JP5518531B2 - Carbon dioxide recovery device - Google Patents

Carbon dioxide recovery device Download PDF

Info

Publication number
JP5518531B2
JP5518531B2 JP2010054808A JP2010054808A JP5518531B2 JP 5518531 B2 JP5518531 B2 JP 5518531B2 JP 2010054808 A JP2010054808 A JP 2010054808A JP 2010054808 A JP2010054808 A JP 2010054808A JP 5518531 B2 JP5518531 B2 JP 5518531B2
Authority
JP
Japan
Prior art keywords
exhaust gas
heat transfer
transfer tube
refrigerant
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010054808A
Other languages
Japanese (ja)
Other versions
JP2011190116A (en
Inventor
貴志 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2010054808A priority Critical patent/JP5518531B2/en
Publication of JP2011190116A publication Critical patent/JP2011190116A/en
Application granted granted Critical
Publication of JP5518531B2 publication Critical patent/JP5518531B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Description

本発明は、二酸化炭素を含むガスから効率的に二酸化炭素を回収する二酸化酸素回収装置に関する。   The present invention relates to an oxygen dioxide recovery device that efficiently recovers carbon dioxide from a gas containing carbon dioxide.

一般に、火力発電所や化学プラント等において、石炭、石油又はLNG等の化石燃料を燃焼させることで発生する排ガス中には、多量の二酸化炭素が含まれており、環境面を考慮すると排ガス中に含まれる二酸化炭素を効率的に回収する必要がある。   In general, exhaust gas generated by burning fossil fuels such as coal, oil, or LNG in thermal power plants or chemical plants contains a large amount of carbon dioxide. It is necessary to efficiently recover the contained carbon dioxide.

排ガス中に含まれる二酸化炭素を回収する手法として、排ガス中の二酸化炭素をドライアイスとして固化させて分離する手法が知られている。例えば、特許文献1には、二酸化炭素回収容器の内部に排ガスを供給し、この二酸化炭素回収容器の内部を冷却することで、排ガス中に含まれる二酸化炭素を二酸化炭素回収容器の内面にドライアイスとして付着させる手法が提案されている。   As a technique for recovering carbon dioxide contained in exhaust gas, a technique for solidifying and separating carbon dioxide in exhaust gas as dry ice is known. For example, in Patent Document 1, exhaust gas is supplied to the inside of a carbon dioxide recovery container, and the inside of the carbon dioxide recovery container is cooled so that carbon dioxide contained in the exhaust gas is dried on the inner surface of the carbon dioxide recovery container. A method of adhering is proposed.

特開2007−69057号公報JP 2007-69057 A

しかしながら、特許文献1で対案された手法では、二酸化炭素回収容器の内面に付着したドライアイスを回収するために、二酸化炭素回収容器自体に振動を加えて、この振動により二酸化炭素回収容器に付着したドライアイスを分離させる必要があった。そのため、二酸化炭素回収容器に過度の力が恒常的に加えられることになり、二酸化炭素回収容器が疲労してしまう。そして、このような疲労によって二酸化炭素回収容器の気密性が損なわれて、この二酸化炭素回収容器から排ガスが漏洩するおそれがあった。   However, in the technique proposed in Patent Document 1, in order to recover the dry ice adhering to the inner surface of the carbon dioxide recovery container, the carbon dioxide recovery container itself is vibrated and attached to the carbon dioxide recovery container by this vibration. It was necessary to separate the dry ice. Therefore, excessive force is constantly applied to the carbon dioxide recovery container, and the carbon dioxide recovery container becomes fatigued. And the fatigue | tightness of the carbon dioxide collection container was impaired by such fatigue, and there existed a possibility that exhaust gas might leak from this carbon dioxide collection container.

つまり、従来の手法においては、経年的に二酸化炭素回収容器に振動が加えられる結果、二酸化炭素回収容器が劣化して破損する場合があり、効率的に二酸化炭素の回収を行えなくなってしまうことがある。   In other words, in the conventional method, as a result of vibration applied to the carbon dioxide recovery container over time, the carbon dioxide recovery container may be deteriorated and damaged, and the carbon dioxide cannot be efficiently recovered. is there.

従って、本発明は、排ガスが流入する容器を劣化させることなく、効率的に二酸化炭素を回収できる二酸化炭素回収装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a carbon dioxide recovery device that can efficiently recover carbon dioxide without deteriorating a container into which exhaust gas flows.

(1)本発明の二酸化炭素回収装置は、排ガス中に含まれる二酸化炭素を固化させて回収する二酸化炭素回収装置であって、内部を排ガスが流通する回収装置本体と、該回収装置本体の内部に水平方向に延びるように配置され、内部を冷媒が流通する伝熱管と、前記伝熱管に近接して配置され、水平方向に移動して前記伝熱管の周面に付着した固化された二酸化炭素を掻き落とす掻き落とし手段と、前記回収装置本体の下方に配置され前記掻き落とし手段により掻き落とされた二酸化炭素を収容する収容部と、を備える。   (1) A carbon dioxide recovery device of the present invention is a carbon dioxide recovery device that solidifies and recovers carbon dioxide contained in exhaust gas, the recovery device main body through which exhaust gas flows, and the interior of the recovery device main body And a solidified carbon dioxide that is disposed in the vicinity of the heat transfer tube and that moves in the horizontal direction and adheres to the peripheral surface of the heat transfer tube. Scraping means for scraping off the carbon dioxide, and a storage section for storing carbon dioxide scraped off by the scraping means disposed below the recovery apparatus main body.

(2)前記伝熱管は、前記回収装置本体の高さ方向における下部に配置される第1伝熱管と、該第1伝熱管よりも上部に配置される第2伝熱管と、を備え、前記第1伝熱管における冷媒の流通方向は、前記第2伝熱管における冷媒の流通方向と逆方向であることが好ましい。   (2) The heat transfer tube includes a first heat transfer tube disposed at a lower portion in the height direction of the recovery device main body, and a second heat transfer tube disposed at an upper portion than the first heat transfer tube, The flow direction of the refrigerant in the first heat transfer tube is preferably opposite to the flow direction of the refrigerant in the second heat transfer tube.

(3)前記第1伝熱管において前記冷媒を第1方向に流通させると共に、前記第2伝熱管において該冷媒を前記第1方向とは逆方向の第2方向に流通させる第1状態と、前記第1伝熱管において前記冷媒を前記第2方向に流通させると共に、前記第2伝熱管において該冷媒を前記第1方向に流通させる第2状態と、を切り替える流路切り替え手段をさらに備えることが好ましい。   (3) a first state in which the refrigerant flows in the first direction in the first heat transfer tube, and the refrigerant flows in a second direction opposite to the first direction in the second heat transfer tube; It is preferable that flow path switching means for switching between the second state in which the refrigerant is circulated in the second direction in the first heat transfer tube and the refrigerant is circulated in the first direction in the second heat transfer tube is further provided. .

(4)前記回収装置本体は、該回収装置本体の上部に設けられ排ガスが導入される排ガス導入口と、前記排ガス導入口から導入された排ガスを下方に流通させる第1排ガス流通室と、前記第1排ガス流通室の下部に連続して設けられ、前記第1排ガス流通室を流通した排ガスを上方に流通させる第2排ガス流通室と、前記第2排ガス流通室の上部に設けられ前記第2排ガス流通室を流通した排ガスを排出する排ガス排出口と、を備えることが好ましい。   (4) The recovery device body includes an exhaust gas introduction port provided at an upper portion of the recovery device body and into which exhaust gas is introduced, a first exhaust gas circulation chamber that allows the exhaust gas introduced from the exhaust gas introduction port to flow downward, A second exhaust gas circulation chamber continuously provided in a lower portion of the first exhaust gas circulation chamber and allowing the exhaust gas flowing through the first exhaust gas circulation chamber to flow upward; and the second exhaust gas circulation chamber provided in an upper portion of the second exhaust gas circulation chamber. It is preferable to include an exhaust gas discharge port for discharging the exhaust gas flowing through the exhaust gas circulation chamber.

(5)前記伝熱管及び前記掻き落とし手段は、前記第1排ガス流通室に設けられることが好ましい。   (5) It is preferable that the heat transfer tube and the scraping means are provided in the first exhaust gas circulation chamber.

本発明によれば、伝熱管に付着し固化した二酸化炭素を掻き落として収容部に回収するようにしたので、回収装置本体に振動を加える必要がない。よって、疲労等によって回収装置本体の気密性が損なわれることがなく、効率的に二酸化炭素の回収を行える。   According to the present invention, carbon dioxide that has adhered to the heat transfer tube and solidified is scraped off and collected in the accommodating portion, so there is no need to apply vibration to the collection device body. Therefore, the carbon dioxide can be efficiently recovered without impairing the airtightness of the recovery device body due to fatigue or the like.

本発明の実施形態に係る二酸化炭素回収装置を説明する模式図である。It is a mimetic diagram explaining a carbon dioxide recovery device concerning an embodiment of the present invention. 本発明の実施形態に係る回収装置本体を示す斜視図である。It is a perspective view which shows the collection | recovery apparatus main body which concerns on embodiment of this invention. 本発明の実施形態に係る伝熱管を示す平面図である。It is a top view which shows the heat exchanger tube which concerns on embodiment of this invention. 本発明の実施形態に係る掻き落とし部材を示す正面図である。It is a front view which shows the scraping member which concerns on embodiment of this invention. 本発明の実施形態に係る掻き落とし部材及び駆動部を示す側面図である。It is a side view which shows the scraping member and drive part which concern on embodiment of this invention. 図1に示す二酸化炭素回収装置における掻き落とし部材が待機位置にある状態を一部破断して概略的に示す図である。It is a figure which shows partially the state which the scraping member in the carbon dioxide collection device shown in FIG. 図1に示す二酸化炭素回収装置における掻き落とし部材が待機位置と駆動位置との間に位置する状態を一部破断して概略的に示す図である。FIG. 2 is a diagram schematically showing a state in which a scraping member in the carbon dioxide recovery device shown in FIG. 1 is located between a standby position and a drive position, with a part broken away. 図1に示す二酸化炭素回収装置における掻き落とし部材が駆動位置にある状態を一部破断して概略的に示す図である。FIG. 2 is a diagram schematically showing a state in which a scraping member in the carbon dioxide recovery device shown in FIG.

以下、本発明の二酸化炭素回収装置の好ましい一実施形態について図面を参照ながら説明する。   Hereinafter, a preferred embodiment of the carbon dioxide recovery device of the present invention will be described with reference to the drawings.

図1に示すように、二酸化炭素回収装置1は、例えば、石炭、石油又はLNG等を燃料として用いる火力発電所で用いられ、当該火力発電所からの排ガス中に含まれる二酸化炭素を固化させて回収する。   As shown in FIG. 1, the carbon dioxide recovery device 1 is used in, for example, a thermal power plant that uses coal, petroleum, LNG, or the like as a fuel, and solidifies carbon dioxide contained in exhaust gas from the thermal power plant. to recover.

二酸化炭素回収装置1は、回収装置本体10と、回収装置本体10の内部に配置される伝熱管20を含んで構成され冷媒が流通される冷媒流通部24と、伝熱管20の周面に付着した固化された二酸化炭素(ドライアイス)を掻き落とす掻き落とし手段30と、伝熱管20を流通する冷媒の流路を切り替える流路切替手段40(図2参照)と、掻き落とされたドライアイスを回収する回収部50と、回収装置本体10の下方に配置される収容部60と、回収部50及び収容部60の圧力を調整するポンプ70と、制御装置80と、を備える。   The carbon dioxide recovery device 1 includes a recovery device main body 10, a heat transfer tube 20 disposed inside the recovery device main body 10, a refrigerant circulation portion 24 through which a refrigerant flows, and a peripheral surface of the heat transfer tube 20. Scraping means 30 for scraping off the solidified carbon dioxide (dry ice), flow path switching means 40 (see FIG. 2) for switching the flow path of the refrigerant flowing through the heat transfer tube 20, and dry ice that has been scraped off The recovery part 50 to collect | recover, the accommodating part 60 arrange | positioned under the collection | recovery apparatus main body 10, the pump 70 which adjusts the pressure of the collection | recovery part 50 and the accommodating part 60, and the control apparatus 80 are provided.

図2に示すように、回収装置本体10は、排ガス導入口11と、第1排ガス流通室12と、第2排ガス流通室14と、排ガス排出口13と、を備え、内部を排ガスが流通する。
排ガス導入口11は、回収装置本体10の上部に設けられる。回収装置本体10には、この排ガス導入口11から排ガスが導入される。
第1排ガス流通室12は、排ガス導入口11から下方に延びる。この第1排ガス流通室12では、排ガス導入口11から導入された排ガスが上方から下方に向けて流通する。
第2排ガス流通室14は、第1排ガス流通室12の下部に連続して設けられる。この第2排ガス流通室14は、上方に延びて形成される。第2排ガス流通室14では、第1排ガス流通室12を流通した排ガスが下方から上方に向けて流通する。
排ガス排出口13は、第2排ガス流通室14の上部に設けられる。この排ガス排出口13からは、第2排ガス流通室14を流通した排ガスが排出される。排ガス排出口13は、排ガス導入口11よりも低い位置に配置される。
As shown in FIG. 2, the recovery apparatus main body 10 includes an exhaust gas introduction port 11, a first exhaust gas circulation chamber 12, a second exhaust gas circulation chamber 14, and an exhaust gas discharge port 13, and the exhaust gas circulates therein. .
The exhaust gas inlet 11 is provided in the upper part of the recovery apparatus main body 10. Exhaust gas is introduced into the recovery apparatus main body 10 from the exhaust gas inlet 11.
The first exhaust gas circulation chamber 12 extends downward from the exhaust gas inlet 11. In the first exhaust gas circulation chamber 12, the exhaust gas introduced from the exhaust gas inlet 11 circulates from above to below.
The second exhaust gas circulation chamber 14 is provided continuously below the first exhaust gas circulation chamber 12. The second exhaust gas circulation chamber 14 is formed extending upward. In the second exhaust gas circulation chamber 14, the exhaust gas that has circulated through the first exhaust gas circulation chamber 12 circulates from below to above.
The exhaust gas discharge port 13 is provided in the upper part of the second exhaust gas circulation chamber 14. From the exhaust gas discharge port 13, the exhaust gas flowing through the second exhaust gas circulation chamber 14 is discharged. The exhaust gas discharge port 13 is disposed at a position lower than the exhaust gas introduction port 11.

回収装置本体10は、第1排ガス流通室12と第2排ガス流通室14とが連続する部分において、水平方向における断面の面積が下方に向かって徐々に小さくなるようにすぼまっている。つまり、第1排ガス流通室12と第2排ガス流通室14とが連続する部分における回収装置本体10の壁面は、回収装置本体10の水平方向における断面の中心に向かって下り傾斜した傾斜面となっており、下方に突出した突出部16を形成している。この突出部16には、開口が設けられている。第1排ガス流通室12の容積は、第2排ガス流通室14の容積よりも大きく、回収装置本体10に設けられた開口は、第1排ガス流通室12側に位置している。   The recovery apparatus main body 10 is narrowed so that the area of the cross section in the horizontal direction gradually decreases downward in a portion where the first exhaust gas circulation chamber 12 and the second exhaust gas circulation chamber 14 are continuous. That is, the wall surface of the recovery apparatus body 10 at the portion where the first exhaust gas circulation chamber 12 and the second exhaust gas circulation chamber 14 are continuous is an inclined surface that is inclined downward toward the center of the cross section of the recovery apparatus body 10 in the horizontal direction. Thus, a projecting portion 16 projecting downward is formed. The protrusion 16 is provided with an opening. The volume of the first exhaust gas circulation chamber 12 is larger than the volume of the second exhaust gas circulation chamber 14, and the opening provided in the recovery device body 10 is located on the first exhaust gas circulation chamber 12 side.

冷媒流通部24は、冷媒が略水平に流通される第1冷媒流通部24aと、この第1冷媒流通部の上方に、第1冷媒流通部と略平行に配置される第2冷媒流通部24bと、第1冷媒流通部24aと第2冷媒流通部24bとを連結する一対の連結部24cと、を備える。冷媒流通部24は、回収装置本体10の内部に水平方向に延びるようにして配置され、内部を冷媒が流通する伝熱管20を有する。伝熱管20の内部には、液体窒素等の冷媒が流通する。   The refrigerant circulation part 24 includes a first refrigerant circulation part 24a through which the refrigerant is circulated substantially horizontally, and a second refrigerant circulation part 24b disposed above the first refrigerant circulation part and substantially in parallel with the first refrigerant circulation part. And a pair of connecting parts 24c that connect the first refrigerant circulation part 24a and the second refrigerant circulation part 24b. The refrigerant circulation part 24 is disposed so as to extend in the horizontal direction inside the recovery apparatus main body 10 and has a heat transfer tube 20 through which the refrigerant circulates. A refrigerant such as liquid nitrogen circulates inside the heat transfer tube 20.

図2及び図3に示すように、第1冷媒流通部24aは、伝熱管20のうち互いに略平行に延びる複数の第1伝熱管21と、複数の第1伝熱管21の延びる方向に略垂直に延び、複数の第1伝熱管21それぞれの一端側に連結される第1連結管241と、第1連結管241に略平行に延び複数の第1連結管241それぞれの他端側に連結される第2連結管242と、一端側が第1連結管241に連結され、他端側が第2連結管242に連結される第3連結管243と、一端側が第3連結管243に連結される第4連結管244と、を備える。   As shown in FIGS. 2 and 3, the first refrigerant flow portion 24 a is substantially perpendicular to the direction in which the plurality of first heat transfer tubes 21 extending substantially parallel to each other and the plurality of first heat transfer tubes 21 extend. A first connection pipe 241 connected to one end side of each of the plurality of first heat transfer pipes 21 and connected to the other end side of each of the plurality of first connection pipes 241 extending substantially parallel to the first connection pipe 241. The second connecting pipe 242, the one end side being connected to the first connecting pipe 241, the other end side being connected to the second connecting pipe 242, and the one end side being connected to the third connecting pipe 243. 4 connecting pipes 244.

複数の第1伝熱管21は、第1排ガス流通室12を挿通して配置される。複数の第1伝熱管21の大部分は、第1排ガス流通室12の内部に位置する。複数の第1伝熱管21の一端側及び他端側は、第1排ガス流通室12の外部に位置する。   The plurality of first heat transfer tubes 21 are disposed through the first exhaust gas circulation chamber 12. Most of the plurality of first heat transfer tubes 21 are located inside the first exhaust gas circulation chamber 12. One end side and the other end side of the plurality of first heat transfer tubes 21 are located outside the first exhaust gas circulation chamber 12.

第1連結管241は、第1排ガス流通室12の外部に配置される。この第1連結管241には、複数の第1伝熱管21それぞれの一端側が長手方向に所定の間隔をあけて連結される。
第2連結管242は、第1排ガス流通室12の外部に配置される。この第2連結管242には、複数の第1伝熱管21それぞれの他端側が長手方向に所定の間隔をあけて連結される。
The first connection pipe 241 is disposed outside the first exhaust gas circulation chamber 12. One end side of each of the plurality of first heat transfer tubes 21 is connected to the first connection tube 241 at a predetermined interval in the longitudinal direction.
The second connection pipe 242 is disposed outside the first exhaust gas circulation chamber 12. The other end side of each of the plurality of first heat transfer tubes 21 is connected to the second connection tube 242 at a predetermined interval in the longitudinal direction.

第3連結管243は、第1排ガス流通室12の外部に配置される。この第3連結管243は、第1排ガス流通室12の側面に沿って配置される。第3連結管243の一端側は、第1連結管241の長手方向の略中央部に連結され、第3連結管243の他端側は、第2連結管242の長手方向の略中央部に連結される。
第4連結管244は、第3連結管243の長手方向の略中央部に連結される。
The third connection pipe 243 is disposed outside the first exhaust gas circulation chamber 12. The third connection pipe 243 is disposed along the side surface of the first exhaust gas circulation chamber 12. One end side of the third connecting pipe 243 is connected to a substantially central part in the longitudinal direction of the first connecting pipe 241, and the other end side of the third connecting pipe 243 is connected to a substantially central part in the longitudinal direction of the second connecting pipe 242. Connected.
The fourth connecting pipe 244 is connected to the substantially central portion of the third connecting pipe 243 in the longitudinal direction.

第2冷媒流通部24bは、伝熱管20のうち互いに略平行に延びる複数の第2伝熱管22と、複数の第2伝熱管22の延びる方向に略垂直に延び、複数の第2伝熱管22それぞれの一端側に連結される第5連結管245と、第5連結管245に略平行に延び複数の第2伝熱管22それぞれの他端側に連結される第6連結管246と、一端側が第5連結管245に連結され、他端側が第6連結管246に連結される第7連結管247と、一端側が第7連結管247に連結される第8連結管248と、を備える。   The second refrigerant circulation part 24b extends substantially perpendicular to the extending direction of the plurality of second heat transfer tubes 22 and the plurality of second heat transfer tubes 22 in the heat transfer tubes 20, and the plurality of second heat transfer tubes 22. A fifth connection pipe 245 connected to one end side of each, a sixth connection pipe 246 extending substantially parallel to the fifth connection pipe 245 and connected to the other end side of each of the plurality of second heat transfer pipes 22, and one end side thereof A seventh connecting pipe 247 connected to the fifth connecting pipe 245 and having the other end connected to the sixth connecting pipe 246; and an eighth connecting pipe 248 connected to the seventh connecting pipe 247 at one end.

複数の第2伝熱管22は、第1伝熱管21よりも上部に配置される。複数の第2伝熱管22は、複数の第1伝熱管21の延びる方向に沿うように第1排ガス流通室12を挿通して配置される。複数の第2伝熱管22の大部分は、第1排ガス流通室12の内部に位置する。複数の第2伝熱管22の一端側及び他端側は、第1排ガス流通室12の外部に位置する。   The plurality of second heat transfer tubes 22 are disposed above the first heat transfer tubes 21. The plurality of second heat transfer tubes 22 are arranged through the first exhaust gas circulation chamber 12 so as to extend along the direction in which the plurality of first heat transfer tubes 21 extend. Most of the plurality of second heat transfer tubes 22 are located inside the first exhaust gas circulation chamber 12. One end side and the other end side of the plurality of second heat transfer tubes 22 are located outside the first exhaust gas circulation chamber 12.

第5連結管245は、第1排ガス流通室12の外部に配置される。この第5連結管245には、複数の第2伝熱管22それぞれの一端側が長手方向に所定の間隔をあけて連結される。
第6連結管246は、第1排ガス流通室12の外部に配置される。この第6連結管246には、複数の第2伝熱管22それぞれの他端側が長手方向に所定の間隔をあけて連結される。
The fifth connection pipe 245 is disposed outside the first exhaust gas circulation chamber 12. One end side of each of the plurality of second heat transfer tubes 22 is connected to the fifth connection tube 245 at a predetermined interval in the longitudinal direction.
The sixth connection pipe 246 is disposed outside the first exhaust gas circulation chamber 12. The other end side of each of the plurality of second heat transfer tubes 22 is connected to the sixth connection tube 246 at a predetermined interval in the longitudinal direction.

第7連結管247は、第1排ガス流通室12の外部に配置される。この第7連結管247は、第1排ガス流通室12の側面に沿って配置される。第7連結管247の一端側は、第5連結管245の長手方向の略中央部に連結され、第7連結管247の他端側は、第6連結管246の長手方向の略中央部に連結される。
第8連結管248は、第7連結管247の長手方向の略中央部に連結される。
The seventh connection pipe 247 is disposed outside the first exhaust gas circulation chamber 12. The seventh connection pipe 247 is disposed along the side surface of the first exhaust gas circulation chamber 12. One end side of the seventh connection pipe 247 is connected to a substantially central part in the longitudinal direction of the fifth connection pipe 245, and the other end side of the seventh connection pipe 247 is connected to a substantially central part in the longitudinal direction of the sixth connection pipe 246. Connected.
The eighth connecting pipe 248 is connected to the substantially central portion of the seventh connecting pipe 247 in the longitudinal direction.

一対の連結部24cは、第1連結管241と第5連結管245とを連結する第9連結管249、及び第2連結管242と第6連結管246とを連結する第10連結管250により構成される。第9連結管249は、第1連結管241の長手方向の略中央部と第5連結管245の長手方向の略中央部とを連結する。第10連結管250は、第2連結管242の長手方向の略中央部と第6連結管246の長手方向の略中央部とを連結する。   The pair of connecting portions 24c includes a ninth connecting pipe 249 that connects the first connecting pipe 241 and the fifth connecting pipe 245, and a tenth connecting pipe 250 that connects the second connecting pipe 242 and the sixth connecting pipe 246. Composed. The ninth connecting tube 249 connects the substantially central portion of the first connecting tube 241 in the longitudinal direction and the substantially central portion of the fifth connecting tube 245 in the longitudinal direction. The tenth connecting pipe 250 connects the substantially central part in the longitudinal direction of the second connecting pipe 242 and the substantially central part in the longitudinal direction of the sixth connecting pipe 246.

以上の冷媒流通部24では、冷媒は、第4連結管244から第1冷媒流通部24aに導入される。第1冷媒流通部24aを流通した冷媒は、連結部24cを通って第2冷媒流通部24bに流入される。そして第2冷媒流通部24bを流通した冷媒は、第8連結管248から導出される。   In the refrigerant circulation part 24 described above, the refrigerant is introduced from the fourth connecting pipe 244 to the first refrigerant circulation part 24a. The refrigerant that has flowed through the first refrigerant flow portion 24a flows into the second refrigerant flow portion 24b through the connecting portion 24c. And the refrigerant | coolant which distribute | circulated the 2nd refrigerant | coolant distribution | circulation part 24b is derived | led-out from the 8th connection pipe 248. FIG.

流路切替手段40は、冷媒流通部24を流通する冷媒の流路を切り替える。この流路切替手段40は、第3連結管243の第1連結管241側に設けられる第1調節弁41と、第3連結管243の第2連結管242側に設けられる第1調節弁41と、第7連結管247の第5連結管245側に設けられる第3調節弁43と、第7連結管247の第6連結管246側に設けられる第4調節弁44と、第9連結管249に設けられた第5調節弁45と、第10連結管250に設けられた第6調節弁46と、を備える。   The flow path switching means 40 switches the flow path of the refrigerant that flows through the refrigerant flow section 24. The flow path switching means 40 includes a first control valve 41 provided on the first connection pipe 241 side of the third connection pipe 243 and a first control valve 41 provided on the second connection pipe 242 side of the third connection pipe 243. A third control valve 43 provided on the fifth connection pipe 245 side of the seventh connection pipe 247, a fourth control valve 44 provided on the sixth connection pipe 246 side of the seventh connection pipe 247, and a ninth connection pipe And a sixth control valve 45 provided in the tenth connecting pipe 250.

流路切替手段40は、第1伝熱管21における冷媒の流通方向と、第2伝熱管22における冷媒の流通方向とを、逆方向となるよう切り替える。流路切替手段40は、第1伝熱管21において冷媒を第1方向(図2の矢印A方向)に流通させると共に、第2伝熱管22において冷媒を第1方向とは逆方向の第2方向に流通させる第1状態と、第1伝熱管21において冷媒を第2方向に流通させると共に、第2伝熱管22において冷媒を第1方向に流通させる第2状態と、を切り替える。   The flow path switching unit 40 switches the refrigerant flow direction in the first heat transfer tube 21 and the refrigerant flow direction in the second heat transfer tube 22 to be in opposite directions. The flow path switching means 40 causes the refrigerant to flow in the first direction (the direction of arrow A in FIG. 2) in the first heat transfer tube 21 and in the second heat transfer tube 22, the refrigerant is in a second direction opposite to the first direction. And the second state in which the refrigerant is circulated in the second direction in the first heat transfer tube 21 and the refrigerant is circulated in the first direction in the second heat transfer tube 22.

より具体的には、第1状態で冷媒を流通させる場合には、第2調節弁42を開放すると共に第1調節弁41を閉鎖する。これにより、第4連結管244から導入された冷媒は、第3連結管243を第2連結管242側に流通し、複数の第1伝熱管21を第2連結管242側から第1連結管241側に流通する。第1連結管241側に流通された冷媒は、第1調節弁41が閉鎖されているため、第9連結管249を通って複数の第2伝熱管22に流通する。冷媒は、複数の第2伝熱管22の第5連結管245側から第6連結管246側に流通する。第6連結管246側に流通した冷媒は、第7連結管247を流通し、第3調節弁43が閉鎖されているため第5連結管245側に流通せずに、第8連結管248を流通して導出される。   More specifically, when circulating the refrigerant in the first state, the second control valve 42 is opened and the first control valve 41 is closed. Thereby, the refrigerant introduced from the fourth connecting pipe 244 flows through the third connecting pipe 243 to the second connecting pipe 242 side, and the plurality of first heat transfer pipes 21 from the second connecting pipe 242 side to the first connecting pipe. It circulates to the 241 side. Since the first control valve 41 is closed, the refrigerant circulated to the first connecting pipe 241 side passes through the ninth connecting pipe 249 to the plurality of second heat transfer pipes 22. The refrigerant flows from the fifth connecting pipe 245 side of the plurality of second heat transfer pipes 22 to the sixth connecting pipe 246 side. The refrigerant that has flowed to the sixth connecting pipe 246 side flows through the seventh connecting pipe 247, and since the third control valve 43 is closed, the refrigerant does not flow to the fifth connecting pipe 245 side, but passes through the eighth connecting pipe 248. Distributed and derived.

また、第2状態で冷媒を流通させる場合には、第1調節弁41を開放すると共に第2調節弁42弁を閉鎖する。これにより、第4連結管244から導入された冷媒は、第3連結管243を第1連結管241側に流通し、複数の第1伝熱管21を第1連結管241側から第2連結管242側に流通する。第2連結管242側に流通された冷媒は、第2調節弁42が閉鎖されているため、第10連結管250を通って複数の第2伝熱管22に流通する。冷媒は、複数の第2伝熱管22の第6連結管246側から第5連結管245側に流通する。第5連結管245側に流通した冷媒は、第7連結管247を流通し、第4調節弁44が閉鎖されているため第6連結管246側に流通せずに、第8連結管248を流通して導出される。   Moreover, when circulating a refrigerant | coolant in a 2nd state, while opening the 1st control valve 41, the 2nd control valve 42 valve is closed. Thereby, the refrigerant introduced from the fourth connection pipe 244 flows through the third connection pipe 243 to the first connection pipe 241 side, and the plurality of first heat transfer pipes 21 from the first connection pipe 241 side to the second connection pipe. It distributes to the 242 side. The refrigerant circulated to the second connecting pipe 242 side passes through the tenth connecting pipe 250 to the plurality of second heat transfer pipes 22 because the second control valve 42 is closed. The refrigerant flows from the sixth connecting pipe 246 side to the fifth connecting pipe 245 side of the plurality of second heat transfer tubes 22. The refrigerant that has flowed to the fifth connecting pipe 245 side flows through the seventh connecting pipe 247, and since the fourth control valve 44 is closed, the refrigerant does not flow to the sixth connecting pipe 246 side, but passes through the eighth connecting pipe 248. Distributed and derived.

図4及び5に示すように、掻き落とし手段30は、第1排ガス流通室12の内部に配置される略長方形の板状の掻き落とし部材31と、掻き落とし部材31を水平方向に移動させる駆動部としての駆動装置32と、を備える。掻き落とし手段30は、伝熱管20の周面に近接して配置され、水平方向に移動して伝熱管20の周面に付着した固化された二酸化炭素(ドライアイス)を掻き落とす。   As shown in FIGS. 4 and 5, the scraping means 30 is a substantially rectangular plate-shaped scraping member 31 disposed inside the first exhaust gas circulation chamber 12 and a drive for moving the scraping member 31 in the horizontal direction. Drive device 32 as a unit. The scraping means 30 is disposed in the vicinity of the peripheral surface of the heat transfer tube 20, moves in the horizontal direction, and scrapes off solidified carbon dioxide (dry ice) attached to the peripheral surface of the heat transfer tube 20.

掻き落とし部材31は、その板面が伝熱管20の延びる方向に直交し、板面の厚さ方向が鉛直方向に沿うように配置される。この掻き落とし部材31には、複数の伝熱管20が挿通される複数の伝熱管挿通穴33が形成されている。複数の伝熱管挿通穴33の内周面と伝熱管20の外周面との間には、適度なクリアランス(例えば、1mm〜3mm)が形成されている。すなわち、複数の伝熱管挿通穴33の内周面は、伝熱管20の外周面に近接して配置されている。   The scraping member 31 is disposed such that its plate surface is orthogonal to the direction in which the heat transfer tube 20 extends, and the thickness direction of the plate surface is along the vertical direction. The scraping member 31 is formed with a plurality of heat transfer tube insertion holes 33 through which the plurality of heat transfer tubes 20 are inserted. An appropriate clearance (for example, 1 mm to 3 mm) is formed between the inner peripheral surface of the plurality of heat transfer tube insertion holes 33 and the outer peripheral surface of the heat transfer tube 20. That is, the inner peripheral surface of the plurality of heat transfer tube insertion holes 33 is disposed close to the outer peripheral surface of the heat transfer tube 20.

図5に示すように、掻き落とし部材31は、一対の第1板状部材31aと、一対の第1板状部材31aの間に配置される第2板状部材31bと、を備える。一対の第1板状部材31aは、フッ素樹脂により形成されており、第2板状部材31bは、ステンレス鋼板により形成されている。   As shown in FIG. 5, the scraping member 31 includes a pair of first plate-like members 31a and a second plate-like member 31b disposed between the pair of first plate-like members 31a. The pair of first plate members 31a is made of a fluororesin, and the second plate member 31b is made of a stainless steel plate.

駆動装置32は、歯切りされたラック部34と、ラック部34に設けられた歯に噛み合うピニオン部35と、これらを駆動する電動機36と、を備える。ラック部34は、掻き落とし部材31の板面の重心に接続されて、この板面から略水平方向に延びる。ピニオン部35は、電動機36に設けられ、ラック部34の歯に噛み合った状態で回転する。電動機36は、ピニオン部35を回転させることでラック部34を駆動し、これによりラック部34に接続された掻き落とし部材31を水平方向に駆動する。   The drive device 32 includes a geared rack portion 34, a pinion portion 35 that meshes with teeth provided in the rack portion 34, and an electric motor 36 that drives them. The rack portion 34 is connected to the center of gravity of the plate surface of the scraping member 31 and extends in a substantially horizontal direction from the plate surface. The pinion part 35 is provided in the electric motor 36 and rotates in a state of being engaged with the teeth of the rack part 34. The electric motor 36 drives the rack portion 34 by rotating the pinion portion 35, thereby driving the scraping member 31 connected to the rack portion 34 in the horizontal direction.

図1に示すように、回収部50は、第1排ガス流通室12の下方に配置される。回収部50は、第1排ガス流通室12を流通して落下するドライアイスを回収するロータリーバルブ51と、ロータリーバルブ51の上方に設けられ、ロータリーバルブ51にかかる圧力を低減する圧力低減板52と、ロータリーバルブ51の下方に設けられる回収容器53と、ロータリーバルブ51と回収容器53との間に設けられ、回収容器53へドライアイスを流通させる配管の遮断及び開放を行うを切り替え装置54と、を備える。   As shown in FIG. 1, the recovery unit 50 is disposed below the first exhaust gas circulation chamber 12. The recovery unit 50 includes a rotary valve 51 that recovers the dry ice that flows through the first exhaust gas circulation chamber 12 and a pressure reduction plate 52 that is provided above the rotary valve 51 and reduces the pressure applied to the rotary valve 51. A recovery container 53 provided below the rotary valve 51, and a switching device 54 provided between the rotary valve 51 and the recovery container 53 for blocking and opening a pipe for circulating dry ice to the recovery container 53; Is provided.

ロータリーバルブ51は、回収装置本体10の突出部16に接続される。ロータリーバルブ51の上方には開口部が設けられている。回収装置本体10の突出部16に設けられる開口とロータリーバルブ51の開口部とが合うように接合される。これにより、第1排ガス流通室12を流通して落下するドライアイスは、ロータリーバルブ51の開口部を介して、ロータリーバルブ51に回収される。   The rotary valve 51 is connected to the protruding portion 16 of the recovery apparatus main body 10. An opening is provided above the rotary valve 51. It joins so that the opening provided in the protrusion part 16 of the collection | recovery apparatus main body 10 and the opening part of the rotary valve 51 may fit. Thereby, the dry ice that flows through the first exhaust gas circulation chamber 12 and falls is collected by the rotary valve 51 through the opening of the rotary valve 51.

圧力低減板52は、中央側が膨出した略三角錐状の形状を有し、回収装置本体10の下方で、かつ、ロータリーバルブ51の上方に、ロータリーバルブ51と間隔をあけて設けられる。圧力低減板52の水平方向の断面の形状は、回収装置本体10における圧力低減板52が設けられる位置の断面の形状より小さく、回収装置本体10の下方の壁面と圧力低減板52との間に隙間が形成される。回収装置本体10の下方における傾斜した壁面には、内側に突出する突起が設けられる。圧力低減板52は、この突起の上に載置され、突起に支持される。ドライアイスは、圧力低減板52と回収装置本体10の下方の壁面との間に形成された隙間から突出部16の開口に落ちて回収される。   The pressure reduction plate 52 has a substantially triangular pyramid shape with the center side bulging, and is provided below the collection apparatus main body 10 and above the rotary valve 51 with a gap from the rotary valve 51. The shape of the cross section in the horizontal direction of the pressure reduction plate 52 is smaller than the shape of the cross section at the position where the pressure reduction plate 52 is provided in the recovery device main body 10, and between the lower wall surface of the recovery device main body 10 and the pressure reduction plate 52. A gap is formed. On the inclined wall surface below the recovery apparatus main body 10, a protrusion protruding inward is provided. The pressure reduction plate 52 is placed on the protrusion and supported by the protrusion. The dry ice is recovered by dropping from the gap formed between the pressure reduction plate 52 and the lower wall surface of the recovery apparatus main body 10 to the opening of the protrusion 16.

回収容器53は、ロータリーバルブ51の下方に設けられる。回収容器53は、蒸気が流通する蒸気管が通る耐圧器531を、例えば、2つ備える。回収容器53は、耐圧器531のそれぞれの上方、すなわちロータリーバルブ51側に設けられる入口調節弁532と、耐圧器531それぞれの下方に設けられる出口調節弁533と、を備える。耐圧器531は、内部を二酸化炭素が個体から液体に状態を変えるマイナス56.6℃以上31.1℃未満に調整され、加圧される。   The collection container 53 is provided below the rotary valve 51. The recovery container 53 includes, for example, two pressure resistors 531 through which a steam pipe through which steam flows is passed. The collection container 53 includes an inlet control valve 532 provided above each of the pressure devices 531, that is, on the rotary valve 51 side, and an outlet control valve 533 provided below each of the pressure devices 531. The pressure device 531 is pressurized by adjusting the inside to minus 56.6 ° C. or more and less than 31.1 ° C., which changes the state of carbon dioxide from an individual to a liquid.

切り替え装置54は、ドライアイスをロータリーバルブ51から耐圧器531へ流通させる配管に設けられる切替ダンパである。耐圧器531が2つ設けられている場合、配管はロータリーバルブ51の下方から延び、それぞれの耐圧器531に向かって分岐する。切り替え装置54は、配管の分岐した部分に設けられ、耐圧器531の温度及び圧力や、耐圧器531内の液化した二酸化炭素の量等の状況に応じて配管を遮断又は開放し、ロータリーバルブ51により回収されたドライアイスを適切な耐圧器531へ誘導する。   The switching device 54 is a switching damper provided in a pipe for circulating dry ice from the rotary valve 51 to the pressure device 531. When two withstand pressure devices 531 are provided, the piping extends from below the rotary valve 51 and branches toward the respective withstand pressure devices 531. The switching device 54 is provided at a branched portion of the piping, and shuts off or opens the piping according to the temperature and pressure of the pressure device 531 and the amount of liquefied carbon dioxide in the pressure device 531, and the rotary valve 51. The dry ice recovered by the above is guided to an appropriate pressure device 531.

収容部60は、掻き落とし手段30により掻き落とされ、回収部50から収容部60へ液化した二酸化炭素が流通する通路62と、通路62を流通した液化した二酸化炭素を収容する収容容器61と、を備える。出口調節弁533を通過した液化した二酸化炭素は、通路62を流通し、収容容器61に収容される。収容容器61は、密閉性及び耐圧性を有する容器により構成されている。   The storage unit 60 is scraped off by the scraping means 30, and a passage 62 through which the liquefied carbon dioxide flows from the recovery unit 50 to the storage unit 60, a storage container 61 that stores the liquefied carbon dioxide through the passage 62, Is provided. The liquefied carbon dioxide that has passed through the outlet control valve 533 flows through the passage 62 and is stored in the storage container 61. The storage container 61 is composed of a container having a sealing property and a pressure resistance.

ポンプ70は、耐圧器531及び通路62の圧力を調整する。ポンプ70は、耐圧器531及び通路62の圧力を、例えば10Mpa以上に昇圧する。   The pump 70 adjusts the pressure of the pressure device 531 and the passage 62. The pump 70 increases the pressure of the pressure device 531 and the passage 62 to, for example, 10 Mpa or more.

制御装置80は、駆動装置32を制御して、掻き落とし部材31を伝熱管20の長手方向における一方側と他方側との間で移動させる。具体的には、制御装置80は、電動機36を駆動させて、電動機36に設けられたピニオン部35(図示せず)を、ラック部34の歯に噛み合った状態で回転させる。これにより、ラック部34に接続された掻き落とし部材31が、水平方向に移動する。   The control device 80 controls the driving device 32 to move the scraping member 31 between one side and the other side in the longitudinal direction of the heat transfer tube 20. Specifically, the control device 80 drives the electric motor 36 to rotate a pinion portion 35 (not shown) provided in the electric motor 36 in a state of being engaged with the teeth of the rack portion 34. As a result, the scraping member 31 connected to the rack portion 34 moves in the horizontal direction.

制御装置80は、冷媒流通部24に設けられた流路切替手段40を制御して、第1伝熱管21及び第2伝熱管22を流通する冷媒の方向を切り替える。
具体的には、制御装置80は、流路切替手段40を第1状態にする。すなわち、制御装置80は、第1調節弁41、第3調節弁43、第6調節弁46を閉じた状態に、第2調節弁42、第4調節弁44、第5調節弁45を開いた状態にする。そして、制御装置80は、図示しない冷媒供給装置から第1冷媒流通部24aへ冷媒を流通させる。すると、冷媒は、第4連結管244から、開放されている第2調節弁42を介して第2連結管242側へ流通し、第1伝熱管21を第2連結管242側から第1連結管241側へ流通する。第1連結管241側に流通した冷媒は、開放されている第5調節弁45を介して第9連結管249を流通し、複数の第2伝熱管22に流通する。そして冷媒は、複数の第2伝熱管22の第5連結管245側から第6連結管246側に流通する。第6連結管246側に流通した冷媒は、第7連結管247を流通し、第8連結管248を流通して導出される。
The control device 80 controls the flow path switching means 40 provided in the refrigerant flow section 24 to switch the direction of the refrigerant flowing through the first heat transfer tube 21 and the second heat transfer tube 22.
Specifically, the control device 80 puts the flow path switching unit 40 in the first state. That is, the control device 80 opens the second control valve 42, the fourth control valve 44, and the fifth control valve 45 while the first control valve 41, the third control valve 43, and the sixth control valve 46 are closed. Put it in a state. And the control apparatus 80 distribute | circulates a refrigerant | coolant to the 1st refrigerant | coolant distribution part 24a from the refrigerant | coolant supply apparatus which is not shown in figure. Then, the refrigerant flows from the fourth connecting pipe 244 to the second connecting pipe 242 side via the opened second control valve 42, and the first heat transfer pipe 21 is connected to the first connecting pipe 242 side from the first connecting pipe 242 side. It circulates to the pipe 241 side. The refrigerant that has flowed to the first connecting pipe 241 side flows through the ninth connecting pipe 249 via the opened fifth control valve 45 and then flows to the plurality of second heat transfer pipes 22. And a refrigerant | coolant distribute | circulates from the 5th connection pipe 245 side of the some 2nd heat exchanger tube 22 to the 6th connection pipe 246 side. The refrigerant that has flowed to the sixth connecting pipe 246 side flows through the seventh connecting pipe 247 and flows out through the eighth connecting pipe 248.

制御装置80は、流路切替手段40を第2状態にする。すなわち、制御装置80は、第2調節弁42、第4調節弁44、第5調節弁45を閉じた状態に、第1調節弁41、第3調節弁43、第6調節弁46を開いた状態にする。そして、制御装置80は、図示しない冷媒供給装置から第1冷媒流通部24aへ冷媒を流通させる。すると、冷媒は、第4連結管244から、開放されている第1調節弁41を介して第1連結管241側へ流通し、第1伝熱管21を第1連結管241側から第2連結管242側へ流通する。第2連結管242側に流通した冷媒は、開放されている第6調節弁46を介して第10連結管250を流通し、複数の第2伝熱管22に流通する。冷媒は、複数の第2伝熱管22の第6連結管246側から第5連結管245側に流通する。そして、第5連結管245側に流通した冷媒は、第7連結管247を流通し、第8連結管248を流通して導出される。   The control device 80 puts the flow path switching means 40 in the second state. That is, the control device 80 opens the first control valve 41, the third control valve 43, and the sixth control valve 46 while the second control valve 42, the fourth control valve 44, and the fifth control valve 45 are closed. Put it in a state. And the control apparatus 80 distribute | circulates a refrigerant | coolant to the 1st refrigerant | coolant distribution part 24a from the refrigerant | coolant supply apparatus which is not shown in figure. Then, the refrigerant flows from the fourth connecting pipe 244 to the first connecting pipe 241 side via the opened first control valve 41, and the first heat transfer pipe 21 is connected to the second connecting pipe 241 side from the first connecting pipe 241 side. It circulates to the pipe 242 side. The refrigerant that has flowed to the second connecting pipe 242 side flows through the tenth connecting pipe 250 via the opened sixth control valve 46 and then flows to the plurality of second heat transfer pipes 22. The refrigerant flows from the sixth connecting pipe 246 side to the fifth connecting pipe 245 side of the plurality of second heat transfer tubes 22. And the refrigerant | coolant which distribute | circulated to the 5th connection pipe 245 side distribute | circulates the 7th connection pipe 247, distribute | circulates the 8th connection pipe 248, and is derived | led-out.

制御装置80は、タイマー(図示せず)を内蔵しており、所定の時間間隔で駆動装置32及び流路切替手段40に上述の処理を実行させる。   The control device 80 has a built-in timer (not shown), and causes the drive device 32 and the flow path switching unit 40 to execute the above-described processing at predetermined time intervals.

また、制御装置80は、回収部50を制御して、第1排ガス流通室12を流通して落下するドライアイスを回収する。具体的には、制御装置80は、ロータリーバルブ51を回転させる。そして、制御装置80は、ロータリーバルブ51の下方に設けられた切り替え装置54を制御して、ロータリーバルブ51と耐圧器531との間に設けられる配管を遮断又は開放させる。これにより、ドライアイスは、ロータリーバルブ51により回収された後、開放された配管を流通し、耐圧器531の上方に設けられた入口調節弁532から耐圧器531へ流入する。耐圧器531は、内部にドライアイスを収容した状態で加圧される。   Further, the control device 80 controls the recovery unit 50 to recover the dry ice that flows through the first exhaust gas circulation chamber 12 and falls. Specifically, the control device 80 rotates the rotary valve 51. Then, the control device 80 controls the switching device 54 provided below the rotary valve 51 to block or open the pipe provided between the rotary valve 51 and the pressure device 531. Thus, after the dry ice is collected by the rotary valve 51, it flows through the opened pipe and flows into the pressure device 531 from the inlet control valve 532 provided above the pressure device 531. The pressure device 531 is pressurized with dry ice contained therein.

また、制御装置80は、ポンプ70を制御して、耐圧器531及び通路62の圧力を調整する。   In addition, the control device 80 controls the pump 70 to adjust the pressure of the pressure device 531 and the passage 62.

次に、本実施形態の二酸化炭素回収装置1の動作について、図6から8を参照しながら説明する。
まず、駆動装置32を駆動し、掻き落とし部材31を、伝熱管20の長手方向における一方の端部側の待機位置A(図6参照)に位置させる。
この状態で、回収装置本体10の内部には、排ガス導入口11から二酸化炭素を含む排ガスが供給される。排ガス導入口11から第1排ガス流通室12の内部に導入された排ガス中に含まれる二酸化炭素は、第1排ガス流通室12の内部に水平方向に配置される伝熱管20の内部を流通する冷媒によって冷却され、伝熱管20の周面で固化しドライアイスとなって付着する。
Next, the operation of the carbon dioxide recovery apparatus 1 of the present embodiment will be described with reference to FIGS.
First, the drive device 32 is driven, and the scraping member 31 is positioned at the standby position A (see FIG. 6) on one end side in the longitudinal direction of the heat transfer tube 20.
In this state, exhaust gas containing carbon dioxide is supplied from the exhaust gas inlet 11 into the recovery apparatus main body 10. The carbon dioxide contained in the exhaust gas introduced into the first exhaust gas circulation chamber 12 from the exhaust gas inlet 11 is a refrigerant that circulates inside the heat transfer tube 20 disposed in the horizontal direction inside the first exhaust gas circulation chamber 12. And is solidified on the peripheral surface of the heat transfer tube 20 and adheres as dry ice.

制御装置80は、予め設定された時間間隔で駆動装置32を駆動制御する。制御装置80は、電動機36を駆動させて、電動機36に設けられたピニオン部35(図示せず)を、ラック部34の歯に噛み合った状態で回転させる。これにより、ラック部34に接続された掻き落とし部材31が、水平方向に移動する(図7参照)。これにより、掻き落とし部材31は、待機位置Aから伝熱管20の長手方向における他方側の駆動位置B(図8参照)へ移動する。ここで、伝熱管20の表面側には、適度なクリアランスをあけて伝熱管挿通穴33の内周面が位置しているから、伝熱管20の周面に付着したドライアイスは、掻き落とし部材31の水平方向の移動によって、伝熱管20の周面から掻き落とされて、下方に落下する。   The control device 80 controls the driving of the driving device 32 at a preset time interval. The control device 80 drives the electric motor 36 to rotate a pinion portion 35 (not shown) provided in the electric motor 36 in a state where the pinion portion 35 is engaged with the teeth of the rack portion 34. As a result, the scraping member 31 connected to the rack portion 34 moves in the horizontal direction (see FIG. 7). As a result, the scraping member 31 moves from the standby position A to the drive position B on the other side in the longitudinal direction of the heat transfer tube 20 (see FIG. 8). Here, since the inner peripheral surface of the heat transfer tube insertion hole 33 is located on the surface side of the heat transfer tube 20 with an appropriate clearance, the dry ice attached to the peripheral surface of the heat transfer tube 20 is scraped off. By the horizontal movement of 31, it is scraped off from the peripheral surface of the heat transfer tube 20 and falls downward.

制御装置80は、掻き落とし部材31が駆動位置Bに到達すると、掻き落とし部材31を待機位置Aまで復帰させる。
なお、掻き落とし部材31は、その板面が伝熱管20の延びる方向に直交するように配置されているので、排ガスは、掻き落とし部材31に妨げられずに流通する。
When the scraping member 31 reaches the drive position B, the control device 80 returns the scraping member 31 to the standby position A.
In addition, since the scraping member 31 is disposed so that the plate surface thereof is orthogonal to the direction in which the heat transfer tube 20 extends, the exhaust gas flows without being blocked by the scraping member 31.

制御装置80は、第1伝熱管21において冷媒を第1方向に流通させると共に、第2伝熱管22において冷媒を第1方向とは逆方向の第2方向に流通させる第1状態と、第1伝熱管21において冷媒を第2方向に流通させると共に、第2伝熱管22において冷媒を第1方向に流通させる第2状態と、を定期的に切り替える。冷媒は、上流から下流に流通するにしたがって温度が上昇するが、第1状態と第2状態が定期的に切り替わるため、第1伝熱管21及び第2伝熱管を流通する冷媒の温度が偏らない。   The control device 80 causes the refrigerant to flow in the first direction in the first heat transfer tube 21, and causes the refrigerant to flow in the second direction opposite to the first direction in the second heat transfer tube 22, and the first state. While the refrigerant is circulated in the second direction in the heat transfer tube 21, the second state in which the refrigerant is circulated in the first direction in the second heat transfer tube 22 is periodically switched. As the refrigerant flows from upstream to downstream, the temperature rises, but the first state and the second state are periodically switched, so the temperature of the refrigerant flowing through the first heat transfer tube 21 and the second heat transfer tube is not biased. .

具体的には、制御装置80は、冷媒流通部24に設けられた流路切替手段40を制御して、第1伝熱管21及び第2伝熱管22を流通する冷媒の方向を切り替える。
制御装置80は、流路切替手段40を第1状態にする。すなわち、制御装置80は、第1調節弁41、第3調節弁43、第6調節弁46を閉じた状態に、第2調節弁42、第4調節弁44、第5調節弁45を開いた状態とし、図示しない冷媒供給装置から第1冷媒流通部24aへ冷媒を流通させる。第1状態により、冷媒は、下方に配置される第1伝熱管21を第1方向へ流通し、連結部24cを流通して、上方に配置される第2伝熱管22を第2方向へ流通し、第2冷媒流通部24bを流通する。
Specifically, the control device 80 switches the direction of the refrigerant flowing through the first heat transfer tube 21 and the second heat transfer tube 22 by controlling the flow path switching means 40 provided in the refrigerant flow unit 24.
The control device 80 puts the flow path switching means 40 in the first state. That is, the control device 80 opens the second control valve 42, the fourth control valve 44, and the fifth control valve 45 while the first control valve 41, the third control valve 43, and the sixth control valve 46 are closed. The refrigerant is circulated from a refrigerant supply device (not shown) to the first refrigerant circulation part 24a. According to the first state, the refrigerant flows through the first heat transfer tube 21 disposed below in the first direction, flows through the connecting portion 24c, and flows through the second heat transfer tube 22 disposed above in the second direction. Then, it circulates through the second refrigerant circulation part 24b.

また、制御装置80は、流路切替手段40を第2状態にする。すなわち、制御装置80は、第2調節弁42、第4調節弁44、第5調節弁45を閉じた状態に、第1調節弁41、第3調節弁43、第6調節弁46を開いた状態とし、図示しない冷媒供給装置から第1冷媒流通部24aへ冷媒を流通させる。第2状態により、冷媒は、下方に配置される第1伝熱管21を第2方向へ流通し、連結部24cを流通して、上方に配置される第2伝熱管22を第1方向へ流通し、第2冷媒流通部24bを流通する。   Moreover, the control apparatus 80 makes the flow-path switching means 40 into a 2nd state. That is, the control device 80 opens the first control valve 41, the third control valve 43, and the sixth control valve 46 while the second control valve 42, the fourth control valve 44, and the fifth control valve 45 are closed. The refrigerant is circulated from a refrigerant supply device (not shown) to the first refrigerant circulation part 24a. According to the second state, the refrigerant flows through the first heat transfer tube 21 disposed below in the second direction, flows through the connecting portion 24c, and flows through the second heat transfer tube 22 disposed above in the first direction. Then, it circulates through the second refrigerant circulation part 24b.

二酸化炭素は、伝熱管20により冷却され、固化して排ガスから除去される。二酸化炭素が除去された除去排ガスは、第1排ガス流通室12の下方から連続する第2排ガス流通室14へ流通し、第2排ガス流通室14を上方に流通する。そして、第2排ガス流通室14の上方に設けられた排ガス排出口13から排出される。ドライアイスは比重が重いため、第2排ガス流通室14を上方に流通せず、第1排ガス流通室12の下方に設けられた突出部16の開口に落下する。   Carbon dioxide is cooled by the heat transfer tube 20, solidified, and removed from the exhaust gas. The removed exhaust gas from which the carbon dioxide has been removed flows from the lower side of the first exhaust gas circulation chamber 12 to the continuous second exhaust gas circulation chamber 14 and flows upward through the second exhaust gas circulation chamber 14. And it is discharged | emitted from the waste gas exhaust port 13 provided above the 2nd waste gas circulation chamber 14. FIG. Since dry ice has a high specific gravity, the dry ice does not circulate upward in the second exhaust gas circulation chamber 14 and falls to the opening of the projecting portion 16 provided below the first exhaust gas circulation chamber 12.

制御装置80は、排ガスが第1排ガス流通室12を流通する間、回収部50のロータリーバルブ51を回転させている。このため、突出部16の開口に落下したドライアイスは、突出部16の開口に接続されているロータリーバルブ51の上部開口部から回収される。
また、ロータリーバルブ51の上方には、圧力低減板52が配置されている。このため、伝熱管20の周面から掻き落とされて落下したドライアイスの一部は、圧力低減板52により受け止められる。圧力低減板52は、落下したドライアイスによりロータリーバルブ51にかかる負荷を低減する。
The control device 80 rotates the rotary valve 51 of the recovery unit 50 while the exhaust gas flows through the first exhaust gas circulation chamber 12. For this reason, the dry ice that has fallen into the opening of the protrusion 16 is collected from the upper opening of the rotary valve 51 connected to the opening of the protrusion 16.
A pressure reducing plate 52 is disposed above the rotary valve 51. For this reason, a part of the dry ice scraped off from the peripheral surface of the heat transfer tube 20 is received by the pressure reduction plate 52. The pressure reduction plate 52 reduces the load applied to the rotary valve 51 by the fallen dry ice.

ドライアイスは、ロータリーバルブ51により回収された後、回収容器53へ流通する。回収容器53には、例えば、2つ耐圧器531が設けられている。ロータリーバルブ51により回収されたドライアイスを耐圧器531へ送る配管には、切り替え装置54が設けられている。制御装置80は、耐圧器531それぞれの温度や、耐圧器531にすでに収容している二酸化炭素の量等に応じて、切り替え装置54に配管を遮断又は開放させる。回収されたドライアイスは、切り替え装置54により開放された配管を流通して耐圧器531に流通する。   The dry ice is collected by the rotary valve 51 and then flows into the collection container 53. In the recovery container 53, for example, two pressure devices 531 are provided. A switching device 54 is provided in a pipe for sending the dry ice collected by the rotary valve 51 to the pressure device 531. The control device 80 causes the switching device 54 to shut off or open the pipe according to the temperature of each of the pressure devices 531, the amount of carbon dioxide already stored in the pressure device 531, and the like. The recovered dry ice flows through the piping opened by the switching device 54 and then flows to the pressure device 531.

ドライアイスは、耐圧器531の上方に設けられた入口調節弁532を介して耐圧器531に流通する。耐圧器531の内部には、蒸気が流通する配管が設けられている。ドライアイスは、耐圧器531で加圧され、液体の状態に変化する。液体となった二酸化炭素は、耐圧器531の下方に設けられた出口調節弁533より排出され、通路62を流通して収容部60における収容容器61に収容される。   The dry ice circulates in the pressure device 531 through an inlet control valve 532 provided above the pressure device 531. Inside the pressure device 531, a pipe through which steam flows is provided. The dry ice is pressurized by the pressure device 531 and changes to a liquid state. The carbon dioxide that has become liquid is discharged from an outlet control valve 533 provided below the pressure device 531, flows through the passage 62, and is stored in the storage container 61 in the storage unit 60.

以上の二酸化炭素回収装置1によれば、以下のような効果を奏する。   According to the carbon dioxide recovery device 1 described above, the following effects can be obtained.

排ガス中に含まれる二酸化炭素を、伝熱管20の周面にドライアイスとして付着させ、掻き落とし部材31を伝熱管20に沿って移動させると共に、伝熱管20の周面に付着したドライアイスを掻き落とし手段により掻き落として収容部60に収容させた。これにより、回収装置本体10に振動を加えることなく、二酸化炭素を回収できるので、回収装置本体10が疲労しない。つまり、疲労によって回収装置本体10の気密性が損なわれて、回収装置本体10から排ガスが漏洩することはない。その結果、常に効率的に二酸化炭素の回収を行うことができる。   The carbon dioxide contained in the exhaust gas is attached to the peripheral surface of the heat transfer tube 20 as dry ice, the scraping member 31 is moved along the heat transfer tube 20, and the dry ice attached to the peripheral surface of the heat transfer tube 20 is scraped. It was scraped off by the dropping means and accommodated in the accommodating portion 60. Thereby, since the carbon dioxide can be recovered without applying vibration to the recovery device main body 10, the recovery device main body 10 is not fatigued. That is, the airtightness of the recovery apparatus body 10 is not impaired by fatigue, and the exhaust gas does not leak from the recovery apparatus body 10. As a result, carbon dioxide can always be efficiently recovered.

伝熱管20を水平方向に延びるように配置すると共に、掻き落とし手段30を水平方向に移動させた。掻き落とし手段30を鉛直方向に移動させた場合における高所の点検や修理を考慮すると、掻き落とし手段30の修理や点検等のメンテナンスが容易になる。掻き落とし手段30はラック部34及びピニオン部35により構成される電動機36で駆動される。このため、掻き落とし手段30が大型化されても、高い駆動トルクによる安定した駆動が可能となる。
また、掻き落とし部材31の板面が伝熱管20の延びる方向に直交するように配置され、板の厚さ方向が鉛直方向を向くように配置されている。このため、第1排ガス流通室12の上部から導入される排ガスが、掻き落とし部材31の板面によって遮られず、掻き落とし部材31が排ガスの流通に与える影響が少ない。
The heat transfer tube 20 was arranged to extend in the horizontal direction, and the scraping means 30 was moved in the horizontal direction. Considering inspection and repair at a high place when the scraping means 30 is moved in the vertical direction, maintenance such as repair and inspection of the scraping means 30 becomes easy. The scraping means 30 is driven by an electric motor 36 constituted by a rack part 34 and a pinion part 35. For this reason, even if the scraping means 30 is enlarged, stable driving with high driving torque is possible.
Further, the scraper member 31 is disposed so that the plate surface is orthogonal to the direction in which the heat transfer tube 20 extends, and the thickness direction of the plate is directed in the vertical direction. For this reason, the exhaust gas introduced from the upper part of the first exhaust gas circulation chamber 12 is not blocked by the plate surface of the scraping member 31, and the scraping member 31 has little influence on the exhaust gas circulation.

流路切替手段40により、第1伝熱管21において冷媒を第1方向に流通させると共に、第2伝熱管22において冷媒を第1方向とは逆方向の第2方向に流通させる第1状態と、第1伝熱管21において冷媒を第2方向に流通させると共に、第2伝熱管22において冷媒を第1方向に流通させる第2状態と、を切り替えた。冷媒は、冷媒供給装置に近い上流側の温度が低く、下流に流通するにしたがって温度が上昇する。しかしながら、第1伝熱管21と、第1伝熱管21よりも上部に第2伝熱管22を配置し、これらの内部を流れる冷媒の方向が互いに逆方向となるよう定期的に切り替えた。このため、第1伝熱管21及び第2伝熱管22のどちらか一方の端部側に偏って温度が低下するということがなく、ドライアイスが第1伝熱管21及び第2伝熱管22に偏って付着しない。   A first state in which the flow path switching means 40 causes the refrigerant to flow in the first direction in the first heat transfer tube 21 and causes the refrigerant to flow in the second direction opposite to the first direction in the second heat transfer tube 22; The first heat transfer tube 21 was switched between the second state in which the refrigerant was circulated in the second direction and the second heat transfer tube 22 was circulated in the first direction. The temperature of the refrigerant on the upstream side near the refrigerant supply device is low, and the temperature rises as it flows downstream. However, the first heat transfer tube 21 and the second heat transfer tube 22 are arranged above the first heat transfer tube 21 and are periodically switched so that the directions of the refrigerant flowing through these tubes are opposite to each other. For this reason, the dry ice is not biased toward the first heat transfer tube 21 and the second heat transfer tube 22 without the temperature being lowered due to the bias toward either one of the first heat transfer tube 21 and the second heat transfer tube 22. Does not adhere.

また、回収装置本体10の鉛直方向における上方に排ガス導入口11を設け、排ガス導入口11から導入された排ガスが流通する第1排ガス流通室12と、第1排ガス流通室12に連続して設けられ第1排ガス流通室12を流通した排ガスを上方へ流通させる第2排ガス流通室14と、第1排ガス流通室12の下方に連続して設けられ、第1排ガス流通室12を流通した排ガスを上方へ流通させる第2排ガス流通室14と、第2排ガス流通室14に設けられ、第2排ガス流通室14と第1排ガス流通室12とが連続する部分よりも上方の位置に配置されて第1排ガス流通室12を流通した排ガスを排出する排ガス排出口13と、を設けた。ドライアイスは比重が重いため下方に落下するが、二酸化炭素が除去された排ガスは、第2排ガス流通室14を流通して、上方の排ガス排出口13から排出される。このため、掻き落とし部材31により掻き落とされたドライアイスが除去排ガスに混入したり、飛散することが防止される。   Further, an exhaust gas inlet 11 is provided above the recovery apparatus body 10 in the vertical direction, and is continuously provided in the first exhaust gas circulation chamber 12 through which the exhaust gas introduced from the exhaust gas inlet 11 circulates. The second exhaust gas circulation chamber 14 for circulating the exhaust gas flowing through the first exhaust gas circulation chamber 12 upward, and the exhaust gas that has been continuously provided below the first exhaust gas circulation chamber 12 and circulated through the first exhaust gas circulation chamber 12 The second exhaust gas circulation chamber 14 to be circulated upward and the second exhaust gas circulation chamber 14 are disposed at a position above the portion where the second exhaust gas circulation chamber 14 and the first exhaust gas circulation chamber 12 are continuous. 1, an exhaust gas discharge port 13 for discharging the exhaust gas flowing through the exhaust gas circulation chamber 12 was provided. Since dry ice has a high specific gravity, it falls downward, but the exhaust gas from which carbon dioxide has been removed flows through the second exhaust gas circulation chamber 14 and is discharged from the upper exhaust gas outlet 13. For this reason, it is prevented that the dry ice scraped off by the scraping member 31 is mixed into the removed exhaust gas or scattered.

以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限るものではない。また、本発明の実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本発明の実施例に記載されたものに限定されるものではない。   As mentioned above, although embodiment of this invention was described, this invention is not restricted to embodiment mentioned above. The effects described in the embodiments of the present invention are only the most preferable effects resulting from the present invention, and the effects of the present invention are limited to those described in the embodiments of the present invention. is not.

例えば、本実施形態では、伝熱管20は下部に配置される複数の第1伝熱管21と、上部に配置される複数の第2伝熱管22とを備え、2段に配置されるが、これに限られない。上下方向に隣接する伝熱管が、互いに逆の方向に冷媒が流通することができれば、何段配置してもよい。   For example, in this embodiment, the heat transfer tube 20 includes a plurality of first heat transfer tubes 21 disposed in the lower portion and a plurality of second heat transfer tubes 22 disposed in the upper portion, and is disposed in two stages. Not limited to. Any number of heat transfer tubes adjacent in the vertical direction may be arranged as long as the refrigerant can circulate in opposite directions.

また、本実施形態では、掻き落とし部材31として略長方形状のものを用いたが、掻き落とし部材31はこれに限られることなく、伝熱管20の周面に付着したドライアイスを効果的に掻き落とすことのできるものであれば、他の形状でもよい。   In the present embodiment, a substantially rectangular member is used as the scraping member 31, but the scraping member 31 is not limited to this, and the dry ice attached to the peripheral surface of the heat transfer tube 20 is effectively scraped. Other shapes may be used as long as they can be dropped.

また、本実施形態では、複数の伝熱管挿通穴33の内周面と伝熱管20の外周面との間に、適度なクリアランスを形成したが、これに限らない。すなわち、複数の伝熱管挿通穴の内周面と伝熱管の外周面とを接触させてもよい。この場合、伝熱管挿通穴の内周面をゴム等の弾性部材により構成することで、伝熱管と伝熱管挿通穴とが接触することによる伝熱管又は掻き落とし部材の破損を防止できる。   Moreover, in this embodiment, although the moderate clearance was formed between the internal peripheral surface of the some heat exchanger tube penetration hole 33, and the outer peripheral surface of the heat exchanger tube 20, it is not restricted to this. That is, you may contact the inner peripheral surface of a some heat exchanger tube penetration hole, and the outer peripheral surface of a heat exchanger tube. In this case, by constituting the inner peripheral surface of the heat transfer tube insertion hole with an elastic member such as rubber, the heat transfer tube or the scraping member can be prevented from being damaged due to the contact between the heat transfer tube and the heat transfer tube insertion hole.

1 二酸化炭素回収装置
10 回収装置本体
11 排ガス導入口
12 第1排ガス流通室
13 排ガス排出口
14 第2排ガス流通室
20 伝熱管
21 第1伝熱管
22 第2伝熱管
30 掻き落とし手段
40 流路切替手段
60 収容部
DESCRIPTION OF SYMBOLS 1 Carbon dioxide recovery apparatus 10 Recovery apparatus main body 11 Exhaust gas inlet 12 First exhaust gas circulation chamber 13 Exhaust gas outlet 14 Second exhaust gas circulation chamber 20 Heat transfer tube 21 First heat transfer tube 22 Second heat transfer tube 30 Scraping means 40 Flow path switching Means 60 Housing

Claims (3)

排ガス中に含まれる二酸化炭素を固化させて回収する二酸化炭素回収装置であって、
内部を排ガスが流通する回収装置本体と、
前記回収装置本体の内部に水平方向に延びるように配置され、内部を冷媒が流通する伝熱管と、
前記伝熱管に近接して配置され、水平方向に移動して前記伝熱管の周面に付着した固化された二酸化炭素を掻き落とす掻き落とし手段と、
前記回収装置本体の下方に配置され前記掻き落とし手段により掻き落とされた二酸化炭素を収容する収容部と、を備え
前記伝熱管は、前記回収装置本体の高さ方向における下部に配置される第1伝熱管と、該第1伝熱管よりも上部に配置される第2伝熱管と、を備え、
前記第1伝熱管における冷媒の流通方向は、前記第2伝熱管における冷媒の流通方向と逆方向であり、
前記第1伝熱管において前記冷媒を第1方向に流通させると共に、前記第2伝熱管において該冷媒を前記第1方向とは逆方向の第2方向に流通させる第1状態と、
前記第1伝熱管において前記冷媒を前記第2方向に流通させると共に、前記第2伝熱管において該冷媒を前記第1方向に流通させる第2状態と、を切り替える流路切り替え手段をさらに備える二酸化炭素回収装置。
A carbon dioxide recovery device that solidifies and recovers carbon dioxide contained in exhaust gas,
A recovery device body through which exhaust gas circulates;
A heat transfer tube disposed in the recovery device main body so as to extend in the horizontal direction, and through which the refrigerant flows;
Scraping means arranged in the vicinity of the heat transfer tube, moving horizontally and scraping off the solidified carbon dioxide adhering to the peripheral surface of the heat transfer tube;
A storage unit that is disposed below the recovery device body and stores carbon dioxide scraped off by the scraping means ; and
The heat transfer tube includes a first heat transfer tube disposed at a lower portion in the height direction of the recovery device main body, and a second heat transfer tube disposed at an upper portion than the first heat transfer tube,
The flow direction of the refrigerant in the first heat transfer tube is opposite to the flow direction of the refrigerant in the second heat transfer tube,
A first state in which the refrigerant is circulated in the first direction in the first heat transfer tube, and the refrigerant is circulated in a second direction opposite to the first direction in the second heat transfer tube;
With circulating the coolant in the second direction in the first heat transfer tubes, further Ru comprising a flow passage switching means for switching, and a second state for circulating the refrigerant in the first direction in the second heat transfer tube dioxide Carbon recovery device.
前記回収装置本体は、該回収装置本体の上部に設けられ排ガスが導入される排ガス導入口と、
前記排ガス導入口から導入された排ガスを下方に流通させる第1排ガス流通室と、
前記第1排ガス流通室の下部に連続して設けられ、前記第1排ガス流通室を流通した排ガスを上方に流通させる第2排ガス流通室と、
前記第2排ガス流通室の上部に設けられ前記第2排ガス流通室を流通した排ガスを排出する排ガス排出口と、を備える請求項に記載の二酸化炭素回収装置。
The recovery device main body is provided at an upper portion of the recovery device main body, and an exhaust gas inlet for introducing exhaust gas;
A first exhaust gas circulation chamber for circulating the exhaust gas introduced from the exhaust gas inlet;
A second exhaust gas circulation chamber which is continuously provided at a lower portion of the first exhaust gas circulation chamber and allows the exhaust gas flowing through the first exhaust gas circulation chamber to circulate upward;
Carbon dioxide recovery apparatus according to claim 1 and a gas discharge port for discharging the exhaust gas flowing through the second exhaust gas flow chamber provided in an upper portion of the second exhaust gas flow chamber.
前記伝熱管及び前記掻き落とし手段は、前記第1排ガス流通室に配置される請求項に記載の二酸化炭素回収装置。
The carbon dioxide recovery apparatus according to claim 2 , wherein the heat transfer tube and the scraping means are disposed in the first exhaust gas circulation chamber.
JP2010054808A 2010-03-11 2010-03-11 Carbon dioxide recovery device Expired - Fee Related JP5518531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010054808A JP5518531B2 (en) 2010-03-11 2010-03-11 Carbon dioxide recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010054808A JP5518531B2 (en) 2010-03-11 2010-03-11 Carbon dioxide recovery device

Publications (2)

Publication Number Publication Date
JP2011190116A JP2011190116A (en) 2011-09-29
JP5518531B2 true JP5518531B2 (en) 2014-06-11

Family

ID=44795432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010054808A Expired - Fee Related JP5518531B2 (en) 2010-03-11 2010-03-11 Carbon dioxide recovery device

Country Status (1)

Country Link
JP (1) JP5518531B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11083994B2 (en) 2019-09-20 2021-08-10 Exxonmobil Upstream Research Company Removal of acid gases from a gas stream, with O2 enrichment for acid gas capture and sequestration
US11215410B2 (en) 2018-11-20 2022-01-04 Exxonmobil Upstream Research Company Methods and apparatus for improving multi-plate scraped heat exchangers
US11326834B2 (en) 2018-08-14 2022-05-10 Exxonmobil Upstream Research Company Conserving mixed refrigerant in natural gas liquefaction facilities
US11415348B2 (en) 2019-01-30 2022-08-16 Exxonmobil Upstream Research Company Methods for removal of moisture from LNG refrigerant
US11465093B2 (en) 2019-08-19 2022-10-11 Exxonmobil Upstream Research Company Compliant composite heat exchangers
US11506454B2 (en) 2018-08-22 2022-11-22 Exxonmobile Upstream Research Company Heat exchanger configuration for a high pressure expander process and a method of natural gas liquefaction using the same
US11536510B2 (en) 2018-06-07 2022-12-27 Exxonmobil Upstream Research Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
US11578545B2 (en) 2018-11-20 2023-02-14 Exxonmobil Upstream Research Company Poly refrigerated integrated cycle operation using solid-tolerant heat exchangers
US11635252B2 (en) 2018-08-22 2023-04-25 ExxonMobil Technology and Engineering Company Primary loop start-up method for a high pressure expander process
US11668524B2 (en) 2019-01-30 2023-06-06 Exxonmobil Upstream Research Company Methods for removal of moisture from LNG refrigerant
US11806639B2 (en) 2019-09-19 2023-11-07 ExxonMobil Technology and Engineering Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
US11808411B2 (en) 2019-09-24 2023-11-07 ExxonMobil Technology and Engineering Company Cargo stripping features for dual-purpose cryogenic tanks on ships or floating storage units for LNG and liquid nitrogen
US11815308B2 (en) 2019-09-19 2023-11-14 ExxonMobil Technology and Engineering Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
US11927391B2 (en) 2019-08-29 2024-03-12 ExxonMobil Technology and Engineering Company Liquefaction of production gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2574539B1 (en) * 2016-04-18 2017-03-07 Comercializadora De Tempuras Y Derivados S.L. SYSTEM TO ELIMINATE POLLUTANT GASES

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140808A (en) * 1984-07-31 1986-02-27 Central Res Inst Of Electric Power Ind Process for preparing solid carbon dioxide

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11536510B2 (en) 2018-06-07 2022-12-27 Exxonmobil Upstream Research Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
US11326834B2 (en) 2018-08-14 2022-05-10 Exxonmobil Upstream Research Company Conserving mixed refrigerant in natural gas liquefaction facilities
US11635252B2 (en) 2018-08-22 2023-04-25 ExxonMobil Technology and Engineering Company Primary loop start-up method for a high pressure expander process
US11506454B2 (en) 2018-08-22 2022-11-22 Exxonmobile Upstream Research Company Heat exchanger configuration for a high pressure expander process and a method of natural gas liquefaction using the same
US11215410B2 (en) 2018-11-20 2022-01-04 Exxonmobil Upstream Research Company Methods and apparatus for improving multi-plate scraped heat exchangers
US11578545B2 (en) 2018-11-20 2023-02-14 Exxonmobil Upstream Research Company Poly refrigerated integrated cycle operation using solid-tolerant heat exchangers
US11415348B2 (en) 2019-01-30 2022-08-16 Exxonmobil Upstream Research Company Methods for removal of moisture from LNG refrigerant
US11668524B2 (en) 2019-01-30 2023-06-06 Exxonmobil Upstream Research Company Methods for removal of moisture from LNG refrigerant
US11465093B2 (en) 2019-08-19 2022-10-11 Exxonmobil Upstream Research Company Compliant composite heat exchangers
US11927391B2 (en) 2019-08-29 2024-03-12 ExxonMobil Technology and Engineering Company Liquefaction of production gas
US11806639B2 (en) 2019-09-19 2023-11-07 ExxonMobil Technology and Engineering Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
US11815308B2 (en) 2019-09-19 2023-11-14 ExxonMobil Technology and Engineering Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
US11083994B2 (en) 2019-09-20 2021-08-10 Exxonmobil Upstream Research Company Removal of acid gases from a gas stream, with O2 enrichment for acid gas capture and sequestration
US11808411B2 (en) 2019-09-24 2023-11-07 ExxonMobil Technology and Engineering Company Cargo stripping features for dual-purpose cryogenic tanks on ships or floating storage units for LNG and liquid nitrogen

Also Published As

Publication number Publication date
JP2011190116A (en) 2011-09-29

Similar Documents

Publication Publication Date Title
JP5518531B2 (en) Carbon dioxide recovery device
US8991482B2 (en) Installation adapted with temperature equalization system
CN101346477B (en) A rotary charging device for a shaft furnace equipped with a cooling system
JP4469208B2 (en) Heat storage unit
CN110537281B (en) Media management panel including water separator and water storage tank, and fuel cell system
BRPI0514093B1 (en) heat exchanger for use in liquid cooling
KR101795424B1 (en) Ice and cold water maker
WO2019189886A1 (en) Dust collection system and heat storage system
AU2007293986B2 (en) Device for cleaning high pressure tanks
US20150109878A1 (en) Device for producing a multicomponent mixture
CN107019978B (en) Moving granular bed filter, hot gas filtration system and method
KR101675746B1 (en) Ice maker
JP2011190117A (en) Device for recovering carbon dioxide
JP4869367B2 (en) Carbon dioxide recovery device
KR20100130127A (en) Scale and sludge removing system
JP4486671B2 (en) Fluid magnet generator, magnet fluid supply machine, magnetic processing apparatus, and magnetic processing method
RU123131U1 (en) BALL CLEANING SYSTEM FOR INTERNAL SURFACE OF HEAT EXCHANGER TUBES COOLED BY WATER FROM OPEN RESERVOIRS
JP4951046B2 (en) Heat storage unit
KR102013078B1 (en) Apparatus for Retrieving Volatile Organic Compound
JP2005305419A (en) Exhaust gas processing system
JP4244343B2 (en) Solvent recovery device
US8377176B1 (en) Method and apparatus for longitudinally disposed, sharp puff of gas
JP2005516175A (en) Incinerator sealing system
JP2018176132A (en) Bag filter device
JP2008063489A (en) Oil-recovering apparatus and dry distillation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140402

R150 Certificate of patent or registration of utility model

Ref document number: 5518531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees