JP5525434B2 - Steel pipe bending method - Google Patents

Steel pipe bending method Download PDF

Info

Publication number
JP5525434B2
JP5525434B2 JP2010289082A JP2010289082A JP5525434B2 JP 5525434 B2 JP5525434 B2 JP 5525434B2 JP 2010289082 A JP2010289082 A JP 2010289082A JP 2010289082 A JP2010289082 A JP 2010289082A JP 5525434 B2 JP5525434 B2 JP 5525434B2
Authority
JP
Japan
Prior art keywords
bending
steel pipe
sealing plug
sealing
bent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010289082A
Other languages
Japanese (ja)
Other versions
JP2012135786A (en
Inventor
健一朗 中馬
克秀 西尾
淳 黒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2010289082A priority Critical patent/JP5525434B2/en
Publication of JP2012135786A publication Critical patent/JP2012135786A/en
Application granted granted Critical
Publication of JP5525434B2 publication Critical patent/JP5525434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自動車などの輸送機器や機械部品、建設等の構造用途に供せられる鋼管の曲げ加工法に関するものである。   The present invention relates to a method of bending a steel pipe used for structural applications such as transportation equipment such as automobiles, machine parts, and construction.

一般的に鋼管に曲げ加工を施す方法として、鋼管内に芯金を設置した状態で曲げ型とクランプとで鋼管を挟持した後に、曲げ型の周方向に沿ってクランプを移動させつつ曲げ型を回転させることで鋼管の曲げ加工を行う回転引き曲げ加工法が多用されている。
しかし、この曲げ加工法で薄肉鋼管を曲げた場合、剛性が厚肉鋼管よりも低いため加工部の内側にしわが生じる問題や、鋼管が偏平してしまう(楕円状に変形してしまう)問題がある。
In general, as a method of bending a steel pipe, after holding the steel pipe between the bending die and the clamp with the metal core installed in the steel pipe, the bending die is moved while moving the clamp along the circumferential direction of the bending die. A rotary drawing bending method is often used in which a steel pipe is bent by rotating it.
However, when a thin steel pipe is bent by this bending method, the rigidity is lower than that of a thick steel pipe, causing problems such as wrinkling inside the machined part and flattening of the steel pipe (deforms into an elliptical shape). is there.

一方で、従来から、回転引き曲げ加工法において、しわの発生や偏平化を抑制するために、鋼管内部に流体を圧入して鋼管を曲げる加工法が、各種提案されている。
例えば特許文献1では、曲げ加工を行う鋼管の両端に、水圧調整弁とエアー抜きの機能を持ち合わせた封止栓を取り付け、鋼管内に非圧縮性流体を直接圧入して3本ロールにより曲げ加工を行う方法を提案している。
On the other hand, conventionally, various methods of bending a steel pipe by press-fitting a fluid into the steel pipe have been proposed in order to suppress the generation of wrinkles and flattening in the rotary pull bending process.
For example, in Patent Document 1, a sealing plug having a water pressure adjusting valve and an air vent function is attached to both ends of a steel pipe to be bent, and an incompressible fluid is directly press-fitted into the steel pipe to be bent by three rolls. Proposes a way to do.

また、引用文献2では、曲げ型と締め型により鋼管を挟持し、鋼管の両端部に栓手段を取り付けた後に鋼管内に液体を注入し、加圧した状態で曲げ加工を行うことを提案している。
さらに特許文献3では、可撓性を有する連結部材の両端に遮断部材を取り付けた治具を準備し、曲げ型と締め型により鋼管を挟持するとともに前述の治具を鋼管内に装入し、前記遮断部材間に液体を注入し、加圧した状態で曲げ加工を行うことを提案している。
Citation 2 proposes that a steel pipe is sandwiched between a bending die and a clamping die, a stopper is attached to both ends of the steel pipe, a liquid is injected into the steel pipe, and bending is performed in a pressurized state. ing.
Furthermore, in Patent Document 3, a jig in which blocking members are attached to both ends of a flexible connecting member is prepared, the steel pipe is sandwiched between a bending die and a clamping die, and the above-described jig is inserted into the steel pipe. It has been proposed to inject liquid between the blocking members and perform bending in a pressurized state.

特開平9−38726号公報JP-A-9-38726 特開2002−254112号公報JP 2002-254112 A 特許第3773307号公報Japanese Patent No. 3773307

ところで、特許文献1,2で提案された方法では、鋼管内部に直接流体を圧入した状態で鋼管の曲げ加工を行うので、しわの発生や偏平化は抑制できるが、鋼管全体に流体を充填させる必要があることや、封止栓の取付け、取扱いに手間がかかるため、加工時間が長くなり生産性は必ずしも良くない。
また特許文献3で提案された方法でも鋼管曲げ部全体に流体を圧入した状態で曲げ加工を行っている。そして、鋼管の曲げ始めと曲げ終りの両端部に封止栓が挿入されているため、加工後に封止栓を抜き取る作業が困難である。しかも、多段曲げ加工を行う際、封止栓を引き抜く作業が必要であるため、多段曲げ加工においても作業が困難である。すなわち、生産性の点で大きな問題がある。
By the way, in the methods proposed in Patent Documents 1 and 2, since the bending of the steel pipe is performed in a state where the fluid is directly pressed into the steel pipe, the generation of wrinkles and flattening can be suppressed, but the entire steel pipe is filled with the fluid. Since it is necessary and it takes time to install and handle the sealing plug, the processing time becomes long and the productivity is not always good.
In the method proposed in Patent Document 3, bending is performed in a state where a fluid is press-fitted into the entire bent portion of the steel pipe. And since the sealing plug is inserted in the both ends of the bending start of a steel pipe, and the bending end, the operation | work which extracts a sealing plug after a process is difficult. In addition, when performing the multistage bending process, it is necessary to pull out the sealing plug, so that the work is difficult even in the multistage bending process. That is, there is a big problem in terms of productivity.

本発明は、このような問題点を解消するために案出されたものであり、回転引き曲げ加工法を用いて薄肉鋼管を曲げる際、曲げ加工部にしわや偏平が起こらず、しかも効率よく曲げ加工を行うことが可能な方法を提供することを目的とする。   The present invention has been devised to solve such problems, and when bending a thin-walled steel pipe using the rotary drawing bending method, the bent portion does not wrinkle or flatten, and it is efficient. It aims at providing the method which can perform a bending process.

本発明の鋼管の曲げ加工法は、その目的を達成するため、鋼管内に非圧縮性流体を圧入し、流体圧を負荷した状態で鋼管を曲げる回転引き曲げ加工法であって、被加工鋼管の曲げ起点を0°とした時に、前記曲げ起点と、曲げ起点に対して曲げ角度5°<θ≦45°の範囲の鋼管曲げ部にのみ前記流体圧を負荷した状態で曲げ加工を行うことを特徴とする。
第一の封止部材と、当該第一の封止部材と連結部材を介して連設された第二の封止部材を有する封止装置を用い、前記第一の封止部材を被加工鋼管の曲げ起点に位置させたとき、第二の封止部材を曲げ起点に対して曲げ角度5°<θ≦45°の範囲に位置するようにして鋼管の曲げ加工を行うことが好ましい。
In order to achieve the object, the steel pipe bending method of the present invention is a rotary pulling bending method in which an incompressible fluid is press-fitted into a steel pipe and the steel pipe is bent in a state in which the fluid pressure is applied. Bending is performed with the fluid pressure applied only to the bending start point and a steel pipe bending part with a bending angle in the range of 5 ° <θ ≦ 45 ° with respect to the bending starting point when It is characterized by.
Using a sealing device having a first sealing member and a second sealing member connected to the first sealing member via a connecting member, the first sealing member is a steel pipe to be processed. It is preferable that the steel pipe be bent so that the second sealing member is positioned in a range of a bending angle of 5 ° <θ ≦ 45 ° with respect to the bending starting point .

本発明により提供される鋼管の曲げ加工法では、固定している封止栓と固定していない封止栓の間を金属製チェーン等で繋ぐことで、2つの封止栓の間にのみ水圧を加えることが可能になる。これにより曲げ加工時に被加工材料の変形が進行する部位である曲げ起点(曲げ角度0°)から曲げ角度5°<θ≦45°の範囲の鋼管曲げ部にのみ水圧を加えた状態で曲げ加工を行うことができる。
固定していない封止栓は、曲げ角度5°<θ≦45°の鋼管曲げ部に設置されているため、曲げ加工後に封止栓を抜くことが容易である。したがって、多段曲げ加工も容易に行える。また、曲げ起点(曲げ角度0°)から曲げ角度5°<θ≦45°の鋼管曲げ部にしか水を加えていないため、鋼管内に水を充填する時間を短くすることができ、生産性良く鋼管を曲げ加工することができる。
In the bending method of a steel pipe provided by the present invention, the water pressure is only between two sealing plugs by connecting the fixed sealing plug and the non-fixing sealing plug with a metal chain or the like. Can be added. As a result, bending is performed in a state where water pressure is applied only to the bending portion of the steel pipe bent within the range of bending angle 5 ° <θ ≤ 45 ° from the bending starting point (bending angle 0 °), where deformation of the work material proceeds during bending. It can be performed.
Since the unsealed sealing plug is installed in the bent portion of the steel pipe having a bending angle of 5 ° <θ ≦ 45 °, it is easy to remove the sealing plug after bending. Therefore, multistage bending can be easily performed. In addition, since water is added only to the bending part of the steel pipe with a bending angle of 5 ° <θ ≤ 45 ° from the bending starting point (bending angle 0 °), the time for filling the steel pipe with water can be shortened, and productivity is reduced. The steel pipe can be bent well.

従来の液圧曲げ加工法の概略図Schematic diagram of conventional hydraulic bending process 鋼管曲げ部に液圧を負荷した本発明液圧曲げ加工法の概略図Schematic of the hydraulic bending method of the present invention in which hydraulic pressure is applied to the steel pipe bending part 本発明液圧曲げ加工法を用いた加工手順の概略図Schematic of processing procedure using the hydraulic bending method of the present invention 曲げ角度θ>45°の鋼管曲げ部に液圧を負荷した時の本発明による液圧曲げ加工法Hydraulic bending method according to the present invention when hydraulic pressure is applied to a bent portion of a steel pipe with a bending angle θ> 45 ° 固定していない第二の封止栓の設置位置を説明する図(曲げ角度θ(°))Diagram explaining the installation position of the second sealing plug that is not fixed (bending angle θ (°))

鋼管に曲げ加工を施す場合、被加工鋼管にしわの発生や偏平化を起こさせないようにするために、例えば図1に示すように鋼管全体に流体を圧入した状態で回転引き曲げ加工を行っている。
図1に見られるように、被加工鋼管の両端に封止栓が嵌めこまれていると、鋼管内の広い領域に流体を圧入する必要があり、また加工の度に封止栓を外し、水を抜き取る作業があるため、生産性が低くなる。さらに曲げ型とクランプで封止する方法では構造上、多段曲げ加工を行うことが不可能である。
When bending a steel pipe, in order to prevent wrinkling and flattening of the steel pipe to be processed, for example, as shown in FIG. Yes.
As shown in FIG. 1, when sealing plugs are fitted on both ends of the steel pipe to be processed, it is necessary to press-fit a fluid into a wide area in the steel pipe, and the sealing plug is removed every time processing is performed. Productivity decreases due to the work of draining water. Furthermore, the method of sealing with a bending die and a clamp makes it impossible to perform multistage bending due to the structure.

そこで、本発明者等は、封止栓の配置位置を被加工鋼管の変形が進行する部位の前後の狭い領域にすることにより、被加工鋼管内への流体圧入時間を短縮し、曲げ加工の効率を上げる手法について鋭意検討を重ねてきた。
その過程で、固定している第一の封止栓とこの固定している第一の封止栓に金属チェーン等の連結部材を介して繋がっている固定していない第二の封止栓の2つの封止栓の間にのみ流体圧を加えることが可能となれば、被加工鋼管の変形が進行する部位の前後の狭い領域にのみ流体圧を加えることが可能となることを見出した。
以下、その詳細を説明する。
Therefore, the present inventors have shortened the time for fluid injection into the steel pipe to be processed by making the arrangement position of the sealing plug narrow before and after the part where the deformation of the steel pipe to be processed progresses, We have been intensively studying methods to increase efficiency.
In the process, the fixed first sealing plug and the fixed second sealing plug connected to the fixed first sealing plug through a connecting member such as a metal chain. It has been found that if it is possible to apply a fluid pressure only between two sealing plugs, it is possible to apply a fluid pressure only to a narrow region before and after the portion where the deformation of the steel pipe to be processed proceeds.
Details will be described below.

まず、本発明方法の概略を、図2を用いて説明する。
本発明の回転引き曲げ加工法は、曲げ型1、クランプ2、サイドブースター3、バックブースター4及びワイパー5から構成された装置を用いる。バックブースター4には、被加工鋼管6内に伸びる支持体7の先端に取り付けられた第一の封止栓8と、この第一の封止栓8に金属チェーン9を介して位置及び向きの変動可能に取り付けられた第二の封止栓10が連設されている。そして被加工鋼管6内に伸びる支持体7及びその先端の第一の封止栓8の内部には流体を通すための貫通孔11が穿たれており、支持体7他端には前記貫通孔11を介して流体を圧入するための液圧ポンプ12が取り付けられている。
なお、第一の封止栓8及び第二の封止栓10の外周には、被加工鋼管6との間の液密性を確保させるためにOリング13が装着されている。
そして、被加工鋼管の変形が進行する部位の前後の領域にのみ流体圧を加えている。
First, the outline of the method of the present invention will be described with reference to FIG.
The rotary pull bending method of the present invention uses an apparatus composed of a bending die 1, a clamp 2, a side booster 3, a back booster 4, and a wiper 5. The back booster 4 includes a first sealing plug 8 attached to the tip of a support 7 extending into the steel pipe 6 to be processed, and a position and orientation of the first sealing plug 8 via a metal chain 9. A second sealing plug 10 variably attached is provided continuously. A through hole 11 for passing a fluid is formed in the inside of the support 7 extending into the workpiece steel pipe 6 and the first sealing plug 8 at the tip thereof, and the through hole is formed in the other end of the support 7. A hydraulic pump 12 for press-fitting fluid through 11 is attached.
Note that an O-ring 13 is attached to the outer periphery of the first sealing plug 8 and the second sealing plug 10 in order to ensure liquid-tightness with the workpiece steel pipe 6.
And the fluid pressure is applied only to the area | region before and behind the site | part where a deformation | transformation of a to-be-processed steel pipe advances.

ところで、図1や図2で示されるような回転引き曲げ加工装置を用いて鋼管に曲げ加工を行うとき、被加工鋼管自身の変形度合いが大きい領域はワイパー先端の近傍である。そして、被加工鋼管自身の変形が進む際に拘束がないとしわが発生したり、偏平したりする。
そこで、本発明者等は、この被加工鋼管自身の変形度合いが大きい領域、すなわちワイパー先端の近傍のみに高圧の流体圧を負荷すればしわの発生や偏平化を抑制できると推測したものである。
By the way, when bending a steel pipe using a rotary drawing bending apparatus as shown in FIG. 1 or FIG. 2, the region where the deformation degree of the steel pipe itself is large is in the vicinity of the tip of the wiper. And when a deformation | transformation of the steel pipe itself to be processed progresses, wrinkles are generated or flattened if there is no constraint.
Therefore, the present inventors have speculated that wrinkles and flattening can be suppressed by applying a high fluid pressure only to the region where the deformation degree of the steel pipe itself to be processed is large, that is, near the wiper tip. .

続いて、本発明の具体例方法を説明する。
図3(a)に示すようにOリングを装着した第一の封止栓8と固定していない第二の封止栓10の2つの封止栓を使用する。2つの封止栓間に流体圧を負荷させても軸方向に破断しない金属チェーン9で繋いでいる。そして、第一の封止栓外周のワイパー先端対応部位にOリングが装着されている。
この状態で2つの封止栓間に流体圧を負荷した状態で曲げ加工を実施する。
Next, a specific example method of the present invention will be described.
As shown in FIG. 3A, two sealing plugs are used: a first sealing plug 8 fitted with an O-ring and a second sealing plug 10 that is not fixed. Even if fluid pressure is applied between the two sealing plugs, they are connected by a metal chain 9 that does not break in the axial direction. An O-ring is attached to the wiper tip corresponding portion on the outer periphery of the first sealing plug.
In this state, bending is performed with fluid pressure applied between the two sealing plugs.

変形が進行する部位に流体圧が負荷されているので、しわ、偏平を抑制した成形が可能となる。
詳細は後記するが、鋼管内に流体圧を負荷する部分は曲げ起点(曲げ角度0°)から曲げ角度5°<θ≦45°の鋼管曲げ部のみで十分であるため、鋼管に圧力流体を充填する時間が短くなり、その分加工時間が短くなる。また、図3(b)に示すように曲げ加工後に固定していない第二の封止栓10が曲げ角度5°<θ≦45°の鋼管曲げ部に設置されているため、封止栓を引き抜くことが容易である。その結果、生産性良く曲げ加工を行うことができる。
Since the fluid pressure is applied to the portion where the deformation proceeds, molding that suppresses wrinkles and flattening is possible.
Although details will be described later, the portion where the fluid pressure is loaded into the steel pipe is sufficient only for the bending part of the steel pipe with a bending angle of 5 ° <θ ≤ 45 ° from the bending start point (bending angle 0 °). The filling time is shortened, and the machining time is shortened accordingly. Further, as shown in FIG. 3 (b), the second sealing plug 10 which is not fixed after bending is installed in a steel pipe bending portion with a bending angle of 5 ° <θ ≦ 45 °. It is easy to pull out. As a result, bending can be performed with high productivity.

鋼管の用途によっては多段に曲げられた形状のものが多くあり、本発明法を適用すれば、多段曲げ加工が容易に行える。
図3(a)、(b)に示す態様で第一段目の曲げ加工を行った後、図3(c)に示すように曲げ位置を変えて再度曲げ加工を行えば、封止栓の取外しで水抜きを行うことなく、第二段目の曲げ加工が容易に行える。この作業を連続的に行うことで多段曲げ加工が可能となる。
Many steel pipes are bent in multiple stages depending on the application, and if the method of the present invention is applied, multi-stage bending can be easily performed.
3 (a) and 3 (b), after performing the first stage bending process, if the bending position is changed again as shown in FIG. The second stage of bending can be easily performed without draining during removal. By performing this operation continuously, multistage bending can be performed.

ここで、鋼管内に流体圧を負荷する部分を曲げ角度5°<θ≦45°の鋼管曲げ部のみとした。その上限値の設定理由について説明する。
図4に曲げ角度θ>45°の鋼管曲げ部に流体圧を負荷した液圧曲げ加工法を示す。図4(a)に示すように曲げ角度θ>45°の鋼管曲げ部に固定していない第二の封止栓を設置しても曲げ成形は可能である。しかしながら、図4(b)に示すように第二の封止栓を鋼管曲げ部から抜き取る際、封止栓のエッジが鋼管曲げ部に強く接触し鋼管曲げ部が破断する(図中A部)ことがある。また鋼管の板厚が厚い場合、封止栓エッジの接触による鋼管の破断はないが、第二の封止栓が抜けなくなり、場合によっては金属チェーンが破断する(図中B部)こともある。
Here, the portion where the fluid pressure is loaded in the steel pipe is only the bent portion of the steel pipe with a bending angle of 5 ° <θ ≦ 45 °. The reason for setting the upper limit will be described.
FIG. 4 shows a hydraulic bending method in which a fluid pressure is applied to a steel pipe bending portion having a bending angle θ> 45 °. As shown in FIG. 4 (a), bending can be performed even if a second sealing plug that is not fixed to a steel pipe bending portion having a bending angle θ> 45 ° is installed. However, when the second sealing plug is extracted from the steel pipe bending portion as shown in FIG. 4B, the edge of the sealing plug is in strong contact with the steel pipe bending portion and the steel pipe bending portion is broken (A portion in the figure). Sometimes. When the steel pipe is thick, there is no breakage of the steel pipe due to contact with the sealing plug edge, but the second sealing plug cannot be removed, and in some cases, the metal chain may be broken (part B in the figure). .

このように、固定していない第二の封止栓設置位置が深いと引き抜きが困難となり、曲げ成形ができなくなることがあるため、その設置位置は曲げ角度θ≦45°にする必要がある。
なお、下限の曲げ角度5°<θの鋼管曲げ部設置位置は後記の実施例の結果に基づいている。
As described above, if the second sealing plug installation position that is not fixed is deep, it is difficult to pull out and bending molding may not be possible. Therefore, the installation position needs to be set at a bending angle θ ≦ 45 °.
In addition, the steel pipe bending part installation position of the lower limit bending angle 5 ° <θ is based on the results of Examples described later.

オーステナイト系のステンレス鋼管を用いて曲げ加工試験を行った。
表1にオーステナイト系ステンレス鋼管の寸法と機械的性質について示す。また表2に加工条件を示す。
曲げ半径(パイプ中心)を80mm、設定曲げ角度を90°、液圧曲げ加工法で使用した水圧を6MPaにした。
A bending test was performed using an austenitic stainless steel pipe.
Table 1 shows the dimensions and mechanical properties of the austenitic stainless steel pipe. Table 2 shows the processing conditions.
The bending radius (pipe center) was 80 mm, the set bending angle was 90 °, and the hydraulic pressure used in the hydraulic bending method was 6 MPa.

Figure 0005525434
Figure 0005525434

Figure 0005525434
Figure 0005525434

被加工鋼管の曲げ起点である0°付近に第一の封止栓を設置し、固定していない第二の封止栓は、曲げ角度である5°から75°付近に設置し、曲げ成形性を調査した。
供試材は、しわや破断が発生しやすい板厚が0.6mmのオーステナイト系ステンレス鋼管を用いた。鋼管内に金属製チェーンでつながっている2つの封止栓を挿入した状態で非圧縮性流体を圧入し、流体圧を6MPaにした状態で曲げ加工を行った。
The first sealing plug is installed near 0 ° which is the bending start point of the steel pipe to be processed, and the second sealing plug which is not fixed is installed near the bending angle of 5 ° to 75 °. The sex was investigated.
As the test material, an austenitic stainless steel pipe having a thickness of 0.6 mm, which is likely to be wrinkled or broken, was used. An incompressible fluid was press-fitted with two sealing plugs connected by a metal chain inserted into the steel pipe, and bending was performed with the fluid pressure at 6 MPa.

図5に示すように固定している第一の封止栓は、曲げ起点である0°付近に設置した。表3に実施結果について示す。
比較例として、通常の加工である芯金を使用した回転引き曲げ加工法では、しわが生じた。実施例2〜5では、しわのない加工が可能となったが、実施例1のように固定していない第二の封止栓を曲げ角度θが5°の曲げ部に設置し水圧を負荷した条件ではしわが発生した。鋼管曲げ部に水圧を負荷させる領域が狭いため、水圧の負荷が加わっていない曲げ内側でしわが発生したと考えられる。
As shown in FIG. 5, the first sealing plug fixed was installed in the vicinity of 0 ° which is the bending starting point. Table 3 shows the implementation results.
As a comparative example, wrinkles were produced in the rotational pull bending method using a core metal which is a normal process. In Examples 2 to 5, wrinkle-free processing is possible, but the second sealing plug that is not fixed as in Example 1 is installed in a bent part with a bending angle θ of 5 ° and water pressure is applied. Wrinkles occurred under the conditions. It is thought that wrinkles occurred inside the bend where water pressure was not applied because the area where water pressure was applied to the steel pipe bend was small.

Figure 0005525434
Figure 0005525434

実施例2に示すように固定していない第二の封止栓を曲げ角度θが7°の曲げ部に設置し水圧を負荷した条件では曲げ成形が可能であった。
また、実施例3〜5のように固定していない第二の封止栓を曲げ角度θが15°〜45°の曲げ部に設置し水圧を負荷した条件でも曲げ成形が可能であった。この結果から曲げ外側と曲げ内側ともにほぼ一定の板厚変化率となっている領域でも曲げ角度θが45°までは曲げ成形が可能であることがわかった。
As shown in Example 2, bending molding was possible under the condition that a second sealing plug that was not fixed was installed in a bending portion having a bending angle θ of 7 ° and water pressure was applied.
In addition, the second sealing plug that was not fixed as in Examples 3 to 5 was installed in a bending portion having a bending angle θ of 15 ° to 45 °, and bending molding was possible even under a condition where water pressure was applied. From this result, it was found that bending can be performed up to a bending angle θ of 45 ° even in a region where the rate of change in the plate thickness is substantially constant on both the outer side and the inner side.

実施例6、7に示すように固定していない第二の封止栓を曲げ角度θが50°、75°の曲げ部に設置し水圧を負荷した条件では曲げ成形が可能であったが、曲げ加工後に固定していない封止栓を抜き取る際、鋼管曲げ部に破断が生じたため曲げ成形が不可であった。これは加工後に固定していない第二の封止栓を抜き取る際、封止栓のエッジ部が鋼管曲げ部に接触し破断が生じたからである。
これらの結果から、5°<曲げ角度θ≦45°の鋼管曲げ部に固定していない封止栓を設置することで曲げ成形が可能となった。
As shown in Examples 6 and 7, the second sealing plug, which is not fixed, was installed in a bending portion where the bending angle θ was 50 ° and 75 °, and bending was possible under the condition that water pressure was applied. When a sealing plug that was not fixed after bending was pulled out, bending was not possible because a fracture occurred in the bent portion of the steel pipe. This is because when the second sealing plug that is not fixed after processing is pulled out, the edge portion of the sealing plug comes into contact with the bent portion of the steel pipe and breakage occurs.
From these results, bending molding became possible by installing a sealing plug that was not fixed to the steel pipe bending portion where 5 ° <bending angle θ ≦ 45 °.

Claims (2)

鋼管内に非圧縮性流体を圧入し、流体圧を負荷した状態で鋼管を曲げる回転引き曲げ加工法であって、被加工鋼管の曲げ起点を0°とした時に、前記曲げ起点と、曲げ起点に対して曲げ角度5°<θ≦45°の範囲の鋼管曲げ部にのみ前記流体圧を負荷した状態で曲げ加工を行うことを特徴とする鋼管の曲げ加工法。 A rotary pulling bending method in which an incompressible fluid is press-fitted into a steel pipe and the steel pipe is bent with fluid pressure applied, and the bending start point and the bending start point when the bending start point of the steel pipe to be processed is 0 °. A bending method for a steel pipe, characterized in that the bending is performed in a state where the fluid pressure is applied only to a bending portion of the steel pipe in a bending angle range of 5 ° <θ ≦ 45 ° . 第一の封止部材と、当該第一の封止部材と連結部材を介して連設された第二の封止部材を有する封止装置を用い、前記第一の封止部材を被加工鋼管の曲げ起点に位置させたとき、第二の封止部材を曲げ起点に対して曲げ角度5°<θ≦45°の範囲に位置するようにして鋼管の曲げ加工を行う請求項1に記載の鋼管の曲げ加工法。 Using a sealing device having a first sealing member and a second sealing member connected to the first sealing member via a connecting member, the first sealing member is a steel pipe to be processed. The steel pipe is bent so that the second sealing member is positioned in a range of a bending angle of 5 ° <θ ≦ 45 ° with respect to the bending starting point. A method of bending steel pipes.
JP2010289082A 2010-12-27 2010-12-27 Steel pipe bending method Active JP5525434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010289082A JP5525434B2 (en) 2010-12-27 2010-12-27 Steel pipe bending method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010289082A JP5525434B2 (en) 2010-12-27 2010-12-27 Steel pipe bending method

Publications (2)

Publication Number Publication Date
JP2012135786A JP2012135786A (en) 2012-07-19
JP5525434B2 true JP5525434B2 (en) 2014-06-18

Family

ID=46673690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010289082A Active JP5525434B2 (en) 2010-12-27 2010-12-27 Steel pipe bending method

Country Status (1)

Country Link
JP (1) JP5525434B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3773307B2 (en) * 1996-08-23 2006-05-10 株式会社オプトン Pipe bending machine
JP5080229B2 (en) * 2007-12-13 2012-11-21 日新製鋼株式会社 Steel pipe bending apparatus and steel pipe bending method using the same

Also Published As

Publication number Publication date
JP2012135786A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
JP5080229B2 (en) Steel pipe bending apparatus and steel pipe bending method using the same
KR20100010510A (en) Hydroforming method, and hydroformed parts
JP2010029937A (en) Hydroforming method and hydroformed component
JP5009363B2 (en) Hydroform processing method
JP2010162557A (en) Pipe bender
JPWO2008130056A1 (en) Hydroformed products
JP2013158802A (en) Hydroforming method
JP5525434B2 (en) Steel pipe bending method
JP2010051971A (en) Method of bending steel pipe
JP2009012036A (en) Method of bending of hose coupling metal fittings
JP4685055B2 (en) Pipe end diameter expansion jig
US8365571B2 (en) Pipe expanding method and pipe expanding device for steel pipe
JP2012255478A (en) Sealing system and sealing method
JP2011131219A (en) Method for forming pipe member
JP5157716B2 (en) Method for manufacturing universal joint yoke
JP2004255445A (en) Hydroforming method and its metal die
JP2002282956A (en) Device and method for hydroforming
JP4790136B2 (en) Hydroform sealing device for thin-walled steel pipes
JP2009142846A (en) Device for bending steel pipe and method of bending steel pipe using the same
JP2011115817A (en) Welding member and method for manufacturing the same
JP4077749B2 (en) Hydroforming method for parts having both expansion and branching elements
JP2001355595A (en) Manufacturing method of impeller for pump and pump formed by using impeller
JP2019051532A (en) Rotary draw-bending method of metal pipe
JP4676594B2 (en) Hydroform processing method
JP2013202642A (en) Method and device for forming flange at pipe end

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Effective date: 20140221

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Effective date: 20140411

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5525434

Free format text: JAPANESE INTERMEDIATE CODE: R150

Country of ref document: JP