JP5518236B2 - Turbine blade - Google Patents

Turbine blade Download PDF

Info

Publication number
JP5518236B2
JP5518236B2 JP2013101307A JP2013101307A JP5518236B2 JP 5518236 B2 JP5518236 B2 JP 5518236B2 JP 2013101307 A JP2013101307 A JP 2013101307A JP 2013101307 A JP2013101307 A JP 2013101307A JP 5518236 B2 JP5518236 B2 JP 5518236B2
Authority
JP
Japan
Prior art keywords
shape
back surface
rotor blade
arc
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013101307A
Other languages
Japanese (ja)
Other versions
JP2013151944A (en
Inventor
豊隆 吉田
雄志 大迫
隆雄 横山
幹 惠比寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013101307A priority Critical patent/JP5518236B2/en
Publication of JP2013151944A publication Critical patent/JP2013151944A/en
Application granted granted Critical
Publication of JP5518236B2 publication Critical patent/JP5518236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ターボチャージャ等のラジアルタービンや、斜流タービンにおける動翼に関する発明であり、特に動翼の背面形状に関するものである。   The present invention relates to a moving blade in a radial turbine such as a turbocharger or a mixed flow turbine, and particularly relates to a back surface shape of the moving blade.

車両用、舶用等のターボチャージャのタービン動翼において、タービン動翼の慣性モーメントが大きいと、図7に示すようにエンジン回転数の立ち上がり、給気圧力の立ち上がりの応答性が悪くなり、結果的に、ターボチャージャ等を含むエンジンシステム全体のタイムラグを発生させる問題があった。   In a turbine blade of a turbocharger for vehicles, ships, etc., if the moment of inertia of the turbine blade is large, as shown in FIG. 7, the responsiveness of the rise of the engine speed and the rise of the supply air pressure is deteriorated. In addition, there is a problem of generating a time lag of the entire engine system including the turbocharger.

このため、タービン動翼の慣性モーメントを下げる方法として、翼形状自体を切除等によって調整して対応するものが知られている。
例えば、図8に示すような翼01の後縁03の高さを減少させるために、翼01の外周のシュラウドライン05を下げる方法、または図9に示すような翼01の厚さを、翼01'に薄肉化する方法、または翼01の前縁07までの全高を抑えて小径のタービンとする方法等が知られている。
For this reason, as a method for lowering the moment of inertia of the turbine rotor blade, a method for adjusting the blade shape itself by cutting or the like is known.
For example, in order to reduce the height of the trailing edge 03 of the blade 01 as shown in FIG. 8, a method of lowering the shroud line 05 on the outer periphery of the blade 01, or the thickness of the blade 01 as shown in FIG. A method of reducing the thickness to 01 'or a method of reducing the overall height of the blade 01 to the leading edge 07 to make a turbine with a small diameter is known.

しかし、この翼01の後縁03高さの減少や、翼01の肉厚の薄肉化では、タービン動翼の効率低下の要因や強度面での要求を満たさなくなる可能性があり、小径のタービンを適用する場合には、特にターボチャージャでは、最大トルク点と最大出力点との流量差を逃がす必要があり、システム全体の効率が低下する問題があった。   However, if the height of the trailing edge 03 of the blade 01 is reduced or the thickness of the blade 01 is reduced, there is a possibility that the efficiency of the turbine blades may not be satisfied or the strength requirements may not be satisfied. In the case of applying the turbocharger, in particular, in the turbocharger, it is necessary to escape the flow rate difference between the maximum torque point and the maximum output point, which causes a problem that the efficiency of the entire system is lowered.

そこで、翼形状を変更せずに、慣性モーメントを低減させる方法として、動翼の背面部に、肉抜きの凹形状を形成する提案がされている。   Therefore, as a method for reducing the moment of inertia without changing the blade shape, a proposal has been made to form a hollow concave shape on the back surface of the moving blade.

例えば、特許文献1(特開平10−54201号公報)には、図10に示すように、タービン動翼011のブレード013が設けられているハブ015の端面016に、軸方向環状凹部017が形成されている。
また、特許文献2(実開昭63−83430号公報)には、図11に示すように、タービン動翼020のブレード022が設けられているハブ024の端面025に、軸方向環状凹部026が形成されている。この凹部026は、周方向に4箇所、軸方向に沿って設けられ、断面形状が略三角形に形成されている。
For example, in Patent Document 1 (Japanese Patent Laid-Open No. 10-54201), as shown in FIG. 10, an axial annular recess 017 is formed on an end surface 016 of a hub 015 on which a blade 013 of a turbine rotor blade 011 is provided. Has been.
Further, in Patent Document 2 (Japanese Utility Model Laid-Open No. 63-83430), as shown in FIG. 11, an axial annular recess 026 is provided on an end face 025 of a hub 024 on which a blade 022 of a turbine rotor blade 020 is provided. Is formed. The recesses 026 are provided at four locations in the circumferential direction along the axial direction, and the cross-sectional shape is formed in a substantially triangular shape.

特開平10−54201号公報JP-A-10-54201 実開昭63−83430号公報Japanese Utility Model Publication No. 63-83430

しかしながら、特許文献1、特許文献2においては、肉抜きの凹形状によって慣性モーメントを低減させて応答性の向上を図ることが可能となるが、特許文献1では、図10の凹形状の先端部019は、曲率半径が小さく急な曲率変化による応力集中が発生しやすく、また特許文献2においても、図11の凹形状の先端部028は急な曲率変化によって応力集中が発生しやすい。
このため、ハブ部材の動翼背面の根元部分において、応力集中が生じやすく強度や耐久性の面で問題があった。
However, in Patent Document 1 and Patent Document 2, it is possible to improve the responsiveness by reducing the moment of inertia by the hollow concave shape. However, in Patent Document 1, the tip of the concave shape in FIG. No. 019 has a small curvature radius and is likely to cause stress concentration due to a sudden change in curvature. Also in Patent Document 2, stress concentration tends to occur at the concave tip portion 028 of FIG. 11 due to a sudden change in curvature.
For this reason, stress concentration tends to occur at the root portion of the rear surface of the rotor blade of the hub member, and there is a problem in terms of strength and durability.

そこで、本発明は、これら問題に鑑みてなされたもので、翼形状を変更することなく動翼の慣性モーメントを低減させつつ、動翼背面の根元部分における応力集中の発生を抑えて、強度および耐久性を向上させることができる動翼背面形状を備えたタービン動翼を提供することを課題とする。   Therefore, the present invention has been made in view of these problems, reducing the moment of inertia of the moving blade without changing the blade shape, and suppressing the occurrence of stress concentration at the root portion of the rear surface of the moving blade. It is an object of the present invention to provide a turbine rotor blade having a rotor blade rear surface shape capable of improving durability.

上記の課題を解決するために、本出願の第1発明(参考)は、回転軸が連結される軸状のハブ部と該ハブ部の周囲に複数形成される翼部とを一体に形成したタービン動翼において、
前記ハブ部は回転軸方向の一端側である背面に向かって徐々に大径となる形状を有し、該背面に回転軸中心を中心として環状の凹形状部が形成され、該凹形状部の前記回転軸方向の断面形状が、楕円形や卵形の長軸対称の曲線形状を該長軸で分割した曲線形状によって形成され、かつ前記長軸の位置が前記背面に一致するように形成されることを特徴とする。
In order to solve the above-described problem, the first invention (reference) of the present application integrally forms a shaft-shaped hub portion to which a rotating shaft is coupled and a plurality of blade portions formed around the hub portion. In turbine blades,
The hub portion has a shape that gradually increases in diameter toward the back surface, which is one end side in the rotation axis direction, and an annular concave shape portion is formed on the back surface around the rotation shaft center. The cross-sectional shape in the rotational axis direction is formed by a curved shape obtained by dividing an elliptical or oval long-axis symmetrical curve shape by the long axis, and the position of the long axis coincides with the back surface. It is characterized by that.

かかる発明によれば、ハブ部は回転軸方向の一端側である背面に向かって徐々に大径となる形状を有し、該背面に環状の凹形状部が形成され、その断面形状が、楕円形や卵形の長軸対称の曲線形状を該長軸で分割した曲線形状によって形成され、かつ前記長軸の位置が前記背面に一致するように形成されるため、凹形状部の曲率が滑らかに変化し、曲率半径を大きく取れることができ、該凹形状部に発生する応力集中を、図10、11に示す従来技術のような凹形状の先端部における急な曲率変化によって生じる応力集中より低減できる。
その結果、動翼背面の根元部分における応力集中を回避でき強度や耐久性を向上できる。また、環状の凹形状部による肉抜きによって、タービン動翼の慣性モーメントも低減できる。
According to this invention, the hub portion has a shape that gradually increases in diameter toward the back surface that is one end side in the rotation axis direction, the annular concave portion is formed on the back surface, and the cross-sectional shape thereof is elliptical. Is formed by a curved shape obtained by dividing a long axis symmetrical curve shape of the shape or egg shape by the long axis, and the position of the long axis coincides with the back surface, so that the curvature of the concave portion is smooth , The radius of curvature can be increased, and the stress concentration generated in the concave portion is greater than the stress concentration caused by the sudden curvature change at the concave tip portion as shown in FIGS. Can be reduced.
As a result, it is possible to avoid stress concentration at the root portion of the rear surface of the moving blade and to improve strength and durability. Moreover, the moment of inertia of the turbine rotor blade can be reduced by the thinning by the annular concave portion.

一般に、応力集中係数αは、図6で示すような関係にあり、応力集中係数αは、横軸に示されるρ(切欠きの円弧半径)/t(切欠き深さ)が大きくなるに従って小さくなる関係にあるため、ρ(切欠きの円弧半径)を大きくするか、t(切欠き深さ)を小さくすることで、応力集中係数αを小さくできる。   In general, the stress concentration factor α has a relationship as shown in FIG. 6, and the stress concentration factor α decreases as ρ (notch arc radius) / t (notch depth) indicated on the horizontal axis increases. Therefore, the stress concentration coefficient α can be reduced by increasing ρ (the arc radius of the notch) or decreasing t (the notch depth).

従って、本発明のように、凹形状部の断面形状が楕円形や卵形の長軸対称の曲線形状を該長軸で分割した曲線形状によって形成し、かつ長軸の位置を背面に一致するように形成することで、凹形状部における応力集中係数を従来技術のような凹形状の先端部における急な曲率変化より小さくすることができ、ρ(切欠きの円弧半径)を大きくするとともに、t(切欠き深さ)を小さくすることができ、ハブ部背面の動翼根元部分における応力集中を低減できる。   Therefore, as in the present invention, the cross-sectional shape of the concave portion is formed by a curved shape obtained by dividing the long axis symmetrical curve shape such as an ellipse or an oval by the long axis, and the position of the long axis matches the back surface By forming as described above, the stress concentration coefficient in the concave shape portion can be made smaller than the sudden curvature change in the concave shape tip portion as in the prior art, and ρ (arc radius of the notch) is increased, t (notch depth) can be reduced, and stress concentration at the root portion of the moving blade at the back of the hub portion can be reduced.

また、本出願の第2発明は、回転軸が連結される軸状のハブ部と該ハブ部の周囲に複数形成される翼部とを一体に形成したタービン動翼において、前記ハブ部は回転軸方向の一端側である背面に向かって徐々に大径となる形状を有し、該背面に回転軸中心を中心として環状の凹形状部が形成され、該凹形状部の前記回転軸方向の断面形状が、円弧または楕円形や卵形の長軸対称の曲線形状の一部からなり、かつ該円弧の中心または前記長軸の位置が前記背面よりハブ部の外側に位置するとともに前記長軸が前記背面と平行となるように形成されることを特徴とする。   According to a second aspect of the present invention, there is provided a turbine rotor blade in which a shaft-shaped hub portion to which a rotating shaft is coupled and a plurality of blade portions formed around the hub portion are integrally formed. It has a shape that gradually increases in diameter toward the back surface, which is one end side in the axial direction, and an annular concave portion is formed on the back surface around the center of the rotation axis. The cross-sectional shape is a part of an arc or an elliptical or oval long axis symmetrical curve shape, and the center of the arc or the position of the long axis is located outside the hub portion from the back surface, and the long axis Is formed so as to be parallel to the back surface.

かかる第2発明によれば、前記第1発明(参考)と同様に応力集中係数を低減して、応力集中を低減することができる。しかも、第2発明においては、円弧の中心または長軸対称の曲線形状を形成する該長軸を背面よりハブ部の外側に位置させるので、前記第1発明(参考)における長軸対称の曲線形状の曲率半径よりも大きい半径に設定できるようになり、第1発明(参考)に比べて、応力集中係数をより小さくすることが可能となり、ハブ部背面の根元部分における応力集中を一層低減できる。   According to the second invention, the stress concentration coefficient can be reduced and the stress concentration can be reduced as in the first invention (reference). Moreover, in the second invention, the long axis forming the center of the arc or the long axis symmetric curved shape is positioned outside the hub portion from the back surface, so the long axis symmetric curved shape in the first invention (reference) The radius of curvature can be set to be larger than the radius of curvature, and the stress concentration coefficient can be further reduced as compared with the first invention (reference), and the stress concentration at the root portion on the back surface of the hub portion can be further reduced.

また、第1発明(参考)および第2発明において、好ましくは、前記背面と前記円弧または前記長軸対称の曲線形状との交点のうち外周側の位置を前記翼部直径の略半分に位置させ、内周側の位置を前記背面と前記回転軸との交点近傍に位置させるとよい。   In the first invention (reference) and the second invention, it is preferable that the position on the outer peripheral side of the intersection of the back surface and the circular arc or the long axis symmetrical curve shape is positioned at approximately half the wing part diameter. The inner peripheral position may be positioned in the vicinity of the intersection between the back surface and the rotation shaft.

かかる構成によれば、ハブ部の背面と円弧または長軸対称の曲線形状との交点のうち外周側の位置を、翼部直径の略半分の位置に位置させたので、翼部を保持するハブ部外周側の部分に十分な肉厚を確保できる。
また、ハブ部と翼部とは一体に鋳造等によって製造されるとともに、高速で回転するため、バランスとりための肉抜き等のスペースが必要となるが、そのスペースとしてハブ部の背面の凹形状部の外周側に平面部を残すことができる。
According to such a configuration, since the position on the outer peripheral side of the intersection of the back surface of the hub portion and the circular arc or the long axis symmetrical curve shape is located at a position approximately half the wing portion diameter, the hub that holds the wing portion A sufficient thickness can be secured in the portion on the outer periphery side.
In addition, the hub and wings are manufactured integrally by casting, etc., and rotate at a high speed, so a space for removing the thickness for balancing is required. A plane part can be left on the outer peripheral side of the part.

また、第1発明(参考)および第2発明において、好ましくは、前記凹形状部の断面形状には直線部が存在しないとよい。
すなわち、円弧形状または楕円形状等の長軸対称曲線形状だけによって形成されるため、直線部が介在すると直線部とこれら曲線形状との交差部における形状変化による応力集中の発生の可能性を極力回避でき、背面の根元部分における応力集中の発生を効果的に抑えることができる。
In the first invention (reference) and the second invention, it is preferable that the cross-sectional shape of the concave portion does not include a straight portion.
In other words, since it is formed only by a long axis symmetrical curve shape such as an arc shape or an elliptical shape, the possibility of stress concentration due to shape change at the intersection of the straight line portion and these curved shapes is avoided as much as possible when a straight line portion is interposed It is possible to effectively suppress the occurrence of stress concentration at the root portion of the back surface.

さらに、第1発明(参考)および第2発明において、好ましくは、前記長軸対称の曲線形状が楕円からなり、該楕円の短径は前記動翼の直径の3〜10%であるよい。
かかる3〜10%は、応力および慣性モーメントの数値解析結果に基づいて、3%より小さくなると凹形状としての肉抜きによる慣性モーメントの低減効果が得られず、また、10%を超えると深さが深くなり、翼部を保持するハブ部外周側の部分の肉厚に影響して、タービン動翼全体の強度に悪影響を及ぼすため、この範囲に設定するとよい。
Further, in the first invention (reference) and the second invention, preferably, the long axis symmetrical curve shape is an ellipse, and the minor axis of the ellipse may be 3 to 10% of the diameter of the moving blade.
Such 3 to 10% is based on the results of numerical analysis of stress and moment of inertia, and if it becomes smaller than 3%, the effect of reducing the moment of inertia due to the hollowing out as a concave shape cannot be obtained. The depth becomes deeper and affects the wall thickness of the outer peripheral side of the hub portion that holds the blade portion, and adversely affects the strength of the entire turbine blade, so it is preferable to set this range.

第1発明(参考)によれば、翼形状を変更することなく動翼の慣性モーメントを低減させつつ、動翼背面の根元部分における応力集中の発生を抑えて、強度および耐久性を向上させることができる動翼背面形状を備えたタービン動翼を提供できる。
また、第2発明によれば、前記第1発明(参考)と同様に応力集中係数を低減して、応力集中を低減することができる。
しかも、本第2発明においては、円弧の中心または長軸対称の曲線形状を形成する該長軸を背面よりハブ部の外側に位置させるので、前記第1発明(参考)における長軸対称の曲線形状の曲率半径よりも大きい半径に設定できるようになり、第1発明(参考)に比べて、応力集中係数をより小さくすることが可能となり、ハブ部背面の根元部分における応力集中を一層低減できる。
According to the first invention (reference), the strength and durability can be improved by reducing the moment of inertia of the moving blade without changing the blade shape and suppressing the occurrence of stress concentration at the root portion of the moving blade back surface. It is possible to provide a turbine rotor blade having a rear surface shape that can be used.
Further, according to the second invention, the stress concentration factor can be reduced and the stress concentration can be reduced as in the first invention (reference).
Moreover, in the second invention, the long axis forming the center of the arc or the long axis symmetrical curve is positioned outside the hub portion from the back surface, so the long axis symmetrical curve in the first invention (reference) A radius larger than the curvature radius of the shape can be set, and the stress concentration factor can be made smaller than that of the first invention (reference), and the stress concentration at the root portion on the back surface of the hub portion can be further reduced. .

本発明の第1実施形態(参考)におけるタービン動翼の断面図である。It is sectional drawing of the turbine rotor blade in 1st Embodiment (reference) of this invention. 第2実施形態におけるタービン動翼の断面図である。It is sectional drawing of the turbine rotor blade in 2nd Embodiment. 第3実施形態におけるタービン動翼の断面図である。It is sectional drawing of the turbine rotor blade in 3rd Embodiment. 応力ピーク比率および慣性モーメントの比較説明図である。It is comparison explanatory drawing of a stress peak ratio and a moment of inertia. 図4に示す比較例1、2の説明図である。It is explanatory drawing of the comparative examples 1 and 2 shown in FIG. 応力集中係数αの一般的特性図である。It is a general characteristic figure of stress concentration factor alpha. タービン動翼のレスポンス特性を示す説明図である。It is explanatory drawing which shows the response characteristic of a turbine rotor blade. 翼形状の変更例の説明図である。It is explanatory drawing of the example of a change of wing | blade shape. 翼形状の変更例の説明図である。It is explanatory drawing of the example of a change of wing | blade shape. 従来技術の説明図である。It is explanatory drawing of a prior art. 従来技術の説明図である。It is explanatory drawing of a prior art.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention to that unless otherwise specified.

(第1実施形態(参考))
車両用、舶用等のターボチャージャのタービン動翼を例に説明する。図1はこのタービン動翼1の軸方向断面図を示し、タービン動翼(以下動翼という)1は、軸状に形成されるとともに、外周側面3、先端面5、後端面(背面)7を有したハブ部9と、該ハブ部9の外周側面3に複数形成された翼部11とが、射出成形、鋳造、焼結等によって一体に成形されている。
(First embodiment (reference))
A description will be given of a turbine blade of a turbocharger for vehicles, ships, etc. as an example. FIG. 1 shows an axial sectional view of the turbine rotor blade 1. A turbine rotor blade (hereinafter referred to as a rotor blade) 1 is formed in an axial shape, and has an outer peripheral side surface 3, a front end surface 5, and a rear end surface (rear surface) 7. A hub portion 9 having a wing portion and a plurality of blade portions 11 formed on the outer peripheral side surface 3 of the hub portion 9 are integrally formed by injection molding, casting, sintering, or the like.

外周側面3は、ハブ部9の先端面5から背面7に向かうに従って徐々に大径になるように湾曲した形状に形成され、この湾曲した面上に翼部11が軸方向に沿って複数枚立設されている。
そして、翼部11の前縁13が径方向に向かって外周側に設けられ、翼部11の後縁15が軸方向に向かって内周側に形成され、流動ガスが径方向外側から前縁13に導入されて、軸方向に向かって後縁15から排出されることで、ハブ部9に回転力が発生するようになっている。
The outer peripheral side surface 3 is formed in a curved shape so as to gradually increase in diameter from the front end surface 5 to the back surface 7 of the hub portion 9, and a plurality of wing portions 11 are formed along the axial direction on the curved surface. It is erected.
And the front edge 13 of the wing | blade part 11 is provided in the outer peripheral side toward radial direction, the rear edge 15 of the wing | blade part 11 is formed in the inner peripheral side toward axial direction, and a flowing gas is a front edge from radial direction outer side. 13 and discharged from the rear edge 15 in the axial direction, a rotational force is generated in the hub portion 9.

また、背面7には、回転軸19を連結する溶接棚部17が円周状に突設され、該溶接棚部17に回転軸19の先端が溶接部22にて結合される。なお、この回転軸19の接続構造は、溶接によらずにハブ部9の中心部を中空状に形成して、中空形状内に回転軸を嵌合させて結合する構造であってもよい。   Further, a welding shelf 17 that connects the rotating shaft 19 is provided on the rear surface 7 so as to protrude in a circumferential shape, and the tip of the rotating shaft 19 is coupled to the welding shelf 17 by a welding portion 22. The connecting structure of the rotating shaft 19 may be a structure in which the central portion of the hub portion 9 is formed in a hollow shape without being welded, and the rotating shaft is fitted into the hollow shape and coupled.

さらに、ハブ部9の背面7には回転軸19周りに中心線Lを中心に環状の凹形状部21が形成されている。該凹形状部21の回転軸方向の断面形状は、図1に示すように、楕円形(長軸対称の曲線形状)Gからなっている。すなわち、楕円の短径aと長径bからなる楕円の長円弧Cで形成されている。この楕円の長円弧Cは、長軸の長径bを背面7の面と一致させて、長径bで分割された形状となっている。つまり、凹形状部21を形成する曲線形状は直線部がない単一の楕円の長円弧Cよって形成されている。   Further, an annular concave portion 21 is formed around the rotation axis 19 around the center line L on the back surface 7 of the hub portion 9. As shown in FIG. 1, the cross-sectional shape of the concave portion 21 in the rotation axis direction is an ellipse (long-axis symmetrical curve shape) G. That is, it is formed by an elliptical long arc C composed of an elliptical minor axis a and a major axis b. The elliptical arc C of the ellipse has a shape divided by the major axis b so that the major axis b of the major axis coincides with the surface of the back surface 7. That is, the curved shape forming the concave portion 21 is formed by a single elliptical long arc C having no straight portion.

長円弧Cと背面7との外周側の交点Aの位置は、翼部11の直径Dの略半分に位置され、内周側の交点Bの位置は、溶接棚部17の上面と背面7とが垂直に交わる交点に位置されている。
交点Aの位置を、翼部11の直径Dの略半分の位置に位置させたので、翼部11を保持するハブ部9の外周側の部分に十分な肉厚Nを確保でき、凹形状部21の形成によってタービン動翼1全体の強度低下がないようにできる。
また、ハブ部9と翼部11とは一体に鋳造等によって製造されるとともに、動翼1自体は高速で回転するため、回転時のバランスを取る必要があるため、その肉抜き等のスペースが必要となるが、そのスペースとして背面7の凹形状部21の外周側に平面Hが確保される。
The position of the intersection point A on the outer peripheral side of the long arc C and the back surface 7 is positioned at approximately half of the diameter D of the wing part 11, and the position of the intersection B on the inner peripheral side is between the upper surface of the welding shelf 17 and the back surface 7. Is located at the intersection where
Since the position of the intersection A is located at a position approximately half the diameter D of the wing part 11, a sufficient thickness N can be secured in the outer peripheral side portion of the hub part 9 holding the wing part 11, and the concave part By forming 21, the strength of the entire turbine rotor blade 1 can be prevented from being lowered.
In addition, the hub portion 9 and the blade portion 11 are integrally manufactured by casting or the like, and the rotor blade 1 itself rotates at a high speed. Although necessary, a plane H is secured on the outer peripheral side of the concave portion 21 of the back surface 7 as the space.

このような理由を基に交点Aの位置が設定されている。また、交点Bについては、溶接棚部17の上面に連続的かつ滑らかに凹形状部21の内面が繋がることによって、応力集中の発生個所を極力減らすことができるためである。つまり、仮に、交点Bの位置が溶接棚部17の上面より段差状に外周側に位置されたとすると、その交点Bには角部が形成され、そこに応力集中が生じるおそれがある。   Based on this reason, the position of the intersection A is set. In addition, for the intersection B, the inner surface of the concave-shaped portion 21 is continuously and smoothly connected to the upper surface of the welding shelf portion 17 so that the occurrence of stress concentration can be reduced as much as possible. That is, if the position of the intersection point B is positioned on the outer peripheral side in a stepped manner from the upper surface of the welding shelf 17, a corner portion is formed at the intersection point B, and stress concentration may occur there.

ここで、応力集中係数について説明する。一般に、応力集中係数αは、材料力学の文献(機械工学便覧)には図6で示すような関係が示されている。この例は両側切り欠きの場合を示すものであるが、応力集中係数αは、横軸に示されるρ(切欠きの円弧半径)/t(切欠き深さ)が大きくなるに従って小さくなる関係にある。このため、ρ(切欠きの円弧半径)を大きくするか、t(切欠き深さ)を小さくすることで、応力集中係数αを小さくすることができることが分かる。   Here, the stress concentration factor will be described. In general, the stress concentration coefficient α has a relationship as shown in FIG. 6 in the material mechanics literature (Mechanical Engineering Handbook). This example shows the case of notches on both sides, but the stress concentration factor α has a relationship that decreases as ρ (arc radius of the notch) / t (notch depth) indicated on the horizontal axis increases. is there. For this reason, it can be seen that the stress concentration factor α can be reduced by increasing ρ (the radius of the arc of the notch) or by decreasing t (the depth of the notch).

従って、ρ(切欠きの円弧半径)を大きくするか、t(切欠き深さ)を小さくするために、凹形状部21の断面形状を楕円の長円弧形状によって形成することで、応力集中係数を従来技術のような凹形状の先端部における急な曲率変化より小さくすることができ、さらに、背面7の肉抜きをも可能とすることができる。
その結果、翼部11の形状を変更することなく動翼1の慣性モーメントを低減させつつ、背面7の根元部分における応力集中の発生を抑えて、強度および耐久性を向上させることが可能になる。
Therefore, in order to increase ρ (notch arc radius) or to reduce t (notch depth), the stress concentration coefficient is obtained by forming the cross-sectional shape of the concave portion 21 with an elliptical arc shape. Can be made smaller than the sudden curvature change at the concave tip portion as in the prior art, and the back surface 7 can be thinned.
As a result, it is possible to reduce the moment of inertia of the moving blade 1 without changing the shape of the blade portion 11 and to suppress the occurrence of stress concentration at the root portion of the back surface 7 and improve the strength and durability. .

次に、背面7の根本部分に生じる応力の数値解析結果について図4、5を参照して説明する。
図4の横軸における、比較例1は、図5(a)のように凹形状部が形成されていないタービン動翼30の場合であり、比較例2は、図5(b)のように凹形状部の断面形状が水滴形状32で従来技術として説明した図10、11の形状に近いものであり、凹形状の深さが深く先端部の曲率半径が小さく尖った形状のタービン動翼34の場合である。実施例1〜4は、本実施形態の図1に示す楕円の長円弧形状による場合であり、実施例1は翼部11の直径Dと楕円の短径aとの比(D/a)が10%の場合、実施例2はD/aが6%の場合、実施例3はD/aが5%の場合、実施例4はD/aが4%の場合をそれぞれ示す。
また、縦軸は、比較例2の応力ピーク値を100%とした場合の比率と、比較例1の慣性モーメントを100%とした場合の比率とをそれぞれ示す。
Next, the numerical analysis result of the stress generated in the base portion of the back surface 7 will be described with reference to FIGS.
Comparative Example 1 on the horizontal axis of FIG. 4 is a case of a turbine rotor blade 30 in which a concave portion is not formed as shown in FIG. 5A, and Comparative Example 2 is as shown in FIG. 5B. 10 and 11 described as the prior art with the water droplet shape 32 as the cross-sectional shape of the concave portion, and the turbine rotor blade 34 having a sharp shape with a deep concave shape and a small curvature radius at the tip. This is the case. Examples 1 to 4 are cases in which the elliptical long arc shape shown in FIG. 1 of the present embodiment is used, and Example 1 has a ratio (D / a) of the diameter D of the wing part 11 to the minor axis a of the ellipse. In the case of 10%, Example 2 shows a case where D / a is 6%, Example 3 shows a case where D / a is 5%, and Example 4 shows a case where D / a is 4%.
The vertical axis indicates the ratio when the stress peak value of Comparative Example 2 is 100% and the ratio when the inertia moment of Comparative Example 1 is 100%.

この図4を基に各ケースを比較すると、応力ピーク値については、比較例2の水滴形状の凹形状部の場合が最も応力ピーク値が大きくその値を100%として、他のケースを見ると、比較例1は凹形状部が形成されないため最も小さい、そして実施例1から4にかけて順次小さくなることが分かった。すなわち、楕円の短径aが小さくなり凹形状部の深さが浅くなるに従ってベースの比較例2に近づくことが確認できた。   When each case is compared based on this FIG. 4, as for the stress peak value, in the case of the concave portion of the water droplet shape of Comparative Example 2, the stress peak value is the largest and the value is 100%. It was found that Comparative Example 1 is the smallest because no concave-shaped portion is formed, and becomes smaller sequentially in Examples 1 to 4. In other words, it was confirmed that the base was closer to Comparative Example 2 as the minor axis a of the ellipse became smaller and the depth of the concave portion became shallower.

また、慣性モーメントについては、凹形状部がない比較例1が最も大きくその値を100%として、他のケースを見ると、水滴形状の比較例2が最も小さく、実施例1から4にかけて順次大きくなることが分かった。すなわち、楕円の短径aが小さくなり凹形状部の深さが浅くなるに従ってベースの比較例1に近づくことが確認できた。   As for the moment of inertia, the comparative example 1 having no concave portion is the largest, and the value thereof is set to 100%. In other cases, the comparative example 2 having the water droplet shape is the smallest, and gradually increases from the first to fourth examples. I found out that In other words, it was confirmed that the base was closer to Comparative Example 1 as the minor axis a of the ellipse became smaller and the depth of the concave portion became shallower.

以上の比較より、比較例1のように凹形状部が形成されていないものは、発生する集中応力は小さいが慣性モーメントが大きく、また比較例2のような水滴形状のような形状では、慣性モーメントは小さいが大きい集中応力の発生があることが確認できた。
本発明では、この比較例1と比較例2との両者の中間的な特性を得ることができ、慣性モーメントを低減させつつ、背面7の根元部分における応力集中の発生を抑えることが可能になる。
From the above comparison, those in which the concave portion is not formed as in Comparative Example 1 have a small concentrated stress but a large moment of inertia, and in the shape of a water droplet shape as in Comparative Example 2, the inertia is small. Although the moment was small, it was confirmed that large concentrated stress was generated.
In the present invention, intermediate characteristics between the comparative example 1 and the comparative example 2 can be obtained, and the occurrence of stress concentration at the root portion of the back surface 7 can be suppressed while reducing the moment of inertia. .

なお、D/aの比率の設定については、実施例1〜4に示すような慣性モーメントとピーク応力との関係を有するため、タービン動翼の使用条件によって予め設定するとよい。 また、D/aの比率の範囲については、応力および慣性モーメントの数値解析結果より図4に示す4〜10%を含めて3〜10%が適切である。
なぜならば、3%より小さくなると凹形状としての肉抜きによる慣性モーメントの低減効果が得られず、また、10%を超えると深さが深くなり過ぎて、翼部を保持するハブ部外周側の部分の肉厚に影響して、タービン動翼全体の強度に悪影響を及ぼすため、この範囲に設定するとよい。
In addition, about the setting of the ratio of D / a, since it has the relationship between an inertia moment and peak stress as shown in Examples 1-4, it is good to set beforehand by the use conditions of a turbine rotor blade. Further, the range of the ratio of D / a is appropriately 3 to 10% including 4 to 10% shown in FIG. 4 from the numerical analysis results of stress and moment of inertia.
This is because if it becomes smaller than 3%, the effect of reducing the moment of inertia due to the hollowing out as a concave shape cannot be obtained, and if it exceeds 10%, the depth becomes too deep, and the outer peripheral side of the hub part holding the wing part becomes too deep. Since this affects the wall thickness of the portion and adversely affects the strength of the entire turbine rotor blade, it should be set within this range.

第1実施形態(参考)においては、凹形状部21の断面形状として楕円形Gについて説明したが、長軸対称曲線として楕円形に近似した卵形についても同様のことが言える。すなわち、卵形の曲線形状は楕円形と半円弧とがつながった形状となり、楕円形だけでなく円弧とつながった形状をしていても、凹形状部の曲率が滑らかに変化し、曲率半径を大きく取れることができる形状であればよい。ただし直線部が存在してはならない、すなわち、円弧形状または楕円形状等の長軸対称曲線形状だけによって形成されることで、凹形状部の曲率が滑らかに変化するようになる。直線部が介在すると直線部とこれら曲線形状との交差部において、形状変化が生じやすく、応力集中が発生しやすくなるからである。   In 1st Embodiment (reference), although elliptical G was demonstrated as a cross-sectional shape of the concave-shaped part 21, the same thing can be said also about the oval approximated to the ellipse as a long-axis symmetrical curve. In other words, the oval curve shape is a shape that connects an ellipse and a semicircular arc, and the curvature of the concave portion changes smoothly even if it is not only an ellipse but also a shape connected to an arc, and the radius of curvature is increased. Any shape that can be taken large may be used. However, the straight portion should not exist, that is, the curvature of the concave portion changes smoothly by being formed only by a long axis symmetrical curve shape such as an arc shape or an elliptical shape. This is because if a straight line portion is interposed, a shape change is likely to occur at the intersection between the straight line portion and these curved shapes, and stress concentration is likely to occur.

(第2実施形態)
次に、図2を参照して第2実施形態について説明する。なお、第1実施形態(参考)で説明した構成部材と同一のものには同一符号を付して説明を省略する。
ハブ部40の背面42に、回転軸19の中心線Lを中心として形成された環状の凹形状部44の回転軸方向の断面形状が、図2に示すように、楕円形G'からなっていて、短径a'と長径b'からなる楕円の長円弧Eで形成されている。この楕円の長円弧Eは、長径b'を背面42とは一致せず。背面42の面位置から距離sだけハブ部40の外側方向に移動した位置に位置させ、楕円の長円弧形状の一部によって形成されている。つまり、凹形状部44を形成する曲線形状は直線部がなく単一の楕円の長円弧によって形成されている。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same component as demonstrated in 1st Embodiment (reference), and description is abbreviate | omitted.
As shown in FIG. 2, the cross-sectional shape of the annular concave portion 44 formed on the back surface 42 of the hub portion 40 around the center line L of the rotation shaft 19 is an elliptical shape G ′. Thus, it is formed by an elliptical long circular arc E having a short diameter a ′ and a long diameter b ′. The elliptical long arc E does not match the major axis b ′ with the back surface 42. It is located at a position moved from the surface position of the back surface 42 in the outward direction of the hub portion 40 by a distance s, and is formed by a part of an elliptical long arc shape. In other words, the curved shape forming the concave portion 44 is formed by a single elliptical long arc without a straight portion.

また、距離sは大きく移動するに従って、長径b'を大きく取ることができるようになるため、前記第1実施形態(参考)で説明した図4の比較例1のベース形状に近づけることができるようになる。
距離sの移動方向については、ハブ部40の内部方向へ移動し、長軸の長径b'がハブ部40内に位置される場合には、凹形状部44の断面形状の上下辺に直接部が存在し、長円弧Eとのつながり部に曲率の変化が生じ、応力集中が発生するおそれがあるため、距離sは背面42の位置からハブ部40の外側(図2の左側)に移動させる必要がある。
なお、長円弧Eと背面42との外周側の交点Aの位置と内周側の交点Bの位置は、第1実施形態(参考)と同一である。
Further, as the distance s largely moves, the major axis b ′ can be increased, so that the distance s can be made closer to the base shape of the comparative example 1 of FIG. 4 described in the first embodiment (reference). become.
As for the moving direction of the distance s, when moving in the inner direction of the hub portion 40 and the major axis b ′ of the major axis is located in the hub portion 40, the portion directly on the upper and lower sides of the cross-sectional shape of the concave portion 44. Therefore, the distance s is moved from the position of the back surface 42 to the outside of the hub portion 40 (left side in FIG. 2). There is a need.
The position of the intersection A on the outer peripheral side of the long arc E and the back surface 42 and the position of the intersection B on the inner peripheral side are the same as in the first embodiment (reference).

かかる第2実施形態によれば、前記第1実施形態(参考)と同様に応力集中係数を低減して、応力集中を低減することができる。しかも、第2実施形態においては、楕円の長径b'の位置を背面42よりハブ部40より外側に位置されるので、第1実施形態(参考)における楕円の長円弧Cの曲率半径より大きく設定できるようになるため、第1実施形態(参考)に比べて、応力集中係数をより小さくすることが可能になり、背面42の根元部分における応力集中を一層低減できる。   According to the second embodiment, the stress concentration coefficient can be reduced and the stress concentration can be reduced as in the first embodiment (reference). In addition, in the second embodiment, the position of the major axis b ′ of the ellipse is positioned outside the hub portion 40 from the back surface 42, so that it is set larger than the radius of curvature of the ellipse major arc C in the first embodiment (reference). Therefore, compared to the first embodiment (reference), the stress concentration coefficient can be further reduced, and the stress concentration at the root portion of the back surface 42 can be further reduced.

(第3実施形態)
次に、図3を参照して第3実施形態について説明する。なお、第1実施形態(参考)、第2実施形態で説明した構成部材と同一のものには同一符号を付して説明を省略する。
第3実施形態は、第2実施形態の楕円に対して円形の円弧によって、凹形状部50の形状を形成するものである。
(Third embodiment)
Next, a third embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same thing as the structural member demonstrated in 1st Embodiment (reference) and 2nd Embodiment, and description is abbreviate | omitted.
In the third embodiment, the shape of the concave portion 50 is formed by a circular arc with respect to the ellipse of the second embodiment.

動翼1のハブ部52の背面54に、回転軸19の中心線Lを中心として形成された環状の凹形状部50の回転軸方向の断面形状が、図3に示すように、半径Rの円弧形状からなっていて、円周の一部の円弧Fで形成されている。この円弧Fの中心Pは、第2実施形態と同様に、背面54の面位置から距離sだけハブ部52の外側に移動した位置に位置されている。つまり、凹形状部50を形成する曲線形状は直線部がなく単一の円弧によって形成され、しかも半円弧より小さい円弧形状によって形成されている。   As shown in FIG. 3, the cross-sectional shape of the annular concave portion 50 formed around the center line L of the rotating shaft 19 on the back surface 54 of the hub portion 52 of the rotor blade 1 has a radius R as shown in FIG. It has an arc shape and is formed by a partial arc F of the circumference. The center P of the arc F is located at a position moved from the surface position of the back surface 54 to the outside of the hub portion 52 by a distance s, as in the second embodiment. That is, the curved shape forming the concave portion 50 is formed by a single arc without a straight line portion, and is formed by an arc shape smaller than the semicircular arc.

円弧Fと背面54との外周側の交点Aの位置と内周側の交点Bの位置は、第1実施形態(参考)と同一である。   The position of the intersection point A on the outer peripheral side of the arc F and the back surface 54 and the position of the intersection point B on the inner peripheral side are the same as in the first embodiment (reference).

かかる第3実施形態によれば、第2実施形態と同様の作用効果を得ることができるとともに、円形状の円弧の一部の曲線を用いて凹形状部50を形成するため、楕円形や卵形等の長軸対称曲線形状の断面形状に比べて製造、加工が容易となる。また、A点、B点間の距離が一定の場合で、溶接棚部17の突出量が限られている場合に、溶接部22に掛からないようにして楕円形や卵形等の長軸対称曲線形状の曲率半径に比べて、より小さい曲率半径の設定が可能となる等、凹形状部50の形状設定の自由度が向上する。   According to this 3rd Embodiment, since the same effect as 2nd Embodiment can be obtained, and since the concave shape part 50 is formed using the curve of a part of circular arc, an ellipse or egg Manufacture and processing are easier than the cross-sectional shape of a long axis symmetrical curved shape such as a shape. Further, when the distance between the points A and B is constant and the projection amount of the welding shelf 17 is limited, the long axis symmetry such as an oval shape or an oval shape is provided so as not to be applied to the welding portion 22. The degree of freedom in setting the shape of the concave-shaped portion 50 is improved, for example, it is possible to set a smaller radius of curvature than the curvature radius of the curved shape.

本発明は、翼形状を変更することなく動翼の慣性モーメントを低減させつつ、動翼背面の根元部分における応力集中の発生を抑えて、強度および耐久性を向上させることができる動翼背面形状を備えるので、タービン動翼に用いることに適している。   The present invention provides a blade rear surface shape that can reduce the moment of inertia of the blade without changing the blade shape and suppress the occurrence of stress concentration at the root portion of the blade rear surface, thereby improving the strength and durability. Therefore, it is suitable for use in turbine blades.

1 タービン動翼
9 ハブ部
5 先端面
7、42、54 背面
11 翼部
17 溶接棚部
19 回転軸
21、44、50 凹形状部
22 溶接部
A 凹形状部と背面との交点
B 背面と回転軸との交点
C、E 楕円の長円弧
D 翼部の直径
F 円弧
G、G' 楕円形
L 中心線
N 肉厚
H 平面
S 距離
P 円弧の中心
DESCRIPTION OF SYMBOLS 1 Turbine blade 9 Hub part 5 Front end surface 7, 42, 54 Back surface 11 Wing part 17 Welding shelf part 19 Rotating shaft 21, 44, 50 Concave-shaped part 22 Welding part A Intersection of concave-shaped part and back surface B Back surface and rotation Intersection with axis C, E Ellipse long circular arc D Wing diameter F Arc G, G 'Ellipse L Center line N Thickness H Plane S Distance P Center of arc

Claims (4)

回転軸が連結される軸状のハブ部と該ハブ部の周囲に複数形成される翼部とを一体に形成したタービン動翼において、
前記ハブ部は回転軸方向の一端側である背面に向かって徐々に大径となる形状を有し、該背面に回転軸中心を中心として環状の凹形状部が形成され、該凹形状部の前記回転軸方向の断面形状が、円弧または楕円形や卵形の長軸対称の曲線形状の一部からなり、かつ該円弧の中心または前記長軸の位置が前記背面よりハブ部の外側に位置するとともに前記長軸が前記背面と平行となるように形成されることを特徴とするタービン動翼。
In a turbine rotor blade integrally formed with a shaft-shaped hub portion to which a rotating shaft is coupled and a plurality of blade portions formed around the hub portion,
The hub portion has a shape that gradually increases in diameter toward the back surface, which is one end side in the rotation axis direction, and an annular concave shape portion is formed on the back surface around the rotation shaft center. The cross-sectional shape in the direction of the rotation axis is a part of an arc or an elliptical or oval long-axis symmetrical curve, and the center of the arc or the position of the long axis is located outside the hub portion from the back surface. In addition, the turbine rotor blade is characterized in that the long axis is formed in parallel with the back surface.
前記背面と前記円弧または前記長軸対称の曲線形状との交点のうち外周側の位置を前記翼部直径の略半分に位置させ、内周側の位置を前記背面と前記回転軸との交点近傍に位置させたことを特徴とする請求項1記載のタービン動翼。   The position on the outer peripheral side of the intersection of the back surface and the circular arc or the long axis symmetric curved shape is positioned at approximately half of the wing diameter, and the position on the inner peripheral side is in the vicinity of the intersection of the back surface and the rotating shaft. The turbine rotor blade according to claim 1, wherein 前記凹形状部の断面形状には直線部が存在しないことを特徴とする請求項1記載のタービン動翼。   The turbine rotor blade according to claim 1, wherein a straight portion does not exist in a cross-sectional shape of the concave portion. 前記長軸対称の曲線形状が楕円からなり、該楕円の短径は前記動翼の直径の3〜10%であることを特徴とする請求項1記載のタービン動翼。






The turbine rotor blade according to claim 1, wherein the major axis symmetrical curve shape is an ellipse, and a minor axis of the ellipse is 3 to 10% of a diameter of the rotor blade.






JP2013101307A 2013-05-13 2013-05-13 Turbine blade Active JP5518236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013101307A JP5518236B2 (en) 2013-05-13 2013-05-13 Turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013101307A JP5518236B2 (en) 2013-05-13 2013-05-13 Turbine blade

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009233182A Division JP5439112B2 (en) 2009-10-07 2009-10-07 Turbine blade

Publications (2)

Publication Number Publication Date
JP2013151944A JP2013151944A (en) 2013-08-08
JP5518236B2 true JP5518236B2 (en) 2014-06-11

Family

ID=49048443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013101307A Active JP5518236B2 (en) 2013-05-13 2013-05-13 Turbine blade

Country Status (1)

Country Link
JP (1) JP5518236B2 (en)

Also Published As

Publication number Publication date
JP2013151944A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
JP5439112B2 (en) Turbine blade
US9868155B2 (en) Monolithic shrouded impeller
EP2715147B1 (en) Sculpted impeller
US20030143079A1 (en) Gas turbine engine
US9638040B2 (en) Blade of a row of rotor blades or stator blades for use in a turbomachine
TWI738453B (en) Propeller
US8777564B2 (en) Hybrid flow blade design
US20150203181A1 (en) Marine propellers
CA2897652C (en) Outer shroud with gusset
JP4946901B2 (en) Impeller structure
JP5518236B2 (en) Turbine blade
US20140205462A1 (en) Hvata-hybrid vertical axis turbine assembly operable under omni-directional flow for power generating systems
JP5135296B2 (en) Turbine cascade, turbine stage using the same, axial turbine
JP2019116870A (en) Method for manufacturing impeller
JP2015090134A (en) Gas turbine blade
JP5851876B2 (en) Turbine runner and turbine
JP5705608B2 (en) Rotating machine blade design method
JP2018524514A (en) Turbomachine rotor blade
JP2017528650A (en) An axial fan that pumps cooling air especially for automotive internal combustion engines
JP2015017615A (en) Blade body of rotary machine and gas turbine
WO2019239451A1 (en) Rotor and centrifugal compressor comprising rotor
JP5990593B2 (en) Method for manufacturing a turbine molded aerofoil
JP2016176398A (en) Diffuser, and centrifugal fluid machine
KR101525791B1 (en) Flow control apparatus of open shaft type ship
JP2015151911A (en) Axial-flow turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140401

R151 Written notification of patent or utility model registration

Ref document number: 5518236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250