JP5517092B2 - Developing device, process cartridge, and image forming apparatus - Google Patents

Developing device, process cartridge, and image forming apparatus Download PDF

Info

Publication number
JP5517092B2
JP5517092B2 JP2013152702A JP2013152702A JP5517092B2 JP 5517092 B2 JP5517092 B2 JP 5517092B2 JP 2013152702 A JP2013152702 A JP 2013152702A JP 2013152702 A JP2013152702 A JP 2013152702A JP 5517092 B2 JP5517092 B2 JP 5517092B2
Authority
JP
Japan
Prior art keywords
developer
developing
magnetic
development
developing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013152702A
Other languages
Japanese (ja)
Other versions
JP2013235290A (en
Inventor
康雄 三好
経生 工藤
香弘 藤原
創 甲斐
浩 細川
啓明 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2013152702A priority Critical patent/JP5517092B2/en
Publication of JP2013235290A publication Critical patent/JP2013235290A/en
Application granted granted Critical
Publication of JP5517092B2 publication Critical patent/JP5517092B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複写機、ファクシミリ、プリンタ等に用いられる現像装置、並びにこの現像装置を用いたプロセスカートリッジ及び画像形成装置に関するものである。   The present invention relates to a developing device used for a copying machine, a facsimile, a printer, and the like, and a process cartridge and an image forming apparatus using the developing device.

従来、電子写真の分野において、一成分の現像剤を用いる一成分方式の現像装置に比べて、耐久性、画像特性に優れているなどの理由により、トナーと磁性キャリアからなる現像剤を用いる二成分方式の現像装置を備える画像形成装置が広く用いられている。二成分方式の現像装置としては、複数の磁極を有する磁界発生手段を内包して現像剤を表面に担持して搬送する現像剤担持体としての現像スリーブを有するものが知られている。   Conventionally, in the field of electrophotography, a developer composed of a toner and a magnetic carrier is used for reasons such as superior durability and image characteristics compared to a one-component developing device using a one-component developer. An image forming apparatus including a component type developing device is widely used. 2. Description of the Related Art As a two-component developing device, one having a developing sleeve as a developer carrying member that contains a magnetic field generating means having a plurality of magnetic poles and carries a developer on the surface thereof is known.

このような現像装置として、特許文献1には、磁界発生手段の磁極のうち、現像スリーブの表面上の現像剤を保持し得る強さの磁界を発生させる磁極の数が5つである現像装置が記載されている。この現像装置では、5つの磁極として、汲み上げ磁極、現像前搬送磁極、現像磁極、剤離れ磁極、及び、現像後搬送磁極を有する。汲み上げ磁極は現像スリーブの表面上への現像剤の汲み上げに寄与し、現像前搬送磁極は汲み上げた現像剤を現像スリーブが潜像担持体と対向する現像領域まで搬送する現像剤搬送に寄与する。また、現像磁極は現像領域での現像に寄与し、剤離れ磁極は現像領域を通過した現像剤が現像スリーブ表面から離脱する剤離れに寄与する。特許文献1の現像装置では現像磁極と剤離れ磁極との間に現像後搬送磁極を配置しており、現像後搬送磁極は現像領域を通過した後の現像剤を剤離れの位置まで良好に搬送することに寄与する。なお、特許文献1の現像装置では、汲み上げ磁極と現像前搬送磁極との間の現像スリーブと対向する位置に剤規制部材を配置し、剤規制部材によって現像領域に搬送する現像剤の量を規制している。
このような磁極配置によって、現像スリーブ表面への汲み上げ、現像領域までの現像剤の搬送、現像、剤離れという各工程を良好に実行することが出来る。なお、従来の二成分方式の現像装置としては、汲み上げ磁極と現像前搬送磁極との間の剤規制部材と対向する位置に剤規制磁極を設け、現像後搬送磁極を備えないものもある。
As such a developing device, Patent Document 1 discloses a developing device in which, among the magnetic poles of the magnetic field generating means, the number of magnetic poles that generate a magnetic field having a strength capable of holding the developer on the surface of the developing sleeve is five. Is described. In this developing device, the five magnetic poles include a pumping magnetic pole, a pre-development transporting magnetic pole, a development magnetic pole, an agent separating magnetic pole, and a post-development transporting magnetic pole. The pumping magnetic pole contributes to the pumping of the developer onto the surface of the developing sleeve, and the pre-development transporting magnetic pole contributes to the developer transport for transporting the pumped developer to the developing area where the developing sleeve faces the latent image carrier. The development magnetic pole contributes to development in the development region, and the agent separation magnetic pole contributes to agent separation in which the developer that has passed through the development region separates from the surface of the development sleeve. In the developing device of Patent Document 1, a post-development transport magnetic pole is disposed between the development magnetic pole and the agent separation magnetic pole, and the post-development transport magnetic pole successfully transports the developer after passing through the development region to the agent separation position. Contributes to In the developing device of Patent Document 1, an agent regulating member is disposed at a position facing the developing sleeve between the pumping magnetic pole and the pre-development conveying magnetic pole, and the amount of the developer conveyed to the developing region is regulated by the agent regulating member. doing.
With such a magnetic pole arrangement, it is possible to satisfactorily execute the steps of pumping to the surface of the developing sleeve, transporting the developer to the developing area, developing, and separating the agent. Some conventional two-component developing devices are provided with an agent-regulating magnetic pole at a position opposite to the agent-regulating member between the pumping magnetic pole and the pre-development carrying magnetic pole, and do not have a post-development carrying magnetic pole.

近年、画像形成装置の小型化の要請に伴い、現像装置の小型化が求められており、現像装置の小型化を実現するためには小径の現像スリーブを用いることが望ましい。
しかしながら、従来の現像装置では、汲み上げ、現像領域までの現像剤の搬送、現像、および、剤離れの各工程を良好に実行しつつ、現像スリーブの小径化は困難であった。これは、各工程を良好に実行するには各磁極に対して各工程を良好に実行するために必要な強さの磁界を発生することが出来る磁石を配置する必要があるが、磁力が強いほど磁石は大きくなり、このような磁石を5つも内包する現像スリーブの小径化には限界があるためである。
In recent years, along with a demand for downsizing of an image forming apparatus, downsizing of a developing apparatus has been demanded. In order to realize downsizing of a developing apparatus, it is desirable to use a developing sleeve having a small diameter.
However, in the conventional developing device, it is difficult to reduce the diameter of the developing sleeve while well performing the steps of drawing up, transporting the developer to the developing region, developing, and separating the agent. In order to execute each process satisfactorily, it is necessary to arrange a magnet capable of generating a magnetic field having a strength required to execute each process satisfactorily for each magnetic pole, but the magnetic force is strong. This is because the magnet becomes so large that there is a limit to reducing the diameter of the developing sleeve containing five such magnets.

本発明は以上の問題点に鑑みなされたものであり、その目的は、現像剤担持体を小径化することで現像装置全体の小型化を図ることができる現像装置、並びに、これを備える画像形成装置及びプロセスカートリッジを提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a developing device capable of reducing the size of the entire developing device by reducing the diameter of the developer carrying member, and image formation including the developing device. An apparatus and a process cartridge are provided.

