JP5526905B2 - Method for producing conductive oxide sintered body - Google Patents
Method for producing conductive oxide sintered body Download PDFInfo
- Publication number
- JP5526905B2 JP5526905B2 JP2010065885A JP2010065885A JP5526905B2 JP 5526905 B2 JP5526905 B2 JP 5526905B2 JP 2010065885 A JP2010065885 A JP 2010065885A JP 2010065885 A JP2010065885 A JP 2010065885A JP 5526905 B2 JP5526905 B2 JP 5526905B2
- Authority
- JP
- Japan
- Prior art keywords
- zno
- powder
- sintered body
- mixed
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 187
- 239000000843 powder Substances 0.000 claims description 111
- 239000011787 zinc oxide Substances 0.000 claims description 94
- 239000002245 particle Substances 0.000 claims description 43
- 239000013078 crystal Substances 0.000 claims description 31
- 238000005245 sintering Methods 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 24
- 238000001354 calcination Methods 0.000 claims description 20
- 239000012298 atmosphere Substances 0.000 claims description 18
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 10
- 229910052738 indium Inorganic materials 0.000 claims description 9
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 claims description 3
- 229910001195 gallium oxide Inorganic materials 0.000 claims description 3
- 238000002156 mixing Methods 0.000 description 29
- 239000010408 film Substances 0.000 description 18
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 17
- 238000004544 sputter deposition Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 239000002994 raw material Substances 0.000 description 8
- 238000010298 pulverizing process Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 239000000654 additive Substances 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000011268 mixed slurry Substances 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000000227 grinding Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 229910052733 gallium Inorganic materials 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000002612 dispersion medium Substances 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 2
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000004438 BET method Methods 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000012856 weighed raw material Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Physical Vapour Deposition (AREA)
Description
本発明は導電性酸化物焼結体の製造方法に関し、特に酸化物半導体膜をスパッタリングで形成するためのターゲットとして好ましい導電性酸化物焼結体の製造方法に関する。 The present invention relates to a method for producing a conductive oxide sintered body, and more particularly to a method for producing a conductive oxide sintered body that is preferable as a target for forming an oxide semiconductor film by sputtering.
液晶表示装置、薄膜EL(エレクトロルミネッセンス)表示装置、有機EL表示装置などにおいて、薄膜トランジスタ(TFT)のチャネル層として、従来では主として非晶質シリコン膜が使用されてきた。 Conventionally, an amorphous silicon film has been mainly used as a channel layer of a thin film transistor (TFT) in a liquid crystal display device, a thin film EL (electroluminescence) display device, an organic EL display device and the like.
しかし、近年では、そのような半導体膜として、In−Ga−Zn系複合酸化物(一般にIGZOと略称される)を主成分とする非晶質半導体膜が、非晶質シリコン膜に比べてキャリヤの移動度が大きいという利点から注目されている(例えば、特許文献1の特開2008−199005号公報参照)。この特許文献1においては、非晶質酸化物半導体膜が、ターゲットを使用するスパッタリング法によって形成されることが開示されている。そして、そのターゲットは、導電性を示す酸化物粉末の焼結体である。 However, in recent years, as such a semiconductor film, an amorphous semiconductor film containing an In—Ga—Zn-based composite oxide (generally abbreviated as IGZO) as a main component is used as a carrier compared to an amorphous silicon film. Has attracted attention because of its high mobility (see, for example, Japanese Patent Application Laid-Open No. 2008-199005 of Patent Document 1). This Patent Document 1 discloses that an amorphous oxide semiconductor film is formed by a sputtering method using a target. And the target is the sintered compact of the oxide powder which shows electroconductivity.
IGZO焼結体の従来の製造方法では、In2O3とGa2O3とZnOの粉体を混合して仮焼した後に粉砕し、その粉砕された粉末から作製された成形体を焼結している。または、In2O3とGa2O3とZnOの粉体を混合した後に成形体を作製し、その成形体が焼結される。これらの製造方法の焼結過程では、In2O3、Ga2O3およびZnOが相互に反応しながら緻密化していくことになり、4種類の粉体の組合せ(In2O3とGa2O3;Ga2O3とZnO;In2O3とZnO;およびIn2O3とGa2O3とZnO)の反応が複雑に入り組んだ過程を経て焼結体が形成されることになる。したがって、同じ条件で導電性酸化物の焼結を行っても、異種粉体同士の接し方まで揃えなければ、所望の結晶相を安定して含む焼結体を得ることが難しく、すなわち焼結体に含まれる所望の結晶相の種類や量を制御することが困難である。 In the conventional manufacturing method of an IGZO sintered body, powders of In 2 O 3 , Ga 2 O 3 and ZnO are mixed and calcined and then pulverized, and a molded body made from the pulverized powder is sintered. doing. Alternatively, a compact is produced after mixing powders of In 2 O 3 , Ga 2 O 3 and ZnO, and the compact is sintered. In the sintering process of these manufacturing methods, In 2 O 3 , Ga 2 O 3 and ZnO are densified while reacting with each other, and a combination of four types of powders (In 2 O 3 and Ga 2 O 3 ; Ga 2 O 3 and ZnO; In 2 O 3 and ZnO; and In 2 O 3 , Ga 2 O 3, and ZnO), a sintered body is formed through a complicated process. . Therefore, even if the conductive oxide is sintered under the same conditions, it is difficult to obtain a sintered body that stably includes a desired crystal phase unless the different powders are in contact with each other. It is difficult to control the type and amount of desired crystal phase contained in the body.
そこで、本発明は、導電性酸化物焼結体に含まれる結晶相の種類や量の制御を容易化し得る導電性酸化物焼結体の製造方法を提供することを目的としている。 Accordingly, an object of the present invention is to provide a method for producing a conductive oxide sintered body that can easily control the type and amount of crystal phases contained in the conductive oxide sintered body.
本発明によれば、In 2 Ga 2 ZnO 7 とGa 2 ZnO 4 の結晶相を含む導電性酸化物焼結体を製造する方法は、酸化亜鉛と酸化ガリウムの混合物を調製した後に800℃以上1300℃以下の温度にて酸素雰囲気中または大気雰囲気中で仮焼することによってGa2ZnO4粉体を形成する工程と、Ga2ZnO4粉体とInおよびOを含む粉体とを12時間以上36時間未満の範囲内の時間で混合または粉砕混合して、11m 2 /g以上15m 2 /g以下の比表面積と1.0μm以上1.5μm以下の平均粒径との少なくとも一方の条件を満たす第2の混合物を調製し、この第2の混合物の成形体を作製し、そしてその成形体を酸素雰囲気または大気雰囲気において1350℃以上1400℃以下の温度で焼結する工程とを含むことを特徴としている。 According to the present invention, a method for producing a conductive oxide sintered body including a crystal phase of In 2 Ga 2 ZnO 7 and Ga 2 ZnO 4 is prepared by preparing a mixture of zinc oxide and gallium oxide at 800 ° C. or higher and 1300 or higher. A step of forming a Ga 2 ZnO 4 powder by calcining in an oxygen atmosphere or an air atmosphere at a temperature equal to or lower than ° C., and a Ga 2 ZnO 4 powder and a powder containing In and O for 12 hours or more Mixing or grinding and mixing in a time within a range of less than 36 hours , satisfying at least one condition of a specific surface area of 11 m 2 / g to 15 m 2 / g and an average particle diameter of 1.0 μm to 1.5 μm the second mixture was prepared, and a step of sintering at the second molded product of the mixture of the prepared and the temperature of 1350 ° C. or higher 1400 ° C. or less in an oxygen atmosphere or an air atmosphere the formed body It is characterized in Mukoto.
本発明の製造方法では、予めGa2O3粉末とZnO粉末を混合して仮焼することによって安定なGa2ZnO4粉体を形成し、その後にInと酸素を含む粉末を付加して混合または粉砕混合し、そしてこの混合物を成形して焼結する。したがって、仮焼および焼結の際における異種粉体の組合せが1種類のみとなるので反応が単純化され、焼結体において所望の結晶相を容易に得ることができる。 In the production method of the present invention, pre-Ga 2 O 3 powder by mixing a ZnO powder to form a stable Ga 2 ZnO 4 powder by calcining, mixing followed by adding powder containing In and oxygen Alternatively, pulverize and mix and shape and sinter the mixture. Therefore, since there is only one kind of combination of different kinds of powders during calcination and sintering, the reaction is simplified, and a desired crystal phase can be easily obtained in the sintered body.
また、一般に焼結温度をある程度の高温(一般的には1500℃以上)にすれば、一種の結晶相(例えばIn2Ga2ZnO7またはInGaZnO4)からなる焼結体を得ることができるが、本発明の製造方法では、比較的低温の焼結温度においても一種の結晶相からなる焼結体を作製することができる。この焼結温度の低減によって、焼結体を構成する結晶粒子の成長を抑制してその粒径を減少させることができる。焼結体中の結晶粒径の減少は、その焼結体を使用する用途によっては望ましい。例えば、その焼結体をスパッタリングのターゲットとして用いる場合に、結晶粒径の減少は焼結体内部の気孔径を減少させ、ノジュールの低減に寄与することができる。なお、ノジュールはスパッタリング中にターゲットの表面に出現する突起物であり、これが発生すればスパッタリングで堆積される膜上の粒子が増加して膜質を低下させる。 In general, if the sintering temperature is set to a certain high temperature (generally 1500 ° C. or higher), a sintered body composed of a kind of crystal phase (for example, In 2 Ga 2 ZnO 7 or InGaZnO 4 ) can be obtained. In the production method of the present invention, a sintered body composed of a kind of crystal phase can be produced even at a relatively low sintering temperature. By reducing the sintering temperature, it is possible to suppress the growth of crystal grains constituting the sintered body and reduce the particle size. Reduction of the crystal grain size in the sintered body is desirable depending on the application in which the sintered body is used. For example, when the sintered body is used as a sputtering target, the reduction in crystal grain size can reduce the pore diameter inside the sintered body and contribute to the reduction of nodules. Note that nodules are protrusions that appear on the surface of the target during sputtering, and if this occurs, particles on the film deposited by sputtering increase and the film quality deteriorates.
上述のように、本発明によれば、InとGaとZnを含む導電性酸化物焼結体を製造する方法は、酸化亜鉛と酸化ガリウムの混合物を調製した後、これを仮焼することによってGa2ZnO4粉体を形成する工程を含むことを特徴としている。 As described above, according to the present invention, the method for producing a conductive oxide sintered body containing In, Ga, and Zn is prepared by preparing a mixture of zinc oxide and gallium oxide and calcining the mixture. It includes a step of forming Ga 2 ZnO 4 powder.
InとGaとZnを含む導電性酸化物焼結体は、前述のように一般にIGZOと略称される。しかし、本発明によるIGZOでは、In、GaおよびZn以外に付加的元素が添加されてもよい。添加する元素としては、N、Al、Si、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、W、Sn、Biなどが考えられるが、これらに限定されることはない。付加的元素は、Ga2ZnO4粉体の形成時に添加されてもよいし、その後の工程で混合されてもよい。 The conductive oxide sintered body containing In, Ga, and Zn is generally abbreviated as IGZO as described above. However, in the IGZO according to the present invention, additional elements other than In, Ga and Zn may be added. Examples of elements to be added include N, Al, Si, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, Sn, and Bi, but are not limited thereto. The additional element may be added at the time of forming the Ga 2 ZnO 4 powder, or may be mixed in a subsequent process.
得られる焼結体の結晶相としては、焼結温度を変えることによって、In2O3−Ga2ZnO4混合相、In2Ga2ZnO7−Ga2ZnO4混合相、InGaZnO4−Ga2ZnO4混合相、In2Ga2ZnO7単相、InGaZnO4単相、またはIn2Ga2ZnO7−InGaZnO4混合相などを得ることができる。 As the crystal phase of the obtained sintered body, by changing the sintering temperature, an In 2 O 3 —Ga 2 ZnO 4 mixed phase, an In 2 Ga 2 ZnO 7 —Ga 2 ZnO 4 mixed phase, and InGaZnO 4 —Ga 2 are used. A ZnO 4 mixed phase, an In 2 Ga 2 ZnO 7 single phase, an InGaZnO 4 single phase, an In 2 Ga 2 ZnO 7 —InGaZnO 4 mixed phase, or the like can be obtained.
本発明では、仮焼で得たGa2ZnO4粉体とInおよびOを含む粉体とを混合または粉砕混合して混合物を調製し、この混合物の成形体を作製し、その成形体を焼結する工程を含むことが好ましい。InとOを含む粉体の例としては、In2O3、In2Zn4O7、InGaO3などがあり、これらに限られるものではない。ただし、In2O3を使用することが、焼結温度の低減の観点から好ましい。 In the present invention, a Ga 2 ZnO 4 powder obtained by calcination and a powder containing In and O are mixed or pulverized and mixed to prepare a mixture, a molded body of the mixture is produced, and the molded body is sintered. It is preferable to include the process to tie. Examples of the powder containing In and O include In 2 O 3 , In 2 Zn 4 O 7 , and InGaO 3 , but are not limited thereto. However, it is preferable to use In 2 O 3 from the viewpoint of reducing the sintering temperature.
Ga2ZnO4粉体を得るための仮焼の温度は、800℃以上1300℃以下であることが好ましい。800℃未満の仮焼では、仮焼された粉体中に残るZnOとGa2O3が焼結の際にIn2O3と反応して焼結体の不均一性を生じるとともに、焼結時の体積収縮による気孔の生成による焼結体密度の低下を生じるので好ましくない。他方、1300℃を超える仮焼では、仮焼粉体の強い凝結のために粉砕し難くなるとともに、粉末の活性が低くなって焼結が困難となるので好ましくない。 The calcination temperature for obtaining the Ga 2 ZnO 4 powder is preferably 800 ° C. or higher and 1300 ° C. or lower. In the calcination of less than 800 ° C., ZnO and Ga 2 O 3 remaining in the calcined powder react with In 2 O 3 during sintering to cause non-uniformity of the sintered body and sintering. This is not preferable because the density of the sintered body is reduced due to the generation of pores due to volume shrinkage. On the other hand, calcination exceeding 1300 ° C. is not preferable because it is difficult to pulverize due to the strong setting of the calcined powder, and the activity of the powder becomes low and sintering becomes difficult.
また、Ga2ZnO4粉体を得るための仮焼は、酸素雰囲気中または大気雰囲気中で行われることが好ましい。ZnとGaは還元された金属状態で蒸気圧が低く、ZnOは昇華しやすい性質を有している。そして、仮焼雰囲気中に十分に酸素がなければ金属元素の一部が還元されて、粉砕しやすいGa2ZnO4粉体を得ることができなくなる。したがって、仮焼雰囲気は酸素雰囲気または大気雰囲気であることが好ましく、大気雰囲気の方が粒径の小さなGa2ZnO4粉体を得る観点からより好ましい。 Further, calcination to obtain a Ga 2 ZnO 4 powder is preferably performed in an oxygen atmosphere or an air atmosphere. Zn and Ga are in a reduced metal state and have a low vapor pressure, and ZnO has the property of being easily sublimated. If there is not enough oxygen in the calcining atmosphere, part of the metal element is reduced, and it becomes impossible to obtain a Ga 2 ZnO 4 powder that is easy to grind. Therefore, the calcining atmosphere is preferably an oxygen atmosphere or an air atmosphere, and the air atmosphere is more preferable from the viewpoint of obtaining a Ga 2 ZnO 4 powder having a small particle size.
