JP5530288B2 - Carbon dioxide adsorption reducing agent and reduction method - Google Patents

Carbon dioxide adsorption reducing agent and reduction method Download PDF

Info

Publication number
JP5530288B2
JP5530288B2 JP2010167366A JP2010167366A JP5530288B2 JP 5530288 B2 JP5530288 B2 JP 5530288B2 JP 2010167366 A JP2010167366 A JP 2010167366A JP 2010167366 A JP2010167366 A JP 2010167366A JP 5530288 B2 JP5530288 B2 JP 5530288B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
compound
mayenite type
adsorption
type compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010167366A
Other languages
Japanese (ja)
Other versions
JP2012025636A (en
Inventor
秀雄 細野
喜丈 戸田
博之 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2010167366A priority Critical patent/JP5530288B2/en
Publication of JP2012025636A publication Critical patent/JP2012025636A/en
Application granted granted Critical
Publication of JP5530288B2 publication Critical patent/JP5530288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02A50/2342

Description

本発明は、複合金属酸化物からなる二酸化炭素の吸着還元剤及び該吸着還元剤を加熱する
だけで二酸化炭素を一酸化炭素に還元する方法に関する。
The present invention relates to an adsorption / reduction agent for carbon dioxide comprising a composite metal oxide and a method for reducing carbon dioxide to carbon monoxide simply by heating the adsorption / reduction agent.

二酸化炭素を一酸化炭素に還元する技術は、C1化学の原料として有用な一酸化炭素を製
造する方法として、また、環境問題において非常に重要である。人間の社会的活動により
大気中に放出される二酸化炭素は地球温暖化の原因の一つであることが知られており、近
年、大気中の二酸化炭素量を削減することが大きな課題となっている。
The technique of reducing carbon dioxide to carbon monoxide is very important as a method for producing carbon monoxide useful as a raw material for C1 chemistry and in environmental problems. Carbon dioxide released into the atmosphere by human social activities is known to be one of the causes of global warming. In recent years, reducing the amount of carbon dioxide in the atmosphere has become a major issue. Yes.

大気中の二酸化炭素量の削減方法としては、単に排出源からの排出量を減らす方法だけで
なく、排出された二酸化炭素の処理方法として、液化した二酸化炭素の海洋貯留に代表さ
れる物理的方法、植物の光合成を利用する生物的方法、及び吸着剤による吸着や、還元剤
による分解を利用する化学的方法が考案されている。
As a method of reducing the amount of carbon dioxide in the atmosphere, a physical method represented by marine storage of liquefied carbon dioxide as a method of treating the discharged carbon dioxide, as well as a method of simply reducing the amount of emissions from the emission source. In addition, biological methods utilizing plant photosynthesis and chemical methods utilizing adsorption by adsorbents and decomposition by reducing agents have been devised.

液化又は固化した二酸化炭素を海洋や地中に貯留する方法に関しては、長期的な隔離の安
定性や周辺環境への影響が未知であり、貯留には大きなエネルギーが必要になる。また、
光合成を利用する生物的方法も植林に広大な土地が必要であり、樹木の成長も待たなけれ
ばならないために短期的な二酸化炭素の削減効果は望みにくい。近年では生物的方法とし
てプランクトンを利用する方法も研究されているが、広大な面積の水面が必要になる。
Regarding the method of storing liquefied or solidified carbon dioxide in the ocean or in the ground, the long-term sequestration stability and the impact on the surrounding environment are unknown, and storage requires a large amount of energy. Also,
Biological methods using photosynthesis also require extensive land for afforestation, and the growth of trees must be waited for, so short-term effects of reducing carbon dioxide are unlikely. In recent years, a method using plankton as a biological method has been studied, but a large surface area of water is required.

一方で、化学的方法は物理的、生物的方法と比較して、エネルギーの低減や短期的な効果
が望める他、広大な土地が必要になることもない。さらに、化学的方法の内、排出源にお
いて還元剤を用いて二酸化炭素を分解する方法では、二酸化炭素の削減効果の他に、生成
物として一酸化炭素や蟻酸等が得られるので、二酸化炭素を資源として有効に転用できる
という利点もある。
On the other hand, compared to physical and biological methods, chemical methods can reduce energy and achieve short-term effects, and do not require vast land. Furthermore, among the chemical methods, the method of decomposing carbon dioxide using a reducing agent in the emission source can obtain carbon monoxide, formic acid, etc. as a product in addition to the effect of reducing carbon dioxide. There is also an advantage that it can be effectively diverted as a resource.

このような化学的方法として、硫化タングステン上に二酸化炭素と水素を導入し、加熱又
は太陽光の照射により二酸化炭素を一酸化炭素に転化する方法(特許文献1)、酸化鉄を
含む複合金属酸化物を触媒とし、二酸化炭素と水素を触媒に接触させて一酸化炭素を製造
する方法(特許文献2)、Fe及びCrを活性成分とする逆COシフト触媒又は活性アル
ミナを活性成分とする逆COシフト触媒の存在下にH2で還元する方法(特許文献3)、
ポルフィリン等の環状配位子化合物を活性成分として含有する還元触媒を用いる方法(特
許文献4)、酸化第一鉄を用いて二酸化炭素を炭素に還元する方法(特許文献5)、酸化
ニッケルを用いて二酸化炭素を一酸化炭素に還元する方法(特許文献6)等に関して特許
出願されている。また、高炉や発電所等からの燃焼排ガス中の二酸化炭素をゼオライトを
用いて物理吸着し分離する方法もある(特許文献7,8、9)。しかし、化学的方法は、
熱や電気といった二酸化炭素の分離や還元に要するエネルギーや、水素や触媒物質のコス
トに課題が残されている。
As such a chemical method, carbon dioxide and hydrogen are introduced onto tungsten sulfide, and carbon dioxide is converted into carbon monoxide by heating or irradiation with sunlight (Patent Document 1). Complex metal oxidation including iron oxide A method for producing carbon monoxide by contacting carbon dioxide and hydrogen with a catalyst using a product (Patent Document 2), a reverse CO shift catalyst using Fe and Cr as active components, or a reverse CO using active alumina as an active component A method of reducing with H 2 in the presence of a shift catalyst (Patent Document 3),
A method using a reduction catalyst containing a cyclic ligand compound such as porphyrin as an active component (Patent Document 4), a method of reducing carbon dioxide to carbon using ferrous oxide (Patent Document 5), and using nickel oxide A patent application has been filed regarding a method of reducing carbon dioxide to carbon monoxide (Patent Document 6). There is also a method of physically adsorbing and separating carbon dioxide in combustion exhaust gas from a blast furnace or a power plant using zeolite (Patent Documents 7, 8, and 9). But the chemical method is
Issues remain in the energy required for the separation and reduction of carbon dioxide such as heat and electricity, as well as the cost of hydrogen and catalytic materials.

CaO、Al23、SiOを構成成分とするアルミノケイ酸カルシウムは、鉱物名をマイ
エナイトと言い、その結晶と同型の結晶構造を有する化合物を「マイエナイト型化合物」
という。マイエナイト型化合物は、12CaO・7Al23(以下、「C12A7」と記
す)なる代表組成を有し、C12A7結晶は、2分子を含む単位胞にある66個の酸素イ
オンの内の2個が、結晶骨格で形成されるケージ内の空間に「フリー酸素」として包接さ
れているという、特異な結晶構造を持つことが報告されている(非特許文献1)。
Calcium aluminosilicate containing CaO, Al 2 O 3 , and SiO as constituent components is called a mayenite, and a compound having a crystal structure of the same type as the crystal is a “mayenite type compound”.
That's it. The mayenite type compound has a representative composition of 12CaO · 7Al 2 O 3 (hereinafter referred to as “C12A7”), and the C12A7 crystal has two of 66 oxygen ions in a unit cell containing two molecules. It has been reported that it has a unique crystal structure in which it is included as “free oxygen” in the space in the cage formed by the crystal skeleton (Non-patent Document 1).

2003年以降、このフリー酸素イオンが種々の陰イオンで置換できることが明らかにさ
れた。特に、強い還元雰囲気にC12A7を保持すると、全てのフリー酸素を電子で置換
することができる。これは、化学式で、[Ca24Al2864]4+(e-4(以下、「C12
A7:e−」と記す)と記述され、良好な電子伝導特性を示す(非特許文献2)。
Since 2003, it has been clarified that this free oxygen ion can be replaced by various anions. In particular, if C12A7 is held in a strong reducing atmosphere, all free oxygen can be replaced with electrons. This is a chemical formula, [Ca 24 Al 28 O 64 ] 4+ (e ) 4 (hereinafter referred to as “C12
A7: e- ”), which shows good electron conduction characteristics (Non-patent Document 2).

本発明者らは、導電性マイエナイト型化合物であるC12A7:e−及びC12A7と同
型化合物である12SrO・7Al23やC12A7と12SrO・7Al23との混晶
化合物とその製造法に関する発明を特許出願した(特許文献10)。また、C12A7単
結晶を(イ)アルカリ金属又はアルカリ土類金属蒸気中で高温でアニールする方法、(ロ
)不活性イオンをイオン打ち込みする方法、又は、(ハ)還元雰囲気で融液から直接固化
する方法で、1×1019/cm3以上の伝導電子を有するC12A7:e−及びC12A
7と同型化合物が得られることを見出し、これらに関する発明を特許出願した(特許文献
11)。
The present invention relates to C12A7: e- which is a conductive mayenite type compound and 12SrO · 7Al 2 O 3 which is the same type compound as C12A7, a mixed crystal compound of C12A7 and 12SrO · 7Al 2 O 3 and a method for producing the same. (Patent document 10). Also, C12A7 single crystal is (a) annealed at high temperature in alkali metal or alkaline earth metal vapor, (b) ion-implanted with inert ions, or (c) solidified directly from the melt in a reducing atmosphere. C12A7: e- and C12A having a conduction electron of 1 × 10 19 / cm 3 or more
It was found that the same type of compound as that of No. 7 was obtained, and a patent application was filed for an invention related thereto (Patent Document 11).

さらに、C12A7単結晶をチタン金属(Ti)蒸気中でアニールし、金属電気伝導性を
示すC12A7:e−を得ることに成功し、その製法及び電子放出材料としてのその用途
に関する発明を特許出願した(特許文献12)。金属電気伝導性を示すC12A7:e−
に関しては、CaCO3及びAl23を11:7で混合して、1300℃で加熱した生成
物を金属Ca蒸気雰囲気中で加熱することで粉末を直接合成することもできる(非特許文
献3)。
Furthermore, C12A7 single crystal was annealed in titanium metal (Ti) vapor to obtain C12A7: e- showing metal electrical conductivity, and a patent application was filed for an invention relating to its production method and its use as an electron-emitting material. (Patent Document 12). C12A7 showing metal electrical conductivity: e-
In regard to, the powder can be directly synthesized by mixing CaCO 3 and Al 2 O 3 at 11: 7 and heating the product heated at 1300 ° C. in a metallic Ca vapor atmosphere (Non-patent Document 3). ).

C12A7:e−に包接される電子は、陽イオンである結晶骨格のケージ内に緩く結合し
ているために、電場印加又は化学的な手段により外部に取り出すことができる。本発明者
らは、外部に取り出された電子を還元反応に用いることができると考え、C12A7:e
−に包接される電子でケトン化合物を還元し、2級アルコール及びジケトン化合物を製造
する方法を発明し、これを特許出願した(特許文献13)。しかしながら、この製法では
C12A7:e−を水中で用いるため、C12A7:e−は分解してしまい、一工程につ
き一度しか使用できなかった。
Since the electrons included in C12A7: e- are loosely bonded in the cage of the crystal skeleton which is a cation, they can be extracted to the outside by electric field application or chemical means. The present inventors consider that electrons taken out to the outside can be used for the reduction reaction, and C12A7: e
Invented a method for producing a secondary alcohol and a diketone compound by reducing the ketone compound with electrons included in-, and applied for a patent (Patent Document 13). However, since C12A7: e- is used in water in this production method, C12A7: e- is decomposed and can be used only once per process.

さらに、Alの一部をGa又はInで置換したマイエナイト型化合物に係わる発明の出願
がなされており(特許文献14)、これは、PDP保護膜材料や、有機ELデバイスにお
ける電荷注入材料など、高温加熱処理が必要とされる電極材料として適する。
Furthermore, an application for an invention related to a mayenite type compound in which a part of Al is substituted with Ga or In has been made (Patent Document 14), which includes high-temperature materials such as PDP protective film materials and charge injection materials in organic EL devices. It is suitable as an electrode material that requires heat treatment.

特開平05−043215号公報JP 05-043215 A 特開平08−245211号公報Japanese Patent Laid-Open No. 08-245211 特開2000−233917号公報Japanese Patent Laid-Open No. 2000-233917 特開2003−260364号公報JP 2003-260364 A 特開2005−144282号公報JP 2005-144282 A 特開2006−021989号公報JP 2006-021989 特開平07−039752号公報Japanese Patent Application Laid-Open No. 07-039752 特開2002−018226号公報JP 2002-018226 A 特開2008−0273821号公報JP 2008-0273821 A 再表WO2005/000741号公報Reissue WO2005 / 000741 特開2005−314196号公報JP 2005-314196 A 再表WO2007/060890号公報Reissue WO2007 / 060890 特開2008−214302公報JP 2008-214302 A 特開2009−203126号公報JP 2009-203126 A

H.B.Bartl,T,Scheller and N.Jarhrb Mineral Monatsh 1970,547H. B. Bartl, T, Scheller and N.M. Jarhrb Mineral Monat 1970, 547 S.Matsuishi,Y.Toda,M.Miyakawa,K.Hayashi,T.Kamiya,M.Hirano,I.Tanaka and H.Hosono,Science 301 626−629(2003)S. Matsui, Y. et al. Toda, M.M. Miyakawa, K .; Hayashi, T .; Kamiya, M .; Hirano, I. et al. Tanaka and H.M. Hosono, Science 301 626-629 (2003) S.Matsuishi,T.Nomura,M.Hirano,K.Kodama,S.Shamoto and H.Hosono,Chemistry of Materials 21 2589−2591(2009)S. Matsui, T .; Nomura, M .; Hirano, K. et al. Kodama, S .; Shamoto and H.M. Hosono, Chemistry of Materials 21 2589-2591 (2009)

本発明の課題は、二酸化炭素から化学原料として有用な一酸化炭素を製造する方法や、大
気中へ排出される二酸化炭素量を化学的方法で処理して削減する方法において、高価な触
媒や還元剤等を使用しないで、かつ、熱や電気などの少ないエネルギー消費をもって二酸
化炭素を還元し、一酸化炭素を回収できる方法を提供することにある。
An object of the present invention is to provide an expensive catalyst or reduction in a method for producing carbon monoxide useful as a chemical raw material from carbon dioxide or a method for reducing the amount of carbon dioxide discharged into the atmosphere by a chemical method. An object of the present invention is to provide a method capable of reducing carbon dioxide and recovering carbon monoxide without using an agent or the like and with low energy consumption such as heat and electricity.

本発明者は、上記の目的を達成すべく鋭意検討を重ねた結果、導電性マイエナイト型化合
物を用いると、比較的低温で二酸化炭素を吸着できると共に、吸着した二酸化炭素を該化
合物を加熱するだけで高効率で一酸化炭素に還元処理できることを見出した。すなわち、
導電性マイエナイト型化合物は室温でも二酸化炭素を選択的に吸着することができ、該化
合物を加熱すると、吸着した二酸化炭素のCOへの還元が200℃以下でも開始されるこ
とを見出した。すなわち、本発明者は、この導電性マイエナイト型化合物は、ゼオライト
のような物理吸着ではなく、化学吸着により二酸化炭素と強く結合し、一つの化合物で吸
着と還元の両機能を有することを見出した。
As a result of intensive studies to achieve the above object, the present inventor can adsorb carbon dioxide at a relatively low temperature and only heat the adsorbed carbon dioxide when using a conductive mayenite type compound. And found that carbon monoxide can be reduced with high efficiency. That is,
It has been found that the conductive mayenite type compound can selectively adsorb carbon dioxide even at room temperature, and when the compound is heated, the reduction of the adsorbed carbon dioxide to CO is started even at 200 ° C. or lower. That is, the present inventor has found that this conductive mayenite type compound strongly binds to carbon dioxide by chemical adsorption, not physical adsorption like zeolite, and has both adsorption and reduction functions with one compound. .

本発明は、1×1019/cm3以上の伝導電子を有する導電性マイエナイト型化合物から
なることを特徴とする二酸化炭素の吸着還元剤、である。
The present invention is a carbon dioxide adsorption-reduction agent comprising a conductive mayenite type compound having a conduction electron of 1 × 10 19 / cm 3 or more.

導電性マイエナイト型化合物は、構造中に内包する酸化物イオン(O2 -,O2 2-)を置換し
た電子が伝導電子となり、C12A7の場合、組成式([Ca24Al28644+(O2-
2-x(e-2x)(0<x≦2)で示される。電子で置換させることにより、伝導電子を1
×1015cm-3以上含ませることができる。伝導電子の理論的最大濃度はC12A7の場
合2.3×1021cm-3である。伝導電子濃度が大きいほど還元能が大きいが、1×10
18/cm3程度が二酸化炭素の還元作用を検出できる限界であり、伝導電子濃度は1×1
19/cm3以上であることが好ましい。伝導電子濃度の最大値としては、単結晶では2
.3×1021/cm3程度が可能である。
In the conductive mayenite type compound, electrons substituted for oxide ions (O 2 , O 2 2− ) encapsulated in the structure become conduction electrons, and in the case of C12A7, the composition formula ([Ca 24 Al 28 O 64 ] 4 + (O 2- )
2-x (e ) 2x ) (0 <x ≦ 2). By substituting electrons for conduction electrons,
× 10 15 cm −3 or more can be included. The theoretical maximum concentration of conduction electrons is 2.3 × 10 21 cm −3 for C12A7. The higher the conduction electron concentration, the greater the reducing ability, but 1 × 10
18 / cm 3 is the limit that can detect the reduction action of carbon dioxide, and the conduction electron concentration is 1 × 1.
It is preferably 0 19 / cm 3 or more. The maximum conduction electron concentration is 2 for single crystals.
. About 3 × 10 21 / cm 3 is possible.

この吸着還元剤の形状は、粉末、固体焼結体、薄膜、又は固体単結晶などのいずれでもよ
い。二酸化炭素は、吸着還元剤の表面に吸着される。
The adsorption reducing agent may have any shape such as a powder, a solid sintered body, a thin film, or a solid single crystal. Carbon dioxide is adsorbed on the surface of the adsorption reducing agent.

この吸着還元剤を室温に保持するか、200℃以下に加熱し、乾燥空気中、乾燥酸素中、
又は不活性ガス雰囲気中で、二酸化炭素含有ガス、又は二酸化炭素を接触させて二酸化炭
素を吸着させる。次いで、二酸化炭素を吸着した状態の該化合物を200℃以上、該化合
物の融点未満に加熱することによって、二酸化炭素を一酸化炭素に還元して該化合物から
脱離させる。この吸着処理は、導電性マイエナイト型化合物を加熱しないで室温で行うこ
とが好ましく、加温下で行う場合は200℃以下が好ましい。200℃を超えても吸着は
可能であるが、エネルギー効率上好ましくない。
This adsorption reducing agent is kept at room temperature or heated to 200 ° C. or less, in dry air, in dry oxygen,
Alternatively, carbon dioxide is adsorbed by contacting carbon dioxide-containing gas or carbon dioxide in an inert gas atmosphere. Next, the carbon dioxide-adsorbed compound is heated to 200 ° C. or higher and lower than the melting point of the compound to reduce carbon dioxide to carbon monoxide and desorb from the compound. This adsorption treatment is preferably performed at room temperature without heating the conductive mayenite type compound, and is preferably 200 ° C. or less when performed under heating. Although adsorption is possible even if it exceeds 200 degreeC, it is unpreferable on energy efficiency.

また、この吸着還元剤を200℃以上、該化合物の融点未満に加熱し、乾燥空気中、乾燥
酸素中、又は不活性ガス雰囲気中で、二酸化炭素含有ガス、又は二酸化炭素を該化合物に
接触させることによって、吸着と同時に二酸化炭素を一酸化炭素に還元して該化合物から
脱離させる方法でもよい。前記の吸着及び/又は還元は加圧下、減圧下のいずれでも実施
できるが、大気圧下で行うことがエネルギー消費が少なくて済み好ましい。
Further, the adsorption reducing agent is heated to 200 ° C. or higher and lower than the melting point of the compound, and a carbon dioxide-containing gas or carbon dioxide is brought into contact with the compound in dry air, dry oxygen, or an inert gas atmosphere. Thus, a method of reducing carbon dioxide to carbon monoxide at the same time as adsorption and desorbing from the compound may be used. The adsorption and / or reduction can be carried out under pressure or under reduced pressure, but it is preferable to carry out the reaction under atmospheric pressure because it consumes less energy.

吸着プロセスと還元プロセスを分離して行う方法の場合は、混合ガス中の二酸化炭素を分
離、還元して生成物である一酸化炭素を回収するのに特に有効である。吸着プロセスと還
元プロセスが分かれているので、吸着プロセスで二酸化炭素のみを吸着させ、残りのガス
を排気した後に一酸化炭素を脱離させれば効率よく一酸化炭素を回収できる。同時に二酸
化炭素も脱離するが、脱離したガスを昇圧又は冷却することで二酸化炭素はドライアイス
になるので一酸化炭素と二酸化炭素の分離は容易である。ただし、吸着還元剤の昇温、冷
却を繰り返す必要があるので、吸着還元剤を高温に保持して、吸着プロセスと還元プロセ
スを同時に行う場合より余分なエネルギーを消費する。吸着プロセスと還元プロセスを同
時に行う場合は、高純度の二酸化炭素を還元して生成物である一酸化炭素を回収するのに
特に有効である。この方法は、反応系に二酸化炭素を循環させていればいずれ全て一酸化
炭素になる。また、この方法は、高純度の二酸化炭素や二酸化炭素混合ガスを処理して生
成した一酸化炭素を回収する必要がない場合にも有効である。
In the case of a method in which the adsorption process and the reduction process are separated, it is particularly effective for recovering carbon monoxide as a product by separating and reducing carbon dioxide in the mixed gas. Since the adsorption process and the reduction process are separated, carbon monoxide can be efficiently recovered by adsorbing only carbon dioxide in the adsorption process and desorbing carbon monoxide after exhausting the remaining gas. At the same time, carbon dioxide is also desorbed. However, by depressurizing or cooling the desorbed gas, the carbon dioxide becomes dry ice, so separation of carbon monoxide and carbon dioxide is easy. However, since it is necessary to repeat the temperature rise and cooling of the adsorption reducing agent, extra energy is consumed compared with the case where the adsorption reducing agent is kept at a high temperature and the adsorption process and the reduction process are performed simultaneously. When the adsorption process and the reduction process are performed at the same time, it is particularly effective for reducing high-purity carbon dioxide and recovering the product carbon monoxide. This method eventually becomes carbon monoxide as long as carbon dioxide is circulated in the reaction system. This method is also effective when there is no need to recover carbon monoxide generated by treating high purity carbon dioxide or a carbon dioxide mixed gas.

上記の加熱により一酸化炭素が主生成物として生成し、該化合物から脱離する。加熱によ
り一酸化炭素が生成するのは、二酸化炭素が導電性マイエナイト型化合物に化学吸着し、
該化合物に包接された伝導電子により二酸化炭素が活性化されるためと考えられる。ゼオ
ライトを用いた物理吸着はゼオライトの細孔に二酸化炭素を取り込む吸着であるが、導電
性マイエナイト型化合物は細孔の構造を持つものの、細孔の大きさは、ゼオライトの細孔
と比べて1/10以下の大きさなので、ゼオライトのように内部に二酸化炭素は取り込め
ない。そこで、該化合物への二酸化炭素の吸着は、該化合物の最表面での解離吸着であろ
うと考えられる。
Carbon monoxide is produced as a main product by the above heating, and desorbed from the compound. Carbon monoxide is generated by heating because carbon dioxide is chemisorbed on the conductive mayenite type compound,
It is considered that carbon dioxide is activated by the conduction electrons included in the compound. Physical adsorption using zeolite is adsorption that incorporates carbon dioxide into the pores of the zeolite, but the conductive mayenite type compound has a pore structure, but the pore size is 1 compared to the pores of the zeolite. Since the size is / 10 or less, carbon dioxide cannot be taken inside like zeolite. Therefore, it is considered that the adsorption of carbon dioxide on the compound will be dissociative adsorption on the outermost surface of the compound.

二酸化炭素は、熱した炭素、亜鉛、鉄などの上を通すと一酸化炭素に還元されることが知
られているが、二酸化炭素は非常に安定な化合物で、2000℃で2%ぐらい一酸化炭素
と酸素に解離するにすぎない、と言われる。本発明の方法では加熱温度にも依るがほぼ2
0%〜80%程度が還元される。二酸化炭素の還元に繰り返し使用しても導電性マイエナ
イト型化合物の劣化(伝導電子の減少)はほとんどないが、繰り返し使用して該化合物の
導電性が低下した場合は、再度アニール等の方法で導電性を回復させることにより再使用
できる。
It is known that carbon dioxide is reduced to carbon monoxide when passed over hot carbon, zinc, iron, etc., but carbon dioxide is a very stable compound and is about 2% monoxide at 2000 ° C. It is said that it only dissociates into carbon and oxygen. In the method of the present invention, depending on the heating temperature, it is almost 2
About 0% to 80% is reduced. Even if it is used repeatedly for the reduction of carbon dioxide, there is almost no deterioration of the conductive mayenite type compound (reduction of conduction electrons). However, if the conductivity of the compound decreases after repeated use, it can be conducted again by a method such as annealing. Can be reused by restoring sex.

[導電性マイエナイト型化合物の定義]
本発明において、「マイエナイト型化合物」とは、鉱物のマイエナイトそれ自体、マイエ
ナイト型岩石、及び鉱物のマイエナイト結晶と同型の結晶構造を有する複合酸化物をいう
。導電性マイエナイト型化合物の代表組成は、式[Ca24Al28644+(O2-2-x
-2x(0<x≦2)で示される。導電性マイエナイト型化合物は、例えば、焼結法で
製造したC12A7を、例えば、Ca又はTiの金属蒸気中で、1100℃付近でアニー
ルすることで得ることができる。導電性マイエナイト型化合物の製造方法自体は種々の方
法が公知であり、本発明では、これらの方法で得られた該化合物を適宜使用できる。
[Definition of conductive mayenite type compound]
In the present invention, the “mayenite-type compound” refers to a composite oxide having the same type of crystal structure as the mineral mayenite itself, the mayenite-type rock, and the mineral mayenite crystal. The representative composition of the conductive mayenite type compound is represented by the formula [Ca 24 Al 28 O 64 ] 4+ (O 2- ) 2-x (
e ) 2x (0 <x ≦ 2) The conductive mayenite type compound can be obtained, for example, by annealing C12A7 produced by a sintering method in the vicinity of 1100 ° C. in a metal vapor of Ca or Ti, for example. Various methods for producing a conductive mayenite type compound are known, and in the present invention, the compound obtained by these methods can be used as appropriate.

マイエナイト型化合物の結晶は内径0.4nm程の籠状の構造(ケージ)がその壁面を共
有し、三次元的に繋がることで構成されている。通常、マイエナイト型化合物のケージの
内部にはO2-などの負イオンが含まれているが、上記のアニールによってそれらを伝導電
子に置換することが可能である。アニール時間を長くすることにより、導電性マイエナイ
ト型化合物中の伝導電子濃度は多くなる。
The crystal of the mayenite type compound is constituted by a cage structure (cage) having an inner diameter of about 0.4 nm sharing its wall surface and three-dimensionally connecting. Usually, negative ions such as O 2− are contained inside the cage of the mayenite type compound, but it is possible to replace them with conduction electrons by the above-mentioned annealing. By increasing the annealing time, the conduction electron concentration in the conductive mayenite type compound increases.

Ti金属蒸気中でアニールする場合は、24時間程度アニールすれば、3mm厚の単結晶
マイエナイト型化合物でも、理論的最大の伝導電子濃度(C12A7の場合2.3×102
1cm-3)を有する導電性マイエナイト型化合物を得ることができる。また、化学量論組成
のマイエナイト型化合物の融液を還元雰囲気中で固化しても良い。還元雰囲気中の固化で
得られた導電性マイエナイト型化合物の伝導電子濃度は、1021cm-3未満である。
When annealing in Ti metal vapor, annealing is performed for about 24 hours, even if a single crystal mayenite type compound having a thickness of 3 mm is used, the theoretical maximum conduction electron concentration (2.3 × 10 2 in the case of C12A7).
A conductive mayenite type compound having 1 cm −3 ) can be obtained. Further, a melt of a mayenite type compound having a stoichiometric composition may be solidified in a reducing atmosphere. The conductive mayenite type compound obtained by solidification in a reducing atmosphere has a conduction electron concentration of less than 10 21 cm −3 .

また、Ar+イオンを高濃度にイオン打ち込みすることによっても作製できる。得られた
導電性マイエナイト型化合物中の伝導電子濃度は、光吸収帯の強度から求めることができ
る(12CaO・7Al23の場合2.8eV)。伝導電子濃度が小さいときは、電子ス
ピン共鳴吸収帯の強度からも伝導電子濃度を求めることができる。
It can also be produced by implanting Ar + ions at a high concentration. The conduction electron concentration in the obtained conductive mayenite type compound can be determined from the intensity of the light absorption band (2.8 eV in the case of 12CaO · 7Al 2 O 3 ). When the conduction electron concentration is low, the conduction electron concentration can be obtained from the intensity of the electron spin resonance absorption band.

導電性マイエナイト型化合物は、上記の代表組成の式を構成するCaの一部又は全てがL
i、Na、K、Mg、Sr、Ba、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、C
u、Ir、Ru、Rh、Ptからなる群から選ばれる少なくとも一種類以上の典型金属元
素、又は遷移金属元素で置換されていてもよい。また、この式を構成するAlの一部又は
全てがB、Ga、C、Si、Fe、Geからなる群から選ばれる少なくとも一種類以上の
典型金属元素、又は遷移金属元素で置換されていてもよい。さらに、上記の式を構成する
Oの一部又は全てがH、F、Cl、Br、Auからなる群から選ばれる少なくとも一種類
以上の典型元素又は金属元素で置換されていてもよい。
In the conductive mayenite type compound, a part or all of Ca constituting the formula of the above representative composition is L
i, Na, K, Mg, Sr, Ba, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, C
It may be substituted with at least one typical metal element selected from the group consisting of u, Ir, Ru, Rh, and Pt, or a transition metal element. Further, even if a part or all of Al constituting this formula is substituted with at least one kind of typical metal element or transition metal element selected from the group consisting of B, Ga, C, Si, Fe, Ge Good. Furthermore, part or all of O constituting the above formula may be substituted with at least one typical element or metal element selected from the group consisting of H, F, Cl, Br, and Au.

本発明の方法により、カルシウム、アルミニウム、酸素といったクラーク数上位の元素の
みで構成された安価で無毒性の化合物を用い、還元剤として高価な金属化合物や水素を用
いることなく、かつ、少ないエネルギー消費をもって、二酸化炭素を還元処理できる。ま
た、還元処理する二酸化炭素のガス圧を高圧にして該化合物に接触させなくても選択的に
化学吸着するので、二酸化炭素を高効率で分解することができる。また、100容積%の
高濃度の二酸化炭素はもとより、排出ガス、天然ガス、大気中等に含有される高濃度乃至
低濃度の二酸化炭素も選択的に化学吸着し高効率で還元処理できる。
By using the method of the present invention, an inexpensive and non-toxic compound composed only of elements having a higher Clark number such as calcium, aluminum, and oxygen, without using an expensive metal compound or hydrogen as a reducing agent, and less energy consumption The carbon dioxide can be reduced. Further, since the gas is selectively chemisorbed without bringing it into contact with the compound by increasing the gas pressure of the carbon dioxide to be reduced, carbon dioxide can be decomposed with high efficiency. Further, not only 100% by volume of high concentration carbon dioxide but also high concentration to low concentration carbon dioxide contained in exhaust gas, natural gas, air, etc. can be selectively chemisorbed and reduced with high efficiency.

実施例1におけるC182、C182及びOの脱離量の温度依存性を示すグラフ。 2 is a graph showing the temperature dependence of C 18 O 2 , C 18 O 2 and O desorption amounts in Example 1. FIG. 実施例3におけるC18Oの脱離量の温度依存性を示すグラフ。6 is a graph showing the temperature dependence of the amount of C 18 O desorption in Example 3. 各実施例、比較例において使用した試料ホルダーの概略とその使用形態を示す斜視図。The perspective view which shows the outline of the sample holder used in each Example and a comparative example, and its usage form.

以下、本発明の二酸化炭素の還元処理方法(以下、「本発明の方法」という)について詳
細に説明する。本発明の方法は、導電性マイエナイト型化合物を用い、二酸化炭素を一酸
化炭素に還元する方法である。
Hereinafter, the carbon dioxide reduction treatment method of the present invention (hereinafter referred to as “method of the present invention”) will be described in detail. The method of the present invention is a method of reducing carbon dioxide to carbon monoxide using a conductive mayenite type compound.

本発明の方法に用いる導電性マイエナイト型化合物は、粉末、固体焼結体、薄膜、固体単
結晶など、その形状はいずれでもよい。また、担体に担持されていてもよい。薄膜、固体
単結晶以外はマイエナイト型化合物を経由することなく、原料から直接導電性マイエナイ
ト型化合物を製造できる。また、原料として、マイエナイト型鉱物、マイエナイトを含有
するスラグや焼却灰等も使用できる。
The conductive mayenite type compound used in the method of the present invention may have any shape such as powder, solid sintered body, thin film, solid single crystal and the like. Further, it may be supported on a carrier. A conductive mayenite type compound can be produced directly from the raw material without passing through the mayenite type compound except for the thin film and the solid single crystal. In addition, mayenite type minerals, slag containing mayenite, incinerated ash, and the like can be used as raw materials.

粉末の作製は、化学当量組成の導電性マイエナイト型化合物の原料の粉末を還元雰囲気下
で加熱すればよい。また、固体焼結体の作製は、化学当量組成のマイエナイト型化合物の
原料粉末を還元雰囲気下で1300℃程度で加熱焼結し固化すれば良い。
The powder may be produced by heating the raw material powder of the conductive mayenite type compound having a chemical equivalent composition in a reducing atmosphere. The solid sintered body may be produced by heating and solidifying a mayenite type compound raw material powder having a chemical equivalent composition at about 1300 ° C. in a reducing atmosphere.

薄膜の作製は、マイエナイト型化合物の固体焼結体をターゲットに用い、パルスレーザー
堆積法(PLD)、スパッター法、プラズマ溶射法などによりMgO、Y3Al512など
の基板上に成膜したマイエナイト型化合物の薄膜を500℃以上で加熱しながら再度PL
Dによりマイエナイト型化合物薄膜を堆積して一体化させる。再度のPLDではプラズマ
化されたマイエナイト型化合物が還元剤として働き該薄膜を導電体化させる。
The thin film was formed on a substrate such as MgO, Y 3 Al 5 O 12 by pulse laser deposition (PLD), sputtering, plasma spraying, etc. using a solid sintered body of mayenite type compound as a target. PL again while heating the thin film of mayenite type compound above 500 ° C
A mayenite type compound thin film is deposited by D and integrated. In the PLD again, the plasma converted mayenite type compound acts as a reducing agent to convert the thin film into a conductor.

また、固体単結晶は、マイエナイト型化合物の原料粉末を1600℃程度で融解した融液
を引き上げること(CZ法)によりマイエナイト型化合物単結晶を作製し、該単結晶を真
空にしたガラス管中に金属Ca粉末又はTi粉末などと共に封入し還元雰囲気下で加熱す
ればよい。
In addition, the solid single crystal is prepared by forming a mayenite type compound single crystal by pulling up a melt obtained by melting the raw material powder of the mayenite type compound at about 1600 ° C. (CZ method), and placing the single crystal in a vacuumed glass tube. What is necessary is just to enclose with metal Ca powder or Ti powder etc., and to heat in a reducing atmosphere.

固体焼結体又は固体単結晶の導電性マイエナイト型化合物を粉末に加工することも可能で
ある。粉末加工は、乳鉢中での粉砕、ジェットミルによる粉砕などを用いることができる
。これらの方法により、伝導電子を1×1019cm-3以上含むマイエナイト型化合物を作
製する。
It is also possible to process a solid sintered body or a solid single crystal conductive mayenite type compound into a powder. For powder processing, pulverization in a mortar, pulverization with a jet mill, or the like can be used. By these methods, a mayenite type compound containing 1 × 10 19 cm −3 or more of conduction electrons is produced.

なお、作製法により粉末、固体焼結体、薄膜、固体単結晶に関わらずそれらの表面から伝
導電子が抜けて本来の導電性が失われていることがある。その場合は、真空、不活性ガス
中、又は還元雰囲気下において900℃以上〜該化合物の融点(1250℃)未満で加熱
し、最表面まで本来の導電性を回復させることが望ましい。
Note that, depending on the manufacturing method, conduction electrons may be lost from the surface of the powder, solid sintered body, thin film, solid single crystal, and the original conductivity may be lost. In that case, it is desirable to heat at 900 ° C. or higher to less than the melting point (1250 ° C.) of the compound in a vacuum, an inert gas, or a reducing atmosphere to restore the original conductivity to the outermost surface.

二酸化炭素は、反応器内や排出ガス流路中に設置した導電性マイエナイト化合物の粉末、
固体焼結体、薄膜、固体単結晶等に接触するように、乾燥空気中、乾燥酸素中、又は不活
性ガス中で供給する。供給する二酸化炭素を含有するガスを供給前に脱水処理してもよい
Carbon dioxide is a powder of conductive mayenite compound installed in the reactor and in the exhaust gas flow path,
It supplies in dry air, dry oxygen, or in an inert gas so that it may contact a solid sintered compact, a thin film, a solid single crystal, etc. A gas containing carbon dioxide to be supplied may be dehydrated before being supplied.

マイエナイト型化合物は大気中では、水の吸着が優先されてしまい、また、過剰な水分下
では化合物自体が分解してしまうので、二酸化炭素の化学吸着処理はできるだけ水分を含
有しない雰囲気、すなわち、水蒸気分圧10-3気圧程度以下の雰囲気である乾燥空気中、
乾燥酸素中、又は不活性ガス雰囲気中で行うのが好ましい。導電性マイエナイト型化合物
の表面に付着している不純物を除去したり、導電性を十分に回復させたりするために該化
合物を真空、不活性ガス中、又は還元性ガス雰囲気において900℃以上〜該化合物の融
点(1250℃)未満で加熱し、冷却した後に該化合物に二酸化炭素を化学吸着させるこ
とが好ましい。
Since the mayenite type compound is prioritized to adsorb water in the atmosphere, and the compound itself decomposes under excessive moisture, the chemical adsorption treatment of carbon dioxide is an atmosphere containing as little water as possible, that is, water vapor In dry air with an atmosphere of partial pressure of 10 -3 atmospheres or less,
It is preferable to carry out in dry oxygen or in an inert gas atmosphere. In order to remove impurities adhering to the surface of the conductive mayenite type compound or to sufficiently restore the conductivity, the compound is removed in a vacuum, an inert gas, or a reducing gas atmosphere at 900 ° C. or higher to It is preferable that the compound be chemically adsorbed with carbon dioxide after heating at a temperature lower than the melting point (1250 ° C.) of the compound and cooling.

次に、二酸化炭素を化学吸着した状態の該化合物を加熱することによって、二酸化炭素を
還元し、一酸化炭素を該化合物から脱離させる。加熱温度は200℃以上〜該化合物の融
点(1250℃)未満とする。COの脱離ピークが最大値になる温度は700℃程度なの
で、加熱温度は200℃〜800℃がより好ましい。加熱雰囲気は、乾燥空気中、乾燥酸
素中、又は不活性ガス雰囲気中でよい。500℃未満であれば水分を含有していない乾燥
雰囲気が好ましい。500℃以上では乾燥酸素雰囲気では伝導電子が酸素で置換されるた
め、不活性ガス雰囲気中が好ましい。
Next, by heating the compound in a state in which carbon dioxide is chemisorbed, the carbon dioxide is reduced and carbon monoxide is desorbed from the compound. The heating temperature is 200 ° C. or higher and lower than the melting point (1250 ° C.) of the compound. Since the temperature at which the CO desorption peak reaches a maximum value is about 700 ° C., the heating temperature is more preferably 200 ° C. to 800 ° C. The heating atmosphere may be in dry air, dry oxygen, or an inert gas atmosphere. If it is less than 500 degreeC, the dry atmosphere which does not contain a water | moisture content is preferable. Above 500 ° C., the conductive electrons are replaced with oxygen in a dry oxygen atmosphere, and therefore an inert gas atmosphere is preferable.

加熱の際の該化合物の昇温の方法は特に限定されず、ヒーター、赤外ランプ、通電加熱等
、処理装置に適した方法を選択すればよい。昇温速度が遅いほど二酸化炭素の還元効率は
上昇する。例えば、下記の実施例の結果では、昇温速度が5K/秒のときと比較して0.
5K/秒では二酸化炭素の分解効率は30%から80%に上昇する。
The method for raising the temperature of the compound during heating is not particularly limited, and a method suitable for the treatment apparatus such as a heater, an infrared lamp, and electric heating may be selected. The reduction efficiency of carbon dioxide increases as the rate of temperature rise is slower. For example, in the results of the following examples, the temperature rise rate is 0. 0 compared to when the rate of temperature increase is 5 K / second.
At 5 K / sec, the decomposition efficiency of carbon dioxide increases from 30% to 80%.

もちろん、二酸化炭素を流しながら該化合物をある温度で保持すれはその温度での該化合
物への化学吸着と一酸化炭素への還元による脱離が同時に起こる。したがって、該化合物
を200℃以上、該化合物の融点未満に加熱し、乾燥空気中、乾燥酸素中、又は不活性ガ
ス雰囲気中で、二酸化炭素含有ガス、又は二酸化炭素を該化合物に接触させることによっ
て、二酸化炭素を一酸化炭素に還元させる方法も用いられる。ある温度に保持するという
ことは昇温速度を究極に遅くする(0K/sec)ということになる。COの脱離ピークが最大値
になる温度は700℃程度なので、二酸化炭素の分解開始温度の200℃以上、800℃
以下の範囲で保持するのが最も好ましい。したがって、この場合、200℃〜1000℃
程度の高温排ガスを還元処理するのに適している。
Of course, if the compound is held at a certain temperature while flowing carbon dioxide, chemisorption to the compound at that temperature and desorption by reduction to carbon monoxide occur simultaneously. Therefore, by heating the compound to 200 ° C. or higher and lower than the melting point of the compound, contacting the compound with carbon dioxide-containing gas or carbon dioxide in dry air, dry oxygen, or inert gas atmosphere. A method of reducing carbon dioxide to carbon monoxide is also used. Holding at a certain temperature means that the rate of temperature rise is slowed down (0K / sec). Since the temperature at which the CO desorption peak reaches a maximum value is about 700 ° C., the decomposition start temperature of carbon dioxide is 200 ° C. or higher and 800 ° C.
Most preferably, the following range is maintained. Therefore, in this case, 200 ° C to 1000 ° C
It is suitable for reducing high temperature exhaust gas.

導電性マイエナイト化合物へ供給する二酸化炭素のガスの温度は実用上は室温が望ましい
が該化合物の融点(1250℃)未満であればよい。−78.5℃以下だと導電性マイエ
ナイト化合物への二酸化炭素の吸着層が多層化してしまい、該化合物と新たに吸着すべき
二酸化炭素が接触しにくくなる。一方、二酸化炭素のガスの温度が700℃〜1250℃
の高温では二酸化炭素の吸着量が低下する。したがって、好ましくは室温〜700℃、よ
り好ましくは室温で大気圧の二酸化炭素を吸着させる。吸着させる二酸化炭素のガスの圧
力は、通常、高圧になる程、吸着の効率はよくなるが該化合物の場合は標準の大気圧(1
00kPa)又は大気圧未満でも十分な吸着能を有している。
The temperature of the carbon dioxide gas supplied to the conductive mayenite compound is preferably room temperature in practice, but may be lower than the melting point (1250 ° C.) of the compound. When the temperature is −78.5 ° C. or lower, the carbon dioxide adsorption layer on the conductive mayenite compound becomes multi-layered, and it becomes difficult for the compound and carbon dioxide to be newly adsorbed to come into contact with each other. Meanwhile, the temperature of carbon dioxide gas is 700 ° C to 1250 ° C.
At high temperatures, the amount of carbon dioxide adsorbed decreases. Accordingly, carbon dioxide at atmospheric pressure is preferably adsorbed at room temperature to 700 ° C., more preferably at room temperature. The pressure of the carbon dioxide gas to be adsorbed usually increases as the pressure increases, but in the case of the compound, the standard atmospheric pressure (1
00 kPa) or less than atmospheric pressure, it has sufficient adsorption capacity.

以下に、実施例に基づいて、本発明をより詳細に説明する。なお、実施例では、不確定な
要素を可能な限り排除するため、及び分解による生成物の同定に四重極質量分析装置を使
用しているので真空チャンバーを反応容器として使用した。
Below, based on an Example, this invention is demonstrated in detail. In the examples, in order to eliminate uncertain elements as much as possible, and because a quadrupole mass spectrometer is used for identification of products by decomposition, a vacuum chamber was used as a reaction vessel.

<導電性マイエナイト型化合物の準備>
伝導電子濃度が約2×1021cm-3の導電性マイエナイト型化合物C12A7:e−の板
を準備した。このC12A7:e−の板は以下の方法で製造した。チョコラルスキー法で
作成したC12A7単結晶インゴットから、13mm×3mm×0.5mmの板を切り出
し、5gのTi金属粉末と共に、石英管中に真空封入した。該石英管を電気炉に入れ、1
100℃に24時間保持した後、空冷した。得られたC12A7:e−の板の伝導電子濃
度は、該C12A7:e−の板の表面の光反射スペクトルを光吸収スペクトルに変換し、
2.8eVの吸収バンドの強度から求めた。
<Preparation of conductive mayenite type compound>
A plate of the conductive mayenite type compound C12A7: e- having a conduction electron concentration of about 2 × 10 21 cm −3 was prepared. The C12A7: e- plate was produced by the following method. A 13 mm × 3 mm × 0.5 mm plate was cut out from a C12A7 single crystal ingot prepared by the chocolate ski method, and was vacuum-sealed in a quartz tube together with 5 g of Ti metal powder. Place the quartz tube in an electric furnace, 1
After maintaining at 100 ° C. for 24 hours, it was air-cooled. The conduction electron concentration of the obtained C12A7: e- plate converts the light reflection spectrum of the surface of the C12A7: e- plate into a light absorption spectrum,
It calculated | required from the intensity | strength of the absorption band of 2.8 eV.

得られたC12A7:e−の板を80%のリン酸水溶液で10秒間化学エッチングした後
、蒸留水で5秒間洗浄しリン酸水溶液を取り除いた。その後、無水メタノール及び無水ア
セトンでそれぞれ5分間超音波洗浄した。
The obtained C12A7: e- plate was chemically etched with 80% phosphoric acid aqueous solution for 10 seconds and then washed with distilled water for 5 seconds to remove the phosphoric acid aqueous solution. Then, ultrasonic cleaning was performed for 5 minutes each with anhydrous methanol and anhydrous acetone.

次に、図3に示すように、試料(C12A7:e−の板)1を通電加熱が行える試料ホル
ダーに取り付け、反応容器(図示せず)中に導入した。ここで、通電加熱が行える試料ホ
ルダーとは上記試料1の両端を機械的に固定するものである。その固定は2枚の金属片2
で試料1を挟み、ネジ3で締め付ける構造になっており、この金属片2は試料1に電源4
から通電する際の電極としての役割も持っている。
Next, as shown in FIG. 3, the sample (C12A7: e-plate) 1 was attached to a sample holder capable of conducting heating and introduced into a reaction vessel (not shown). Here, the sample holder capable of conducting heating is one that mechanically fixes both ends of the sample 1. The fixing is two pieces of metal 2
The sample 1 is sandwiched between and clamped with a screw 3, and the metal piece 2 is connected to the sample 1 with a power source 4.
It also has a role as an electrode when energizing.

その後、真空ポンプを用いて反応容器の真空度を1×10-5Pa以下にして、C12A7
:e−の板に電流を流し緩やかに1K/秒で昇温することで、C12A7:e−の板及び
試料ホルダーに大気中で吸着した不純物を取り除いた。最終的に10Aの電流をC12A
7:e−の板に流し1000℃で10分間加熱保持し、その後−5K/秒となるように電
流を調節し、室温まで冷却した。この加熱保持により板の最表面までC12A7:e−本
来の導電性を回復させた。
Thereafter, the vacuum degree of the reaction vessel is reduced to 1 × 10 −5 Pa or less using a vacuum pump, and C12A7
: Impurities adsorbed on the C12A7: e-plate and the sample holder in the air were removed by passing a current through the e-plate and gradually raising the temperature at 1 K / sec. Eventually 10A current is C12A
7: Poured onto an e-plate, heated and held at 1000 ° C. for 10 minutes, then adjusted the current to −5 K / sec and cooled to room temperature. By this heating and holding, C12A7: e-original conductivity was recovered to the outermost surface of the plate.

<導電性マイエナイト型化合物による二酸化炭素の吸着>
次に、室温にて上記のC12A7:e−の板が設置してある反応容器にリーク弁を介して
二酸化炭素を導入し、C12A7:e−の板に二酸化炭素を吸着させた後、再び真空ポン
プを用いて反応容器内に残留した二酸化炭素を除去して二酸化炭素の吸着量を見積もった
。2L(Langmuir:1×10-6torrのガス雰囲気に1秒間暴露することを1
Lとする単位)以上の二酸化炭素の導入で最小見積もりで試料の全表面原子数の1/30
吸着した。
<Adsorption of carbon dioxide by conductive mayenite type compound>
Next, carbon dioxide is introduced through a leak valve into the reaction vessel in which the C12A7: e− plate is installed at room temperature, and the carbon dioxide is adsorbed on the C12A7: e− plate, and then vacuumed again. Carbon dioxide remaining in the reaction vessel was removed using a pump, and the amount of carbon dioxide adsorbed was estimated. 2 L (Langmuir: 1 × 10 −6 torr exposure to a gas atmosphere for 1 second
1/30 of the total surface atoms of the sample with a minimum estimate by introducing more carbon dioxide
Adsorbed.

<導電性マイエナイト型化合物からの二酸化炭素と一酸化炭素の脱離>
反応容器内に残留した二酸化炭素を除去した後、C12A7:e−の板を通電加熱し、0
.5K/秒で1000℃まで昇温して、脱離してくるガス種及び相対量を四重極質量分析
計で測定し、また、反応容器内の真空度の変化から脱離してくるガスの絶対量を測定し、
それぞれ、C12A7:e−の板の加熱温度との関係を調べた。
<Desorption of carbon dioxide and carbon monoxide from conductive mayenite type compounds>
After the carbon dioxide remaining in the reaction vessel was removed, the C12A7: e- plate was energized and heated.
. The temperature is raised to 1000 ° C. at 5 K / second, the desorbed gas species and relative amounts are measured with a quadrupole mass spectrometer, and the absolute gas desorbed from the change in the degree of vacuum in the reaction vessel Measure the quantity,
The relationship with the heating temperature of the C12A7: e- plate was examined.

C12A7:e−の板の温度が90℃付近から二酸化炭素(CO2)、130℃付近から
一酸化炭素(CO)及び原子状酸素(O)の脱離を確認した。CO及びOは1000℃ま
での昇温で脱離が完了しなかったが1000℃までの脱離量の相対比はCO2:CO:O
=1:8:2であり、脱離ガスの絶対量は脱離ガス分子の総数で約3×1012個(約1×
1013個/cm2)であった。
The desorption of carbon dioxide (CO 2 ) was confirmed when the temperature of the C12A7: e- plate was around 90 ° C., and carbon monoxide (CO) and atomic oxygen (O) were observed around 130 ° C. CO and O did not complete desorption at a temperature up to 1000 ° C., but the relative ratio of the desorption amount up to 1000 ° C. was CO 2 : CO: O
= 1: 8: 2, and the absolute amount of desorbed gas is about 3 × 10 12 (about 1 ×
10 13 pieces / cm 2 ).

なお、反応容器は超高真空(〜1×10-6Pa以下)にしても排気が追いつかないCO2
とCOが残留してしまうので、単にそれらが吸着しただけではないことを確認するために
、上記と同様の操作を二酸化炭素を構成する酸素を安定同位体である18Oで置換したC18
2で行ったところ、脱離ガスの成分がC182、C18O、18Oに変化した。図1は、0.
5K/秒で1000℃まで昇温した際のC182、C18O、18Oの脱離量の温度依存性で
ある。
In addition, even if the reaction vessel is in an ultra-high vacuum (˜1 × 10 −6 Pa or less), the exhaust does not catch up with CO 2.
Because CO may remain with, C 18 simply because they confirm that not only adsorbed, and the similar procedure described above was replaced with 18 O oxygen stable isotopes constituting carbon dioxide
When performed with O 2 , the desorbed gas component changed to C 18 O 2 , C 18 O, and 18 O. FIG.
This is the temperature dependence of the amount of C 18 O 2 , C 18 O, and 18 O desorbed when the temperature is raised to 1000 ° C. at 5 K / sec.

反応容器に導入する二酸化炭素を低濃度のものに変更した以外は実施例1と同じ条件で
実施した。反応容器にリーク弁を介して二酸化炭素を1容積%含む乾燥酸素、又は二酸化
炭素を1容積%含む乾燥窒素を導入し、C12A7:e−の板に二酸化炭素を吸着させた
後、真空ポンプを用いて反応容器に残留する該乾燥酸素又は該乾燥窒素を除去した。
It implemented on the same conditions as Example 1 except having changed the carbon dioxide introduce | transduced into a reaction container into a low concentration thing. After introducing dry oxygen containing 1% by volume of carbon dioxide or dry nitrogen containing 1% by volume of carbon dioxide into the reaction vessel through a leak valve, and adsorbing carbon dioxide on the C12A7: e- plate, Used to remove the dry oxygen or the dry nitrogen remaining in the reaction vessel.

二酸化炭素を1容積%含む乾燥酸素、又は二酸化炭素を1容積%含む乾燥窒素のいずれの
気体を導入した場合においても、C12A7:e−の温度が90℃付近から二酸化炭素(
CO2)、130℃付近から一酸化炭素(CO)及び原子状酸素(O)の脱離を確認した
In the case of introducing either dry oxygen containing 1% by volume of carbon dioxide or dry nitrogen containing 1% by volume of carbon dioxide, the temperature of C12A7: e-
CO 2 ), desorption of carbon monoxide (CO) and atomic oxygen (O) from around 130 ° C. was confirmed.

実施例1において、加熱温度の上限を1000℃から500℃に変更してCO2吸着−昇
温脱離(5K/秒)の操作を10回繰り返したところ、500℃までの二酸化炭素と一酸
化炭素の脱離量の相対比、及び脱離ガスの絶対量に際立った変化は見られなかった(図2
参照)。図2に、1回目と10回目のスペクトルのグラフを示す。ここで、10回目は9
00℃まで上昇させており、スペクトルはその一部を示している。
In Example 1, when the upper limit of the heating temperature was changed from 1000 ° C. to 500 ° C. and the operation of CO 2 adsorption-temperature desorption (5 K / second) was repeated 10 times, carbon dioxide and monoxide up to 500 ° C. There was no significant change in the relative ratio of the amount of desorbed carbon and the absolute amount of desorbed gas (FIG. 2).
reference). FIG. 2 shows graphs of the first and tenth spectra. Here, the 10th time is 9
The temperature is raised to 00 ° C., and the spectrum shows a part of the spectrum.

実施例1の導電性C12A7:e−の板に代えて粉末を用いた。
<導電性マイエナイト型化合物の準備>
CaCO3及びAl23の各粉末をCaとAlの割合が11:7となるように混合し、ア
ルミナ坩堝中にて1300℃で6時間加熱した。得られた粉末をシリカガラス管内に挿入
し1×10-4Paの真空中で1100℃で15時間加熱した。これにより得た粉末3gを
、シリカガラス管内に金属Ca粉末0.18gとともに挿入し、700℃で15時間加熱
することにより内部を金属Ca蒸気雰囲気として、伝導電子濃度が約2×1021cm-3
C12A7:e−の粉末を得た。得られたC12A7:e−粉末の伝導電子濃度は、拡散
反射スペクトルを光吸収スペクトルに変換し、2.8eVの吸収バンドの強度から求めた
Instead of the conductive C12A7: e- plate of Example 1, powder was used.
<Preparation of conductive mayenite type compound>
Each powder of CaCO 3 and Al 2 O 3 was mixed so that the ratio of Ca and Al was 11: 7, and heated in an alumina crucible at 1300 ° C. for 6 hours. The obtained powder was inserted into a silica glass tube and heated at 1100 ° C. for 15 hours in a vacuum of 1 × 10 −4 Pa. 3 g of the powder thus obtained was inserted into a silica glass tube together with 0.18 g of metal Ca powder, and heated at 700 ° C. for 15 hours to make the inside a metal Ca vapor atmosphere, and the conduction electron concentration was about 2 × 10 21 cm −. 3 C12A7: e- powder was obtained. The conduction electron concentration of the obtained C12A7: e-powder was obtained from the intensity of the absorption band of 2.8 eV by converting the diffuse reflection spectrum into a light absorption spectrum.

次に、C12A7:e−粉末をTaで作製した坩堝に入れ、真空中に設置したプレート型
アルミナセラミックスヒーター(坂口電熱(株)製MS−2)上に設置した。その後、ヒ
ーターに通電し、真空度が1×10-5Pa以上にならないように350℃で24時間加熱
することで、C12A7:e−粉末、坩堝及びヒーターに大気中で付着したガスを脱離さ
せた。
Next, C12A7: e-powder was placed in a crucible made of Ta, and placed on a plate-type alumina ceramic heater (MS-2 manufactured by Sakaguchi Electric Heat Co., Ltd.) placed in a vacuum. After that, the heater is energized and heated at 350 ° C. for 24 hours so that the degree of vacuum does not become 1 × 10 −5 Pa or more, thereby desorbing C12A7: e-powder, crucible, and gas adhering to the heater in the atmosphere. I let you.

<導電性マイエナイト型化合物による二酸化炭素の吸着>
次に、室温にて上記の反応容器にリーク弁を介して二酸化炭素を導入し、C12A7:e
−の粉末に二酸化炭素を吸着させた後、真空ポンプを用いて反応容器内に残留した二酸化
炭素を除去した。
<Adsorption of carbon dioxide by conductive mayenite type compound>
Next, carbon dioxide was introduced into the reaction vessel through a leak valve at room temperature, and C12A7: e
After carbon dioxide was adsorbed to the powder of −, carbon dioxide remaining in the reaction vessel was removed using a vacuum pump.

<導電性マイエナイト型化合物からの二酸化炭素と一酸化炭素の脱離>
その後、再びヒーターに通電しC12A7:e−の粉末を加熱し、300℃まで昇温して
、脱離してくるガス種を四重極質量分析計で測定したところ、一酸化炭素の脱離を確認し
た。
<Desorption of carbon dioxide and carbon monoxide from conductive mayenite type compounds>
Thereafter, the heater was energized again, the C12A7: e- powder was heated, the temperature was raised to 300 ° C., and the desorbed gas species was measured with a quadrupole mass spectrometer. confirmed.

[比較例1]
実施例1のC12A7:e−の板の代わりに、電子を含まない化学当量組成のC12A7
単結晶の板を試料として用いて実施例1と同様の条件で操作を行った。実施例1と同様に
二酸化炭素の吸着が観察された。二酸化炭素を吸着した試料を加熱する際は、電子を含ま
ないC12A7単結晶は通電加熱が出来ないのでシリコン単結晶とC12A7単結晶を接
合してヒーターとして通電した。C12A7:e−と同等のCO2(C182)の脱離が観
測されたがCO(C18O)の脱離は観測されなかった。
[Comparative Example 1]
Instead of the C12A7: e- plate of Example 1, C12A7 having a chemical equivalent composition containing no electrons
The operation was performed under the same conditions as in Example 1 using a single crystal plate as a sample. Carbon dioxide adsorption was observed as in Example 1. When heating the sample having adsorbed carbon dioxide, the C12A7 single crystal containing no electrons cannot be heated by heating, so the silicon single crystal and the C12A7 single crystal were joined and energized as a heater. The elimination of CO 2 (C 18 O 2 ) equivalent to C12A7: e- was observed, but no elimination of CO (C 18 O) was observed.

[比較例2]
比較例1のC12A7単結晶の板の代わりに、電気伝導度が小さい1×1018cm-3の電
子を含む化学当量組成のC12A7薄膜試料を用いて比較例1と同様の条件で操作を行っ
た。実施例1と同様に二酸化炭素の吸着が観察された。二酸化炭素を吸着した試料を加熱
すると実施例1と同等のCO2(C182)の脱離が観測されたがCO(C18O)の脱離は
観測されなかった。
[Comparative Example 2]
In place of the C12A7 single crystal plate of Comparative Example 1, a C12A7 thin film sample having a chemical equivalent composition containing 1 × 10 18 cm −3 electrons with low electrical conductivity was used and operated under the same conditions as in Comparative Example 1. It was. Carbon dioxide adsorption was observed as in Example 1. When the sample on which carbon dioxide had been adsorbed was heated, CO 2 (C 18 O 2 ) desorption equivalent to that in Example 1 was observed, but no CO (C 18 O) desorption was observed.

本発明の方法は、カルシウム、アルミニウム、酸素といったクラーク数上位の元素のみか
らなる安価な無毒性の化合物を繰り返し使用し、金属化合物や水素等の還元剤を使用する
ことなく、二酸化炭素を還元し、高効率で一酸化炭素を生成することを可能とする。さら
に、本発明の方法は、二酸化炭素が排気ガスや大気などに混入している場合でも選択的に
二酸化炭素を化学吸着して、還元できることから二酸化炭素を含有する様々なガスに適用
できる。また、一酸化炭素は、燃料やC1化学の重要な原料化合物であるので、本発明の
方法は、二酸化炭素排出量の削減以外にも二酸化炭素の資源化に利用できる。
The method of the present invention repeatedly uses an inexpensive non-toxic compound consisting only of elements having a higher Clark number such as calcium, aluminum and oxygen, and reduces carbon dioxide without using a reducing agent such as a metal compound or hydrogen. This makes it possible to produce carbon monoxide with high efficiency. Furthermore, the method of the present invention can be applied to various gases containing carbon dioxide because it can be selectively chemisorbed and reduced even when carbon dioxide is mixed in exhaust gas or the atmosphere. In addition, since carbon monoxide is an important raw material compound for fuel and C1 chemistry, the method of the present invention can be used for recycling carbon dioxide in addition to reducing carbon dioxide emissions.

Claims (5)

1×1019/cm3以上の伝導電子を有する導電性マイエナイト型化合物からなることを
特徴とする二酸化炭素の吸着還元剤。
A carbon dioxide adsorption reducing agent comprising a conductive mayenite type compound having conduction electrons of 1 × 10 19 / cm 3 or more.
前記導電性マイエナイト型化合物の形状が、粉末、固体焼結体、薄膜、又は固体単結晶で
あることを特徴とする請求項1記載の吸着還元剤。
The adsorptive reducing agent according to claim 1, wherein the shape of the conductive mayenite type compound is a powder, a solid sintered body, a thin film, or a solid single crystal.
1×10 19 /cm 3 以上の伝導電子を有する導電性マイエナイト型化合物を室温に保持す
るか、200℃以下に加熱し、乾燥空気中、乾燥酸素中、又は不活性ガス雰囲気中で、二
酸化炭素含有ガス、又は二酸化炭素を該化合物に接触させて二酸化炭素を吸着させ、次い
で、二酸化炭素を吸着した状態の該化合物を200℃以上、該化合物の融点未満に加熱す
ることによって、二酸化炭素を一酸化炭素に還元して該化合物から脱離させることを特徴
とする二酸化炭素の還元方法。
A conductive mayenite type compound having a conduction electron of 1 × 10 19 / cm 3 or more is kept at room temperature or heated to 200 ° C. or less, and is carbon dioxide in dry air, dry oxygen, or an inert gas atmosphere. Carbon dioxide is adsorbed by bringing the compound gas or carbon dioxide into contact with the compound to adsorb carbon dioxide, and then heating the compound in a state where carbon dioxide has been adsorbed to 200 ° C. or higher and lower than the melting point of the compound. A method for reducing carbon dioxide, comprising reducing to carbon oxide and desorbing from the compound.
1×10 19 /cm 3 以上の伝導電子を有する導電性マイエナイト型化合物を200℃以上
、該化合物の融点未満に加熱し、乾燥空気中、乾燥酸素中、又は不活性ガス雰囲気中で、
二酸化炭素含有ガス、又は二酸化炭素を該化合物に接触させることによって、吸着と同時
に二酸化炭素を一酸化炭素に還元して該化合物から脱離させることを特徴とする二酸化炭
素の還元方法。
A conductive mayenite type compound having a conduction electron of 1 × 10 19 / cm 3 or more is heated to 200 ° C. or higher and lower than the melting point of the compound, and is dried in dry air, in dry oxygen, or in an inert gas atmosphere.
A method for reducing carbon dioxide, comprising bringing a carbon dioxide-containing gas or carbon dioxide into contact with the compound to reduce carbon dioxide to carbon monoxide and desorbing the compound simultaneously with adsorption.
前記の吸着及び/又は還元を大気圧下で行うことを特徴とする請求項3又は4記載の二酸
化炭素の還元方法。
The carbon dioxide reduction method according to claim 3 or 4, wherein the adsorption and / or reduction is performed under atmospheric pressure.
JP2010167366A 2010-07-26 2010-07-26 Carbon dioxide adsorption reducing agent and reduction method Active JP5530288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010167366A JP5530288B2 (en) 2010-07-26 2010-07-26 Carbon dioxide adsorption reducing agent and reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010167366A JP5530288B2 (en) 2010-07-26 2010-07-26 Carbon dioxide adsorption reducing agent and reduction method

Publications (2)

Publication Number Publication Date
JP2012025636A JP2012025636A (en) 2012-02-09
JP5530288B2 true JP5530288B2 (en) 2014-06-25

Family

ID=45779026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010167366A Active JP5530288B2 (en) 2010-07-26 2010-07-26 Carbon dioxide adsorption reducing agent and reduction method

Country Status (1)

Country Link
JP (1) JP5530288B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5861702B2 (en) * 2011-05-13 2016-02-16 旭硝子株式会社 Process for producing conductive mayenite compound
JP5617865B2 (en) * 2012-04-05 2014-11-05 株式会社豊田中央研究所 Solid electrolyte
KR101553579B1 (en) * 2012-05-02 2015-09-17 할도르 토프쉐 에이/에스 Process for the procuction of chemical compounds from carbon dioxide
CN104583129B (en) 2012-08-30 2016-09-07 国立大学法人东京工业大学 The manufacture method of conductive mayenite compound powder
KR102159678B1 (en) 2012-09-20 2020-09-24 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 Hydrogen generation catalyst and method for producing hydrogen
CN104684867B (en) * 2012-09-28 2016-08-24 旭硝子株式会社 The manufacture method of the electric conductivity mayenite compound of high electron density
CN104684868B (en) * 2012-09-28 2017-07-07 旭硝子株式会社 The manufacture method of the electric conductivity mayenite compound of high electron density
JP2016013927A (en) * 2012-11-14 2016-01-28 旭硝子株式会社 Method for producing conductive mayenite compound
JP6393939B2 (en) * 2014-11-07 2018-09-26 大陽日酸株式会社 Oxygen stable isotope concentration measuring method and oxygen stable isotope concentration measuring apparatus
CN111886365B (en) * 2018-03-29 2022-10-21 国立研究开发法人科学技术振兴机构 Electrolytic cell and electrolytic device
CN109433199B (en) * 2018-10-22 2020-10-13 武汉大学 Ruthenium-based catalyst for carbon dioxide reduction and preparation method and application thereof
EP4206130A1 (en) * 2021-09-08 2023-07-05 National Institute Of Advanced Industrial Science and Technology Carbon monoxide production method and device used therefor
WO2023237464A1 (en) * 2022-06-08 2023-12-14 Universiteit Antwerpen Apparatus and method for carbon dioxide conversion

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI283234B (en) * 2004-02-13 2007-07-01 Asahi Glass Co Ltd Method for preparing electroconductive Mayenite type compound
KR101243576B1 (en) * 2005-05-30 2013-03-20 도오쿄 인스티튜드 오브 테크놀로지 Process for producing conductive mayenite compound

Also Published As

Publication number Publication date
JP2012025636A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JP5530288B2 (en) Carbon dioxide adsorption reducing agent and reduction method
RU2551383C2 (en) Ammonia synthesis catalyst and ammonia synthesis method
CN107376825B (en) Hexagonal boron nitride material and preparation method and application thereof
JP4833221B2 (en) Method for producing metallic electrically conductive 12CaO.7Al2O3 compound
Hagen et al. Low-energy electron diffraction, Auger electron spectroscopy, and thermal desorption studies of chemisorbed CO and O2 on the (111) and stepped [6 (111)×(100)] iridium surfaces
WO2014045780A1 (en) Hydrogen generation catalyst and method for producing hydrogen
JP2014055110A (en) Method for producing microporous carbonaceous material
US11447391B2 (en) Method of growing a graphene coating or carbon nanotubes on a catalytic substrate
Yáng et al. Influence of CO2 on Ba0. 2Sr0. 8Co0. 8Fe0. 2O3− δ at elevated temperatures
Xinhe et al. TDS and XPS studies of the adsorption of O2 on electrolytic silver
CN107161960B (en) A kind of high pressure vapor prepares the method and apparatus of boron nitride spherical powder
TW201008633A (en) Removal of impurities from hydrogen-containing materials
JP2018131351A (en) Method for recovering co2 in air to separate carbon
KR101273495B1 (en) Tuning method of interlayer spacing in graphene oxide composites for hydrogen storage
WO2015133240A1 (en) Mayenite-type compound containing imide anion, and method for producing same
Guan et al. An effect of crucible volume on the microstructure and Photocatalytic activity of the prepared g-C3N4
CA2325262C (en) Highly activated hydrogen containing material and method for producing the material
Paik et al. Catalytic effect of A TiO 3 (A= Sr, Ba) on ammonia decomposition during mechanical milling
KR20130052245A (en) Manufacturing of graphene nanosheet for carbon dioxide adsorbent
US9908782B2 (en) Method for synthesis of boron suboxide
JP4823750B2 (en) Method for producing gas-adsorbing substance
KR101960337B1 (en) Method for removing carbon dioxide using nano-zeolite supported with Fe ion(Ⅲ)
JPWO2009069561A1 (en) Gas adsorbing material and manufacturing method thereof
JP4426244B2 (en) Carbon nanotube production method and purification method
Sakka et al. Characterization of degraded surfaces of Al and AlN ultrafine powders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140418

R150 Certificate of patent or registration of utility model

Ref document number: 5530288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250