JP5519434B2 - Polyester fiber for resin reinforcement - Google Patents

Polyester fiber for resin reinforcement Download PDF

Info

Publication number
JP5519434B2
JP5519434B2 JP2010154988A JP2010154988A JP5519434B2 JP 5519434 B2 JP5519434 B2 JP 5519434B2 JP 2010154988 A JP2010154988 A JP 2010154988A JP 2010154988 A JP2010154988 A JP 2010154988A JP 5519434 B2 JP5519434 B2 JP 5519434B2
Authority
JP
Japan
Prior art keywords
resin
fiber
polyester fiber
polyester
dtex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010154988A
Other languages
Japanese (ja)
Other versions
JP2012017535A (en
Inventor
慎太郎 嶋田
冬樹 寺阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2010154988A priority Critical patent/JP5519434B2/en
Publication of JP2012017535A publication Critical patent/JP2012017535A/en
Application granted granted Critical
Publication of JP5519434B2 publication Critical patent/JP5519434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、マトリックス樹脂中に良好に均一分散し、耐衝撃性に優れた繊維強化樹脂成形体が得られる樹脂補強用ポリエステル繊維に関する。   The present invention relates to a polyester fiber for resin reinforcement that can be uniformly dispersed in a matrix resin and from which a fiber-reinforced resin molded article excellent in impact resistance can be obtained.

ポリオレフィン樹脂などの熱可塑性樹脂を短繊維で強化した繊維強化熱可塑性樹脂は、優れた引張強度や剛性などの機械力学特性を有するため各種工業部品に好適に使用されている。従来、樹脂補強用繊維としては、安価で寸法安定性や耐熱性に優れたガラス繊維が多く用いられており、現在も多くの工業製品でガラス繊維強化樹脂が使用されている。しかし、近年の地球環境上の廃棄物問題、さらには将来的な石油資源の枯渇問題に対し、課題として資源の有効活用化・省エネルギー化が取り上げられており、ガラス繊維強化樹脂は樹脂中にガラスを含有していることによるリサイクル性および軽量化の面で問題を有しているのが現状である。このような背景から、繊維強化樹脂は強度などの機械特性や耐衝撃性の他に、リサイクル性などの環境面も満足することが要求されている。   A fiber reinforced thermoplastic resin obtained by reinforcing a thermoplastic resin such as a polyolefin resin with short fibers has excellent mechanical strength characteristics such as tensile strength and rigidity, and is therefore suitably used for various industrial parts. Conventionally, many glass fibers that are inexpensive and excellent in dimensional stability and heat resistance have been used as resin reinforcing fibers, and glass fiber reinforced resins are still used in many industrial products. However, the effective use of resources and energy saving have been taken up as issues in response to the recent global environmental waste problems and the future depletion of petroleum resources. At present, there are problems in terms of recyclability and weight reduction due to the inclusion of. Against this background, fiber reinforced resins are required to satisfy not only mechanical properties such as strength and impact resistance, but also environmental aspects such as recyclability.

また、繊維強化熱可塑性樹脂は、通常、樹脂と強化繊維を溶融混練することによって製造されるため、製造時に繊維が短くなり、アイゾット衝撃強度や落錘衝撃強度などの衝撃強度に劣るという欠点を有している。さらには、樹脂中の繊維の分散・配向により、成形品の形状によっては強度の異方性、寸法安定性、外観品位などに問題があり、その用途は限定されているのが現状である。   In addition, since fiber reinforced thermoplastic resin is usually produced by melt-kneading resin and reinforced fiber, the fiber is shortened at the time of production, and the disadvantage is that it is inferior in impact strength such as Izod impact strength and falling weight impact strength. Have. Furthermore, due to the dispersion / orientation of the fibers in the resin, there are problems in strength anisotropy, dimensional stability, appearance quality, etc. depending on the shape of the molded product, and its use is currently limited.

このような繊維強化熱可塑性樹脂の繊維分散性および耐衝撃性を向上させたものとして、例えば特許文献1(特開昭60−86139号公報)のように、5〜50mmのガラス長繊維をポリオレフィン樹脂に5〜60重量%溶融混練した繊維強化樹脂組成物が提案されている。しかし、ガラス繊維強化樹脂成形体は、ガラス繊維をマトリクス樹脂と溶融混練する際に繊維が折れて短くなる。このため、充分な補強効果を得るためには相当量のガラス繊維をブレンドする必要があり、軽量化のニーズに対応できないばかりでなく、その繊維強化樹脂成形体を例えばサーマルリサイクルする場合には高温炉での燃焼時にガラスが溶融して炉を痛め、コストおよび操業性の面からリサイクル性に難点を有する。また、特許文献2(特開平10−176085号公報)、特許文献3(特開2001−81336号公報)や特許文献4(特開2005−2202号公報)のように、繊維分散性および機械特性を向上させた樹脂強化樹脂組成物が提案されているが、いずれもガラス繊維補強に関するものであり、いずれも前述と同様の課題があった。   As what improved the fiber dispersibility and impact resistance of such a fiber reinforced thermoplastic resin, the glass long fiber of 5-50 mm is made into polyolefin like patent document 1 (Unexamined-Japanese-Patent No. 60-86139), for example. A fiber reinforced resin composition obtained by melt-kneading 5 to 60% by weight of a resin has been proposed. However, in the glass fiber reinforced resin molded product, when the glass fiber is melt-kneaded with the matrix resin, the fiber is broken and shortened. For this reason, in order to obtain a sufficient reinforcing effect, it is necessary to blend a considerable amount of glass fiber, not only to meet the need for weight reduction, but also when the fiber reinforced resin molded product is thermally recycled, for example, a high temperature. The glass melts at the time of combustion in the furnace and damages the furnace, and there is a difficulty in recyclability in terms of cost and operability. Further, as in Patent Document 2 (Japanese Patent Laid-Open No. 10-176085), Patent Document 3 (Japanese Patent Laid-Open No. 2001-81336), and Patent Document 4 (Japanese Patent Laid-Open No. 2005-2202), fiber dispersibility and mechanical properties are disclosed. Although the resin reinforced resin composition which improved this is proposed, all are related with glass fiber reinforcement, and all had the same subject as the above.

一方、機械特性、汎用性およびリサイクル性に優れたポリエステル繊維を補強用繊維に用いることによって、樹脂補強、リサイクル性および軽量化を満足する繊維強化樹脂は類を見ない。また、本発明者らがポリエステル繊維による樹脂補強を試みた結果、マトリクス樹脂中へのポリエステル繊維の分散性が低く、強度や耐衝撃性など充分な補強効果が得られないことが判明した。   On the other hand, by using polyester fibers excellent in mechanical properties, versatility and recyclability as reinforcing fibers, fiber reinforced resins satisfying resin reinforcement, recyclability and weight reduction are unparalleled. Further, as a result of attempts by the present inventors to reinforce the resin with polyester fibers, it has been found that the dispersibility of the polyester fibers in the matrix resin is low, and sufficient reinforcing effects such as strength and impact resistance cannot be obtained.

特開昭60−86139号公報JP 60-86139 A 特開平10−176085号公報JP-A-10-176085 特開2001−81336号公報JP 2001-81336 A 特開2005−2202号公報Japanese Patent Laid-Open No. 2005-2202

本発明の目的は、上記のような問題を解決し、マトリックス樹脂中に良好に均一分散し耐衝撃性に優れた繊維強化樹脂成形体が得られる樹脂補強用ポリエステル繊維を提供することにある。   An object of the present invention is to provide a polyester fiber for resin reinforcement that solves the above-described problems and from which a fiber-reinforced resin molded article excellent in impact resistance and uniformly dispersed in a matrix resin can be obtained.

本発明によれば、樹脂補強に用いる樹脂補強用ポリエステル繊維であって、該樹脂補強用ポリエステル繊維が、以下の(A)、(B)及び(C)を同時に満足することを特徴とする樹脂補強用ポリエステル繊維が提供される。
(A)25℃における引張強度が6〜10cN/dtex
(B)210℃乾熱収縮率が1〜12%
(C)210℃×60sec熱処理後において、引張強度が5〜10cN/dtex、かつ、タフネスが30〜50
[ここで、タフネス=引張強度(cN/dtex)×√伸度(%)である。]
According to the present invention, a resin-reinforced polyester fiber used for resin reinforcement, wherein the resin-reinforced polyester fiber satisfies the following (A), (B) and (C) simultaneously: Reinforcing polyester fibers are provided.
(A) Tensile strength at 25 ° C. is 6 to 10 cN / dtex
(B) 210 ° C. dry heat shrinkage is 1 to 12%
(C) After heat treatment at 210 ° C. for 60 seconds, the tensile strength is 5 to 10 cN / dtex and the toughness is 30 to 50
[Toughness = tensile strength (cN / dtex) × √elongation (%). ]

上記樹脂補強用ポリエステル繊維は、繰返し単位の90モル%以上がエチレンテレフタレートまたはエチレン−2,6−ナフタレートで構成されるポリエステルからなることが好ましい。
また、上記樹脂補強用ポリエステル繊維に、熱硬化性樹脂が、該樹脂補強用ポリエステル繊維重量に対して0.01〜5.0重量%付着していることを特徴とする樹脂補強用ポリエステル繊維が提供され、該熱硬化性樹脂がエポキシ系樹脂またはウレタン系樹脂であることが好ましい。
The resin reinforcing polyester fiber is preferably made of polyester in which 90 mol% or more of the repeating units are composed of ethylene terephthalate or ethylene-2,6-naphthalate.
Moreover, the polyester fiber for resin reinforcement characterized by the thermosetting resin adhering to the said polyester fiber for resin reinforcement 0.01-5.0weight% with respect to the polyester fiber weight for this resin reinforcement Preferably, the thermosetting resin is an epoxy resin or a urethane resin.

本発明の樹脂補強用ポリエステル繊維は、繊維強化樹脂ペレット製造時あるいは繊維強化樹脂成形体製造時における補強繊維の寸法安定性に優れ、樹脂成形体の補強繊維として高い強度、タフネスを発現し、耐衝撃性に優れた繊維強化樹脂成形体を得ることができる。また、本発明の樹脂補強用ポリエステル繊維を用いることで、樹脂成形体の軽量化やリサイクル性、耐久性向上などの環境面の効果も期待できるものであり、大きな実用効果を有するものである。   The polyester fiber for resin reinforcement of the present invention is excellent in the dimensional stability of the reinforcing fiber at the time of fiber reinforced resin pellet production or fiber reinforced resin molding production, and exhibits high strength and toughness as the reinforcing fiber of the resin molding. A fiber-reinforced resin molded article having excellent impact properties can be obtained. Moreover, by using the polyester fiber for resin reinforcement of the present invention, environmental effects such as weight reduction, recyclability, and durability improvement of the resin molded body can be expected, and it has a great practical effect.

本発明における樹脂補強用ポリエステル繊維は、25℃における引張強度が6〜10cN/dtexである。引張強度が6cN/dtex未満では、補強繊維としての強度が低いため、本発明の目的を充分満足する樹脂補強効果が得られない。一方、引張強度が10cN/dtexを超える場合、ポリエステル繊維に毛羽等の欠点が多く、繊維強化樹脂ペレット製造時に糸切れや単糸絡まりの発生するだけでなく、繊維強化樹脂成形体での繊維の絡まり・凝集などを引き起すため、加工性の低下、樹脂成形体の補強効果あるいは外観品位の低下を引き起す。25℃の引張強度としては、6.5〜9.5cN/dtexが好ましく、7.0〜9.0cN/dtexがより好ましい。   The polyester fiber for resin reinforcement in the present invention has a tensile strength at 25 ° C. of 6 to 10 cN / dtex. When the tensile strength is less than 6 cN / dtex, the strength as a reinforcing fiber is low, and a resin reinforcing effect that sufficiently satisfies the object of the present invention cannot be obtained. On the other hand, when the tensile strength exceeds 10 cN / dtex, the polyester fiber has many defects such as fuzz, and not only yarn breakage or single yarn entanglement occurs during the production of the fiber reinforced resin pellet, but also the fiber in the fiber reinforced resin molded product It causes entanglement / aggregation, etc., resulting in deterioration of workability, reinforcing effect of the resin molded product, or deterioration of appearance quality. As a 25 degreeC tensile strength, 6.5-9.5 cN / dtex is preferable and 7.0-9.0 cN / dtex is more preferable.

また、本発明における樹脂補強用ポリエステル繊維の210℃乾熱収縮率は1〜12%である。ここで、210℃乾熱収縮率とは210℃での無荷重下で60sec熱処理した前後の繊維長手方向の寸法変化率を示したものである。本発明者らは、繊維強化樹脂成形体の成形時に樹脂補強用ポリエステル繊維が適度な収縮を発現することで、得られる繊維強化樹脂成形体の物性が向上することを見出した。210℃乾熱収縮率が1%未満では、樹脂補強用ポリエステル繊維を構成するポリエステルポリマーは繊維軸に平行な配向が非常に低い状態(無配向)であり、樹脂補強効果を発揮するのに充分な引張強度が得られない。一方、210℃乾熱収縮率が12%を超える場合、繊維強化樹脂成形体の成形時に補強用ポリエステル繊維の寸法変化が大きく、マトリクス樹脂中の補強繊維の配向、分散が低下するために優れた樹脂補強効果が得られない。210℃乾熱収縮率は2〜11%であることが好ましく、3〜10%であることがさらに好ましい。   Moreover, the 210 degreeC dry heat shrinkage rate of the polyester fiber for resin reinforcement in this invention is 1 to 12%. Here, the 210 ° C. dry heat shrinkage rate indicates the dimensional change rate in the longitudinal direction of the fiber before and after heat treatment for 60 seconds under no load at 210 ° C. The inventors of the present invention have found that the physical properties of the obtained fiber-reinforced resin molded article are improved when the polyester fiber for resin reinforcement exhibits appropriate shrinkage during the molding of the fiber-reinforced resin molded article. When the dry heat shrinkage at 210 ° C. is less than 1%, the polyester polymer constituting the polyester fiber for resin reinforcement is in a state where the orientation parallel to the fiber axis is very low (non-orientation), and is sufficient to exert the resin reinforcement effect. High tensile strength cannot be obtained. On the other hand, when the 210 ° C. dry heat shrinkage rate exceeds 12%, the dimensional change of the reinforcing polyester fiber is large at the time of molding the fiber reinforced resin molded article, which is excellent because the orientation and dispersion of the reinforcing fiber in the matrix resin decrease. The resin reinforcement effect cannot be obtained. The 210 ° C. dry heat shrinkage rate is preferably 2 to 11%, more preferably 3 to 10%.

さらに、本発明における樹脂補強用ポリエステル繊維の210℃×60sec熱処理後の引張強度は5〜10cN/dtex、かつタフネスは30〜50である。ここでタフネスは、タフネス=強度×√伸度で求められる値である。本発明者らが鋭意検討したところ、繊維強化樹脂成形体の成形時に樹脂補強用ポリエステル繊維が受ける熱履歴が大きく影響しており、さらに検討を進めた結果、210℃×60sec熱処理後のポリエステル繊維の強度、タフネスが、繊維強化樹脂成形体の耐衝撃性の向上に大きく寄与することを見出した。すなわち、繊維強化樹脂成形体の成形時に樹脂補強用ポリエステル繊維が熱履歴を受けて熱セットあるいは緩和されるため、熱処理後のポリエステル繊維の物性が補強効果を大きく左右することを見出したものである。よって、本発明において、樹脂補強用ポリエステル繊維の210℃×60sec熱処理後の引張強度が、6cN/dtex未満では、補強繊維の強度が低いため、本発明の目的を充分満足する樹脂補強効果が得られない。一方、25℃での引張強度が10cN/dtex以下であるので無荷重下熱処理後の引張強度が10cN/dtexを超えることはない。210℃×60sec熱処理後の引張強度としては、5.5〜9.5cN/dtexが好ましく、6.0〜9.0cN/dtexがより好ましい。   Further, the tensile strength after heat treatment at 210 ° C. for 60 seconds of the polyester fiber for resin reinforcement in the present invention is 5 to 10 cN / dtex, and the toughness is 30 to 50. Here, toughness is a value determined by toughness = strength × √elongation. As a result of extensive studies, the present inventors have greatly influenced the thermal history received by the polyester fiber for resin reinforcement during molding of the fiber-reinforced resin molded product. As a result of further investigation, the polyester fiber after heat treatment at 210 ° C. × 60 sec. It was found that the strength and toughness greatly contribute to the improvement of impact resistance of the fiber reinforced resin molded product. That is, since the polyester fiber for resin reinforcement receives heat history and is heat set or relaxed at the time of molding the fiber reinforced resin molded product, the physical properties of the polyester fiber after the heat treatment greatly determines the reinforcing effect. . Therefore, in the present invention, when the tensile strength after heat treatment at 210 ° C. for 60 seconds of the polyester fiber for resin reinforcement is less than 6 cN / dtex, the strength of the reinforcing fiber is low, so that the resin reinforcing effect sufficiently satisfying the object of the present invention is obtained. I can't. On the other hand, since the tensile strength at 25 ° C. is 10 cN / dtex or less, the tensile strength after heat treatment under no load does not exceed 10 cN / dtex. The tensile strength after heat treatment at 210 ° C. for 60 seconds is preferably 5.5 to 9.5 cN / dtex, and more preferably 6.0 to 9.0 cN / dtex.

本発明に用いる樹脂補強用ポリエステル繊維は、繰返し単位の90モル%以上がエチレンテレフタレートまたはエチレン−2,6−ナフタレートで構成されるポリエステルからなることが望ましく、該ポリエステル繊維は分子量、繊度、フィラメント数、断面形状、糸質物性、微細構造、添加剤含有の有無、末端カルポキシル基濃度などのポリマー性状は何等限定されるものではない。   The polyester fiber for resin reinforcement used in the present invention is preferably composed of polyester in which 90 mol% or more of repeating units are composed of ethylene terephthalate or ethylene-2,6-naphthalate, and the polyester fiber has a molecular weight, fineness, and number of filaments. The polymer properties such as the cross-sectional shape, yarn physical properties, fine structure, presence / absence of additives, and terminal carboxy group concentration are not limited at all.

なお、ポリエステルの分子量は、ポリエチレンテレフタレートの場合、その固有粘度(o−クロロフェノールを溶媒として温度35℃で測定)は、好ましくは0.60〜1.20dL/g、より好ましくは0.65〜1.10dL/g、さらに好ましくは0.70〜1.00dL/gである。   In the case of polyethylene terephthalate, the molecular weight of polyester is preferably 0.60 to 1.20 dL / g, more preferably 0.65 to its intrinsic viscosity (measured at a temperature of 35 ° C. using o-chlorophenol as a solvent). 1.10 dL / g, more preferably 0.70 to 1.00 dL / g.

一方、ポリ(エチレン−2,6−ナフタレート)の場合、その分子量は、固有粘度(o一クロロフェノールとo−ジクロロペンゼンの混合溶媒(容量比6:4)に溶解して35℃で測定した値)が、好ましくは0.50〜1.00dL/g、より好ましくは0.55〜0.95dL/g、さらに好ましくは0.60〜0.90dL/gである。   On the other hand, in the case of poly (ethylene-2,6-naphthalate), the molecular weight is measured at 35 ° C. by dissolving in an intrinsic viscosity (o-chlorophenol and o-dichlorobenzene mixed solvent (volume ratio 6: 4)). Value) is preferably 0.50 to 1.00 dL / g, more preferably 0.55 to 0.95 dL / g, and still more preferably 0.60 to 0.90 dL / g.

本発明においては、樹脂補強用ポリエステル繊維の単繊維繊度は、好ましくは1〜20dtex、好ましくは2〜15dtex程度である。
また、上記ポリエステル繊維の総繊度は、特に限定されないが、好ましくは150〜3,000dtex、より好ましくは250〜2,000dtexである。尚、これらの総繊度のポリエステル繊維を繊維強化樹脂ペレット製造前にあらかじめ複数本数合糸したり、繊維強化樹脂ペレット製造時にクリールスタンドより複数本数を合せて給糸したりすることによって、総繊度を増加調整しても何等差し支えない。
In the present invention, the single fiber fineness of the polyester fiber for resin reinforcement is preferably about 1 to 20 dtex, preferably about 2 to 15 dtex.
Moreover, the total fineness of the said polyester fiber is although it does not specifically limit, Preferably it is 150-3,000 dtex, More preferably, it is 250-2,000 dtex. The total fineness can be reduced by combining a plurality of polyester fibers of these total fineness in advance before manufacturing the fiber reinforced resin pellets, or by supplying a plurality of yarns from the creel stand at the time of fiber reinforced resin pellet manufacturing. There is no problem even if the increase is adjusted.

さらに、上記ポリエステル繊維のフィラメント数は、特に限定されないが、好ましくは、10〜1、000フィラメント、より好ましくは50〜500フィラメントである。尚、前述の通り合糸することによってフィラメント数を増加調整しても何等差し支えない。   Furthermore, the number of filaments of the polyester fiber is not particularly limited, but is preferably 10 to 1,000 filaments, more preferably 50 to 500 filaments. Note that there is no problem even if the number of filaments is increased and adjusted by combining the yarns as described above.

本発明の樹脂補強用ポリエステル繊維には、エポキシ系樹脂またはウレタン系樹脂からなる熱硬化性樹脂が該ポリエステル繊維重量に対して0.01〜5.0重量%付着していることが好ましい。本発明では、ポリエステル繊維を熱安定的な熱硬化性樹脂でコーティングを施すことによって、繊維強化樹脂ペレット製造時におけるポリエステル繊維の集束性を維持し、かつ樹脂を補強繊維周囲に密に充填することができ、繊維強化樹脂成形時の溶融混練時に繊維が開繊して均一分散性を発現することができる。熱硬化性樹脂の付着量が0.01重量%未満では、本発明の効果を発揮するに充分な繊維の集束性が得られ難くなる傾向にあり、一方、付着量が5.0重量%を超えると、繊維が硬くなり過ぎるために加工性が低下し、また、成形時に開繊し難くなるため樹脂成形体の補強効果・外観品位が低下する傾向にある。本発明における熱硬化性樹脂のポリエステル繊維への付着量としては、該ポリエステル繊維重量に対して0.03〜3.5重量%が好ましく、0.05〜2.0重量%がより好ましい。このような本発明の樹脂補強用ポリエステル繊維により、該補強用繊維がマトリックス樹脂中に良好に均一分散し機械特性や耐衝撃性に優れた繊維強化樹脂成形体が得られる。   It is preferable that the thermosetting resin which consists of an epoxy-type resin or a urethane-type resin has adhered to the polyester fiber for resin reinforcement of this invention 0.01 to 5.0 weight% with respect to this polyester fiber weight. In the present invention, the polyester fibers are coated with a thermostable thermosetting resin, thereby maintaining the polyester fibers in the fiber-reinforced resin pellets and filling the resin densely around the reinforcing fibers. The fibers can be opened at the time of melt kneading at the time of fiber reinforced resin molding, and uniform dispersibility can be expressed. If the adhesion amount of the thermosetting resin is less than 0.01% by weight, it tends to be difficult to obtain sufficient fiber convergence to exert the effect of the present invention, while the adhesion amount is less than 5.0% by weight. If it exceeds the upper limit, the fiber becomes too hard, so that the processability is lowered. Further, since the fiber is difficult to open at the time of molding, the reinforcing effect and appearance quality of the resin molded product tend to be lowered. The adhesion amount of the thermosetting resin to the polyester fiber in the present invention is preferably 0.03 to 3.5% by weight, more preferably 0.05 to 2.0% by weight, based on the weight of the polyester fiber. By such a polyester fiber for resin reinforcement of the present invention, a fiber reinforced resin molded article having excellent mechanical properties and impact resistance can be obtained by uniformly dispersing the reinforcing fiber in the matrix resin.

本発明で用いられるポリエステル繊維に使用する熱硬化性樹脂としては、例えば、不飽和ポリエステル系樹脂、ビニルエステル系樹脂、エポキシ系樹脂、フェノール(レゾール型)系樹脂、ユリア・メラミン系樹脂、ポリイミド系樹脂、ウレタン系樹脂、これらの共重合体、変性体などがある。特に、取扱性、加工性や力学特性の観点から、エポキシ系樹脂あるいはウレタン系樹脂が好ましい。   Examples of the thermosetting resin used in the polyester fiber used in the present invention include unsaturated polyester resins, vinyl ester resins, epoxy resins, phenol (resole type) resins, urea / melamine resins, and polyimide resins. Examples thereof include resins, urethane resins, copolymers thereof, and modified products. In particular, an epoxy resin or a urethane resin is preferable from the viewpoints of handleability, workability, and mechanical properties.

このうち、エポキシ系樹脂(エポキシ化合物を含む)の具体例としては、ジグリシジルエーテル化合物では、エチレングリコールジグリシジルエーテルおよびポリエチレングリコールジグリシジルエーテル類、プロピレングリコールジグリシジルニーテルおよびポリプロピレングリコールジグリシジルエーテル類、1,4−プタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、ポリアルキレングリコールジグリシジルエーテル類などが挙げられる。また、ポリグリシジルエーテル化合物では、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル類、ソルピトールポリグリシジルエーテル類、アラビトールポリグリシジルエーテル類、トリメチロールプロパンポリグリシジルエーテル類、ペンタエリスリトールポリグリシジルエーテル類、脂肪族多価アルコールのポリグリシジルエーテル類などが挙げられる。好ましくは、反応性の高いグリシジル基を有する脂肪族のポリグリシジルエーテル化合物である。さらに好ましくは、ポリエチレングリコールジグリシジルエーテル類、ポリプロピレングリコールジグリシジルエーテル類、アルカンジオールジグリシジルエーテル類などが好ましい。   Of these, specific examples of epoxy resins (including epoxy compounds) include diglycidyl ether compounds, ethylene glycol diglycidyl ethers and polyethylene glycol diglycidyl ethers, propylene glycol diglycidyl neethers and polypropylene glycol diglycidyl ethers. 1,4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, polytetramethylene glycol diglycidyl ether, polyalkylene glycol diglycidyl ether, and the like. In the polyglycidyl ether compound, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, arabitol polyglycidyl ether, trimethylolpropane polyglycidyl ether, penta Examples include erythritol polyglycidyl ethers and polyglycidyl ethers of aliphatic polyhydric alcohols. Preferably, it is an aliphatic polyglycidyl ether compound having a highly reactive glycidyl group. More preferably, polyethylene glycol diglycidyl ethers, polypropylene glycol diglycidyl ethers, alkanediol diglycidyl ethers and the like are preferable.

また、ウレタン系樹脂は、ポリイソシアネートとポリオールを主原料として重付加反応で合成させたものである。上記ポリイソシアネートとしては、トリレンジイソシアネートなどに代表される芳香族イソシアネート、ヘキサメチレンジイソシアネートのような脂肪族イソシアネートおよび脂環族イソシアネートなど、どのようなイソシアネート化合物であってもよい。また、上記ポリオールとしては、通常、ポリエチレングリコール、ポリテトラメチレングリコール、ポリエステル系ポリオールなどが用いられる。さらに、イソシアネート成分の末端を適当なブロック剤を用いてプレポリマーとしておき、後で熱をかけて重合させてウレタン系樹脂にすることも可能である。   The urethane resin is synthesized by polyaddition reaction using polyisocyanate and polyol as main raw materials. The polyisocyanate may be any isocyanate compound such as aromatic isocyanate typified by tolylene diisocyanate, aliphatic isocyanate such as hexamethylene diisocyanate, and alicyclic isocyanate. Moreover, as said polyol, polyethyleneglycol, polytetramethylene glycol, a polyester-type polyol etc. are used normally. Furthermore, the end of the isocyanate component can be made into a prepolymer using an appropriate blocking agent, and can be polymerized by applying heat later to make a urethane resin.

本発明の樹脂補強用ポリエステル繊維は、例えば、以下の方法により製造することができる。すなわち、前記固有粘度を有するポリエチレンテレフタレートチップを用い、紡糸口金より紡出し、冷却固化した未延伸糸に、紡糸油剤を付与しローラーで引取った後に、90〜120℃の第1ローラーと第2ローラーとの間で2.5〜4.5倍に第1段延伸し、さらに、第2ローラーと230〜260℃の第3ローラーとの間で合計延伸倍率が4.0〜5.7倍になるように第2段延伸し、引き続き第3ローラーと第4ローラーとの間で4〜12%の弛緩を与え、2,000〜4,000m/分の速度でチーズ状パッケージ等に巻き取り、これを40〜60℃で60〜180時間の加温処理を施すことによって製造することができる。また、前記固有粘度を有するポリ(エチレン−2,6−ナフタレート)チップを用い、紡糸口金より紡出し、冷却固化した未延伸糸に、紡糸油剤を付与しローラーで引取った後に、120〜160℃の第1ローラーと第2ローラーとの間で4.0〜6.0倍に第1段延伸し、さらに、第2ローラーと230〜260℃の第3ローラーとの間で合計延伸倍率が4.5〜6.5倍になるように第2段延伸し、2,000〜4,000m/分の速度でチーズ状パッケージ等に巻き取り、これを40〜60℃で60〜180時間の加温処理を施すことによって製造することができる。   The polyester fiber for resin reinforcement of the present invention can be produced, for example, by the following method. That is, using the polyethylene terephthalate chip having the intrinsic viscosity, after applying a spinning oil to the undrawn yarn that has been spun from a spinneret and cooled and solidified, and taken up with a roller, the first roller and the second at 90 to 120 ° C. First-stage stretching is performed 2.5 to 4.5 times between the rollers, and the total stretching ratio is 4.0 to 5.7 times between the second roller and the third roller at 230 to 260 ° C. The second stage is stretched so that it becomes 4-12% relaxation between the third roller and the fourth roller, and wound on a cheese-like package or the like at a speed of 2,000-4,000 m / min. This can be produced by heating at 40 to 60 ° C. for 60 to 180 hours. In addition, a poly (ethylene-2,6-naphthalate) chip having the intrinsic viscosity is used, and a spinning oil is applied to the undrawn yarn that has been spun from a spinneret and cooled and solidified, and taken up with a roller. The first draw is 4.0 to 6.0 times between the first roller and the second roller at ° C, and the total draw ratio is further between the second roller and the third roller at 230 to 260 ° C. The second stretch is 4.5 to 6.5 times, wound up on a cheese-like package or the like at a speed of 2,000 to 4,000 m / min, and this is 40 to 60 ° C. for 60 to 180 hours. It can manufacture by performing a heating process.

また、樹脂補強用ポリエステル繊維に熱硬化性樹脂を付与する方法としては、ポリエステル繊維を製造する工程においてチーズ状に巻き取る前に上記熱硬化性樹脂を付与する方法、および/またはポリエステル繊維を一旦巻取った後に該熱硬化性樹脂を該ポリエステル繊維に含浸付与し熱処理する方法が挙げられる。本発明による効果を損なわない範囲であれば、いずれの方法を採用しても構わない。   In addition, as a method of applying a thermosetting resin to the polyester fiber for resin reinforcement, the method of applying the thermosetting resin and / or the polyester fiber once before winding into a cheese shape in the process of producing the polyester fiber. A method of impregnating and heat treating the polyester fiber with the thermosetting resin after winding is exemplified. Any method may be employed as long as the effects of the present invention are not impaired.

本発明にかかる樹脂補強用ポリエステル繊維により補強する樹脂組成物としては特に限定されるものではないが、該樹脂補強用ポリエステル繊維成形は、温度などを勘案するとポリエチレンやポリプロピレンなどのポリオレフィン系樹脂に好適に用いることができる。   The resin composition reinforced with the resin reinforcing polyester fiber according to the present invention is not particularly limited, but the resin reinforcing polyester fiber molding is suitable for polyolefin resins such as polyethylene and polypropylene in consideration of temperature and the like. Can be used.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by these.

(1)繊維の繊度、フィラメント数、強伸度、210℃乾熱収縮率
JIS−L−1013に準拠した。尚、210℃乾熱収縮率の熱処理時間は60secとした。
(1) Fineness of fiber, number of filaments, strong elongation, 210 ° C. dry heat shrinkage rate compliant with JIS-L-1013. The heat treatment time at 210 ° C. dry heat shrinkage was 60 seconds.

(2)210℃、60sec熱処理後の繊維の強伸度
糸長50cmの繊維を、210℃の恒温槽中に無荷重状態で60sec間入れて熱処理を施し、次いで取り出した繊維をJIS−L−1013に準拠して引張強伸度を測定した。また、タフネスを以下の式で算出した。
タフネス=強度(cN/dtex)×√伸度(%)
(2) Strong elongation of fiber after heat treatment at 210 ° C. for 60 seconds A fiber having a yarn length of 50 cm is placed in a 210 ° C. thermostatic bath for 60 seconds in an unloaded state, subjected to heat treatment, and then the taken-out fiber is converted into JIS-L- Tensile strength and elongation were measured according to 1013. The toughness was calculated by the following formula.
Toughness = strength (cN / dtex) × √elongation (%)

(3)補強繊維の均一分散性(外観評価)
成形品の平板の表面を目視にて観察した。開繊していない繊維の束が見られないような極めて均一な分散である場合は○、ごく一部に開繊していない繊維束がみられるものは△、開繊していない又は交絡した繊維束が多数みられるような不均一な分散ある場合は×として3段階で評価した。△以上を合格とした。
(3) Uniform dispersibility of reinforcing fibers (appearance evaluation)
The surface of the flat plate of the molded product was visually observed. ○ If the dispersion is extremely uniform such that a bundle of unopened fibers is not seen, △ if there is a fiber bundle that is not opened in a very small part, △, not opened or entangled When there was non-uniform dispersion in which a large number of fiber bundles were observed, the evaluation was made in three stages as x. △ or more was accepted.

(4)樹脂成形体の引張破断強度、引張破断伸度
成形により得られた厚み3.2mm×幅12.7mmのTYPE−Iのバーについて、ASTM−D−638−02に準拠して試験速度50mm/minで測定を行なった。
(4) Tensile rupture strength and tensile rupture elongation of resin molded body For a TYPE-I bar having a thickness of 3.2 mm and a width of 12.7 mm obtained by molding, a test speed in accordance with ASTM-D-638-02 Measurement was performed at 50 mm / min.

(5)アイゾット衝撃強度
成形により得られた厚み6.4mm×幅12.7mm×長さ127mmのバーを半分の63.5mmの長さに切削したものについて、ASTM−D−256−00に準拠して下記条件で測定を行なった。
ノッチ加工の回転数:400rpm
ノッチ加工の送り速度:120mm/min
ハンマー容量:60kgf・cm
測定温度:23℃、−40℃
(5) Izod impact strength Conforms to ASTM-D-256-00 with a bar of 6.4 mm thickness x 12.7 mm width x 127 mm obtained by molding and cut to half 63.5 mm length The measurement was performed under the following conditions.
Notch processing speed: 400rpm
Notch processing feed rate: 120 mm / min
Hammer capacity: 60kgf · cm
Measurement temperature: 23 ° C., −40 ° C.

樹脂補強用ポリエステル繊維の製造
[実施例1]
固有粘度(35℃、o−フロロフェノール溶媒にて測定)1.01dL/gのポリエチレンテレフタレートチップを用い、紡糸口金より紡出し、冷却固化した未延伸糸に、POE(10)ラウリルアミノエーテル8重量%を含有するポリエーテルエステル系成分を主成分とする紡糸油剤を、繊維に対してアミン化合物成分の付着量が0.02重量%となるように付与しローラーで引取った後に、110℃の第1ローラーと第2ローラーとの間で3.5倍に第1段延伸し、さらに、第2ローラーと250℃の第3ローラーとの間で合計延伸倍率が5.8倍になるように第2段延伸し、引き続き第3ローラーと第4ローラーとの間で4%の弛緩を与えるとともに、ポリグリセロールポリグリシジルエーテル(ナガセケムテックス社製「デナコールEX−512」)40重量%水溶液をエポキシ成分付着量が繊維に対して0.1重量%となるようにローラー式油剤付与法で付与し、3,000m/分の速度でチーズ状パッケージに巻き取った。次いで55℃で120時間の加温処理を施して、1,670dtex/250f、固有粘度0.90dL/g、強度7.6cN/dtex、伸度12.3%、210℃乾熱収縮率11.6%、エポキシ樹脂付着量0.1重量%のポリエチレンテレフタレート繊維(PET繊維)を得た。
Production of polyester fiber for resin reinforcement [Example 1]
Intrinsic viscosity (measured with an o-fluorophenol solvent at 35 ° C.) 1.01 dL / g polyethylene terephthalate tip, spun from a spinneret, cooled to solidified undrawn yarn, POE (10) lauryl amino ether 8 weight Is added to the fiber so that the amount of the amine compound component attached is 0.02% by weight and taken up with a roller. First stage stretching is performed 3.5 times between the first roller and the second roller, and the total stretching ratio is 5.8 times between the second roller and the third roller at 250 ° C. Second-stage stretching, followed by 4% relaxation between the third and fourth rollers and polyglycerol polyglycidyl ether ("Denacol" manufactured by Nagase ChemteX) X-512 ") A 40 wt% aqueous solution is applied by a roller type oiling method so that the epoxy component adhesion amount is 0.1 wt% with respect to the fiber, and wound around a cheese-like package at a speed of 3,000 m / min. I took it. Next, a heating treatment was performed at 55 ° C. for 120 hours to obtain 1,670 dtex / 250 f, intrinsic viscosity 0.90 dL / g, strength 7.6 cN / dtex, elongation 12.3%, 210 ° C. dry heat shrinkage 11. A polyethylene terephthalate fiber (PET fiber) having 6% and an epoxy resin adhesion amount of 0.1% by weight was obtained.

[実施例2]
合計延伸倍率を4.85倍、第3ローラーと第4ローラーとの間で9%の弛緩を与えた以外は実施例1と同様にして、固有粘度0.90dL/g、強度7.0cN/dtex、伸度25.9%、210℃乾熱収縮率6.5%、エポキシ樹脂付着量0.1重量%のポリエチレンテレフタレート繊維(PET繊維)を得た。
[Example 2]
The intrinsic viscosity was 0.90 dL / g, the strength was 7.0 cN / g as in Example 1 except that the total draw ratio was 4.85 times and 9% relaxation was given between the third roller and the fourth roller. A polyethylene terephthalate fiber (PET fiber) having a dtex, elongation of 25.9%, 210 ° C. dry heat shrinkage of 6.5%, and an epoxy resin adhesion amount of 0.1% by weight was obtained.

[実施例3]
第3ローラーと第4ローラー間の弛緩率を10%、合計延伸倍率を5.30倍とし、紡糸油剤にPOE(10)ラウリルアミノエーテルを含有せず、エポキシ成分を付与しなかった以外は実施例1と同様にして、固有粘度0.89dL/g、強度7.6cN/dtex、伸度21.5%、210℃乾熱収縮率5.0%のポリエチレンテレフタレート繊維(PET繊維)を得た。
[Example 3]
Implemented except that the relaxation rate between the third roller and the fourth roller was 10%, the total draw ratio was 5.30 times, the spinning oil did not contain POE (10) laurylamino ether, and no epoxy component was added. In the same manner as in Example 1, a polyethylene terephthalate fiber (PET fiber) having an intrinsic viscosity of 0.89 dL / g, a strength of 7.6 cN / dtex, an elongation of 21.5%, and a 210 ° C. dry heat shrinkage of 5.0% was obtained. .

[実施例4]
固有粘度(o−クロロフェノールとo−ジクロロベンゼンの混合溶媒(容量比6:4)に溶解して35℃で測定)が0.76dL/gのポリ(エチレン−2,6−ナフタレート)チップを用い、紡糸口金より紡出し、冷却固化した未延伸糸に、POE(10)ラウリルアミノエーテル8重量%を含有するポリエーテルエステル系成分を主成分とする紡糸油剤を、繊維に対してアミン化合物成分の付着量が0.02重量%となるように付与しローラーで取った後に、150℃の第1ローラーと第2ローラーとの間で5.0倍に第1段延伸し、さらに、第2ローラーと230℃の第3ローラーとの間で合計延伸倍率が5.8倍になるように第2段延伸し、ポリグリセロールポリグリシジルエーテル(ナガセケムテックス社製「デナコールEX−512」)40重量%水溶液をエポキシ成分付着量が繊維に対して0.1重量%となるようにローラー式油剤付与法で付与し、3,000m/分の速度でチーズ状パッケージに巻き取った。次いで55℃で120時間の加湿処理を施して、1,670dtex/250f、固有粘度0.70dL/g、強度8.2cN/dtex、伸度11.5%、210℃乾熱収縮率8.5%、エポキシ樹脂付着量0.1重量%のポリ(エチレン−2,6−ナフタレート)繊維(PEN繊維)を得た。
[Example 4]
A poly (ethylene-2,6-naphthalate) chip having an intrinsic viscosity (dissolved in a mixed solvent of o-chlorophenol and o-dichlorobenzene (volume ratio 6: 4) and measured at 35 ° C.) of 0.76 dL / g A spinning oil mainly composed of a polyether ester-based component containing 8% by weight of POE (10) laurylamino ether is used as an amine compound component for the fiber in undrawn yarn that has been spun from a spinneret and cooled and solidified. After applying with a roller so that the adhesion amount of 0.02% by weight is taken with a roller, the first stage stretching is performed 5.0 times between the first roller and the second roller at 150 ° C., and the second Second stage stretching was performed between the roller and the third roller at 230 ° C. so that the total stretching ratio was 5.8 times, and polyglycerol polyglycidyl ether (“Denacol EX-5” manufactured by Nagase ChemteX Corporation) was drawn. 2 ") A 40 wt% aqueous solution was applied by a roller-type oil agent application method so that the epoxy component adhesion amount was 0.1 wt% with respect to the fiber, and wound around a cheese-like package at a speed of 3,000 m / min. . Subsequently, a humidification treatment was performed at 55 ° C. for 120 hours to obtain 1,670 dtex / 250 f, intrinsic viscosity 0.70 dL / g, strength 8.2 cN / dtex, elongation 11.5%, 210 ° C. dry heat shrinkage 8.5. % Poly (ethylene-2,6-naphthalate) fiber (PEN fiber) having an epoxy resin adhesion amount of 0.1% by weight was obtained.

[実施例5]
紡糸油剤にPOE(10)ラウリルアミノエーテルを含有せず、エポキシ成分を付与しなかった以外は実施例5と同様にして、固有粘度0.70dL/g、強度8.2cN/dtex、伸度11.8%、210℃乾熱収縮率8.3%のポリ(エチレン−2,6−ナフタレート)繊維(PEN繊維)を得た。
[Example 5]
The inherent viscosity was 0.70 dL / g, the strength was 8.2 cN / dtex, and the elongation was 11 as in Example 5 except that the spinning oil did not contain POE (10) lauryl amino ether and no epoxy component was added. A poly (ethylene-2,6-naphthalate) fiber (PEN fiber) having a dry heat shrinkage of 8.3% at 210 ° C. and 8.3% was obtained.

[比較例1]
第3ローラー温度220℃、第3ローラーと第4ローラー間の弛緩率を3%、合計延伸倍率を5.85倍とした以外は実施例1と同様にして、固有粘度0.90dL/g、強度8.1cN/dtex、伸度13.0%、210℃乾熱収縮率19.2%、エポキシ樹脂付着量0.1重量%のポリエチレンテレフタレート繊維(PET繊維)を得た。
[Comparative Example 1]
The intrinsic viscosity was 0.90 dL / g, as in Example 1, except that the third roller temperature was 220 ° C., the relaxation rate between the third roller and the fourth roller was 3%, and the total draw ratio was 5.85 times. A polyethylene terephthalate fiber (PET fiber) having a strength of 8.1 cN / dtex, elongation of 13.0%, 210 ° C. dry heat shrinkage of 19.2%, and an epoxy resin adhesion amount of 0.1% by weight was obtained.

[比較例2]
巻取速度5,000m/分、一段延伸倍率1.4倍、合計延伸倍率2.2倍、第3ローラー温度を200℃とし、第3ローラーと第4ローラー間の弛緩率を0%とした以外は実施例1と同様にして、固有粘度0.91dL/g、強度7.6cN/dtex、伸度12.5%、210℃乾熱収縮率16.8%、エポキシ樹脂付着量0.1重量%のポリエチレンテレフタレート繊維(PET繊維)を得た。
[Comparative Example 2]
Winding speed 5,000 m / min, one-stage draw ratio 1.4 times, total draw ratio 2.2 times, third roller temperature 200 ° C., relaxation rate between third roller and fourth roller 0% In the same manner as in Example 1, the intrinsic viscosity was 0.91 dL / g, the strength was 7.6 cN / dtex, the elongation was 12.5%, the 210 ° C. dry heat shrinkage rate was 16.8%, and the epoxy resin adhesion amount was 0.1. A weight% polyethylene terephthalate fiber (PET fiber) was obtained.

[比較例3]
第3ローラー温度220℃、合計延伸倍率を3.8倍とした以外は実施例1と同様にして、固有粘度0.89dL/g、強度5.5cN/dtex、伸度39.0%、210℃乾熱収縮率11.9%、エポキシ樹脂付着量0.1重量%のポリエチレンテレフタレート繊維(PET繊維)を得た。
[Comparative Example 3]
The intrinsic viscosity was 0.89 dL / g, the strength was 5.5 cN / dtex, the elongation was 39.0%, 210 except that the third roller temperature was 220 ° C. and the total draw ratio was 3.8 times. A polyethylene terephthalate fiber (PET fiber) having a dry heat shrinkage of 11.9% and an epoxy resin adhesion amount of 0.1% by weight was obtained.

[比較例4]
一段延伸倍率3.8倍、合計延伸倍率3.9倍とした以外は実施例5と同様にして、固有粘度0.70dL/g、強度5.8cN/dtex、伸度22.5%、210℃乾熱収縮率7.1%、エポキシ樹脂付着量0.1重量%のポリ(エチレン−2,6−ナフタレート)繊維(PEN繊維)を得た。
[Comparative Example 4]
The intrinsic viscosity was 0.70 dL / g, the strength was 5.8 cN / dtex, the elongation was 22.5%, 210 except that the one-stage draw ratio was 3.8 times and the total draw ratio was 3.9 times. A poly (ethylene-2,6-naphthalate) fiber (PEN fiber) having a dry heat shrinkage of 7.1% and an epoxy resin adhesion amount of 0.1% by weight was obtained.

繊維強化樹脂成形体の製造
[実施例1〜5、比較例1〜4]
得られた樹脂補強用ポリエステル繊維とポリプロピレン樹脂(日本ポリプロ社製 ノバテックPP SA06A)とをクロスヘッドダイを有する単軸押出機を用いて引抜き成形を行い、繊維強化ポリプロピレン樹脂ペレットを製造した。繊維含有量は30重量%、ペレット長は10mmとなるように調整した。次いで、得られた繊維強化ポリプロピレン樹脂ペレットを射出成形機に供し、シリンダー温度210℃、金型温度70℃、背圧10kg/cm、およびスクリュー回転数50rpmにて、厚み6.4mm×幅12.7mm×長さ127mmのバー、厚み3.2mm×幅12.7mmのTYPE−Iのバーをそれぞれ成形した。実施例1〜5及び比較例1〜4について、ポリエステル繊維および繊維強化樹脂成形体の評価結果について表1にまとめて示す。
Production of Fiber Reinforced Resin Molded Body [Examples 1 to 5, Comparative Examples 1 to 4]
The obtained polyester fiber for resin reinforcement and polypropylene resin (Novatech PP SA06A manufactured by Nippon Polypro Co., Ltd.) were subjected to pultrusion molding using a single screw extruder having a crosshead die to produce fiber reinforced polypropylene resin pellets. The fiber content was adjusted to 30% by weight and the pellet length was adjusted to 10 mm. Subsequently, the obtained fiber reinforced polypropylene resin pellets were subjected to an injection molding machine, and the thickness was 6.4 mm × width 12 at a cylinder temperature of 210 ° C., a mold temperature of 70 ° C., a back pressure of 10 kg / cm 2 , and a screw rotation speed of 50 rpm. A bar having a length of 0.7 mm and a length of 127 mm and a bar of TYPE-I having a thickness of 3.2 mm and a width of 12.7 mm were formed. About Example 1-5 and Comparative Examples 1-4, the evaluation result of a polyester fiber and a fiber reinforced resin molding is put together in Table 1, and is shown.

Figure 0005519434
Figure 0005519434

実施例1〜3の樹脂補強用ポリエチレンテレフタレート繊維を用いた繊維強化樹脂成形体は、強度、伸度、耐衝撃性が著しく向上し、優れた補強効果を発揮していることを示している。また、実施例4、5の樹脂補強用ポリ(エチレン−2,6−ナフタレート)繊維を用いた繊維強化樹脂成形体も、優れた強度、伸度、耐衝撃性を示し、優れた補強効果を発揮していることを示している。このうち、実施例3及び5は、繊維にエポシキ付与を行っておらず、繊維強化樹脂成形体に一部繊維の絡まりが見られ外観品位が若干劣るものの、樹脂成形体の強度や耐衝撃性などの機械特性は充分な補強効果を得ることができた。一方、比較例1及び2は、210℃乾熱収縮率と210℃×60sec熱処理後のタフネスが低く、得られた繊維強化樹脂成形体の耐衝撃性が実施例対比で低く、また、比較例3及び4は繊維強化樹脂成形体の強度が実施例対比で低く、比較例1〜4は、いずれも補強繊維の均一分散性は得られたものの、ポリエステル繊維による樹脂補強効果が低いものであった。   The fiber reinforced resin molded products using the polyethylene terephthalate fibers for resin reinforcement of Examples 1 to 3 are remarkably improved in strength, elongation and impact resistance, and exhibit an excellent reinforcing effect. Moreover, the fiber reinforced resin molded body using the poly (ethylene-2,6-naphthalate) fiber for resin reinforcement of Examples 4 and 5 also exhibits excellent strength, elongation, and impact resistance, and has an excellent reinforcing effect. It shows that it is demonstrating. Of these, Examples 3 and 5 were not imparted to the fiber with epoxy, and some entanglement of fibers was observed in the fiber-reinforced resin molded product, but the appearance quality was slightly inferior, but the strength and impact resistance of the resin molded product. The mechanical properties such as were able to obtain a sufficient reinforcing effect. On the other hand, Comparative Examples 1 and 2 have a low dry heat shrinkage of 210 ° C. and a toughness after heat treatment of 210 ° C. × 60 sec, and the impact resistance of the obtained fiber-reinforced resin molded product is low compared to the Examples. 3 and 4 were low in strength of the fiber-reinforced resin molded product compared to the Examples, and Comparative Examples 1 to 4 all had a uniform dispersibility of the reinforcing fiber, but the resin reinforcing effect by the polyester fiber was low. It was.

本発明の樹脂補強用ポリエステル繊維は、繊維強化樹脂ペレット製造時あるいは繊維強化樹脂成形体製造時に補強繊維の寸法安定性に優れ、繊維強化樹脂成形体の補強繊維として高い強度、タフネスを発現し、耐衝撃性に優れた繊維強化樹脂成形体を得ることができ、樹脂成形体の軽量化やリサイクル性、耐久性向上などの環境面の効果も期待できるものであり、オレフィン系樹脂などの熱可塑性樹脂の補強用繊維として大きな実用効果を有するものである。   The polyester fiber for resin reinforcement of the present invention is excellent in dimensional stability of the reinforcing fiber at the time of fiber reinforced resin pellet production or fiber reinforced resin molded product production, and exhibits high strength and toughness as the reinforcing fiber of the fiber reinforced resin molded product. It is possible to obtain a fiber reinforced resin molded article with excellent impact resistance, and it can also be expected to have environmental effects such as weight reduction, recyclability and improved durability of the molded resin, and thermoplastics such as olefin resins. It has a great practical effect as a resin reinforcing fiber.

Claims (4)

樹脂補強に用いる樹脂補強用ポリエステル繊維であって、該樹脂補強用ポリエステル繊維が以下の(A)、(B)及び(C)を同時に満足することを特徴とする樹脂補強用ポリエステル繊維。
(A)25℃における引張強度が6〜10cN/dtex
(B)210℃乾熱収縮率が1〜12%
(C)210℃×60sec熱処理後において、引張強度が5〜10cN/dtex、かつ、タフネスが30〜50
[ここで、タフネス=引張強度(cN/dtex)×√伸度(%)である。]
A polyester fiber for resin reinforcement used for resin reinforcement, wherein the polyester fiber for resin reinforcement satisfies the following (A), (B) and (C) at the same time.
(A) Tensile strength at 25 ° C. is 6 to 10 cN / dtex
(B) 210 ° C. dry heat shrinkage is 1 to 12%
(C) After heat treatment at 210 ° C. for 60 seconds, the tensile strength is 5 to 10 cN / dtex and the toughness is 30 to 50
[Toughness = tensile strength (cN / dtex) × √elongation (%). ]
樹脂補強用ポリエステル繊維が、繰返し単位の90モル%以上がエチレンテレフタレートまたはエチレン−2,6−ナフタレートで構成されるポリエステルからなる請求項1記載の樹脂補強用ポリエステル繊維。   The polyester fiber for resin reinforcement according to claim 1, wherein the polyester fiber for resin reinforcement is made of polyester in which 90 mol% or more of repeating units are composed of ethylene terephthalate or ethylene-2,6-naphthalate. 請求項1または2に記載の樹脂補強用ポリエステル繊維に、熱硬化性樹脂が、該樹脂補強用ポリエステル繊維重量に対して0.01〜5.0重量%付着していることを特徴とする樹脂補強用ポリエステル繊維。   A resin in which a thermosetting resin is attached to the polyester fiber for resin reinforcement according to claim 1 or 2 in an amount of 0.01 to 5.0% by weight based on the weight of the polyester fiber for resin reinforcement. Reinforcing polyester fiber. 熱硬化性樹脂が、エポキシ系樹脂またはウレタン系樹脂である請求項3に記載の樹脂補強用ポリエステル繊維。   The polyester fiber for resin reinforcement according to claim 3, wherein the thermosetting resin is an epoxy resin or a urethane resin.
JP2010154988A 2010-07-07 2010-07-07 Polyester fiber for resin reinforcement Active JP5519434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010154988A JP5519434B2 (en) 2010-07-07 2010-07-07 Polyester fiber for resin reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010154988A JP5519434B2 (en) 2010-07-07 2010-07-07 Polyester fiber for resin reinforcement

Publications (2)

Publication Number Publication Date
JP2012017535A JP2012017535A (en) 2012-01-26
JP5519434B2 true JP5519434B2 (en) 2014-06-11

Family

ID=45602979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010154988A Active JP5519434B2 (en) 2010-07-07 2010-07-07 Polyester fiber for resin reinforcement

Country Status (1)

Country Link
JP (1) JP5519434B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6575791B2 (en) * 2014-09-30 2019-09-18 東レ・モノフィラメント株式会社 Artificial hair fiber

Also Published As

Publication number Publication date
JP2012017535A (en) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5161788B2 (en) Polyester multifilament for resin reinforcement and method for producing the same
CN108472866B (en) Method for manufacturing three-dimensional structure and filament for 3D printer
KR101841797B1 (en) Carbon fiber prepreg, method for producing same and carbon fiber reinforced composite material
JP5938299B2 (en) Fiber reinforced resin composition
EP2123806A1 (en) Polyethylene naphthalate fiber and method for production thereof
US10145028B2 (en) Continuous carbon fiber/thermoplastic resin fiber composite yarn and method for manufacturing the same
JP4337539B2 (en) Polyester fiber production method and spinneret for melt spinning
JP5519434B2 (en) Polyester fiber for resin reinforcement
JP2011162767A (en) Carbon fiber reinforced polyphenylene sulfide resin composition, and molding material and molding using the same
US8318305B2 (en) Resin composition
KR102200706B1 (en) Sea-island type composite yarn using recycled PET and manufacturing method thereof
EP3951044A1 (en) Method for manufacturing an opened carbon fiber bundle, and fiber reinforced composite material
JP2002060502A (en) Fiber-reinforced thermoplastic resin pellet and method for producing the same
JP2005256189A (en) Twist yarn made of polyoxymethylene resin
EP3492635B1 (en) Polyolefin fiber and method for producing same
JP5161731B2 (en) Aliphatic polyester resin pellets and molded articles obtained by molding them
JP2007321256A (en) Fiber for resin reinforcement
JP2007246733A (en) Fiber-reinforced thermoplastic resin
JP7048060B2 (en) Manufacturing method of multifilament yarn made of high density fiber
KR101427832B1 (en) Process for preparing high tenacity polyethylene terephthalate multifilament
KR100595756B1 (en) High strength polyvinyl alcohol fiber
Handlos et al. Extrusion blow molding of microcomposites based on thermotropic liquid crystalline polymers and polypropylene
JP4104260B2 (en) Optical fiber tension member
JP2011026571A (en) Thermoplastic resin composition reinforced by low convergent fiber
KR20220144598A (en) Sea-island type cross-sectional composite yarn using recycled Polyeter and water-soluble polyester and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140403

R150 Certificate of patent or registration of utility model

Ref document number: 5519434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250