Ga2ZnO4粉体とInおよびOを含む粉体との混合時間は、12時間以上36時間未満であることが好ましい。混合時間が12時間未満であれば、粉末粒度が大きすぎて緻密な焼結体を得られないとともに、Ga2ZnO4粉体の粉砕が不十分であって不均一な組織の焼結体となる。他方、混合時間が36時間以上であれば、混合装置と粉末の摩耗による不純物が混入するので好ましくない。また、粉末が嵩高くなって扱いが困難となるとともに、粉末同士の凝集が起こって不均質になるので好ましくない。 The mixing time of the Ga 2 ZnO 4 powder and the powder containing In and O is preferably 12 hours or more and less than 36 hours. If the mixing time is less than 12 hours, the powder particle size is too large to obtain a dense sintered body, and the Ga 2 ZnO 4 powder is not sufficiently pulverized and has a non-uniform structure. Become. On the other hand, if the mixing time is 36 hours or more, impurities due to wear of the mixing apparatus and powder are mixed, which is not preferable. In addition, the powder becomes bulky and difficult to handle, and the powders are agglomerated and become inhomogeneous, which is not preferable.
Ga2ZnO4粉体とInおよびOを含む粉体との混合物は、比表面積が11m2/g以上15m2/g以下であることおよび平均粒径が1.0μm以上1.5μm以下であることの少なくとも一方の条件を満たすことが好ましい。乾燥粉末の比表面積が11m2/g未満でかつ平均粒径が1.5μmを超える場合、粉末粒度が大きすぎて緻密な焼結体を得られないとともに、Ga2ZnO4粉末の粉砕が不十分となって焼結体組織が不均一となるので好ましくない。他方、比表面積が15m2/gを超えかつ平均粒径が1μm未満の場合、粉末が嵩高くなってその扱いが困難となるとともに、粉末同士の凝集が起って焼結体が不均一となるので好ましくない。 The mixture of the Ga 2 ZnO 4 powder and the powder containing In and O has a specific surface area of 11 m 2 / g to 15 m 2 / g and an average particle size of 1.0 μm to 1.5 μm. It is preferable that at least one of the conditions is satisfied. When the specific surface area of the dry powder is less than 11 m 2 / g and the average particle size exceeds 1.5 μm, the powder particle size is too large to obtain a dense sintered body and the Ga 2 ZnO 4 powder is not pulverized. This is not preferable because it becomes sufficient and the structure of the sintered body becomes uneven. On the other hand, when the specific surface area exceeds 15 m 2 / g and the average particle diameter is less than 1 μm, the powder becomes bulky and difficult to handle, and the powder is agglomerated and the sintered body is non-uniform. This is not preferable.
原料として、下記の酸化物粉末(1)〜(3)を秤量して使用した。粉末の比表面積はBET法で測定され、平均粒径は光散乱式の粒度分布測定装置で測定された。
(1)Ga2O3: 1.0mol、平均粒径0.77μm、比表面積18.9m2/g
(2)ZnO: 1.0mol、平均粒径0.82μm、比表面積4.6m2/g
(3)In2O3: 1.0mol、平均粒径3.45μm、比表面積13.4m2/g
秤量された原料(1)のGa2O3粉末と原料(2)のZnO粉末は、ボールミルを使用して12時間湿式混合された。なお、湿式混合の媒体としては、5mmφのZrO2ボールを使用した。そして、湿式混合で得られた混合スラリーを自然乾燥し、試料1a〜1eに分けられた。
The following oxide powders (1) to (3) were weighed and used as raw materials. The specific surface area of the powder was measured by the BET method, and the average particle size was measured by a light scattering type particle size distribution analyzer.
(1) Ga 2 O 3 : 1.0 mol, average particle size 0.77 μm, specific surface area 18.9 m 2 / g
(2) ZnO: 1.0 mol, average particle size 0.82 μm, specific surface area 4.6 m 2 / g
(3) In 2 O 3 : 1.0 mol, average particle size 3.45 μm, specific surface area 13.4 m 2 / g
The weighed raw material (1) Ga 2 O 3 powder and raw material (2) ZnO powder were wet-mixed for 12 hours using a ball mill. Note that a 5 mmφ ZrO 2 ball was used as a wet-mixing medium. Then, the mixed slurry obtained by wet mixing was naturally dried and divided into samples 1a to 1e.
試料1a、1b、1c、1d、および1eは、大気炉にてそれぞれ750℃、800℃、950℃、1300℃、および1350℃の温度で仮焼された。そして、仮焼された粉末に含まれる結晶相が、X線回折によって調べられた。その結果、750℃と800℃で仮焼された試料1aと1bの粉末中ではZnOとGa2O3の結晶の存在が確認され、950℃以上で仮焼された試料1c〜1eの粉末中ではGa2ZnO4の結晶の存在が確認された。800℃未満で仮焼された粉末では、それに多く含まれるZnOとGa2O3が後の焼結の際にIn2O3と反応して焼結体の不均一性を生じるとともに、焼結時の体積収縮による気孔の生成による焼結体密度の低下を生じるので好ましくない。また、1300℃を超える温度で仮焼された粉末では、粉末の強い凝結のため粉砕し難くなるとともに、粉末の活性が低くなって焼結が困難となるので好ましくない。 Samples 1a, 1b, 1c, 1d, and 1e were calcined at temperatures of 750 ° C., 800 ° C., 950 ° C., 1300 ° C., and 1350 ° C., respectively, in an atmospheric furnace. Then, the crystal phase contained in the calcined powder was examined by X-ray diffraction. As a result, the presence of ZnO and Ga 2 O 3 crystals was confirmed in the powders of samples 1a and 1b calcined at 750 ° C. and 800 ° C., and in the powders of samples 1c to 1e calcined at 950 ° C. or higher. Then, the presence of Ga 2 ZnO 4 crystals was confirmed. In the powder calcined at a temperature lower than 800 ° C., ZnO and Ga 2 O 3 contained in the powder react with In 2 O 3 during the subsequent sintering to cause non-uniformity of the sintered body, and sintering. This is not preferable because the density of the sintered body is reduced due to the generation of pores due to volume shrinkage. In addition, a powder calcined at a temperature exceeding 1300 ° C. is not preferable because it is difficult to pulverize due to the strong setting of the powder, and it becomes difficult to sinter because the activity of the powder becomes low.
得られた仮焼粉末に上記原料(3)のIn2O3粉末が加えられ、ボールミルで12時間混合された。こうして得られた混合スラリーは、自然乾燥後に300℃で真空乾燥された。乾燥された粉末は、油圧プレス機にて200kg/cm2の圧力下で成形された後に、さらにCIP(冷間静水圧処理)にて2ton/cm2の圧力下で成形された。そして、この成形体は、大気炉にて1300℃で焼結された。得られた焼結体の密度をアルキメデス法により測定した結果、750℃で仮焼された試料1aの粉末から作製した焼結体において相対密度が94.3%であり、800〜1300℃で仮焼された試料1b〜1dの粉末から作製した焼結体において相対密度が約98〜99%であり、そして1300℃を超える温度で仮焼された試料1eの粉末から作製した焼結体において相対密度が95.2%であった。これらの結果は、表1にまとめて示されている。 The raw material (3) In 2 O 3 powder was added to the obtained calcined powder and mixed for 12 hours by a ball mill. The mixed slurry thus obtained was vacuum dried at 300 ° C. after natural drying. The dried powder was molded under a pressure of 200 kg / cm 2 by a hydraulic press, and further molded under a pressure of 2 ton / cm 2 by CIP (cold isostatic treatment). And this molded object was sintered at 1300 degreeC in the atmospheric furnace. As a result of measuring the density of the obtained sintered body by the Archimedes method, the sintered body produced from the powder of the sample 1a calcined at 750 ° C. has a relative density of 94.3%, and temporarily measured at 800 to 1300 ° C. Relative density is about 98-99% in the sintered body made from the fired sample 1b-1d powder and relative to the sintered body made from the sample 1e powder calcined at a temperature above 1300 ° C. The density was 95.2%. These results are summarized in Table 1.
また、平面研削盤で焼結体を1.0mmの厚さまで削り取ってX線回折により結晶相分析を行ったところ、750℃と800℃で仮焼された試料1aと1bの粉末から作製した焼結体においてZnOとGa2ZnO4とIn2O3の結晶の存在が確認され、950℃以上で仮焼された試料1c〜1eの粉末から作製した焼結体においてGa2ZnO4とIn2O3の結晶の存在が確認された。 Further, when the sintered body was scraped to a thickness of 1.0 mm with a surface grinder and the crystal phase analysis was performed by X-ray diffraction, the sintered body prepared from the powders of samples 1a and 1b calcined at 750 ° C. and 800 ° C. In the sintered body, the presence of ZnO, Ga 2 ZnO 4 and In 2 O 3 crystals was confirmed, and in the sintered body prepared from the powders of samples 1c to 1e calcined at 950 ° C. or higher, Ga 2 ZnO 4 and In 2 were obtained. The presence of O 3 crystals was confirmed.
さらに、焼結体の結晶相の粒径が、分析型の走査電子顕微鏡(SEM)の反射電子像のコントラスト差により確認された。より具体的には、各コントラストに対応する結晶相を蛍光X線分析で同定し、各結晶相について20個の粒子の径を測定して平均粒径を算出した。その結果、750℃で仮焼された試料1aの粉末から作製した焼結体において、ZnOの粒径が1.3μm、Ga2ZnO4の粒径が13.6μm、そしてIn2O3の粒径が10.1μmであった。800℃で仮焼された試料1bの粉末から作製した焼結体においては、ZnOの粒径が0.7μm、Ga2ZnO4の粒径が6.0μm、そしてIn2O3の粒径が1.7μmであった。950〜1300℃で仮焼された試料1c〜1dの粉末から作製した焼結体においては、Ga2ZnO4の粒径が約2〜6μmで、In2O3の粒径が約1〜2μmであった。そして、1300℃を超える温度で仮焼された試料1eの粉末から作製した焼結体においては、Ga2ZnO4の粒径が19.4μmで、In2O3の粒径が8.3μmであった。これらの結果も、表1にまとめて示されている。 Furthermore, the grain size of the crystalline phase of the sintered body was confirmed by the contrast difference in the reflected electron image of an analytical scanning electron microscope (SEM). More specifically, the crystal phase corresponding to each contrast was identified by fluorescent X-ray analysis, and the average particle size was calculated by measuring the diameter of 20 particles for each crystal phase. As a result, in the sintered body prepared from the powder of the sample 1a calcined at 750 ° C., the ZnO particle size was 1.3 μm, the Ga 2 ZnO 4 particle size was 13.6 μm, and the In 2 O 3 particles The diameter was 10.1 μm. In the sintered body prepared from the powder of sample 1b calcined at 800 ° C., the particle size of ZnO is 0.7 μm, the particle size of Ga 2 ZnO 4 is 6.0 μm, and the particle size of In 2 O 3 is It was 1.7 μm. In the sintered body produced from the powders of samples 1c to 1d calcined at 950 to 1300 ° C., the particle size of Ga 2 ZnO 4 is about 2 to 6 μm, and the particle size of In 2 O 3 is about 1 to 2 μm. Met. Then, in the sintered body produced from the powder of calcined sample 1e at a temperature exceeding 1300 ° C., with a grain size of Ga 2 ZnO 4 is 19.4Myuemu, the particle size of the In 2 O 3 is at 8.3μm there were. These results are also summarized in Table 1.
さらに、焼結体の断面積に占める結晶相の割合が、上述の分析型SEMの反射電子像の観察から調べられた。その結果、750℃で仮焼された試料1aの粉末から作製した焼結体においてZnO:Ga2ZnO4:In2O3=32:18:50であり、800℃で仮焼された試料1bの粉末から作製した焼結体においてZnO:Ga2ZnO4:In2O3=25:26:49であり、950〜1350℃で仮焼された試料1c〜1eの粉末から作製した焼結体おいてGa2ZnO4:In2O3=(47〜52):(48〜53)であった。これらの結果も、表1にまとめて示されている。 Furthermore, the ratio of the crystal phase in the cross-sectional area of the sintered body was examined from observation of the reflected electron image of the analytical SEM. As a result, in the sintered body produced from the powder of sample 1a calcined at 750 ° C., ZnO: Ga 2 ZnO 4 : In 2 O 3 = 32: 18: 50, and sample 1b calcined at 800 ° C. Sintered body manufactured from the powders of samples 1c to 1e calcined at 950 to 1350 ° C. with ZnO: Ga 2 ZnO 4 : In 2 O 3 = 25: 26: 49 Oite Ga 2 ZnO 4: was in 2 O 3 = (47~52) :( 48~53). These results are also summarized in Table 1.
表1には試料1a〜1eの粉末から作製された焼結体の比抵抗も示されており、仮焼温度が800℃以上1300℃以下である試料2b〜2dによる焼結体において小さな比抵抗が好ましく得られていることが分かる。また、表1から分かるように、仮焼温度が800℃より高くて1300℃以下の範囲内であって、仮焼後の結晶相としてGa2ZnO4相のみを含む場合が、その後の焼結体の高密度を得る観点から好ましい。 Table 1 also shows the specific resistances of the sintered bodies made from the powders of samples 1a to 1e, and small specific resistances in the sintered bodies of samples 2b to 2d whose calcining temperature is 800 ° C. or higher and 1300 ° C. or lower. It can be seen that is preferably obtained. In addition, as can be seen from Table 1, the calcining temperature is in the range of higher than 800 ° C. and 1300 ° C. or lower, and the case where only the Ga 2 ZnO 4 phase is included as the crystal phase after calcination, It is preferable from the viewpoint of obtaining a high density of the body.
実施例2においても、実施例1の場合と同様にして、原料(1)のGa2O3粉末と原料(2)のZnO粉末とが、ボールミルで湿式混合されて混合スラリーにされた。この混合スラリーは、自然乾燥された後に、大気炉にて950℃で仮焼された。得られた仮焼粉末に上記原料(3)のIn2O3粉末が加えられ、ボールミルで6時間、12時間、24時間、および36時間混合してそれぞれ試料2a〜2dの混合スラリーが作製された。 Also in Example 2, as in Example 1, the raw material (1) Ga 2 O 3 powder and the raw material (2) ZnO powder were wet-mixed by a ball mill to form a mixed slurry. This mixed slurry was naturally dried and then calcined at 950 ° C. in an atmospheric furnace. In 2 O 3 powder of the above raw material (3) is added to the obtained calcined powder and mixed for 6 hours, 12 hours, 24 hours, and 36 hours with a ball mill to prepare mixed slurries of samples 2a to 2d, respectively. It was.
これらの混合スラリーは、自然乾燥後に300℃で真空乾燥された。試料2a〜2dの乾燥粉末について粒径を粒度分布測定機で調べ、比表面積をBET測定装置で調べたところ、6時間混合された試料2aの乾燥粉末が5.7μmの粒径と8.7m2/gの比表面積を有し、12〜24時間混合された試料2b〜2cの乾燥粉末が約1.0〜1.5μmの粒径と約12〜14m2/gの比表面積を有し、そして36時間混合された試料2dの乾燥粉末が0.86μmの粒径と16.3m2/gの比表面積を有していた。これらの結果は、表2にまとめて示されている。 These mixed slurries were vacuum dried at 300 ° C. after natural drying. When the particle diameters of the dry powders of Samples 2a to 2d were examined with a particle size distribution analyzer and the specific surface area was examined with a BET measuring device, the dry powder of Sample 2a mixed for 6 hours had a particle size of 5.7 μm and 8.7 m. The dry powders of Samples 2b to 2c having a specific surface area of 2 / g and mixed for 12 to 24 hours have a particle size of about 1.0 to 1.5 μm and a specific surface area of about 12 to 14 m 2 / g. And the dry powder of Sample 2d mixed for 36 hours had a particle size of 0.86 μm and a specific surface area of 16.3 m 2 / g. These results are summarized in Table 2.
乾燥粉末の粒径が1.5μmを超える場合、Ga2ZnO4粉末の粉砕が不十分であって、その粉末粒度の影響によって緻密な焼結体が得られないとともに、その焼結体である導電性酸化物の不均一性を生じて電気特性を阻害するので好ましくない。他方、乾燥粉末の粒径が1μm未満の場合、混合装置と粉末の摩耗により不純物が混合物に混入するので、その混合物を焼結して得られる導電性酸化物をターゲットとするスパッタリングで成膜された酸化物半導体膜の電気特性および透過特性の劣化の原因となるので好ましくない。また、粒径が1μm未満の場合、粉末が嵩高くなって扱いが困難となるとともに、粉末同士の凝集が起こって焼結体が不均質になるので好ましくない。 When the particle size of the dry powder exceeds 1.5 μm, the pulverization of the Ga 2 ZnO 4 powder is insufficient, and a dense sintered body cannot be obtained due to the influence of the powder particle size. This is not preferable because non-uniformity of the conductive oxide is generated and electric characteristics are hindered. On the other hand, when the particle size of the dry powder is less than 1 μm, impurities are mixed into the mixture due to wear of the mixing device and the powder, so that the film is formed by sputtering using a conductive oxide obtained by sintering the mixture as a target. Further, it is not preferable because it causes deterioration of electrical characteristics and transmission characteristics of the oxide semiconductor film. Further, when the particle size is less than 1 μm, the powder becomes bulky and difficult to handle, and the powder is agglomerated and the sintered body becomes non-homogeneous.
試料2a〜2dの乾燥粉末は油圧プレス機にて200kg/cm2の圧力下で成形された後に、CIPにて2ton/cm2の圧力下でさらに成形された。これらの成形体は、実施例1の場合と同様に大気炉にて1300℃で焼結された。これらの焼結体の密度をアルキメデス法により測定したところ、6時間混合された試料2aの粉末から作製した焼結体の相対密度が94.0%であり、12〜24時間混合された試料2b〜2cの粉末から作製した焼結体の相対密度が約98〜100%であり、そして36時間混合された試料2dの粉末から作製した焼結体の相対密度が96.9%であった。これらの結果も、表2においてまとめて示されている。 The dry powders of Samples 2a to 2d were molded under a pressure of 200 kg / cm 2 with a hydraulic press, and further molded under a pressure of 2 ton / cm 2 with CIP. These molded bodies were sintered at 1300 ° C. in an atmospheric furnace in the same manner as in Example 1. When the density of these sintered bodies was measured by the Archimedes method, the relative density of the sintered body produced from the powder of the sample 2a mixed for 6 hours was 94.0%, and the sample 2b mixed for 12 to 24 hours The relative density of the sintered body made from the powder of ~ 2c was about 98-100%, and the relative density of the sintered body made from the powder of sample 2d mixed for 36 hours was 96.9%. These results are also summarized in Table 2.
また、平面研削盤で焼結体を1.0mmの厚さまで削り取ってX線回折により結晶相分析を行ったところ、混合時間が異なる試料2a〜2dのいずれの粉末から作製された焼結体においても、Ga2ZnO4とIn2O3の結晶の存在が確認された。さらに、焼結体の結晶相の粒径が、前述の分析型SEMの反射電子像のコントラスト差により確認された。その結果、6時間混合された試料2aの焼結体において、Ga2ZnO4の粒径が12.9μmであって、In2O3の粒径が4.6μmであった。また、12〜24時間混合された試料2b〜2cの焼結体において、Ga2ZnO4の粒径が約1〜3μmであって、In2O3の粒径が約1〜2μmであった。さらに、36時間混合された試料2dの焼結体において、Ga2ZnO4の粒径が6.4μmであり、In2O3の粒径が5.7μmであった。これらの結果も、表2にまとめて示されている。 Further, when the sintered body was scraped to a thickness of 1.0 mm with a surface grinder and the crystal phase analysis was performed by X-ray diffraction, in the sintered body prepared from any powder of samples 2a to 2d having different mixing times Also, the presence of crystals of Ga 2 ZnO 4 and In 2 O 3 was confirmed. Further, the grain size of the crystal phase of the sintered body was confirmed by the contrast difference of the reflected electron image of the analytical SEM described above. As a result, in the sintered body of Sample 2a mixed for 6 hours, the particle size of Ga 2 ZnO 4 was 12.9 μm and the particle size of In 2 O 3 was 4.6 μm. In the sintered bodies of Samples 2b to 2c mixed for 12 to 24 hours, the particle size of Ga 2 ZnO 4 was about 1 to 3 μm and the particle size of In 2 O 3 was about 1 to 2 μm. . Furthermore, in the sintered body of the sample 2d mixed for 36 hours, the particle size of Ga 2 ZnO 4 was 6.4 μm, and the particle size of In 2 O 3 was 5.7 μm. These results are also summarized in Table 2.
表2には試料2a〜2dの粉末から作製された焼結体の比抵抗も示されており、混合時間が12時間以上36時間未満である試料2b〜2cによる焼結体において小さな比抵抗が好ましく得られていることが分かる。 Table 2 also shows the specific resistance of the sintered bodies made from the powders of Samples 2a to 2d, and the small specific resistances in the sintered bodies of Samples 2b to 2c having a mixing time of 12 hours or more and less than 36 hours. It turns out that it is obtained preferably.
(例3a〜3e)
ステップ1:原料粉末の粉砕混合
Ga2O3粉末(純度99.99%、BET比表面積11m2/g)およびZnO粉末(純度99.99%、BET比表面積4m2/g)が、ボールミル装置を用いて3時間粉砕混合され、第1の混合物としてのGa2O3−ZnO混合物が作製された。この際のmol混合比率は、Ga2O3:ZnO=1:1である。なお、粉砕混合の際の分散媒としては、水が用いられた。粉砕混合後の第1の混合物は、スプレードライヤで乾燥された。
(Examples 3a to 3e)
Step 1: Grinding and mixing raw material powder Ga 2 O 3 powder (purity 99.99%, BET specific surface area 11 m 2 / g) and ZnO powder (purity 99.99%, BET specific surface area 4 m 2 / g) Was pulverized and mixed for 3 hours to prepare a Ga 2 O 3 —ZnO mixture as the first mixture. In this case, the molar mixing ratio is Ga 2 O 3 : ZnO = 1: 1. Note that water was used as a dispersion medium in the pulverization and mixing. The first mixture after pulverization and mixing was dried with a spray dryer.
ステップ2:仮焼
得られた第1の混合物はアルミナ製ルツボに入れられ、大気雰囲気中で900℃の温度にて5時間の仮焼が行なわれ、こうして結晶質Ga2ZnO4からなる仮焼粉体が得られた。
Step 2: Calcination The obtained first mixture is placed in an alumina crucible and subjected to calcination for 5 hours at a temperature of 900 ° C. in an air atmosphere, thus calcination consisting of crystalline Ga 2 ZnO 4. A powder was obtained.
ステップ3:In2O3粉末との粉砕混合
得られたGa2ZnO4仮焼粉体とIn2O3粉末(純度99.99%、BET比表面積5m2/g)とが、ボールミル装置を用いて6時間粉砕混合され、これによって第2の混合物としてのGa2ZnO4−In2O3混合物が作製された。この際のmol混合比率は、Ga2ZnO4:In2O3=1:1である。なお、この際の粉砕混合の分散媒としても、水が用いられた。粉砕混合後の第2の混合物も、スプレードライヤで乾燥された。
Step 3: Grinding and mixing with In 2 O 3 powder The obtained Ga 2 ZnO 4 calcined powder and In 2 O 3 powder (purity 99.99%, BET specific surface area 5 m 2 / g) And pulverized and mixed for 6 hours, thereby producing a Ga 2 ZnO 4 —In 2 O 3 mixture as the second mixture. The molar mixing ratio at this time is Ga 2 ZnO 4 : In 2 O 3 = 1: 1. In this case, water was also used as a dispersion medium for pulverization and mixing. The second mixture after pulverization and mixing was also dried with a spray dryer.
ステップ4:成形および焼結
得られた第2混合物であるGa2ZnO4−In2O3混合粉体をプレスにより成形し、さらにCIPにより加圧成形し、直径100mmで厚さ約9mmの円板状の成形体を得た。得られた成形体を酸素雰囲気中にて所定温度で5時間焼成し、これによって焼結体が得られた。なお、このときの例3a〜3eに関するそれぞれの焼結温度は、表3にまとめて示されている。
Step 4: Molding and Sintering The resulting second mixture, Ga 2 ZnO 4 —In 2 O 3 mixed powder, is molded by pressing, further pressure-molded by CIP, and a circle having a diameter of 100 mm and a thickness of about 9 mm. A plate-like molded body was obtained. The obtained molded body was fired at a predetermined temperature for 5 hours in an oxygen atmosphere, whereby a sintered body was obtained. In addition, each sintering temperature regarding Example 3a-3e at this time is collectively shown in Table 3.
また、表3には、例3a〜3eの焼結体の断面におけるGa2ZnO4の面積割合も示されている。焼結体の断面に占めるGa2ZnO4とIn2O3の面積割合は、それらの結晶相をSEMの反射電子像を観察し、コントラストの白い粒子をIn2O3としかつ濃いグレーの粒子をGa2ZnO4として面積割合を算出して求められた。 Table 3 also shows the area ratio of Ga 2 ZnO 4 in the cross sections of the sintered bodies of Examples 3a to 3e. The area ratio of Ga 2 ZnO 4 and In 2 O 3 occupying the cross section of the sintered body is determined by observing the SEM reflected electron image of the crystalline phase thereof, making the contrast white particles In 2 O 3 and dark gray particles Was calculated by calculating the area ratio as Ga 2 ZnO 4 .
(例3f)
例3fにおいても、前述のステップ1と2は例3a〜3eの場合と同様である。しかし、例3fにおいては、ステップ3と4が部分的に変更されたことにおいて、例3a〜3eと異なっている。すなわち、例3fにおいては、前述のステップ3と4が下記のステップ3aと4aのように部分的に変更された。
(Example 3f)
Also in Example 3f, Steps 1 and 2 described above are the same as in Examples 3a to 3e. However, Example 3f differs from Examples 3a-3e in that steps 3 and 4 are partially changed. That is, in Example 3f, Steps 3 and 4 described above were partially changed as Steps 3a and 4a below.
ステップ3a:In2O3粉末およびGaN粉末との粉砕混合
ステップ2の仮焼によって得られたGa2ZnO4粉体とIn2O3(純度99.99%、BET比表面積5m2/g)粉末およびGaN(純度99.99%、BET比表面積2m2/g)とが、ボールミル装置を用いて6時間粉砕混合された。このときのmol混合比率は、Ga2ZnO4:In2O3:GaN=1:1:0.05であった。なお、分散媒には水が用いられ、粉砕混合後の混合物はスプレードライヤで乾燥された。
Step 3a: Grinding and mixing with In 2 O 3 powder and GaN powder Ga 2 ZnO 4 powder obtained by calcination in Step 2 and In 2 O 3 (purity 99.99%, BET specific surface area 5 m 2 / g) The powder and GaN (purity 99.99%, BET specific surface area 2 m 2 / g) were pulverized and mixed for 6 hours using a ball mill apparatus. The molar mixing ratio at this time was Ga 2 ZnO 4 : In 2 O 3 : GaN = 1: 1: 0.05. Water was used as the dispersion medium, and the mixture after pulverization and mixing was dried with a spray dryer.
ステップ4a:成形および焼結
次に、得られたGa2ZnO4−In2O3−GaN混合粉体をプレスにより成形し、さらにCIPにより加圧成形し、直径100mmで厚さ約9mmの円板状の成形体を得た。得られた成形体は、1気圧のN2雰囲気中において1390℃で5時間焼成することによって焼結体にされた。得られた焼結体は、直径が80mmに収縮し、厚さは約7mmに収縮していた。
Step 4a: Molding and Sintering Next, the obtained Ga 2 ZnO 4 —In 2 O 3 —GaN mixed powder is molded by pressing, further pressure-molded by CIP, and a circle having a diameter of 100 mm and a thickness of about 9 mm. A plate-like molded body was obtained. The obtained molded body was made into a sintered body by firing at 1390 ° C. for 5 hours in an N 2 atmosphere of 1 atm. The obtained sintered body contracted to a diameter of 80 mm and a thickness of about 7 mm.
例3fにおけるGa2ZnO4の面積割合も、例3a〜3eの場合と同様に測定され、その結果も表3に示されている。 The area ratio of Ga 2 ZnO 4 in Example 3f was also measured in the same manner as in Examples 3a to 3e, and the results are also shown in Table 3.
(例3g〜3s)
例3g〜3sにおける焼結体は、基本的には例3a〜3eにおける焼結体と同様に製造されたが、ステップ3におけるGa2ZnO4粉体とIn2O3粉末との粉砕混合において、添加元素を含む酸化物粉体(Al2O3、SiO2、TiO2、V2O5、Cr2O3、ZrO2、Nb2O3、MoO2、HfO2、Ta2O3、WO3、SnO2、Bi2O3)が付加されて粉砕混合された点が異なっていた。添加元素の酸化物が、Al2O3、Cr2O3、Nb2O3、Ta2O3、またはBi2O3である場合、mol混合比率はGa2ZnO4:In2O3:添加元素の酸化物=1:1:(0.1以下0.01以上)である。また、添加元素の酸化物が、SiO2、TiO2、ZrO2、MoO2、HfO2、WO3、またはSnO2である場合、mol混合比率はGa2ZnO4:In2O3:添加元素の酸化物=1:1:(0.2以下0.02以上)である。以上のような例3g〜3sに関する結果も、表3にまとめて示されている。
(Example 3g-3s)
The sintered bodies in Examples 3g to 3s were basically manufactured in the same manner as the sintered bodies in Examples 3a to 3e, but in the pulverization and mixing of Ga 2 ZnO 4 powder and In 2 O 3 powder in Step 3 , Oxide powder containing additive elements (Al 2 O 3 , SiO 2 , TiO 2 , V 2 O 5 , Cr 2 O 3 , ZrO 2 , Nb 2 O 3 , MoO 2 , HfO 2 , Ta 2 O 3 , WO 3 , SnO 2 , Bi 2 O 3 ) were added and pulverized and mixed. When the oxide of the additive element is Al 2 O 3 , Cr 2 O 3 , Nb 2 O 3 , Ta 2 O 3 , or Bi 2 O 3 , the molar mixing ratio is Ga 2 ZnO 4 : In 2 O 3 : The oxide of the additive element is 1: 1: (0.1 or less and 0.01 or more). When the oxide of the additive element is SiO 2 , TiO 2 , ZrO 2 , MoO 2 , HfO 2 , WO 3 , or SnO 2 , the molar mixing ratio is Ga 2 ZnO 4 : In 2 O 3 : additive element. Of oxide = 1: 1: (0.2 or less and 0.02 or more). The results regarding Examples 3g to 3s as described above are also shown in Table 3.
なお、表中の添加元素濃度は、後述するスパッタリングによって堆積した膜をSIMS(二次イオン質量分析)で分析して、1cm3当りの原子数(atom/cc)として求められた。 The additive element concentration in the table was determined as the number of atoms per 1 cm 3 (atoms / cc) by analyzing a film deposited by sputtering described later by SIMS (secondary ion mass spectrometry).
(例4a〜4d)
例4a〜4dにおける焼結体の作製過程は、前述の例3a〜3eに比べて、焼結温度が変更されたことのみにおいて異なっていた。例4a〜4dの焼結体に関する焼結温度およびGa2ZnO4の面積割合が、表4にまとめて示されている。
(Examples 4a to 4d)
The production processes of the sintered bodies in Examples 4a to 4d were different from Examples 3a to 3e described above only in that the sintering temperature was changed. The sintering temperature and the area ratio of Ga 2 ZnO 4 for the sintered bodies of Examples 4a to 4d are summarized in Table 4.
(例4e)
例4eにおける焼結体の作製過程は、前述の例3fに比べて、焼結温度が1375℃に変更されたことのみにおいて異なっていた。例4eの焼結体に関する焼結温度およびGa2ZnO4の面積割合も、表4に示されている。
(Example 4e)
The production process of the sintered body in Example 4e was different from Example 3f described above only in that the sintering temperature was changed to 1375 ° C. The sintering temperature and the area ratio of Ga 2 ZnO 4 for the sintered body of Example 4e are also shown in Table 4.
(例4f〜4r)
例4f〜4rにおける焼結体の作製過程は、前述の例3g〜3sにそれぞれ比べて、焼結温度が変更されたことのみにおいて異なっていた。例4f〜4rの焼結体に関する焼結温度およびGa2ZnO4の面積割合も、表4にまとめて示されている。
(Examples 4f to 4r)
The production processes of the sintered bodies in Examples 4f to 4r were different from those in Examples 3g to 3s described above only in that the sintering temperature was changed. The sintering temperature and the area ratio of Ga 2 ZnO 4 for the sintered bodies of Examples 4f to 4r are also summarized in Table 4.
(例5a)
例5aにおける焼結体の作製過程は、前述の例3a〜3eに比べて、焼結温度が1430℃に変更されたことのみにおいて異なっていた。この例5aで得られた焼結体は、In2Ga2ZnO7結晶のみからなる単相であった。そして、この焼結体の結晶粒径は、X線回折のピーク半価幅から求められたところ3μmであった。
(Example 5a)
The production process of the sintered body in Example 5a was different from that in Examples 3a to 3e described above only in that the sintering temperature was changed to 1430 ° C. The sintered body obtained in Example 5a was a single phase composed only of In 2 Ga 2 ZnO 7 crystals. The crystal grain size of this sintered body was 3 μm as determined from the peak half-value width of X-ray diffraction.
(比較例5a)
従来の導電性酸化物焼結体の作製方法に相当する比較例5aにおいては、例5aに比べてその作製方法が少し変更されていた。具体的には、以下のステップ1b〜3bを経て作製された。
(Comparative Example 5a)
In Comparative Example 5a, which corresponds to a conventional method for producing a conductive oxide sintered body, the production method was slightly changed as compared with Example 5a. Specifically, it was manufactured through the following steps 1b to 3b.
ステップ1b:原料粉末の粉砕混合
このステップ1bは、前述のステップ1に比べて、In2O3粉末(純度99.99%、BET比表面積5m2/g)が最初からGa2O3粉末およびZnO粉末に付加されて粉砕混合されることのみにおいて異なっていた。
Step 1b: Grinding and mixing of raw material powder In this step 1b, in comparison with Step 1 described above, In 2 O 3 powder (purity 99.99%, BET specific surface area 5 m 2 / g) is Ga 2 O 3 powder and The only difference was that it was added to the ZnO powder and ground and mixed.
ステップ2b:仮焼
ステップ1bで得られた混合粉末は、前述のステップ2の場合と同様の条件で仮焼され、それによって仮焼粉体が得られた。
Step 2b: Calcination The mixed powder obtained in Step 1b was calcined under the same conditions as in Step 2 described above, whereby a calcined powder was obtained.
ステップ3b:成形および焼結
ステップ2bで得られた仮焼粉体は一軸加圧成形によって成形され、直径100mmで厚さ約9mmの円板状の成形体が得られた。この成形体は酸素雰囲気中において1500℃で5時間焼成され、これよって焼結体が得られた。このとき得られた焼結体はIn2Ga2ZnO7結晶のみからなる単相であり、その結晶粒径は10μmであった。なお、焼結温度を1500℃から1430℃に変更した場合、In2Ga2ZnO7単相の焼結体を得ることができなかった。
Step 3b: Molding and Sintering The calcined powder obtained in Step 2b was molded by uniaxial pressure molding to obtain a disk-shaped molded body having a diameter of 100 mm and a thickness of about 9 mm. This molded body was fired at 1500 ° C. for 5 hours in an oxygen atmosphere, whereby a sintered body was obtained. The sintered body obtained at this time was a single phase consisting only of In 2 Ga 2 ZnO 7 crystals, and the crystal grain size was 10 μm. When the sintering temperature was changed from 1500 ° C. to 1430 ° C., an In 2 Ga 2 ZnO 7 single-phase sintered body could not be obtained.
上述の例5aと比較例5aの焼結体をターゲットとするスパッタリングによって、IGZO膜が堆積された。この成膜には、DC(直流)マグネトロンスパッタ法が用いられた。ターゲットサイズは直径が76.2mmであって厚みが5mmであり、直径76.2mmの平面がスパッタ面であった。 An IGZO film was deposited by sputtering using the sintered bodies of Example 5a and Comparative Example 5a described above as targets. For this film formation, a DC (direct current) magnetron sputtering method was used. The target size was 76.2 mm in diameter and 5 mm in thickness, and a plane having a diameter of 76.2 mm was a sputter surface.
まず、スパッタリング装置の成膜室内において、水冷している基板ホルダ上に、成膜用基板として25mm×25mm×0.6mmの合成石英ガラス基板が配置された。ターゲットは基板に対向して配置され、基板とターゲットとの距離は40mmであった。その後、成膜室内が、1×10−4Pa程度まで真空引きされ、ターゲットのプレスパッタが行なわれた。具体的には、基板とターゲットとの間にシャッターを入れた状態で、成膜室内へArガスを1Paの圧力まで導入し、30Wの直流電力を印加してスパッタリング放電を起こし、これによってターゲット表面のクリーニング(プレスパッタ)が10分間行なわれた。 First, a synthetic quartz glass substrate of 25 mm × 25 mm × 0.6 mm was placed as a film forming substrate on a water-cooled substrate holder in the film forming chamber of the sputtering apparatus. The target was disposed to face the substrate, and the distance between the substrate and the target was 40 mm. Thereafter, the film forming chamber was evacuated to about 1 × 10 −4 Pa, and the target was pre-sputtered. Specifically, Ar gas is introduced into the deposition chamber up to a pressure of 1 Pa with a shutter between the substrate and the target, and 30 W DC power is applied to cause sputtering discharge, thereby causing the target surface Cleaning (pre-sputtering) was performed for 10 minutes.
その後、流量比で0.5%の酸素ガスを含むArガスが成膜室内へ0.4Pのスパッタ圧力まで導入され、50Wのスパッタ電力で厚さ200nmのIGZO膜が堆積された。このとき、基板ホルダに対しては、特にバイアス電圧は印加されておらず、水冷されているのみであった。以上のような成膜工程を30回繰り返した後のターゲット表面を倍率20の光学顕微鏡にて観察し、発生したノジュール量が計測された。その結果、比較例5aによるターゲットは、例5aによるターゲットに比べてノジュール量が2.4倍も多かった。 Thereafter, Ar gas containing 0.5% oxygen gas at a flow rate ratio was introduced into the deposition chamber up to a sputtering pressure of 0.4 P, and an IGZO film having a thickness of 200 nm was deposited with a sputtering power of 50 W. At this time, no bias voltage was applied to the substrate holder, and it was only water-cooled. The target surface after the film formation process as described above was repeated 30 times was observed with an optical microscope with a magnification of 20, and the amount of nodules generated was measured. As a result, the target according to Comparative Example 5a had 2.4 times more nodules than the target according to Example 5a.
(例6a)
例6aとしては、上述の実施例2における試料2cの条件にて焼結体の作製を3回行って、得られた焼結体の断面におけるGa2ZnO4の面積比が測定された。この例6aの結果が、表5に示されている。
(Example 6a)
As Example 6a, the sintered body was manufactured three times under the conditions of the sample 2c in Example 2 described above, and the area ratio of Ga 2 ZnO 4 in the cross section of the obtained sintered body was measured. The results of this Example 6a are shown in Table 5.
(例6b)
例6bでは、上述の実施例3における例3cの条件にて焼結体の作製を3回行って、得られた焼結体の断面におけるGa2ZnO4の面積比が測定された。この例6bの結果も、表5に示されている。
(Example 6b)
In Example 6b, the sintered body was manufactured three times under the conditions of Example 3c in Example 3 described above, and the area ratio of Ga 2 ZnO 4 in the cross section of the obtained sintered body was measured. The results of Example 6b are also shown in Table 5.
(比較例6a)
比較例6aとして、上述の比較例5aの条件から焼結温度のみを1400℃に変更した条件にて焼結体の作製を3回行って、得られた焼結体の断面におけるGa2ZnO4の面積比が測定された。この比較例6aの結果も、表5に示されている。
(Comparative Example 6a)
As Comparative Example 6a, a sintered body was produced three times under the condition that only the sintering temperature was changed to 1400 ° C. from the condition of Comparative Example 5a described above, and Ga 2 ZnO 4 in the cross section of the obtained sintered body. The area ratio was measured. The results of Comparative Example 6a are also shown in Table 5.
表5の結果から明らかなように、例6aと例6bでは複数回の焼結体の作製においてGa2ZnO4の面積比の再現性が安定しているが、比較例6aではその再現性が極めて不安定であることが分かる。このことは、例6aと例6bでは焼結体中の結晶相の量の制御が容易であるが、比較例6aではそれが困難であることを意味している。 As is clear from the results in Table 5, in Example 6a and Example 6b, the reproducibility of the area ratio of Ga 2 ZnO 4 is stable in the production of the sintered body multiple times, but in Comparative Example 6a, the reproducibility is stable. It turns out that it is very unstable. This means that in Examples 6a and 6b, it is easy to control the amount of the crystal phase in the sintered body, but in Comparative Example 6a, it is difficult.
以上のように、本発明によれば、導電性酸化物焼結体に含まれる結晶相の種類や量の制御を容易化し得る導電性酸化物焼結体の製造方法を提供することができる。 As mentioned above, according to this invention, the manufacturing method of the electroconductive oxide sintered compact which can make easy control of the kind and quantity of the crystal phase contained in an electroconductive oxide sintered compact can be provided.
Claims (1)
酸化亜鉛と酸化ガリウムの混合物を調製した後に800℃以上1300℃以下の温度にて酸素雰囲気中または大気雰囲気中で仮焼することによってGa2ZnO4粉体を形成する工程と、
前記Ga2ZnO4粉体とInおよびOを含む粉体とを12時間以上36時間未満の範囲内の時間で混合または粉砕混合して、11m 2 /g以上15m 2 /g以下の比表面積と1.0μm以上1.5μm以下の平均粒径との少なくとも一方の条件を満たす第2の混合物を調製し、前記第2の混合物の成形体を作製し、そして前記成形体を酸素雰囲気または大気雰囲気において1350℃以上1400℃以下の温度で焼結する工程とを含むことを特徴とする製造方法。 A method of manufacturing a conductive oxide sintered body including a crystal phase of In 2 Ga 2 ZnO 7 and Ga 2 ZnO 4 ,
A step of forming a Ga 2 ZnO 4 powder by preparing a mixture of zinc oxide and gallium oxide and calcining in an oxygen atmosphere or an air atmosphere at a temperature of 800 ° C. or higher and 1300 ° C. or lower ;
The Ga 2 ZnO 4 powder and the powder containing In and O are mixed or pulverized and mixed for a time in a range of 12 hours to less than 36 hours, and a specific surface area of 11 m 2 / g to 15 m 2 / g A second mixture satisfying at least one of the average particle diameters of 1.0 μm or more and 1.5 μm or less is prepared, a molded body of the second mixture is produced, and the molded body is subjected to an oxygen atmosphere or an air atmosphere And a step of sintering at a temperature of 1350 ° C. or higher and 1400 ° C. or lower .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010065885A JP5526905B2 (en) | 2010-03-23 | 2010-03-23 | Method for producing conductive oxide sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010065885A JP5526905B2 (en) | 2010-03-23 | 2010-03-23 | Method for producing conductive oxide sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011195406A JP2011195406A (en) | 2011-10-06 |
JP5526905B2 true JP5526905B2 (en) | 2014-06-18 |
Family
ID=44874079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010065885A Active JP5526905B2 (en) | 2010-03-23 | 2010-03-23 | Method for producing conductive oxide sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5526905B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013001590A (en) * | 2011-06-15 | 2013-01-07 | Sumitomo Electric Ind Ltd | Conductive oxide, method of manufacturing the same and oxide semiconductor film |
JP5763561B2 (en) * | 2012-01-25 | 2015-08-12 | 株式会社アルバック | Manufacturing method of oxide powder and sputtering target |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5403390B2 (en) * | 2008-05-16 | 2014-01-29 | 出光興産株式会社 | Oxides containing indium, gallium and zinc |
JP2010047829A (en) * | 2008-08-20 | 2010-03-04 | Toyoshima Seisakusho:Kk | Sputtering target and manufacturing method thereof |
-
2010
- 2010-03-23 JP JP2010065885A patent/JP5526905B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011195406A (en) | 2011-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI403602B (en) | In-Ga-Zn-based oxide sputtering target | |
KR101699968B1 (en) | Sputtering target and oxide semiconductor film | |
JP5237557B2 (en) | Sputtering target and manufacturing method thereof | |
KR101863467B1 (en) | Oxide sintered body and method of manufacturing same, sputter target, and semiconductor device | |
JP4891381B2 (en) | In-Ga-Zn-based sintered body and sputtering target | |
WO2009142289A1 (en) | Sputtering target, method for forming amorphous oxide thin film using the same, and method for manufacturing thin film transistor | |
JP6137382B2 (en) | Conductive oxide, method for producing the same, and method for producing oxide semiconductor film | |
TW201328976A (en) | In-ga-zn-o type sputtering target | |
KR20170049630A (en) | Oxide sintered compact, method for manufacturing same, sputtering target, and semiconductor device | |
TWI546273B (en) | In-Ga-Zn-based oxide sputtering target and a method for manufacturing the same | |
JP5381844B2 (en) | In-Ga-Zn-based composite oxide sintered body and method for producing the same | |
TWI842834B (en) | Oxide sintered body, sputtering target and method for manufacturing sputtering target | |
US11434172B2 (en) | Sintered body | |
JP5526905B2 (en) | Method for producing conductive oxide sintered body | |
JP5407969B2 (en) | Conductive oxide and method for producing the same | |
JP2012017258A (en) | In-Ga-Zn BASED OXIDE SPUTTERING TARGET | |
JP2011199108A (en) | Conductive oxide and method for manufacturing the same | |
JP2012056842A (en) | In-Ga-Zn OXIDE, OXIDE SINTERED COMPACT, AND SPUTTERING TARGET |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120118 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121012 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130625 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130802 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140318 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140331 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5526905 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |