は、吸引ろ過時のろ板の強度を向上させるもので、ろ板の網目構造部等と一体として設計を最適化することにより、より軽量な膜エレメントとすることができる。 In embodiments of the present invention, the filtration membrane in addition to the support member joined, between said support member, providing a supporting member in which the filtration membrane is not bonded. The support material to which the filter membrane is not joined improves the strength of the filter plate during suction filtration.By optimizing the design with the mesh structure of the filter plate, etc., a lighter membrane element and can do.

本発明の別の実施態様として、前記ろ板は、射出成形による2つの部品を接合して作製することが好ましい。ろ板の網目構造部と周縁部が一体として成形されるので、ろ板の強度が向上し、特に内部から圧力がかかる逆洗時の強度が向上する。また、形状設計の自由度を増すことができる。   As another embodiment of the present invention, the filter plate is preferably produced by joining two parts by injection molding. Since the mesh structure portion and the peripheral edge portion of the filter plate are integrally formed, the strength of the filter plate is improved, and particularly the strength at the time of backwashing in which pressure is applied from the inside is improved. Moreover, the freedom degree of shape design can be increased.

以上のように、本発明によれば、軽量であり、十分な剛性を有し、かつ透過水流量が大きな膜エレメントを提供することができる。また、ろ板外表面における網目の開口率を大きくすることによって、スペーサーを配置しなくても透過水流量を大きくすることができる。また、ろ過膜固定支持材を設けて、ろ板面央部でもろ過膜をろ板を接合することによって、大型であっても逆洗可能な強度を有する膜エレメントとすることができる。また、射出成形による2つの部品を接合してろ板を形成することで、ろ板の強度を向上することができる。   As described above, according to the present invention, it is possible to provide a membrane element that is lightweight, has sufficient rigidity, and has a large permeate flow rate. Further, by increasing the mesh opening ratio on the outer surface of the filter plate, it is possible to increase the permeate flow rate without arranging a spacer. Further, by providing a filter membrane fixing support material and joining the filter membrane to the filter plate even at the central portion of the filter plate, it is possible to obtain a membrane element having strength that can be backwashed even if it is large. Moreover, the intensity | strength of a filter plate can be improved by joining two components by injection molding and forming a filter plate.

本発明に係る膜エレメントの斜視図The perspective view of the membrane element which concerns on this invention 本発明に係る膜エレメントの断面図Sectional view of the membrane element according to the present invention 本発明に係るろ板の網目構造部分の断面図Sectional drawing of the mesh structure portion of the filter plate according to the present invention ろ過膜の凹みを示す断面図Cross-sectional view showing the dent of the filtration membrane

以下、本発明の一実施形態について、図を参照しながら説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態に係る膜エレメントの斜視図である。図2は図1のAA断面図で、説明の便宜のために厚さ方向を拡大して示しているので、縮尺は正確ではない。平板状のろ板2の両面にろ過膜1が配されている。ろ板2は中空構造を有している。ろ過膜1の配された面は、ほぼ全体が概ね均一な網目構造を有している(21)。ろ板2の両面にある網目構造面21に挟まれたろ板中央部分は、厚みがほぼ一定の流水空間26を形成し、網目構造面を垂直に支持する支持材22,23(以下「リブ」という)が設けられている。端面25には開口はない。ろ過膜1は、ろ板の網目構造面21のすべての開口を覆うように、ろ板周縁部24に溶着されている(31)。これによって、処理液は必ずろ過膜1を通過してエレメント外部から内部に侵入することになる。透過水はろ板の一部に設けられた集水口4を通して外部に回収される。また、ろ過膜1は、ろ板周縁部24以外のろ板面央部でも、リブ22に相対する位置で、ろ板に溶着されている(32)。これによって、逆洗時にろ過膜が必要以上に膨らんで、破損することを防いでいる。   FIG. 1 is a perspective view of a membrane element according to an embodiment of the present invention. FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1, and the scale is not accurate because the thickness direction is enlarged for convenience of explanation. The filtration membrane 1 is arranged on both surfaces of the flat filter plate 2. The filter plate 2 has a hollow structure. The surface on which the filtration membrane 1 is disposed has a substantially uniform network structure (21). The center part of the filter plate sandwiched between the mesh structure surfaces 21 on both sides of the filter plate 2 forms a flowing water space 26 having a substantially constant thickness, and supports 22 and 23 (hereinafter “ribs”) that support the mesh structure surface vertically. Called). There is no opening in the end face 25. The filter membrane 1 is welded to the filter plate peripheral edge 24 so as to cover all the openings of the mesh structure surface 21 of the filter plate (31). As a result, the treatment liquid always passes through the filtration membrane 1 and enters the element from the outside. The permeated water is collected outside through a water collection port 4 provided in a part of the filter plate. Further, the filtration membrane 1 is welded to the filter plate at a position opposite to the ribs 22 even in the central portion of the filter plate other than the filter plate peripheral portion 24 (32). This prevents the filtration membrane from swelling more than necessary during backwashing and preventing damage.

本実施形態におけるろ過膜には、合成樹脂製の不織布を基材として、その両面に平均孔径が0.4μmである微孔を多数有する高分子膜層が形成されたものを使用した。JIS K 3802の定義から精密ろ過膜と呼ばれるものである。ろ過膜の種類はこれに限定されるものではなく、より小さな固体を分離するための限外ろ過膜を始め、平膜タイプの種々の膜を使用することができる。   As the filtration membrane in this embodiment, a non-woven fabric made of synthetic resin was used as a base material, and a polymer membrane layer having a large number of micropores having an average pore diameter of 0.4 μm on both surfaces was used. From the definition of JIS K 3802, it is called a microfiltration membrane. The kind of filtration membrane is not limited to this, and various membranes of a flat membrane type can be used including an ultrafiltration membrane for separating smaller solids.

本実施形態におけるろ板2は略長方形の形状を有し、大きさは500mm×1000mm×厚さ6mmである。本発明を実施するためのろ板の形状は、矩形、円形、その他種々の形状を取り得るが、少なくとも平板状であることを要する。ろ板の大きさには特に制限はないが、本発明による軽量・高剛性等の効果が特に望まれる製品として、ろ板が大型であることが好ましい。ろ板形状が矩形の場合には、短辺が400mm以上あることが好ましい。   The filter plate 2 in the present embodiment has a substantially rectangular shape, and the size is 500 mm × 1000 mm × thickness 6 mm. The shape of the filter plate for carrying out the present invention may be rectangular, circular, or other various shapes, but it needs to be at least flat. There is no particular limitation on the size of the filter plate, but it is preferable that the filter plate is large as a product for which effects such as light weight and high rigidity according to the present invention are particularly desired. When the filter plate shape is rectangular, the short side is preferably 400 mm or more.

本実施形態におけるろ板2は、ABS樹脂を使用して作製した。ろ板には、本件発明の構造を実現できるものであれば、種々の材料を使用することができるが、比重が小さいことや成型性が良いことから熱可塑性樹脂を使用することが好ましく、軟化点が低い熱可塑性樹脂を使用することがさらに好ましい。また、後述する熱溶着法によってろ板とろ過膜を接合する場合にも、低温で溶着可能な樹脂を使用することが好ましい。そのような樹脂の例としては、PVC樹脂、ABS樹脂が挙げられる。   The filter plate 2 in this embodiment was produced using ABS resin. Various materials can be used for the filter plate as long as the structure of the present invention can be realized, but it is preferable to use a thermoplastic resin because of its low specific gravity and good moldability. It is more preferable to use a thermoplastic resin having a low point. Moreover, it is preferable to use a resin that can be welded at a low temperature even when the filter plate and the filter membrane are joined by a thermal welding method to be described later. Examples of such resins include PVC resin and ABS resin.

本実施形態におけるろ板2は、厚さ方向に半分に分割した2個の部品を射出成形し、ろ板周縁部24全周および後述するろ過膜固定リブ22を接着剤で貼り合わせて作製した(27,28)。成形方法は、各種の公知の方法を採用することができる。特許文献1、2に示されるように、中空体部品とその開口端を塞ぐ部品とを接合することもできる。しかし、網目構造面22と周縁部24を一体として成形できることが、エレメント内部から圧力がかかる逆洗時のろ板強度が飛躍的に向上するので好ましい。例えば、射出成形、プレス成形、真空成形、などが挙げられる。なかでも、網目構造面21、周縁部24、リブ22,23、集水口4、その他膜エレメント固定用の周辺部造作等を一体で成形することができる射出成形法を利用することが特に好ましい。   The filter plate 2 in the present embodiment is produced by injection-molding two parts divided in half in the thickness direction, and bonding the entire periphery of the filter plate peripheral portion 24 and a filtration membrane fixing rib 22 described later with an adhesive. (27, 28). Various known methods can be adopted as the forming method. As shown in Patent Documents 1 and 2, it is possible to join the hollow body component and the component that closes the open end thereof. However, it is preferable that the mesh structure surface 22 and the peripheral edge portion 24 can be integrally formed because the strength of the filter plate during backwashing, in which pressure is applied from the inside of the element, is dramatically improved. For example, injection molding, press molding, vacuum molding, and the like can be given. In particular, it is particularly preferable to use an injection molding method capable of integrally molding the mesh structure surface 21, the peripheral edge portion 24, the ribs 22 and 23, the water collection port 4, and other peripheral structure for fixing the membrane element.

ろ板2の表面は、ろ過膜1の有効利用面積を大きくするために、ろ過膜1で覆われる部分の略全体を網目構造21とする。ここで略全体とは、周縁部24のろ過膜とろ板を接合した部分(ろ過膜−ろ板周縁部接合線31)よりも内側で、製造工程における接合位置精度等を考慮してろ過膜−ろ板周縁部接合線31の近傍は除き、さらに、ろ過膜固定リブ22を設けた場合には、その接合部分(ろ過膜−ろ過膜固定リブ接合線32)とその近傍を除くことを意味する。   In order to increase the effective use area of the filtration membrane 1, the surface of the filter plate 2 has a network structure 21 in substantially the entire portion covered with the filtration membrane 1. Here, “substantially the whole” means that the inside of the portion where the filtration membrane and the filter plate of the peripheral portion 24 are joined (filtration membrane—filter plate peripheral portion joining line 31), and the filtration membrane in consideration of the joining position accuracy in the manufacturing process. When the filtration membrane fixing rib 22 is further provided except for the vicinity of the filter plate peripheral edge joining line 31, it means that the joining portion (filtration membrane-filtration membrane fixing rib joining line 32) and the vicinity thereof are excluded. .

本実施形態においては、網目の開口の形状は正方形とし、これをろ板外周の辺と45度の角度をなす格子状に、2.5mm周期で配列した。しかし、形状、配列はこれに限定されるものではない。形状は、正方形、長方形、各種多角形、円形、長孔等とすることができ、配列は、格子状、千鳥状、亀甲状等とすることができ、配列の角度も自在に設定することができる。   In this embodiment, the shape of the mesh opening is a square, and this is arranged in a lattice form having an angle of 45 degrees with the side of the outer periphery of the filter plate at a cycle of 2.5 mm. However, the shape and arrangement are not limited to this. The shape can be a square, a rectangle, various polygons, a circle, a long hole, etc. The array can be a lattice, a staggered, a turtle shell, etc., and the angle of the array can be set freely it can.

また、網目の開口は、ろ過膜堆積物(ケーク)が均一に堆積するように、網目構造面21の全体にわたって均一に分布していることが好ましい。   Moreover, it is preferable that the mesh openings are uniformly distributed over the entire mesh structure surface 21 so that the filtration membrane deposit (cake) is uniformly deposited.

図3は、本実施形態における網目構造部分21の網地を形成する糸に相当する部分(以下「梁53」という)の長さ方向と垂直な断面図である。開口54は、ろ板2の厚さ方向に沿って、ろ板外表面51から内部に向かって漸次小さくなり、網目構造−流水空間境界面52では幅1mmとなっている。逆に梁53の断面は、ろ板外表面51付近では曲率半径が0.5mmの円弧を描いており、内部に向かって漸次太くなって、網目構造−流水空間境界面52では幅1.5mmとなっている。   FIG. 3 is a cross-sectional view perpendicular to the length direction of a portion (hereinafter referred to as “beam 53”) corresponding to the yarn forming the mesh of the mesh structure portion 21 in the present embodiment. The openings 54 gradually decrease from the filter plate outer surface 51 toward the inside along the thickness direction of the filter plate 2, and have a width of 1 mm at the mesh structure / running water interface 52. On the other hand, the cross section of the beam 53 draws an arc having a radius of curvature of 0.5 mm in the vicinity of the outer surface 51 of the filter plate, gradually becomes thicker toward the inside, and has a width of 1.5 mm at the network structure / running water interface 52. It has become.

網目の開口率が大きいほど、透過水流量が大きくなるが、ろ板2の剛性が小さくなる。ここで、透過水流量に大きく影響するのは、ろ過膜1と接するろ板外表面51における開口54(以下「外表面開口55」という)の面積割合(以下「外表面開口率」という)である。すなわち、膜透過水は、ろ過膜1とろ板表面51の間を、スペーサーを配置する場合は、スペーサーによって形成される流水経路を通って外表面開口55に達し、開口54を通ってろ板内部の流水空間26に導かれる。スペーサーを配置しない場合は、吸引負圧により密着したろ過膜1とろ板表面51の間を通って外表面開口55に達し、開口54を通ってろ板内部の流水空間26に導かれる。この経路のうち流水抵抗が大きいのは、膜透過水が外表面開口55に至るまでの部分である。外表面開口率が大きければ、ろ過膜1を通過した透過水が外表面開口55に到達するまでの距離は平均的に短くなり、流水抵抗は小さくなり、透過水流量は大きくなる。透過水がいったん開口54に達すると、開口の大きさが透過水流量に及ぼす影響は小さい。したがって、透過水流量を大きくするには、外表面開口率が大きければよい。   The larger the mesh opening ratio, the larger the permeate flow rate, but the rigidity of the filter plate 2 becomes smaller. Here, the flow rate of the permeated water greatly affects the area ratio (hereinafter referred to as “outer surface opening ratio”) of the openings 54 (hereinafter referred to as “outer surface openings 55”) in the outer surface 51 of the filter plate in contact with the filtration membrane 1. is there. That is, when a spacer is disposed between the filtration membrane 1 and the filter plate surface 51, the membrane permeated water reaches the outer surface opening 55 through the flowing water path formed by the spacer, and passes through the opening 54 to enter the inside of the filter plate. It is guided to the flowing water space 26. When the spacer is not arranged, it passes between the filter membrane 1 and the filter plate surface 51 that are in close contact with each other by suction negative pressure, reaches the outer surface opening 55, and is guided to the running water space 26 inside the filter plate through the opening 54. In this path, the flowing water resistance is large in the portion where the membrane permeated water reaches the outer surface opening 55. If the outer surface opening ratio is large, the distance until the permeated water that has passed through the filtration membrane 1 reaches the outer surface opening 55 becomes shorter on average, the flowing water resistance decreases, and the permeated water flow rate increases. Once the permeate reaches the opening 54, the effect of the size of the opening on the permeate flow rate is small. Therefore, in order to increase the permeate flow rate, the outer surface opening ratio only needs to be large.

一方、ろ板2の剛性は、梁53の断面形状・断面積に依存するので、外表面開口率を大きくしても、ろ板の内部側では開口を小さくすることによって、剛性の低下を抑えることができる。つまり、高透過水流量と高剛性をより高い水準で両立することができる。具体的には、個々の開口54について、外表面では大きく、内側ではそれよりも小さく、その断面積がろ板の厚さ方向に沿って漸次変化するようにしておけばよい。   On the other hand, since the rigidity of the filter plate 2 depends on the cross-sectional shape and cross-sectional area of the beam 53, even if the outer surface opening ratio is increased, the decrease in rigidity is suppressed by reducing the opening on the inner side of the filter plate. be able to. That is, a high permeate flow rate and high rigidity can be achieved at a higher level. Specifically, the individual openings 54 may be large on the outer surface and smaller on the inner side, and the sectional area may gradually change along the thickness direction of the filter plate.

図3においては、開口の断面積(ろ板の面に平行な断面の面積)は、ろ板外表面51において最大で、網目構造−流水空間境界面52で最小である。網目構造面は吸引ろ過時にろ過膜によってろ板内側へと押されるので、網目構造面の最も内側で開口断面積が最小となるのは、強度設計の点で合理的である。
もっとも、本発明における開口断面積はろ板外表面51と網目構造−流水空間境界面52の間で最小となってもよい。ただしその場合には、透過水流量と剛性を高い水準で両立するためには、開口54は、ろ板の厚さ方向に沿ってろ板外表面から内部に向かって漸次小さくなる部分を有していることが必要である。また、梁の部分は、ろ板外表面51の平坦性を高めるためには、縦横に交差するように糸を接合した一般的な金網のような構造ではなく、射出成形等によって一体に成形されている必要がある。
In FIG. 3, the cross-sectional area of the opening (the area of the cross section parallel to the surface of the filter plate) is the largest at the outer surface 51 of the filter plate and the smallest at the network structure / running water interface 52. Since the mesh structure surface is pushed to the inside of the filter plate by the filtration membrane during suction filtration, it is reasonable in terms of strength design that the opening cross-sectional area is minimized on the innermost side of the mesh structure surface.
But the opening cross-sectional area in this invention may become the minimum between the filter-plate outer surface 51 and the mesh structure-run water space interface 52. FIG. However, in that case, in order to achieve both the permeate flow rate and the rigidity at a high level, the opening 54 has a portion that gradually decreases from the outer surface of the filter plate toward the inside along the thickness direction of the filter plate. It is necessary to be. Further, in order to improve the flatness of the outer surface 51 of the filter plate, the beam portion is not integrally structured by a wire mesh joined so as to intersect vertically and horizontally, but is integrally formed by injection molding or the like. Need to be.

ろ板外表面51における開口の大きさや開口率を考える場合には、開口とそうでない部分との境界をどう画定するかという問題がある。梁53の断面形状が略三角形であって、その頂点でろ過膜1を支持しているとしても、現実には梁とろ過膜とはある有限の幅を持って接している。また、ろ板外表面の開口の周縁(エッジ)は、ろ過膜が傷つかないように、面取加工されるのが通常と考えられる。
ここで、膜透過水が流れる際の抵抗はわずかな隙間があれば顕著に下がることを考慮すると、外表面開口55の周縁(エッジ)が面取加工(C加工、R加工)されている場合には、面取加工がされている部分は開口54に含まれると考えるのが妥当である。例えば、図3においては、梁断面の頂上の左右直近の領域は開口に属すると考えるのが妥当であり、外表面開口率は100%とみなすことができる。
When considering the size and opening ratio of the opening on the outer surface 51 of the filter plate, there is a problem of how to define the boundary between the opening and the other portion. Even if the cross-sectional shape of the beam 53 is substantially triangular and the filtration membrane 1 is supported at the apex, the beam and the filtration membrane are actually in contact with each other with a certain finite width. Further, it is considered that the peripheral edge (edge) of the opening on the outer surface of the filter plate is usually chamfered so that the filter membrane is not damaged.
Here, in consideration of the fact that the resistance when the membrane permeate flows is remarkably lowered if there is a slight gap, the periphery (edge) of the outer surface opening 55 is chamfered (C machining, R machining). Therefore, it is appropriate to consider that the chamfered portion is included in the opening 54. For example, in FIG. 3, it is appropriate to consider that the region immediately adjacent to the left and right on the top of the beam cross section belongs to the opening, and the outer surface opening ratio can be regarded as 100%.

なお、外表面開口エッジがR加工されていると、実際には吸引ろ過時にろ過膜が凹んで、ろ過膜とろ板が密着する部分ができる。図4に示すように、凹んだろ過膜の断面形状が円弧をなすと仮定すると、開口幅(図4中のL)と凹み量(同D)から密着部分の幅(同X)を求めることができる。表1に計算結果を示す。
大型の膜エレメントは−20kPa(膜間差圧)程度の負圧で使用されることが多いが、設計圧力としては−90kPa(膜間差圧)程度の負圧に耐えるように設計される。膜間差圧とは、膜を介して膜エレメント外部の圧力を基準にした膜エレメント内部の圧力で定義する。膜内部に向けて加圧されている時を負圧とよび、膜外部に向けて加圧されている時を正圧とよぶ。なお、大気圧下の開放系で使用する場合は、膜間差圧は内部圧力(ゲージ圧)とも言う。本実施形態で使用したろ過膜では、外表面開口の正方形の一辺が2.5〜4mmの範囲では、−90kPa(膜間差圧)で吸引したときの凹み量は一辺の長さの2〜4%であった。表1の結果を利用すると、例えば一辺が2.5mm、凹み量が3%、R加工の曲率半径が0.5mmの場合には、密着部分を除いた外表面開口率は約91%となる。また、開口が大きくなると、ろ過膜の厚さの影響等が小さくなるため、凹み量は大きくなり、5〜10%になる。その場合は、密着幅も大きくなるが、開口自体も大きくなっているので、開口率に与える影響は依然として小さい。
実際にはより小さな負圧で膜エレメントが使用されることを考えると、上記の通り、R加工がされている部分は開口54に含まれるとみなすことができる。
In addition, when the outer surface opening edge is R-processed, the filtration membrane is actually recessed during suction filtration, and a portion where the filtration membrane and the filter plate are in close contact with each other is formed. As shown in FIG. 4, assuming that the cross-sectional shape of the recessed filtration membrane forms an arc, the width (X) of the contact portion is obtained from the opening width (L in FIG. 4) and the dent amount (D). Can do. Table 1 shows the calculation results.
Large membrane elements are often used at a negative pressure of about −20 kPa (transmembrane differential pressure), but the design pressure is designed to withstand a negative pressure of about −90 kPa (intermembrane differential pressure). The transmembrane pressure difference is defined as the pressure inside the membrane element based on the pressure outside the membrane element through the membrane. When the pressure is applied toward the inside of the membrane, it is called negative pressure, and when it is pressurized toward the outside of the membrane, it is called positive pressure. When used in an open system under atmospheric pressure, the transmembrane pressure difference is also referred to as internal pressure (gauge pressure). In the filtration membrane used in the present embodiment, when the one side of the square of the outer surface opening is in the range of 2.5 to 4 mm, the dent amount when sucked at -90 kPa (transmembrane differential pressure) is 2 to 2 of the length of one side. 4%. Using the results in Table 1, for example, when the side is 2.5 mm, the dent amount is 3%, and the radius of curvature of R processing is 0.5 mm, the outer surface opening ratio excluding the close contact portion is about 91%. . Moreover, since the influence of the thickness of a filtration membrane, etc. will become small if an opening becomes large, the amount of dents will become large and will be 5 to 10%. In this case, the contact width is increased, but the opening itself is also increased, so the influence on the aperture ratio is still small.
Considering that the membrane element is actually used with a smaller negative pressure, it can be considered that the portion subjected to the R processing is included in the opening 54 as described above.

Figure 0005530862
Figure 0005530862

断面積が一定の穿孔を設けたときには、例えば半径rの孔を互いにr隔てて稠密充填配列したとしても開口率は約40%であり、それよりも大きい開口率を実現することは強度の点から難しい。本発明によれば、それよりも大きい外表面開口率を実現することができるので、透過水流量を大きくするために、外表面開口率は50%以上とすることが好ましく、80%以上とすることが特に好ましい。   When perforations having a constant cross-sectional area are provided, for example, even if holes having a radius r are closely packed and spaced apart from each other, the aperture ratio is about 40%, and achieving a larger aperture ratio is a point of strength. It ’s difficult. According to the present invention, since an outer surface opening ratio larger than that can be realized, the outer surface opening ratio is preferably 50% or more and 80% or more in order to increase the permeate flow rate. It is particularly preferred.

本実施形態における網目構造部分21の厚さは、1.5mmである。網目構造部分の厚さは、材料の強度、梁の断面形状、後述する空隙保持リブ23の設置間隔などを考慮して定めることができるが、薄すぎるとろ板の剛性が不十分となるので、1mm以上であることが好ましく、1.2mm以上であることがさらに好ましい。逆に厚すぎると、ろ板の重量が大きくなる。一般的なろ板が厚さ6〜8mmの樹脂板であることから、軽量化の効果を享受するには、網目構造部分の厚さは4mm以下であることが好ましく、3mm以下であることがさらに好ましい。   The thickness of the mesh structure portion 21 in the present embodiment is 1.5 mm. The thickness of the mesh structure portion can be determined in consideration of the strength of the material, the cross-sectional shape of the beam, the installation interval of the gap holding ribs 23 to be described later, but if it is too thin, the rigidity of the filter plate becomes insufficient. It is preferably 1 mm or more, and more preferably 1.2 mm or more. Conversely, if it is too thick, the weight of the filter plate increases. Since a general filter plate is a resin plate having a thickness of 6 to 8 mm, in order to enjoy the effect of weight reduction, the thickness of the network structure portion is preferably 4 mm or less, and more preferably 3 mm or less. preferable.

従来技術のろ板表面に微小溝を形成する方法では、溝部分が折れ目となってろ板が湾曲しやすくなる問題があった。網目構造においては、梁が縦横に伸びているので、網目構造面21の厚さは全体に亘って均一であり、そのような問題はない。このこともろ板の剛性を高めることに役立っている。   In the conventional method of forming micro grooves on the surface of the filter plate, there is a problem that the groove portion is broken and the filter plate is easily bent. In the mesh structure, since the beams extend vertically and horizontally, the thickness of the mesh structure surface 21 is uniform throughout, and there is no such problem. This also helps to increase the rigidity of the filter plate.

外表面開口55が大きすぎると、膜エレメント内部を吸引して負圧を与えて、ろ過膜1が開口54内に引き込まれたときに、ろ過膜の開口のエッジに当たる部分が傷つくおそれがある。与えられた負圧はろ過膜の外表面開口部分全体に作用し、開口のエッジ部分でろ板からの反力、ろ過膜内の引張応力と釣り合うので、ろ板外表面における開口面積:開口エッジ長さの比が大きいほどろ過膜にかかる力が大きくなるからである。   If the outer surface opening 55 is too large, the inside of the membrane element is sucked to give a negative pressure, and when the filtration membrane 1 is drawn into the opening 54, there is a possibility that the portion that contacts the edge of the filtration membrane opening is damaged. The given negative pressure acts on the entire opening on the outer surface of the filtration membrane, and balances with the reaction force from the filter plate and the tensile stress in the filtration membrane at the edge of the opening. This is because the greater the ratio, the greater the force applied to the filtration membrane.

前述の通り、大型の膜エレメントは−90kPa(膜間差圧)程度の負圧に耐えるように設計される。そこで、−90kPa(膜間差圧)の負圧をかけて吸引した後の、ろ過膜の損傷の有無を実験で確認した。本実施形態における網目構造では、前述の通り、外表面開口は一辺が2.5mmの正方形であり、梁はろ過膜との接触部が曲率半径0.5mmのR加工がされている。この場合には、ろ過膜の損傷は確認できなかった。次に、梁の断面形状・大きさは変えず、開口を一辺が4mmの正方形とした場合には、梁に押しつけられた跡がろ過膜表面に認められたが、ろ過膜の損傷は確認できなかった。
後述するエレメント内に正圧を加えた実験では、間隔115mmの平行線で固定されたろ過膜は、内部から12kPa(膜間差圧)の圧力を加えられても、まったく損傷を受けなかった。簡単な近似計算によれば、−90kPa(膜間差圧)の負圧が加えられても、外表面開口の幅が115×12/90=約15.3mmより小さければ、ろ過膜は損傷を受けることがないと考えられる。
以上より、外表面開口の大きさは、幅が15mmよりも小さいことが好ましく、4mm以下であることがさらに好ましい。
As described above, the large membrane element is designed to withstand a negative pressure of about −90 kPa (transmembrane differential pressure). Therefore, the presence or absence of damage to the filtration membrane after suction with a negative pressure of −90 kPa (transmembrane pressure difference) was confirmed by experiments. In the mesh structure in the present embodiment, as described above, the outer surface opening is a square with a side of 2.5 mm, and the beam is R-processed with a radius of curvature of 0.5 mm at the contact portion with the filter membrane. In this case, damage to the filtration membrane could not be confirmed. Next, when the cross-sectional shape and size of the beam were not changed and the opening was a square with a side of 4 mm, traces pressed against the beam were observed on the filter membrane surface, but damage to the filter membrane could not be confirmed. There wasn't.
In an experiment in which a positive pressure was applied to the element to be described later, the filtration membrane fixed with a parallel line having an interval of 115 mm was not damaged at all even when a pressure of 12 kPa (transmembrane differential pressure) was applied from the inside. According to a simple approximate calculation, even if a negative pressure of −90 kPa (transmembrane pressure difference) is applied, if the width of the outer surface opening is smaller than 115 × 12/90 = about 15.3 mm, the filtration membrane is damaged. It is thought that it will not receive.
From the above, the outer surface opening preferably has a width of less than 15 mm, more preferably 4 mm or less.

以上の通り、外表面開口55の大きさの好ましい範囲は、開口形状の幅によって規定するのが合理的である。ここで、形状の幅とは、正方形では1辺の長さ、長方形では短辺の長さ、円では直径、楕円では短径、長孔ではその幅のことをいう。また、通念上幅が一意に定まらない場合は、ろ過膜の開口内への最大凹み量を規定する寸法を、ここでいう幅と定義することができる。例えば、三角形では内接円の直径であり、一般には、開口形状に内接する円のうち最大のものの直径である。   As described above, it is reasonable that the preferable range of the size of the outer surface opening 55 is defined by the width of the opening shape. Here, the width of the shape means the length of one side in a square, the length of a short side in a rectangle, the diameter in a circle, the short diameter in an ellipse, and the width in a long hole. Further, when the width is not uniquely determined, it is possible to define the dimension that defines the maximum dent amount into the opening of the filtration membrane as the width here. For example, in a triangle, it is the diameter of an inscribed circle, and is generally the diameter of the largest inscribed circle in the opening shape.

開口の最小断面積は、小さすぎると加工上の問題が発生する。例えば、射出成型時に樹脂の回り込みよって孔が塞がる問題が発生する。したがって、開口形状が正方形の場合は、一辺の長さが0.2mm以上であることが好ましく、0.5mm以上であることがさらに好ましい。0.2mm以上であれば孔の塞がりが発生する確率は十分に小さく、0.5mm以上であればその確率は無視できるほど小さいからである。また、射出成型時の樹脂の回り込みに対しても、前記外表面開口におけるろ過膜の凹み量と同様に、開口形状の幅によって好ましい範囲を規定することができる。すなわち、長方形では短辺の長さ、円では直径、楕円では短径、長孔ではその幅であり、通念上幅が一意に定まらない場合は、三角形では内接円の直径であり、一般には開口形状に内接する円のうち最大のものの直径である。   If the minimum cross-sectional area of the opening is too small, processing problems will occur. For example, there is a problem that the hole is blocked by the wraparound of the resin during injection molding. Therefore, when the opening shape is a square, the length of one side is preferably 0.2 mm or more, and more preferably 0.5 mm or more. This is because the probability of occurrence of blockage of the hole is sufficiently small if it is 0.2 mm or more, and the probability is negligibly small if it is 0.5 mm or more. In addition, a preferable range can be defined by the width of the opening shape as well as the amount of dent of the filtration membrane in the outer surface opening for the wraparound of the resin at the time of injection molding. That is, the length of the short side in a rectangle, the diameter in a circle, the short diameter in an ellipse, and the width in a long hole.If the width is not uniquely determined by convention, it is the diameter of an inscribed circle in a triangle. The diameter of the largest circle inscribed in the opening shape.

ろ板2の2つの網目構造面21の内側には、前記2つの網目構造面21とろ板周縁部24に囲まれた、流水空間26が形成されている。本実施形態においては、その大きさは、450mm×950mm×厚さ3mmである。   Inside the two mesh structure surfaces 21 of the filter plate 2, a running water space 26 surrounded by the two mesh structure surfaces 21 and the filter plate peripheral edge portion 24 is formed. In the present embodiment, the size is 450 mm × 950 mm × thickness 3 mm.

ろ板内部の流水空間26において、網目構造面を垂直に支持するリブは、2つの機能を実現している。吸引ろ過時に網目構造面21の間隔を保持するための空隙保持機能と、ろ過膜1を接合して、逆洗時にろ過膜1が外側に膨らむのを抑えるろ過膜固定機能である。   In the flowing water space 26 inside the filter plate, the rib that vertically supports the mesh structure surface realizes two functions. A gap holding function for holding the space between the mesh structure surfaces 21 at the time of suction filtration and a filtration membrane fixing function for joining the filtration membrane 1 to prevent the filtration membrane 1 from bulging outside during backwashing.

ろ過膜固定のためのリブ(以下「ろ過膜固定リブ22」という)は、2つの網目構造面21を接合しており、さらにろ板表面においてろ過膜が接合されている(32)。本実施形態においては、流水空間26の長辺に平行に、幅7mm、長さ910mmのろ過膜固定リブ22を、流水空間の短辺方向をほぼ4等分するように、間隔115mmで、3本設けた。本実施形態では、ろ板を厚さ方向に半分に分割した部品を射出成形したので、ろ過膜固定リブもその厚さ方向に二分割されていた。この2つの部品に分かれたリブを接着剤で接合した(28)。網目構造面21のろ過膜固定リブ22の位置する部分は網目を排し、その表面を平滑に形成して、ろ過膜1を熱溶着で接合した(32)。   The rib for fixing the filtration membrane (hereinafter referred to as “filtration membrane fixing rib 22”) joins the two mesh structure surfaces 21, and the filtration membrane is joined on the surface of the filter plate (32). In the present embodiment, the filtration membrane fixing rib 22 having a width of 7 mm and a length of 910 mm parallel to the long side of the flowing water space 26 is 3 mm at an interval of 115 mm so that the short side direction of the flowing water space is substantially divided into four equal parts. Book provided. In the present embodiment, since a part obtained by dividing the filter plate in half in the thickness direction is injection-molded, the filtration membrane fixing rib is also divided in two in the thickness direction. The ribs divided into these two parts were joined with an adhesive (28). The portion of the mesh structure surface 21 where the filtration membrane fixing ribs 22 are located was eliminated, the surface thereof was formed smoothly, and the filtration membrane 1 was joined by thermal welding (32).

ここでろ過膜固定リブ22の寸法は、本実施形態に限定されるものではないが、幅が広すぎるとろ板表面に開口のない領域が多くなる問題があり、幅が狭すぎると逆洗時に内圧のかかるろ過膜1に引っ張られてリブの接着面28が破壊するおそれがある。また、後述する熱溶着法によるとろ過膜−ろ過膜固定リブ接合線32の幅は約2mmとなるので、ろ過膜固定リブの幅は3mm以上であることが望ましい。結果としてろ過膜固定リブの幅は、3〜12mmの範囲にあることが好ましく、5〜8mmの範囲にあることがさらに好ましい。   Here, the size of the filtration membrane fixing rib 22 is not limited to the present embodiment, but if the width is too wide, there is a problem that a region having no opening increases on the surface of the filter plate. There is a possibility that the adhesive surface 28 of the rib may be broken by being pulled by the filtration membrane 1 to which internal pressure is applied. In addition, according to the heat welding method described later, the width of the filtration membrane-filtration membrane fixing rib joining line 32 is about 2 mm. Therefore, the width of the filtration membrane fixing rib is desirably 3 mm or more. As a result, the width of the filtration membrane fixing rib is preferably in the range of 3 to 12 mm, and more preferably in the range of 5 to 8 mm.

ろ過膜固定リブ22の配置形状は、特に限定されないが、直線状とするのが簡明である。   The arrangement shape of the filtration membrane fixing rib 22 is not particularly limited, but it is easy to make it straight.

ろ過膜1の固定されたろ板周縁部31とろ過膜固定リブ22の間隔、ろ過膜固定リブ22同士の間隔(以上を合わせて「ろ過膜固定間隔29」という)は、間隔が広すぎると、逆洗時にろ過膜1が過大に膨らんで、隣接する膜エレメントのろ過膜同士が接触する不都合を生じるし、ろ過膜−ろ板接合部にかかる力が大きくなってろ過膜が破損する確率が高くなるので好ましくない。また、間隔が狭すぎると、透過水の通過に寄与しない部分が増えるので好ましくない。   When the interval between the filter plate peripheral edge 31 and the filtration membrane fixing rib 22 to which the filtration membrane 1 is fixed, and the interval between the filtration membrane fixing ribs 22 (referred to collectively as the “filtration membrane fixing interval 29”) are too wide, The filtration membrane 1 swells excessively during backwashing, causing inconvenience that the filtration membranes of adjacent membrane elements come into contact with each other, and there is a high probability that the filtration membrane will be damaged due to the force applied to the filtration membrane-filter plate junction. This is not preferable. Moreover, since the part which does not contribute to passage of permeate increases when a space | interval is too narrow, it is unpreferable.

本実施形態に係る膜エレメント(ろ過膜固定間隔は115mmである)について、内部から圧力を加えて、ろ過膜の膨らみ(ろ板表面51からの距離の最大値。通常はろ過膜固定間隔29の中央部分で観察される)、破損等の状況を観察した。まず、集水口4から水道水を注入して圧力をかけると、内部圧力10kPaでろ過膜の膨らみは8mmとなり、水がろ過膜を透過して漏出するので、内部圧力をこれより上げることはできなかった。次にろ過膜表面に空気が通らない処理を施し、集水口から空気を注入して圧力をかけた。内部圧力を上げるにしたがって、ろ過膜の膨らみは徐々に大きくなった。ろ過膜の膨らみ量は、加圧が10kPaで8mm、12kPaで10mm、18kPaで13mmとなり、これ以上は膨らまなかった。このうち、加圧が12kPaを超えると、圧力を0に戻してもろ過膜の一部にしわが残った。ろ過膜の損傷は確認できなかったが、ろ過膜の基材である不織布に、局所的に不可逆な伸びが起こった可能性も否定できない。さらに加圧を続けると、加圧25kPaでろ板が変形し始め、32kPaでろ板骨格が破損した。したがって本実施形態では、ろ過膜−ろ板接合強度が問題となることはなかった。   For the membrane element according to the present embodiment (the filtration membrane fixing interval is 115 mm), pressure is applied from the inside, and the swelling of the filtration membrane (maximum value of the distance from the filter plate surface 51. Usually, the filtration membrane fixing interval 29 Observed in the center part), the situation such as breakage was observed. First, when tap water is injected from the water collection port 4 and pressure is applied, the bulge of the filtration membrane becomes 8 mm at an internal pressure of 10 kPa, and water leaks through the filtration membrane, so the internal pressure can be increased beyond this. There wasn't. Next, the filter membrane surface was treated so that air did not pass through it, and air was injected from the water collection port to apply pressure. As the internal pressure was increased, the swelling of the filtration membrane gradually increased. The amount of swelling of the filtration membrane was 8 mm at 10 kPa, 10 mm at 12 kPa, and 13 mm at 18 kPa, and no further swelling occurred. Among these, when the pressurization exceeded 12 kPa, wrinkles remained in a part of the filtration membrane even when the pressure was returned to zero. Although damage to the filtration membrane could not be confirmed, the possibility that local irreversible elongation occurred in the nonwoven fabric that is the base material of the filtration membrane cannot be denied. When pressurization was continued, the filter plate started to deform at a pressure of 25 kPa, and the filter plate skeleton was damaged at 32 kPa. Therefore, in this embodiment, the membrane-filter plate bonding strength did not become a problem.

さらに発明者らは、逆洗時にろ過膜1が膨らむことによって、ろ過膜表面に堆積したろ過膜堆積層が剥がれやすくなることを発見した。すなわち、ろ過膜1が外側に膨らんで伸びることによって、ろ過膜堆積層とろ過膜表面の間にずれが生じ、その剪断力によって、ろ過膜堆積物層がろ過膜表面から離脱するのである。本実施形態に係る膜エレメント(ろ過膜固定間隔は115mmである)での実験によると、ろ過膜の膨らみが3mm以上でろ過膜堆積層が離脱した。堆積層が離脱する膨らみ量は、堆積層の性状に大きく依存するが、ろ過膜の膨らみは5mm以上あることが好ましいと考えられる。   Furthermore, the inventors have discovered that the filtration membrane deposited layer deposited on the filtration membrane surface is easily peeled off when the filtration membrane 1 swells during backwashing. That is, when the filtration membrane 1 swells and extends outward, a displacement occurs between the filtration membrane deposition layer and the filtration membrane surface, and the filtration membrane deposit layer is detached from the filtration membrane surface by the shearing force. According to the experiment with the membrane element according to the present embodiment (the filtration membrane fixing interval is 115 mm), the filtration membrane swell was detached when the bulge of the filtration membrane was 3 mm or more. The amount of swelling from which the deposited layer separates depends greatly on the properties of the deposited layer, but it is considered that the swelling of the filtration membrane is preferably 5 mm or more.

以上の通り、逆洗時のろ過膜の膨らみには最適範囲があり、その上限値は膨らみ量とろ過膜が破損しないことで定まり、その下限値はろ過膜堆積層が離脱できるかどうかで定まる。ろ過膜が破損しないためには、逆洗時圧力を25kPa以下、好ましくは18kPa以下、さらに好ましくは12kPa以下とするのがよい。隣接する膜エレメントとの間隔を考慮すると、膜の膨らみ量は13mm以下とすることが好ましい。内圧12kPaで膨らみ量を5〜13mmとするには、ろ過膜固定間隔29は60〜150mm以下とすればよい。ろ過膜の膨らみは、逆洗時圧力の他、ろ過膜の基材の物性等にも依存するが、実用的な条件内では、ろ過膜固定間隔29の影響が大きい。ろ過膜固定間隔は、より好ましくは80〜130mmの範囲にあれば、ほぼ最適なろ過膜の膨らみを得ることができる。   As described above, there is an optimum range for the swelling of the filtration membrane during backwashing, the upper limit is determined by the amount of swelling and the filtration membrane is not damaged, and the lower limit is determined by whether the filtration membrane deposited layer can be detached. . In order not to damage the filtration membrane, the pressure during backwashing is 25 kPa or less, preferably 18 kPa or less, more preferably 12 kPa or less. Considering the distance between adjacent membrane elements, the membrane bulge amount is preferably 13 mm or less. In order to set the bulging amount to 5 to 13 mm at an internal pressure of 12 kPa, the filtration membrane fixing interval 29 may be set to 60 to 150 mm or less. The swelling of the filtration membrane depends on the physical properties of the filter membrane base material as well as the pressure during backwashing, but the filtration membrane fixing interval 29 is greatly influenced within practical conditions. If the filtration membrane fixing interval is more preferably in the range of 80 to 130 mm, an almost optimal filtration membrane bulge can be obtained.

本実施形態においては、ろ過膜固定リブ22の両端は、ろ過膜−ろ板周縁接合線31から20mm離れているが、これに限定されるものではない。ろ過膜−ろ過膜固定リブ接合線32の端(以下「ろ過膜−リブ接合端33」という)とろ過膜−ろ板周縁接合線31の距離は、逆洗時のろ過膜の破損を防止するためには、ろ過膜固定間隔29よりも小さいことが好ましい。また、逆洗時にろ過膜が膨らむと、ろ過膜−リブ接合端33に応力が集中するので、ろ過膜−リブ接合端33とろ過膜−ろ板周縁接合線31の距離は50mm以下であることがさらに好ましい。   In this embodiment, both ends of the filtration membrane fixing rib 22 are separated from the filtration membrane-filter plate peripheral joint line 31 by 20 mm, but the present invention is not limited to this. The distance between the end of the filtration membrane-filtration membrane fixing rib joining line 32 (hereinafter referred to as "filtration membrane-rib joining end 33") and the filtration membrane-filter plate peripheral joining line 31 prevents damage to the filtration membrane during backwashing. For this purpose, it is preferably smaller than the filtration membrane fixing interval 29. Further, if the filtration membrane swells during backwashing, stress concentrates on the filtration membrane-rib joint end 33, so the distance between the filtration membrane-rib joint end 33 and the filtration membrane-filter plate peripheral joint line 31 is 50 mm or less. Is more preferable.

ろ過膜固定リブ22の片端または両端はろ板周縁部24と連接していてもよく、ろ過膜−ろ過膜固定リブ接合線32とろ過膜−ろ板周縁接合線31とがつながっていてもよい。ただし、ろ過膜固定リブ22の両端がろ板周縁部24と連接した場合には、複数に区画された流水空間26のそれぞれに対して集水口4を設けるか、ろ過膜固定リブ22の一部に区画された流水空間26同士を繋ぐ通水路を設ける必要がある。   One end or both ends of the filtration membrane fixing rib 22 may be connected to the filter plate peripheral portion 24, or the filtration membrane-filtration membrane fixing rib joining line 32 and the filtration membrane-filter plate peripheral joining line 31 may be connected. However, when both ends of the filtration membrane fixing rib 22 are connected to the filter plate peripheral edge portion 24, the water collection port 4 is provided for each of the plurality of flowing water spaces 26 or a part of the filtration membrane fixing rib 22 is provided. It is necessary to provide a water passage that connects the flowing water spaces 26 divided into two.

空隙保持のためのリブ(以下「空隙保持リブ23」という)は、吸引ろ過時に空隙を保持できさえすればよい。
本実施形態においては、ろ板周縁部24とろ過膜固定リブ22の中間、およびろ過膜固定リブ22同士の中間の計4カ所に、幅5mm、長さ910mmの直線状の空隙保持リブ23を設けた。ろ過膜固定リブと空隙保持リブの間隔は約55mmであった。
本実施形態では、ろ板を厚さ方向に半分に分割した部品を射出成形したので、空隙保持リブもその厚さ方向に二分割されていた。この2つの部品に分かれたリブは、ろ過膜固定リブ22とは異なり、特に接着しなかった。したがって2つの網目構造面21同士も空隙保持リブ23を介して接合されているわけではない。また、空隙保持リブ23がある部分では開口54は塞がれているが、ろ板外表面は平滑に形成しておらず、網目構造面の形状はそのまま残した。射出成形型製作の便宜のためで、これに限定されるものではない。
The rib for holding the gap (hereinafter referred to as “gap holding rib 23”) only needs to hold the gap during suction filtration.
In the present embodiment, linear gap holding ribs 23 having a width of 5 mm and a length of 910 mm are provided at a total of four locations in the middle of the filter plate peripheral edge 24 and the filtration membrane fixing ribs 22 and between the filtration membrane fixing ribs 22. Provided. The distance between the filtration membrane fixing rib and the gap retaining rib was about 55 mm.
In this embodiment, since the part obtained by dividing the filter plate in half in the thickness direction is injection-molded, the gap holding rib is also divided in two in the thickness direction. Unlike the filtration membrane fixing rib 22, the rib divided into these two parts was not particularly bonded. Therefore, the two mesh structure surfaces 21 are not joined to each other via the gap holding ribs 23. In addition, the opening 54 is closed at the portion where the gap retaining rib 23 is present, but the outer surface of the filter plate is not formed smoothly, and the shape of the mesh structure surface is left as it is. This is for the convenience of manufacturing the injection mold and is not limited to this.

空隙保持リブ23の配置形状は、特に限定されない。本実施形態のように直線状にしてもよいし、小さな島状のリブを適当に隔離して配置することもできる。空隙保持リブ23の配置間隔は、吸引ろ過時に(ろ板が潰れて)相対する2つの網目構造面21同士が接触しなければよい。好ましい配置間隔は、網目構造面21の曲げ剛性に依存し、曲げ剛性は面の厚み等に強く依存するので、空隙固定リブ23の間隔だけを単独で設計するのではなく、ろ板全体として形状設計を行うのが望ましい。なお、ろ過膜固定リブ22は空隙保持機能を兼ね備えるので、ろ過膜固定リブ以外に空隙保持リブ23を設けなくてもよい場合もある。   The arrangement | positioning shape of the space | gap holding rib 23 is not specifically limited. It may be linear as in this embodiment, or small island-shaped ribs can be appropriately isolated and arranged. The space | interval arrangement | positioning space | interval of the space | gap holding rib 23 should just not contact two mesh-structure surfaces 21 which oppose at the time of suction filtration (a filter plate is crushed). The preferred arrangement interval depends on the bending rigidity of the mesh structure surface 21 and the bending rigidity strongly depends on the thickness of the surface and the like. It is desirable to design. In addition, since the filtration membrane fixing rib 22 also has a gap holding function, there is a case where the gap holding rib 23 may not be provided in addition to the filtration membrane fixing rib.

ろ過膜1とろ板2の接合方法には、接着剤を用いて固着させる方法や、超音波を用いて溶着する方法など公知の方法が使用できる。しかし、ろ過膜1とろ板2の接合部には逆洗時に応力が集中するので、ろ過膜1の基材の強度低下が小さい、熱板を使用した熱溶着法によるのが好ましい。   As a method for joining the filtration membrane 1 and the filter plate 2, known methods such as a method of fixing using an adhesive and a method of welding using ultrasonic waves can be used. However, since stress concentrates at the joint between the filtration membrane 1 and the filter plate 2 during backwashing, it is preferable to use a heat welding method using a hot plate, in which the strength reduction of the base material of the filtration membrane 1 is small.

ろ板2外周部には、透過水を膜エレメント外へ排出するための集水口4、複数の膜エレメントを平行に並べてモジュールを組み立てる際の固定具のための孔などが設けられる。このような周辺部材も、射出成形で一体に製作することができる。   On the outer periphery of the filter plate 2, there are provided a water collection port 4 for discharging permeate to the outside of the membrane element, a hole for a fixing tool when assembling a module by arranging a plurality of membrane elements in parallel. Such peripheral members can also be manufactured integrally by injection molding.

1 ろ過膜
2 ろ板
21 網目構造部
22 ろ過膜固定リブ
23 空隙保持リブ
24 ろ板周縁部
25 ろ板端面
26 流水空間
27 ろ板周縁部接着面
28 ろ過膜固定リブ接着面
29 ろ過膜固定間隔
31 ろ過膜−ろ板周縁接合線
32 ろ過膜−ろ過膜固定リブ接合線
33 ろ過膜−リブ接合端
4 集水口
51 ろ板外表面
52 網目構造面−流水空間境界面
53 網地の梁
54 網目の開口
55 外表面開口
56 内側開口
DESCRIPTION OF SYMBOLS 1 Filtration membrane 2 Filter plate 21 Mesh structure part 22 Filtration membrane fixing rib 23 Space | gap holding rib 24 Filter plate peripheral part 25 Filter plate end surface 26 Flowing water space 27 Filter plate peripheral part adhesion surface 28 Filtration membrane fixing rib adhesion surface 29 Filtration membrane fixing space | interval 31 Filtration Membrane-Filter Plate Perimeter Bonding Line 32 Filtration Membrane-Filtration Membrane Fixed Rib Bonding Line 33 Filtration Membrane-Rib Junction End 4 Water Collection Port 51 Filter Plate Outer Surface 52 Mesh Structure Surface-Water Flow Space Boundary Surface 53 Opening 55 Outer surface opening 56 Inner opening

Claims (8)

ろ過膜と、前記ろ過膜を支持するろ板とを有する膜エレメントであって、
前記ろ板の表面は、前記ろ過膜で覆われた部分の略全体が網目構造を有し、
前記ろ板の内部には、前記網目構造の内側に流水空間を形成しており、
前記流水空間には、前記網目構造を有する面を垂直に支持する支持材が、該支持材同士の間隔をあけて設けられ、
前記ろ板表面の前記支持材の位置する部分に前記ろ過膜が接合され、
前記流水空間には、前記ろ過膜が接合された前記支持材に加えて、該支持材の間に、前記網目構造を有する面を垂直に支持し前記ろ過膜が接合されていない支持材を設けた
ことを特徴とする膜エレメント。
A membrane element having a filtration membrane and a filter plate supporting the filtration membrane,
The surface of the filter plate has a network structure of substantially the entire portion covered with the filtration membrane,
Inside the filter plate, a running water space is formed inside the mesh structure ,
In the flowing water space, a support material that vertically supports the surface having the mesh structure is provided with an interval between the support materials,
The filtration membrane is joined to the portion of the filter plate where the support material is located,
In the flowing water space, in addition to the support material to which the filtration membrane is bonded, a support material that vertically supports the surface having the mesh structure and is not bonded to the filtration membrane is provided between the support materials. A membrane element characterized by that.
前記網目構造の開口は、前記ろ板の厚さ方向に沿って、ろ板外表面から内部に向かって漸次小さくなる
ことを特徴とする請求項1に記載の膜エレメント。
2. The membrane element according to claim 1, wherein the opening of the mesh structure gradually decreases from the outer surface of the filter plate toward the inside along the thickness direction of the filter plate.
前記網目構造は一体に成形されており、
前記網目構造の開口は、前記ろ板の厚さ方向に沿って、ろ板外表面から内部に向かって漸次小さくなる部分を有する
ことを特徴とする請求項1または2に記載の膜エレメント。
The network structure is integrally formed,
The membrane element according to claim 1 or 2, wherein the opening of the mesh structure has a portion that gradually decreases from the outer surface of the filter plate toward the inside along the thickness direction of the filter plate.
前記網目構造の開口率は、前記ろ板外表面において50%以上である
こと特徴とする請求項2または3に記載の膜エレメント。
The membrane element according to claim 2 or 3, wherein an opening ratio of the network structure is 50% or more on the outer surface of the filter plate.
前記網目構造の開口の形状は、最も断面積の小さい部分において、幅が0.2mm以上である
ことを特徴とする請求項2から4のいずれか一項に記載の膜エレメント。
The membrane element according to any one of claims 2 to 4, wherein the opening of the mesh structure has a width of 0.2 mm or more in a portion having the smallest cross-sectional area.
前記網目構造の開口の形状は、前記ろ板外表面において、幅が15mm以下である
ことを特徴とする請求項2から5のいずれか一項に記載の膜エレメント。
The membrane element according to any one of claims 2 to 5, wherein the opening of the mesh structure has a width of 15 mm or less on the outer surface of the filter plate.
前記ろ過膜が接合された支持材同士の間隔は、60mm以上、150mm以下である
ことを特徴とする請求項1から6のいずれか一項に記載の膜エレメント。
The membrane element according to any one of claims 1 to 6, wherein an interval between the support materials to which the filtration membrane is bonded is 60 mm or more and 150 mm or less.
前記ろ板は、射出成形による2つの部品を接合して作製された
ことを特徴とする請求項1からのいずれか一項に記載の膜エレメント。
The membrane element according to any one of claims 1 to 7 , wherein the filter plate is manufactured by joining two parts by injection molding.
JP2010192065A 2010-08-30 2010-08-30 Membrane element Active JP5530862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010192065A JP5530862B2 (en) 2010-08-30 2010-08-30 Membrane element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010192065A JP5530862B2 (en) 2010-08-30 2010-08-30 Membrane element

Publications (2)

Publication Number Publication Date
JP2012045515A JP2012045515A (en) 2012-03-08
JP5530862B2 true JP5530862B2 (en) 2014-06-25

Family

ID=45901027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010192065A Active JP5530862B2 (en) 2010-08-30 2010-08-30 Membrane element

Country Status (1)

Country Link
JP (1) JP5530862B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5966733B2 (en) * 2012-07-31 2016-08-10 東レ株式会社 Separation membrane element and membrane module
DK178140B1 (en) * 2014-02-03 2015-06-22 Sani Membranes Aps Filter plate assembly
DK180105B1 (en) 2018-03-08 2020-05-04 Sani Membranes Aps A filter-plate with external flow area
CN110255704A (en) * 2019-06-28 2019-09-20 时代沃顿科技有限公司 A kind of MBR flat membrane component
CN114558455B (en) * 2022-01-14 2023-05-02 杭州科百特过滤器材有限公司 Virus filter

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242736Y2 (en) * 1981-05-13 1987-11-02
JPS5898112U (en) * 1981-12-23 1983-07-04 清水 保 Electric drill with polishing tool attached
JPS58137408U (en) * 1982-03-12 1983-09-16 株式会社土屋製作所 Support for laminated thin film filters
JPS63141624A (en) * 1986-12-04 1988-06-14 Matsushita Electric Ind Co Ltd Gas permeable membrane module
JP3219579B2 (en) * 1994-01-07 2001-10-15 株式会社クボタ Membrane module
JP3538902B2 (en) * 1994-07-01 2004-06-14 栗田工業株式会社 Membrane element of immersion type membrane separation device
JPH09290140A (en) * 1996-04-25 1997-11-11 Yuasa Corp Membrane module
JPH11333263A (en) * 1998-05-29 1999-12-07 Yuasa Corp Membrane element and membrane separation device using the element
JP2002126464A (en) * 2000-10-26 2002-05-08 Toray Ind Inc Filter membrane element and method fo producing permeated water
JPWO2009128119A1 (en) * 2008-04-18 2011-08-04 株式会社クボタ Membrane module cleaning method and apparatus

Also Published As

Publication number Publication date
JP2012045515A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP5530862B2 (en) Membrane element
KR101993023B1 (en) Backwashable filtration element
JP4445862B2 (en) Hollow fiber membrane module, hollow fiber membrane module unit, membrane filtration device using the same, and operating method thereof
JP6283973B2 (en) Method for producing hollow fiber membrane module
KR101299458B1 (en) Frameless, plate-shaped filtering member
WO2002049746A1 (en) Hollow fiber membrane module, method of manufacturing the hollow fiber membrane module, and housing for hollow fiber membrane module
JP6164216B2 (en) Element unit, separation membrane module, and separation membrane element attachment / detachment method
EP2796185A1 (en) Hollow fiber membrane module and casing tube used for same
CN109562329B (en) Membrane support made of prefabricated sheets
JP5966733B2 (en) Separation membrane element and membrane module
US10040701B2 (en) Membrane separation device
US20130087499A1 (en) Spiral separation membrane element, perforated hollow tube, and method of producing the same
TW200920471A (en) Membrane element and membrane separating apparatus
US10987631B2 (en) Filter cassette article, and filter comprising same
JP5401120B2 (en) Membrane element end member and membrane element provided with the same
JP5747046B2 (en) Filtration device
JPH0999222A (en) Hollow fiber membrane module unit and filtering device
JPS6372306A (en) Filter cartridge
CN209771847U (en) Nuclear pore membrane element
JPH0618574Y2 (en) Cylindrical filter element
JP6409199B2 (en) Blood purification circuit panel
JP6409198B2 (en) Blood purification circuit panel
JPH01127003A (en) Filter cartridge
JPS6397208A (en) Filter cartridge
JPS6359324A (en) Filter cartridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130516

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140122

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5530862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250