上記目的を達成するために、請求項1の発明は、複数の磁極を有する磁界発生手段を内包し、トナー及び磁性キャリアからなる二成分現像剤を表面に担持して、表面を回転駆動することによって表面上の二成分現像剤を搬送する円筒状の現像剤担持体と、該現像剤担持体の表面に供給する現像剤を収納する現像剤収納部とを有する現像装置において、上記磁界発生手段が有する磁極のうち上記現像剤担持体の表面上での法線方向の磁束密度の最大値が10[mT]以上となる現像剤担持極は、該現像剤担持体と潜像担持体とが対向する現像領域に磁界を発生させるための現像磁極と、上記現像剤収納部から供給された現像剤を該現像領域へ搬送する磁界を発生させる現像前磁極と、該現像領域を通過した後の現像剤を該現像剤担持体表面から離脱させるために該現像前磁極との間で現像剤を離脱させる磁界を発生させる現像後磁極との3つの磁極のみであり、該現像前磁極が発生させる磁界によって該現像剤担持体の表面上への現像剤の汲み上げを行い、該現像前磁極及び該現像磁極が発生させる磁界によって該現像剤収納部から現像剤が供給される位置から現像領域までの該現像剤担持体上の現像剤の保持を行い、該現像磁極及び該現像後磁極が発生させる磁界によって該現像領域から該現像剤担持体の表面の現像剤を離脱させる位置までの該現像剤担持体上の現像剤の保持を行うように構成したことを特徴とするものである
た、請求項の発明は、請求項1に記載の現像装置において、上記現像剤担持体の回転軸に直交する仮想平面で、3つの該現像剤担持極のそれぞれによって発生される磁界での該現像剤担持体の表面上の法線方向の磁束密度が最大となる3つの法線方向磁束密度ピーク位置のうち、上記現像磁極と上記現像前磁極との2つの法線磁束密度ピーク位置と該現像剤担持体の回転中心とを直線で結んで形成される中心角の開き角度をθ1、該現像磁極と上記現像後磁極との2つの法線磁束密度ピーク位置と該回転中心とを直線で結んで形成される中心角の開き角度をθ2、該現像後磁極と該現像前磁極との2つの法線磁束密度ピーク位置と該回転中心とを直線で結んで形成される中心角の開き角度をθ3としたときに、θ3≧180°の関係を満たすように構成したことを特徴とするものである。
また、請求項の発明は、請求項1乃至のいずれか1項に記載の現像装置において、上記現像剤収納部から上記現像剤担持体への現像剤の供給に重力が作用するように該現像剤収納部及び該現像剤担持体を配置したことを特徴とするものである
た、請求項の発明は、請求項1乃至のいずれか1項に記載の現像装置において、上記現像剤担持極のうち上記現像剤収納部から上記現像剤担持体に向けて供給された現像剤を該現像剤担持体の表面上に汲み上げて担持する工程に寄与する汲み上げ磁極としての機能を有する上記現像前磁極よって発生される磁界で該現像剤担持体の表面上での法線方向の磁束密度の最大値を40[mT]以下としたことを特徴とするものである。
また、請求項の発明は、請求項1乃至のいずれか1項に記載の現像装置において、上記現像磁極によって発生される磁界での該現像剤担持体の表面上の法線方向の磁束密度が最大となる現像法線磁束密度ピーク位置における上記現像剤担持体の表面に対する法線方向の磁束密度である現像磁極磁束密度ピーク値をBr、上記現像後磁極によって発生される磁界での該現像剤担持体の表面上の法線方向の磁束密度が最大となる現像後法線磁束密度ピーク位置における該現像剤担持体の表面に対する法線方向の磁束密度である現像後磁極磁束密度ピーク値をBrとしたときに、Br>Brの関係を満たすことを特徴とするものである。
また、請求項の発明は、請求項1乃至のいずれか1項に記載の現像装置において、上記現像後磁極によって発生される磁界での該現像剤担持体の表面上の法線方向の磁束密度が最大となる現像後法線磁束密度ピーク位置に対して上記現像剤担持体の表面移動方向下流側、且つ、上記現像前磁極によって発生される磁界での該現像剤担持体の表面上の法線方向の磁束密度が最大となる現像前法線磁束密度ピーク位置に対して該現像剤担持体の表面移動方向上流側の範囲の該現像剤担持体の表面上に該現像剤担持体の表面に対する接線方向の磁束密度が実質的に0[mT]となる接線方向磁力無し領域が存在し、該接線方向磁力無し領域内の任意の点と上記現像剤担持体の中心とを結ぶ直線と、水平線とが成す角度が、50[°]以下であることを特徴とするものである。
また、請求項の発明は、請求項1乃至のいずれか1項に記載の現像装置において、上記現像前磁極によって発生される磁界での該現像剤担持体の表面上の法線方向の磁束密度が最大となる現像前法線方向磁束密度ピーク位置における上記現像剤担持体の表面上の法線方向の磁束密度が10[mT]以上であることを特徴とするものである
また、請求項の発明は、請求項1乃至のいずれか1項に記載の現像装置において、上記現像剤収納部材内の現像剤を上記現像剤担持体に供給する現像剤供給搬送部材を備え、該現像剤供給搬送部材を設けた供給現像剤収納空間と、その下方であって上記現像剤担持体の表面上から回収される現像剤を収納する回収現像剤収納空間とを仕切る仕切り板と、該現像剤供給搬送部材の下方に配置され該現像剤収納部の該回収現像剤収納空間に収納された現像剤を該現像剤担持体の回転軸方向に沿う方向に搬送する現像剤回収搬送部材とを有することを特徴とするものである
た、請求項の発明は、請求項1乃至のいずれか1項に記載の現像装置において、上記現像剤担持体が上記潜像担持体に対向する現像領域での該現像剤担持体の表面移動方向が、該潜像担持体の表面移動方向に対して逆方向であることを特徴とするものである。
また、請求項10の発明は、請求項1乃至のいずれか1項に記載の現像装置において、該現像剤担持体と回転軸が同軸で該現像剤担持体に回転駆動を伝達する現像剤担持体駆動ギヤの外径を現像剤担持体の外径よりも小さくしたことを特徴とするものである。
また、請求項11の発明は、請求項10の現像装置において、上記現像剤担持体駆動ギヤのモジュールを0.5[mm]以下としたことを特徴とするものである。
また、請求項12の発明は、請求項1乃至11のいずれか1項に記載の現像装置において、上記現像磁極によって発生される磁界での該現像剤担持体の表面上の法線方向の磁束密度が最大となる現像法線磁束密度ピーク位置における上記現像剤担持体の表面に対する法線方向の磁束密度である現像磁極磁束密度ピーク値をBr、該現像磁極の半値幅をθh、上記現像後磁極によって発生される磁界での該現像剤担持体の表面上の法線方向の磁束密度が最大となる現像後法線磁束密度ピーク位置における該現像剤担持体の表面に対する法線方向の磁束密度である現像後磁極磁束密度ピーク値をBr、該現像後磁極の半値幅をθh、上記現像前磁極によって発生される磁界での該現像剤担持体の表面上の法線方向の磁束密度が最大となる現像前法線磁束密度ピーク位置における該現像剤担持体の表面に対する法線方向の磁束密度である現像前磁極磁束密度ピーク値をBr、該現像後磁極の半値幅をθh、としたときに、Br>Br、Br>Br、及び、Br・θh>Br・θh+Br・θhの関係を満たすことを特徴とするものである。
また、請求項13の発明は、潜像を担持する潜像担持体と、該潜像担持体を帯電する帯電手段と、該潜像担持体に残留する転写残トナーをクリーニングするクリーニング手段との中より選ばれる少なくともひとつと、該潜像担持体上の潜像を現像する現像手段とが一体的に形成され、画像形成装置本体に対して着脱可能に構成されたプロセスカートリッジにおいて、上記現像手段として、請求項1乃至12のいずれか1項に記載の現像装置を用いたことを特徴とするものである。
また、請求項14の発明は、潜像を担持する潜像担持体と、該潜像担持体を帯電する帯電手段と、該潜像担持体上の潜像を現像する現像手段と、該潜像担持体に残留する転写残トナーをクリーニングするクリーニング手段とを備える画像形成装置において、上記現像手段として、請求項1乃至13のいずれか1項に記載の現像装置を用いたことを特徴とするものである。
また、請求項15の発明は、潜像を担持する潜像担持体と、該潜像担持体を帯電する帯電手段と、該潜像担持体上の潜像を現像する現像手段と、該潜像担持体に残留する転写残トナーをクリーニングするクリーニング手段とを備え、少なくとも現像手段と潜像担持体とを一体的に支持して装置本体から着脱可能に構成されたプロセスカートリッジを備える画像形成装置において、上記プロセスカートリッジとして、請求項13のプロセスカートリッジを用いたことを特徴とするものである。
また、請求項16の発明は、請求項15の画像形成装置において、上記プロセスカートリッジを複数備えることを特徴とするものである。
In order to achieve the above object, the invention of claim 1 includes a magnetic field generating means having a plurality of magnetic poles, carries a two-component developer comprising toner and a magnetic carrier on the surface, and rotationally drives the surface. In the developing device having a cylindrical developer carrying member for transporting the two-component developer on the surface by the developer and a developer containing unit for containing the developer supplied to the surface of the developer carrying member, the magnetic field generating means Among the magnetic poles of the developer carrying pole, the developer carrying pole whose maximum magnetic flux density in the normal direction on the surface of the developer carrying body is 10 [mT] or more has the developer carrying body and the latent image carrying body. A development magnetic pole for generating a magnetic field in the opposite development area, a pre-development magnetic pole for generating a magnetic field for conveying the developer supplied from the developer container to the development area, and a magnetic pole after passing through the development area Developer from the surface of the developer carrier There are only three magnetic poles, a post-development magnetic pole that generates a magnetic field for separating the developer from the pre-development magnetic pole for removal, and the magnetic field generated by the pre-development magnetic pole causes the surface of the developer carrier to The developer on the developer carrier from the position where the developer is supplied from the developer container to the development area by the magnetic field generated by the pre-development magnetic pole and the development magnetic pole. Holding the developer on the developer carrier from the development area to a position where the developer on the surface of the developer carrier is released by the magnetic field generated by the development magnetic pole and the post-development magnetic pole. It is configured as described above .
Also, the invention of claim 2, in the developing device according to claim 1, a virtual plane perpendicular to the rotation axis of the developer carrying member, in the magnetic field generated by each of the three developer carrying electrode Among the three normal direction magnetic flux density peak positions at which the normal direction magnetic flux density on the surface of the developer carrying member becomes the maximum, two normal magnetic flux density peak positions of the developing magnetic pole and the pre-developing magnetic pole And the rotation center of the developer carrier in a straight line, the opening angle of the central angle is θ1, and the two normal magnetic flux density peak positions of the development magnetic pole and the post-development magnetic pole and the rotation center The opening angle of the central angle formed by connecting with a straight line is θ2, and the center angle formed by connecting the two normal flux density peak positions of the post-development magnetic pole and the pre-development magnetic pole and the rotation center with a straight line When the opening angle is θ3, the relationship θ3 ≧ 180 ° is satisfied. It is configured as described above.
According to a third aspect of the present invention, in the developing device according to any one of the first to second aspects, gravity acts on the supply of the developer from the developer storage portion to the developer carrying member. The developer container and the developer carrier are arranged .
Also, the invention of claim 4 is the developing device according to any one of claims 1 to 3, is supplied toward the developer carrier from said developer accommodating portion of said developer carrying pole A normal line on the surface of the developer carrying member with a magnetic field generated by the pre-development magnetic pole having a function as a pumping magnetic pole that contributes to a step of pumping and carrying the developer on the surface of the developer carrying member. The maximum value of the magnetic flux density in the direction is set to 40 [mT] or less.
According to a fifth aspect of the present invention, there is provided the developing apparatus according to any one of the first to fourth aspects, wherein the magnetic flux in the normal direction on the surface of the developer carrier is generated by the magnetic field generated by the developing magnetic pole. The development magnetic pole magnetic flux density peak value which is the magnetic flux density in the normal direction with respect to the surface of the developer carrying member at the development normal magnetic flux density peak position where the density is maximum is Br 1 , and the magnetic field generated by the post-development magnetic pole A post-development magnetic pole magnetic flux density peak which is a normal magnetic flux density with respect to the surface of the developer carrying member at the post-development normal magnetic flux density peak position where the normal magnetic flux density on the surface of the developer carrying member is maximum. When the value is Br 2 , the relationship of Br 1 > Br 2 is satisfied.
According to a sixth aspect of the present invention, in the developing device according to any one of the first to fifth aspects, the normal direction on the surface of the developer carrying member in the magnetic field generated by the post-development magnetic pole. On the downstream side in the surface movement direction of the developer carrier relative to the post-development normal flux density peak position where the magnetic flux density is maximum, and on the surface of the developer carrier in the magnetic field generated by the pre-development magnetic pole The developer carrying member on the surface of the developer carrying member in a range upstream of the developer carrying member in the surface movement direction with respect to the pre-development normal magnetic flux density peak position where the magnetic flux density in the normal direction is maximum There is a region without a tangential magnetic force where the magnetic flux density in the tangential direction with respect to the surface of the toner is substantially 0 [mT], and a straight line connecting an arbitrary point in the region without the tangential magnetic force and the center of the developer carrier. And the angle formed by the horizontal line is 50 [°] or less. And it is characterized in and.
Further, the invention of claim 7 is the developing apparatus according to any one of claims 1 to 6 , wherein a normal direction on the surface of the developer carrying member in a magnetic field generated by the pre-development magnetic pole is provided. magnetic flux density is characterized in that the normal direction of the magnetic flux density on the surface of the developer carrying member in the developing before normal flux density peak position where the maximum is 10 [mT] or more.
According to an eighth aspect of the present invention, in the developing device according to any one of the first to seventh aspects, a developer supply / conveying member that supplies the developer in the developer containing member to the developer carrying member. And a partition plate that partitions the supplied developer storage space provided with the developer supply transport member and the recovered developer storage space below which stores the developer recovered from the surface of the developer carrier. And a developer recovery unit that conveys the developer stored in the recovered developer storage space of the developer storage unit disposed below the developer supply transport member in a direction along the rotation axis direction of the developer carrier. And a conveying member .
Also, the invention of claim 9 is the developing device according to any one of claims 1 to 8, the developer carrying member in the developing region where the developer carrying member is opposed to the image bearing member The surface moving direction is opposite to the surface moving direction of the latent image carrier.
A tenth aspect of the present invention is the developer according to any one of the first to ninth aspects, wherein the developer carrying member and the rotation shaft are coaxial with each other and the rotation drive is transmitted to the developer carrying member. The outer diameter of the carrier driving gear is smaller than the outer diameter of the developer carrier.
According to an eleventh aspect of the present invention, in the developing device according to the tenth aspect , the module of the developer carrier driving gear is 0.5 [mm] or less.
A twelfth aspect of the present invention is the developing device according to any one of the first to eleventh aspects, wherein the magnetic flux in the normal direction on the surface of the developer carrier is generated by the magnetic field generated by the developing magnetic pole. The development magnetic pole magnetic flux density peak value which is the magnetic flux density in the normal direction with respect to the surface of the developer carrying member at the development normal magnetic flux density peak position where the density is maximum is Br 1 , the half width of the development magnetic pole is θh 1 , In the normal direction relative to the surface of the developer carrier at the post-development normal flux density peak position where the magnetic flux density in the normal direction on the surface of the developer carrier is maximized in the magnetic field generated by the magnetic pole after development. The post-development magnetic pole magnetic flux density peak value, which is the magnetic flux density, is Br 2 , the half-width of the post-development magnetic pole is θh 2 , and the normal direction on the surface of the developer carrier in the magnetic field generated by the pre-development magnetic pole is Magnetic flux density is maximum That developed before the normal magnetic flux density peak before the development is a magnetic flux density in the normal direction to the surface of the developer carrying member at the position pole magnetic flux density peak values Br 3, and the half-value width of the magnetic pole after developing [theta] h 3, and Sometimes, Br 1 > Br 2 , Br 1 > Br 3 , and Br 1 · θh 1 > Br 2 · θh 2 + Br 3 · θh 3 are satisfied.
According to a thirteenth aspect of the present invention, there is provided a latent image carrier that carries a latent image, a charging unit that charges the latent image carrier, and a cleaning unit that cleans transfer residual toner remaining on the latent image carrier. In the process cartridge in which at least one selected from the above and a developing means for developing the latent image on the latent image carrier are integrally formed and detachable from the image forming apparatus main body, the developing means The developing device according to any one of claims 1 to 12 is used.
The invention of claim 14 is a latent image carrier for carrying a latent image, a charging means for charging the latent image carrier, a developing means for developing a latent image on the latent image carrier, and the latent image carrier. 14. An image forming apparatus comprising: a cleaning unit that cleans transfer residual toner remaining on the image bearing member, wherein the developing device according to any one of claims 1 to 13 is used as the developing unit. Is.
The invention of claim 15 is a latent image carrier for carrying a latent image, a charging means for charging the latent image carrier, a developing means for developing a latent image on the latent image carrier, and the latent image carrier. An image forming apparatus including a process cartridge configured to be detachably attached to the apparatus main body by integrally supporting at least the developing means and the latent image carrier, and cleaning means for cleaning the transfer residual toner remaining on the image carrier. The process cartridge according to claim 13 is used as the process cartridge.
According to a sixteenth aspect of the present invention, in the image forming apparatus of the fifteenth aspect, a plurality of the process cartridges are provided.

本発明においては、現像剤担持体の表面上の現像剤を保持し得る強さの磁界を発生させる現像剤担持極の数が3つであるため、従来の構成に比べて磁界発生手段の配置に要するスペースを小さくすることができるため、磁界発生手段を内包する現像剤担持体を小径化することができる。
また、現像剤担持体が同じ大きさであれば、現像剤担持極の数が3つの構成の方が、5つの現像剤担持極を備える構成に比べて、1つの現像剤担持極を形成するための磁界発生手段のスペースを広く確保することが出来る。このため、5つの現像剤担持極を備える構成では一つ一つの現像剤担持極で必要な強さの磁界を発生させることができない程度に現像剤担持体を小径化しても、現像剤担持極の数が3つである本発明であれば、一つ一つの現像剤担持極で必要な強さの磁界を発生させることが出来る。
さらに、本発明によれば、従来の汲み上げ磁極と現像前搬送磁極との機能を1つの現像剤担持極である現像前磁極で実現し、従来の現像磁極、現像後搬送磁極、及び、剤離れ磁極の3つの磁極の機能を2つの現像剤担持極である現像磁極及び現像後磁極で実現している。したがって、各工程に必要な強さの磁界を発生させることができ、且つ、汲み上げ、現像領域までの現像剤の搬送、現像、および、剤離れの各工程に寄与する現像剤担持極を備えているため、現像剤担持極の数を3つとした本発明でも、汲み上げ、現像領域までの現像剤の搬送、現像、および、剤離れの各工程を良好に実施することができる。
In the present invention, the number of developer-carrying poles that generate a magnetic field having a strength capable of holding the developer on the surface of the developer-carrying member is three. Since the space required for the developer can be reduced, the diameter of the developer carrying member containing the magnetic field generating means can be reduced.
Further, if the developer carrying bodies are the same size, the configuration with three developer carrying electrodes forms one developer carrying electrode compared to the configuration with five developer carrying electrodes. Therefore, it is possible to secure a large space for the magnetic field generating means. For this reason, in the configuration including five developer carrying electrodes, even if the developer carrying body is reduced in diameter to such an extent that a magnetic field having a required strength cannot be generated by each developer carrying electrode, the developer carrying electrode can be reduced. In the present invention in which the number is three, a magnetic field having a necessary strength can be generated by each developer-carrying pole.
Further, according to the present invention, the functions of the conventional pumping magnetic pole and the pre-development transport magnetic pole are realized by the pre-development magnetic pole as one developer carrying pole, and the conventional development magnetic pole, post-development transport magnetic pole, and agent separation are realized. The functions of the three magnetic poles are realized by the developing magnetic pole and the post-development magnetic pole, which are the two developer carrying poles. Therefore, a developer-carrying electrode that can generate a magnetic field having a strength required for each process and contributes to each process of pumping up, transporting the developer to the development area, developing, and separating the agent is provided. Therefore, even in the present invention in which the number of developer carrying electrodes is three, the steps of pumping up, conveying the developer to the development area, developing, and separating the agent can be carried out satisfactorily.

本発明によれば、現像剤担持体を小径化することができるので、これを備える現像装置全体の小型化を図ることができるという優れた効果がある   According to the present invention, since the diameter of the developer carrier can be reduced, there is an excellent effect that the entire developing device including the developer can be reduced in size.

実施例1の現像装置の概略構成図。1 is a schematic configuration diagram of a developing device according to Embodiment 1. FIG. 本実施形態に係るプリンタの概略構成図。1 is a schematic configuration diagram of a printer according to an embodiment. 現像容器中の現像剤の流れを説明する模式図。FIG. 3 is a schematic diagram illustrating the flow of a developer in a developing container. 実施例1の現像装置の断面図。1 is a cross-sectional view of a developing device according to Embodiment 1. FIG. 実施例1の現像装置の現像ローラの磁石の配置を説明する断面図。FIG. 3 is a cross-sectional view illustrating the arrangement of the magnets of the developing roller of the developing device according to the first exemplary embodiment. 従来の現像装置の現像ローラの磁石の配置を説明する断面図。Sectional drawing explaining arrangement | positioning of the magnet of the developing roller of the conventional developing device. 3極構成の法線磁束密度分布の一例を示すグラフ。The graph which shows an example of the normal magnetic flux density distribution of 3 pole structure. 実施例1の現像装置の概略構成図に磁場波形を追記した説明図。FIG. 3 is an explanatory diagram in which a magnetic field waveform is added to the schematic configuration diagram of the developing device according to the first embodiment. 角度θ3を180[°]とした実施例1の磁場と剤離れとの説明図。Explanatory drawing of the magnetic field and agent separation of Example 1 which made angle (theta) 3 180 [degree]. 角度θ3を150[°]とした比較例1の磁場と剤離れとの説明図。Explanatory drawing of the magnetic field and agent separation of the comparative example 1 which made angle (theta) 3 150 [degree]. 比較例2の現像装置の概略構成図。FIG. 6 is a schematic configuration diagram of a developing device of Comparative Example 2. 3極構成と5極構成とで剤離れ部近傍の位置における法線方向磁気力を比較したグラフ。The graph which compared the normal direction magnetic force in the position of the agent separation part vicinity with 3 pole structure and 5 pole structure. N2極の法線方向の磁束密度のピーク値を変えたときの剤離れ部近傍の各位置での法線方向磁気吸引力を比較したグラフ。The graph which compared the normal direction magnetic attraction force in each position of the agent separation part when changing the peak value of the magnetic flux density of the normal direction of N2 pole. Br>Brの関係を満たす場合と満たさない場合とで剤離れ部近傍の法線方向磁気吸引力を比較した結果を示すグラフ。Graph showing br 1> result of comparing the normal direction magnetic attraction force when the de developer separation unit near that does not meet with the case of satisfying the relationship of Br 2. 1極の場合で、磁極の条件が異なる3つの例について現像スリーブ上の各位置の法線方向磁束密度分布を示すグラフ。The graph which shows the normal direction magnetic flux density distribution of each position on a developing sleeve about three examples from which the conditions of a magnetic pole differ in the case of 1 pole. 反対極の磁束密度のピーク値も考慮した現像スリーブ周りの法線方向磁束密度分布。Normal direction magnetic flux density distribution around the developing sleeve considering the peak value of the magnetic flux density of the opposite pole. 剤離れ角度と連れ回り量との関係を示すグラフ。The graph which shows the relationship between an agent separation angle and the amount of accompanying. 現像スリーブ表面上の位置の角度と磁気力との関係を示すグラフ、(a)は角度と法線方向磁気力との関係、(b)は角度と接線方向磁気力との関係。The graph which shows the relationship between the angle of the position on the surface of the developing sleeve and the magnetic force, (a) is the relationship between the angle and the normal magnetic force, (b) is the relationship between the angle and the tangential magnetic force. 剤離れ部近傍での法線方向磁気吸引力はほぼ0で接線方向磁気力が0となる点の位置が異なる現像ローラの剤離れ角度と接線方向磁気力が0なる点の位置との関係を示すグラフ。The relationship between the agent separation angle of the developing roller and the position of the point where the tangential magnetic force is 0 is different from the position of the point where the normal magnetic attractive force in the vicinity of the agent separation portion is almost 0 and the tangential magnetic force is 0. Graph showing. 現像ローラの法線方向磁束密度分布と磁気力ベクトルとの位置関係を示す説明図。FIG. 3 is an explanatory diagram showing a positional relationship between a normal direction magnetic flux density distribution of a developing roller and a magnetic force vector. 比較例6の現像装置の概略説明図。FIG. 10 is a schematic explanatory diagram of a developing device of Comparative Example 6. 現像装置内の回転軸方向の位置に対するトナー濃度の変化を示すグラフ、(a)は実施例1の場合、(b)は比較例4の場合。The graph which shows the change of the toner density with respect to the position of the rotation axis direction in the developing device, (a) in the case of Example 1, (b) in the case of Comparative Example 4. スリーブの撓み量を比較したグラフ。The graph which compared the amount of bending of a sleeve. スリーブトルクを比較するグラフ。A graph comparing sleeve torque. 現像前磁極の変えたときの荷重の変化を示すグラフ。The graph which shows the change of a load when the magnetic pole before image development is changed. 実施例2の現像装置の概略説明図。FIG. 6 is a schematic explanatory diagram of a developing device according to Embodiment 2. 実施例2の現像装置の概略構成図に磁場波形を追記した説明図。FIG. 9 is an explanatory diagram in which a magnetic field waveform is added to the schematic configuration diagram of the developing device of Example 2. 実施例2の現像装置の法線磁束密度分布の一例を示すグラフ。6 is a graph showing an example of a normal magnetic flux density distribution of the developing device of Example 2. 実施例3の現像装置の概略説明図。FIG. 6 is a schematic explanatory diagram of a developing device according to Embodiment 3. 実施例3の現像装置の他の例の概略説明図。FIG. 10 is a schematic explanatory diagram of another example of the developing device according to Embodiment 3. 実施例4の現像装置の概略説明図。FIG. 6 is a schematic explanatory diagram of a developing device according to Embodiment 4. 実施例4の現像装置の概略構成図に磁場波形を追記した説明図。FIG. 9 is an explanatory diagram in which a magnetic field waveform is added to the schematic configuration diagram of the developing device of Example 4. 実施例5の現像装置の概略説明図。FIG. 10 is a schematic explanatory diagram of a developing device according to Embodiment 5. 実施例6の現像装置の概略説明図。FIG. 10 is a schematic explanatory diagram of a developing device according to Embodiment 6. 実施例7の現像装置の概略説明図。FIG. 10 is a schematic explanatory diagram of a developing device according to Embodiment 7. 変形例1の現像装置の概略説明図。FIG. 9 is a schematic explanatory diagram of a developing device according to a first modification. 剤規制ギャップの幅に対する剤規制ギャップを通過する現像剤量を示すグラフ、(a)は、N2極の法線方向の磁束密度のピーク値が15[mT]の場合、(a)は、N2極の法線方向の磁束密度のピーク値が30[mT]の場合。A graph showing the amount of developer passing through the agent regulation gap with respect to the width of the agent regulation gap, (a) is the peak value of the magnetic flux density in the normal direction of the N2 pole is 15 [mT], (a) is N2 When the peak value of the magnetic flux density in the normal direction of the pole is 30 [mT]. 実施例の現像装置の現像剤搬送路内での現像剤の流れと現像剤の量の分布とを説明する模式図。FIG. 3 is a schematic diagram illustrating a developer flow and a developer amount distribution in a developer conveyance path of a developing device according to an embodiment. スクリュ部材におけるリード角の説明図。Explanatory drawing of the lead angle in a screw member. スクリュ部材のリード角の角度と搬送速度との関係を示すグラフGraph showing the relationship between the lead angle of the screw member and the conveyance speed 循環搬送路内の現像剤搬送方向下流側端部近傍の現像剤の流れの説明図。Explanatory drawing of the flow of the developer of the developer conveyance direction downstream end part vicinity in a circulation conveyance path. リード角の角度が小さいスクリュ部材の模式図。The schematic diagram of a screw member with a small lead angle. リード角の角度が大きいスクリュ部材の模式図。The schematic diagram of a screw member with a large lead angle. リード角の角度と持ち上げ部での上方への現像剤の搬送量との関係を示すグラフ。6 is a graph showing the relationship between the lead angle and the amount of developer transported upward at the lifting portion. 実施例9の現像装置の持ち上げ部の位置における断面説明図。FIG. 10 is an explanatory cross-sectional view at a position of a lifting portion of the developing device according to Embodiment 9. 比較例7の現像装置の持ち上げ部の位置における断面説明図。Sectional explanatory drawing in the position of the raising part of the image development apparatus of the comparative example 7. FIG. 実施例9の現像装置の循環搬送路の現像剤搬送方向下流側端部近傍を上方から見た模式図。FIG. 10 is a schematic view of the vicinity of a downstream end portion in a developer conveyance direction of a circulation conveyance path of a developing device of Example 9 as viewed from above. 図47の模式図の持ち上げ口の開口形状が三角形の場合の説明図。47 is an explanatory diagram when the opening shape of the lifting opening in the schematic diagram of FIG. 47 is a triangle. FIG. 図47の模式図の持ち上げ口の開口形状が台形の場合の説明図。FIG. 48 is an explanatory diagram when the opening shape of the lifting opening in the schematic diagram of FIG. 47 is a trapezoid. 図47の模式図の持ち上げ口の開口形状が丸みを帯びた形状の場合の説明図。47 is an explanatory diagram when the opening shape of the lifting opening in the schematic diagram of FIG. 47 is a rounded shape. FIG. 実施例の現像装置の現像剤搬送路内での現像剤の流れと現像剤の量の分布とトナー補給位置とを説明する模式図。FIG. 3 is a schematic diagram illustrating a developer flow, a developer amount distribution, and a toner replenishment position in a developer conveyance path of a developing device according to an embodiment. 持ち上げ口を二つ設けた現像装置の循環搬送路の現像剤搬送方向下流側端部近傍を上方から見た模式図。FIG. 6 is a schematic view of the vicinity of the downstream end of the developer conveyance direction of the circulation conveyance path of the developing device provided with two lifting openings as viewed from above. 持ち上げ口を二つ設けた現像装置の循環搬送路の現像剤搬送方向下流側端部近傍を側方から見た模式図。FIG. 6 is a schematic view of the vicinity of the downstream end of the developer conveyance direction of the circulation conveyance path of the developing device provided with two lifting openings when viewed from the side. 持ち上げ口の開口形状と拡散係数の関係を示すグラフ。The graph which shows the relationship between the opening shape of a lifting opening, and a diffusion coefficient. 循環搬送路内の任意の領域における現像剤の流れの説明図。Explanatory drawing of the flow of the developer in the arbitrary area | regions in a circulation conveyance path. 現像剤枯渇が発生した状態の現像剤搬送路の模式図。FIG. 4 is a schematic diagram of a developer transport path in a state where developer depletion has occurred. 現像剤枯渇が発生しないための現像剤搬送条件の説明図。FIG. 6 is an explanatory diagram of developer transport conditions for preventing developer depletion. 現像剤漏れが発生した状態の現像剤搬送路の模式図。FIG. 4 is a schematic diagram of a developer conveyance path in a state where developer leakage has occurred. リード角の角度と分散性との関係を示すグラフ。The graph which shows the relationship between the angle of a lead angle and dispersibility. 持ち上げ口の開口面積と持ち上げ口での現像剤搬送量との関係を示すグラフ。The graph which shows the relationship between the opening area of a lifting opening, and the developer conveyance amount in a lifting opening. トナーの分散性を高めるための構成の説明図。FIG. 3 is an explanatory diagram of a configuration for improving the dispersibility of toner. 循環スクリュにパドルを設けた構成の説明図。Explanatory drawing of the structure which provided the paddle in the circulation screw. 循環スクリュのスクリュ羽部の一部を切り取った構成の説明図。Explanatory drawing of the structure which cut off a part of screw wing | blade part of a circulation screw. 循環スクリュのスクリュ羽部の一部を切り取った構成の他の例の説明図。An explanatory view of other examples of composition which cut off a part of screw wing part of a circulation screw. 形状の異なるスクリュで現像剤の分散性を比較したグラフ。The graph which compared the dispersibility of the developer with the screw from which a shape differs. 循環搬送路上流側端部近傍の現像装置の断面図。FIG. 6 is a cross-sectional view of the developing device in the vicinity of the upstream end portion of the circulation conveyance path. 現像剤搬送路内の現像剤搬送速度を現像剤搬送方向の上流側端部から下流側端部まで同じ速度とした場合の各位置の現像剤量を示すグラフ。6 is a graph showing the developer amount at each position when the developer transport speed in the developer transport path is the same speed from the upstream end to the downstream end in the developer transport direction. 現像剤搬送路内の現像剤搬送速度を現像剤搬送方向の位置によって現像剤搬送速度を変えた場合の各位置の現像剤量を示すグラフ。The graph which shows the developer amount of each position at the time of changing the developer conveyance speed in the developer conveyance path by changing the developer conveyance speed depending on the position in the developer conveyance direction. 実施例11を適用可能なプロセスカートリッジである作像装置の断面図。FIG. 18 is a cross-sectional view of an image forming apparatus that is a process cartridge to which the eleventh embodiment can be applied. 攪拌部材としてパドル部材を備える現像装置の説明図、(a)は現像装置の断面図、(b)はパドル部材の斜視図。FIG. 4 is an explanatory diagram of a developing device including a paddle member as a stirring member, (a) is a cross-sectional view of the developing device, and (b) is a perspective view of the paddle member. 攪拌部材としてローラ部材を備える現像装置の説明図、(a)は現像装置の断面図、(b)はローラ部材の斜視図。Explanatory drawing of a developing device provided with a roller member as a stirring member, (a) is sectional drawing of a developing device, (b) is a perspective view of a roller member. 攪拌部材としてワイヤ部材を備える現像装置の説明図、(a)は現像装置の断面図、(b)はワイヤ部材の斜視図。Explanatory drawing of a developing device provided with a wire member as a stirring member, (a) is sectional drawing of a developing device, (b) is a perspective view of a wire member. 実施例13の現像スリーブ及び現像ギヤと感光体との配置の模式図。FIG. 14 is a schematic diagram of an arrangement of a developing sleeve and a developing gear and a photoconductor in Example 13. 従来の現像スリーブ及び現像ギヤと感光体との配置の模式図。FIG. 6 is a schematic diagram of a conventional developing sleeve, a developing gear, and a photoconductor. 現像装置内の現像剤の流れを示す軸方向に直交する断面図。FIG. 3 is a cross-sectional view orthogonal to the axial direction showing the flow of developer in the developing device. 図75中の現像装置のN−N´断面の断面図。FIG. 76 is a sectional view taken along line NN ′ of the developing device in FIG. 75. 2つのシール部材を用いて供給搬送路と循環搬送路とで現像剤プリセットする現像装置の説明図、(a)は現像装置の断面図、(b)は、2つのシール部材を各々引く構成の斜視図、(c)は、2つのシール部材を同時に引く構成の斜視図。Explanatory drawing of the developing device presetting the developer in the supply conveyance path and the circulation conveyance path using two seal members, (a) is a cross-sectional view of the development device, (b) is a configuration in which each of the two seal members is pulled. A perspective view and (c) are perspective views of composition which pulls two seal members simultaneously. 1つのシール部材を用いて供給搬送路と循環搬送路とで現像剤プリセットする現像装置の説明図、(a)は現像装置の断面図、(b)は、横方向からシール部材を引き抜く構成の斜視図、(c)は、上方向からシール部材を引き抜く構成の斜視図。Explanatory drawing of the developing device presetting the developer in the supply conveyance path and the circulation conveyance path using one seal member, (a) is a sectional view of the development device, (b) is a configuration in which the seal member is pulled out from the lateral direction A perspective view and (c) are perspective views of composition which pulls out a seal member from the upper direction. 2つのシール部材を用いて供給搬送路で現像剤プリセットする現像装置の説明図、(a)は現像装置の断面図、(b)は、2つのシール部材を各々引く構成の斜視図、(c)は、2つのシール部材を同時に引く構成の斜視図。Explanatory drawing of the developing device which presets a developer in a supply conveyance path using two seal members, (a) is a sectional view of a developing device, (b) is a perspective view of composition which pulls two seal members respectively, (c) ) Is a perspective view of a configuration in which two seal members are pulled simultaneously. 1つのシール部材を用いて供給搬送路で現像剤プリセットする現像装置の説明図、(a)は現像装置の断面図、(b)は、横方向からシール部材を引き抜く構成の斜視図、(c)は、上方向からシール部材を引き抜く構成の斜視図。Explanatory drawing of the developing device presetting a developer in a supply conveyance path using one seal member, (a) is a sectional view of the developing device, (b) is a perspective view of a configuration in which the seal member is pulled out from the lateral direction, (c) ) Is a perspective view of a configuration in which the seal member is pulled out from above. 2つのシール部材を用いて循環搬送路で現像剤プリセットする現像装置の説明図、(a)は現像装置の断面図、(b)は、2つのシール部材を各々引く構成の斜視図、(c)は、2つのシール部材を同時に引く構成の斜視図。Explanatory drawing of the developing device presetting the developer in the circulation conveyance path using two seal members, (a) is a cross-sectional view of the developing device, (b) is a perspective view of a configuration in which each of the two seal members is pulled, (c) ) Is a perspective view of a configuration in which two seal members are pulled simultaneously. 1つのシール部材を用いて循環搬送路で現像剤プリセットする現像装置の説明図、(a)は現像装置の断面図、(b)は、横方向からシール部材を引き抜く構成の斜視図、(c)は、上方向からシール部材を引き抜く構成の斜視図。Explanatory drawing of the developing device presetting the developer in the circulation conveyance path using one seal member, (a) is a sectional view of the developing device, (b) is a perspective view of a configuration in which the seal member is pulled out from the lateral direction, (c) ) Is a perspective view of a configuration in which the seal member is pulled out from above.

以下、本発明を画像形成装置としてのプリンタ(以下、プリンタ100という)に適用した実施形態について説明する。
図2は、プリンタ100の概略構成図である。プリンタ100は、タンデム方式を採用してフルカラー画像を形成可能なカラー画像形成装置であり、ブラック、マゼンタ、イエロー、シアン(以下、K,M,Y,Cと記す)の各色トナー像を形成する作像装置17K,M,Y,Cを備えている。これらの作像装置17K,M,Y,Cの下方には、下流側張架ローラ18及び上流側張架ローラ19に掛け回されて記録紙Pを表面に担持して搬送し、各作像装置17K,M,Y,Cの対向しながら表面移動する転写搬送ベルト15が配設されている。転写搬送ベルト15を挟んで各作像装置17K,M,Y,Cと対向する転写バイアスローラ5K,M,Y,Cを備えている。
また、転写搬送ベルト15による記録紙搬送方向について下流側張架ローラ18よりも下流側には、転写搬送ベルト15から分離した記録紙P上の未定着トナーを定着する定着装置24を備えている。また、プリンタ100の本体上部には、定着装置24を通過しトナー像が定着した記録紙Pを積載するための排紙トレイ25を備えている。
Hereinafter, an embodiment in which the present invention is applied to a printer (hereinafter referred to as a printer 100) as an image forming apparatus will be described.
FIG. 2 is a schematic configuration diagram of the printer 100. The printer 100 is a color image forming apparatus that can form a full color image by adopting a tandem method, and forms toner images of respective colors of black, magenta, yellow, and cyan (hereinafter referred to as K, M, Y, and C). Image forming devices 17K, M, Y, and C are provided. Below these image forming devices 17K, 17M, 17C, and 17C, the recording paper P is carried on the surface and conveyed around the downstream stretching roller 18 and the upstream stretching roller 19, and each image forming device is conveyed. A transfer / conveying belt 15 that moves on the surface while facing the devices 17K, M, Y, and C is disposed. Transfer bias rollers 5K, M, Y, and C that face the image forming devices 17K, M, Y, and C with the transfer conveyance belt 15 interposed therebetween are provided.
Further, a fixing device 24 that fixes unfixed toner on the recording paper P separated from the transfer conveyance belt 15 is provided downstream of the downstream tension roller 18 in the recording paper conveyance direction by the transfer conveyance belt 15. . In addition, a discharge tray 25 for stacking recording paper P that has passed through the fixing device 24 and has a toner image fixed thereon is provided at the top of the main body of the printer 100.

転写搬送ベルト15の下方には、記録紙Pを収容する複数の給紙カセット20、21、22を備えている。また、転写搬送ベルト15と作像装置17K,M,Y,Cとが対向する転写領域に各給紙カセット20、21、22から記録紙Pを供給する記録紙供給手段としての給紙搬送装置26と、各給紙カセット20、21、22から搬送されてきた記録紙Pを作像装置17K,M,Y,Cによる作像タイミングに合わせて供給するレジストローラ23とを備えている。   A plurality of paper feed cassettes 20, 21, and 22 that store the recording paper P are provided below the transfer conveyance belt 15. In addition, a paper feeding / conveying device serving as a recording paper supply unit that supplies recording paper P from each of the paper feeding cassettes 20, 21, 22 to a transfer region where the transfer / conveying belt 15 and the image forming devices 17 K, M, Y, and C face each other. 26, and a registration roller 23 for supplying the recording paper P conveyed from each of the paper feed cassettes 20, 21, and 22 in accordance with the image forming timing by the image forming devices 17K, M, Y, and C.

なお、図2ではプリンタ100が図2中の左右方向において小型になるよう、転写搬送ベルト15が斜め方向に配設され、矢印で示す記録紙Pの搬送方向が斜め方向となっている。これにより、プリンタ100は、図2中の左右方向における筐体の幅が、A3サイズの記録紙長手方向の長さよりも僅かに長い大きさとなっている。すなわち、プリンタ100は、内部に記録紙を収容するために最低限必要な大きさとされることで大幅に小型化されている。   In FIG. 2, the transfer conveyance belt 15 is disposed in an oblique direction so that the printer 100 is small in the left-right direction in FIG. 2, and the conveyance direction of the recording paper P indicated by an arrow is an oblique direction. Accordingly, in the printer 100, the width of the casing in the left-right direction in FIG. 2 is slightly longer than the length in the longitudinal direction of the A3 size recording paper. That is, the printer 100 is greatly reduced in size by being the minimum size required to accommodate the recording paper therein.

各作像装置17K,M,Y,Cは、潜像担持体としてドラム状の感光体1K,M,Y,Cを有している。この感光体1K,M,Y,Cの回転方向に関して順に、それぞれ帯電装置2K,M,Y,C、現像装置3K,M,Y,C、クリーニング装置6K,M,Y,C、等を有している。また、帯電装置2K,M,Y,Cと現像装置3K,M,Y,Cとの間で書込み光Lを露光装置16K,M,Y,Cから照射される周知の構成である。感光体1K,M,Y,Cはドラム状でなく、ベルト状としても良い。   Each image forming device 17K, M, Y, C has a drum-shaped photoconductor 1K, M, Y, C as a latent image carrier. In order with respect to the rotation direction of the photoreceptors 1K, M, Y, and C, there are charging devices 2K, M, Y, and C, developing devices 3K, M, Y, and C, cleaning devices 6K, M, Y, and C, respectively. doing. Further, the writing light L is radiated from the exposure devices 16K, M, Y, C between the charging devices 2K, M, Y, C and the developing devices 3K, M, Y, C. The photoreceptors 1K, M, Y, and C may be belt-shaped instead of drum-shaped.

このような構成のプリンタ100では、画像形成スタートとともに、各作像装置17K,M,Y,Cで各色トナー像が形成される。各作像装置17K,M,Y,Cでは、感光体1K,M,Y,Cが、図示されないメインモータにより回転駆動され、帯電装置2K,M,Y,Cによって一様帯電された後、露光装置16K,M,Y,Cより、画像を色分解した色毎の画像情報に応じて書込み光Lが照射され、静電潜像が形成される。感光体1K,M,Y,C上に形成された静電潜像は、現像装置3K,M,Y,Cにより現像され、各感光体1K,M,Y,Cの表面上に各色トナー像が形成される。一方、給紙カセット(20〜22のうちの1つ)から給紙搬送された記録紙Pは、レジストローラ23によって作像装置17K,M,Y,Cによる作像タイミングに合わせて、転写搬送ベルト15の表面上に供給される。そして、転写搬送ベルト15に担持された記録紙Pは転写搬送ベルト15の表面移動によって各色の転写領域に搬送される。   In the printer 100 having such a configuration, each color toner image is formed by each image forming device 17K, M, Y, and C at the start of image formation. In each of the image forming devices 17K, M, Y, and C, the photoreceptors 1K, M, Y, and C are rotationally driven by a main motor (not shown) and are uniformly charged by the charging devices 2K, M, Y, and C. The exposure device 16K, M, Y, C emits the writing light L according to image information for each color obtained by color separation of the image, and an electrostatic latent image is formed. The electrostatic latent images formed on the photoreceptors 1K, M, Y, and C are developed by the developing devices 3K, M, Y, and C, and toner images of the respective colors are formed on the surfaces of the photoreceptors 1K, M, Y, and C. Is formed. On the other hand, the recording paper P fed and conveyed from the paper feeding cassette (one of 20 to 22) is transferred and conveyed by the registration rollers 23 in accordance with the image forming timings of the image forming devices 17K, M, Y, and C. Supplied on the surface of the belt 15. Then, the recording paper P carried on the transfer conveyance belt 15 is conveyed to the transfer area of each color by the surface movement of the transfer conveyance belt 15.

各感光体1K,M,Y,C上に形成されたトナー像は、感光体1K,M,Y,Cと転写搬送ベルト15との対向部で転写バイアス手段である転写バイアスローラ5K,M,Y,Cによって転写搬送ベルト15上に担持された記録紙Pに順次転写される。このようにしてK(黒)、M(マゼンタ)、Y(イエロー)、C(シアン)の順で各感光体1K,M,Y,C上に形成されたトナー像が転写され、重ね合わせカラートナー像が記録紙P上に形成される。トナー像を転写された記録紙Pは、転写搬送ベルト15から分離され、定着装置24に搬送され、トナー像が定着されて機外の排紙トレイ25に排出される。
一方、記録紙P上にトナー像を転写した後の感光体1K,M,Y,Cは、クリーニング装置6K,M,Y,Cによって転写残トナーの除去がなされ、必要に応じて図示しない除電ランプで除電された後、再度、帯電装置2K,M,Y,Cで一様に帯電される動作を繰り返す。
The toner images formed on the photoconductors 1K, 1M, 1C, 1C are transferred to the transfer bias rollers 5K, 5M, 5B, and 5C, which are transfer bias means, at the facing portions of the photoconductors 1K, 1M, 1C, 1C and the transfer conveyance belt 15, respectively. The images are sequentially transferred onto the recording paper P carried on the transfer conveyance belt 15 by Y and C. In this way, the toner images formed on the respective photoreceptors 1K, M, Y, and C are transferred in the order of K (black), M (magenta), Y (yellow), and C (cyan), and overlapped color. A toner image is formed on the recording paper P. The recording paper P onto which the toner image has been transferred is separated from the transfer conveyance belt 15 and conveyed to the fixing device 24 where the toner image is fixed and discharged to a paper discharge tray 25 outside the apparatus.
On the other hand, after the toner image is transferred onto the recording paper P, the transfer residual toner is removed by the cleaning devices 6K, M, Y, and C, and the charge removal (not shown) is performed as necessary. After neutralizing with the lamp, the operation of charging uniformly with the charging devices 2K, 2M, 2C, and 2C is repeated again.

次に、現像装置3について詳しく説明する。本実施形態のプリンタ100の現像装置3K,M,Y,Cは、画像形成物質として、互いに異なる色(K,M,Y,C)のトナーを用いるが、それ以外は同様の構成になっている。このため、以下、添字K,M,Y,Cを省略し、現像装置3として説明する。   Next, the developing device 3 will be described in detail. The developing devices 3K, M, Y, and C of the printer 100 according to the present embodiment use toners of different colors (K, M, Y, and C) as image forming materials, but the other configurations are the same. Yes. For this reason, hereinafter, the subscripts K, M, Y, and C are omitted, and the developing device 3 will be described.

〔実施例1〕
図1は、本実施形態のプリンタ100に適用可能な現像装置3の一つ目の実施例(以下、実施例1と呼ぶ)の概略構成図である。
現像装置3は感光体1に対向配置され、感光体1は図1中矢印aに示すように図1における時計回り方向に回転駆動する。
現像装置3のケーシングである現像容器33内には磁性キャリアと磁性又は非磁性のトナーとからなる粉体状の二成分現像剤である現像剤32が収容されている。現像装置3は、感光体1の表面に形成された静電潜像にトナーを供給して現像を行う現像領域Aまで現像容器33内の現像剤32を担持して、表面移動することによって搬送する現像剤担持体としての現像スリーブ34aを備える。また、現像スリーブ34aの内部に現像装置3に対して固定された複数の磁石からなるマグネットローラ34bを備え、現像スリーブ34aとマグネットローラ34bとで現像ローラ34を構成する。さらに、現像スリーブ34a上に担持された現像剤の層厚規制する剤規制部材35とを有している。
[Example 1]
FIG. 1 is a schematic configuration diagram of a first example (hereinafter referred to as Example 1) of a developing device 3 applicable to the printer 100 of the present embodiment.
The developing device 3 is disposed to face the photoconductor 1, and the photoconductor 1 is rotationally driven in the clockwise direction in FIG. 1 as indicated by an arrow a in FIG.
A developer container 33 that is a casing of the developing device 3 contains a developer 32 that is a powdery two-component developer composed of a magnetic carrier and magnetic or non-magnetic toner. The developing device 3 carries the developer 32 in the developing container 33 to the developing area A where the toner is supplied to the electrostatic latent image formed on the surface of the photoreceptor 1 to perform development, and is transported by moving the surface. A developing sleeve 34a is provided as a developer carrying member. Further, a magnet roller 34b composed of a plurality of magnets fixed to the developing device 3 is provided inside the developing sleeve 34a, and the developing roller 34 is configured by the developing sleeve 34a and the magnet roller 34b. Further, it has an agent regulating member 35 that regulates the layer thickness of the developer carried on the developing sleeve 34a.

現像剤搬送手段である2つの搬送スクリュとして、供給スクリュ39と循環スクリュ40とが現像スリーブ34aの回転軸方向に対して略平行に設けられている。各搬送スクリュは、回転軸と回転軸に螺旋状に設けられた羽部とを備え、回転することにより回転軸の軸方向に沿って一方向に現像剤32を搬送する。現像容器33の内部は現像容器33の内壁及び仕切り板36によって空間が仕切られ、現像剤搬送路として供給搬送路37と循環搬送路38とが仕切り板36を挟んで上下に形成されている。また、仕切り板36の図1中の手前側及び奥側の両端部には開口部がそれぞれ設けられており、供給搬送路37と循環搬送路38との間を2つの開口部によってそれぞれ連通している。
また、仕切り板36は現像スリーブ34a側の端部が供給スクリュ39を囲むように立設され、当該立設部によって後述する障壁43を形成している。
障壁43の端部と、現像装置3の内壁とで現像スリーブ34a側に開口が形成されており、当該開口から現像剤32は現像スリーブ34aへと供給される。
当該開口は現像スリーブ34aの長手方向に延びており、現像幅に渡って、現像スリーブ34aへ現像剤32が供給可能にされている。
なお、本実施例における現像装置3においては、後述するように供給搬送路37中の現像剤32の量が下流に行くほど少なくなる傾向があるため、その量の現象に従うように障壁43の端部の高さが上流から下流に行くにしたがって低くなるように形成されている。
As two conveying screws as developer conveying means, a supply screw 39 and a circulating screw 40 are provided substantially parallel to the rotation axis direction of the developing sleeve 34a. Each transport screw includes a rotating shaft and a wing portion spirally provided on the rotating shaft, and transports the developer 32 in one direction along the axial direction of the rotating shaft by rotating. The space inside the developing container 33 is partitioned by the inner wall of the developing container 33 and a partition plate 36, and a supply transport path 37 and a circulation transport path 38 are formed vertically with the partition plate 36 interposed therebetween as developer transport paths. Further, openings are provided at both front and back ends of the partition plate 36 in FIG. 1, and the supply conveyance path 37 and the circulation conveyance path 38 are communicated with each other by two openings. ing.
Further, the partition plate 36 is erected so that the end on the developing sleeve 34 a side surrounds the supply screw 39, and a barrier 43 described later is formed by the erected portion.
An opening is formed on the developing sleeve 34a side by the end of the barrier 43 and the inner wall of the developing device 3, and the developer 32 is supplied from the opening to the developing sleeve 34a.
The opening extends in the longitudinal direction of the developing sleeve 34a, and the developer 32 can be supplied to the developing sleeve 34a over the developing width.
In the developing device 3 in this embodiment, as described later, the amount of the developer 32 in the supply conveyance path 37 tends to decrease as it goes downstream, so that the end of the barrier 43 follows the phenomenon of that amount. The height of the portion is formed so as to decrease as it goes from upstream to downstream.

図1に示すように、供給搬送路37及び循環搬送路38にはそれぞれ供給スクリュ39及び循環スクリュ40が配置されており、現像容器33内の現像剤32は供給搬送路37及び循環搬送路38に収容されている。また、循環スクリュ40は供給スクリュ39に対して略平行に配置され、循環搬送路38内の現像剤32は循環スクリュ40によって供給スクリュ39の搬送方向とは逆方向に搬送される。
現像容器33内の現像剤32は、供給スクリュ39と循環スクリュ40との回転による搬送によって、仕切り板36の両端に設けられた開口部を通じて供給搬送路37と循環搬送路38との間を循環する。
なお、供給スクリュ39は図1における時計回りに回転し、循環スクリュ40は現像スリーブ34aと同様に反時計回りに回転する。
As shown in FIG. 1, a supply screw 39 and a circulation screw 40 are disposed in the supply conveyance path 37 and the circulation conveyance path 38, respectively, and the developer 32 in the developing container 33 is supplied to the supply conveyance path 37 and the circulation conveyance path 38. Is housed in. The circulation screw 40 is disposed substantially parallel to the supply screw 39, and the developer 32 in the circulation conveyance path 38 is conveyed by the circulation screw 40 in the direction opposite to the conveyance direction of the supply screw 39.
The developer 32 in the developing container 33 is circulated between the supply conveyance path 37 and the circulation conveyance path 38 through openings provided at both ends of the partition plate 36 by conveyance by rotation of the supply screw 39 and the circulation screw 40. To do.
The supply screw 39 rotates clockwise in FIG. 1, and the circulation screw 40 rotates counterclockwise similarly to the developing sleeve 34a.

現像容器33内の現像剤32のうち供給搬送路37内の現像剤は、供給スクリュ39が回転することによって搬送されながら、現像スリーブ34aの表面へと供給される。供給搬送路37から現像スリーブ34aへの現像剤32の供給は、供給スクリュ39と現像スリーブ34aとの間の障壁43の端部を供給スクリュ39の回転によって現像剤32が乗り越えたり、現像スリーブ34aに内設されたマグネットローラ34bの磁力によって現像剤32が現像スリーブ34aに引き付けられたりすることによって行われる。   Of the developer 32 in the developing container 33, the developer in the supply conveyance path 37 is supplied to the surface of the developing sleeve 34 a while being conveyed by the rotation of the supply screw 39. The developer 32 is supplied from the supply conveyance path 37 to the developing sleeve 34a by the rotation of the supplying screw 39 over the end portion of the barrier 43 between the supplying screw 39 and the developing sleeve 34a, or the developing sleeve 34a. The developer 32 is attracted to the developing sleeve 34a by the magnetic force of the magnet roller 34b provided therein.

現像スリーブ34aに供給された現像剤32は、現像スリーブ34aの回転と、内設されたマグネットローラ34bの磁力とによって、現像スリーブ34aの表面に担持されつつ、図1中の矢印Bの方向に搬送される。すなわち、現像スリーブ34aに供給されて担持された現像剤32のうちの一定量が、現像スリーブ34aに担持されつつ矢印Bで示すように剤規制部材35との対向部を通過する。このとき、現像スリーブ34aの表面に担持された現像剤32のうちの余分な現像剤32は、図1中の矢印B1で示すように剤規制部材35との対向部を通過するときに剤規制部材35によって掻き取られる。   The developer 32 supplied to the developing sleeve 34a is carried on the surface of the developing sleeve 34a by the rotation of the developing sleeve 34a and the magnetic force of the magnet roller 34b provided therein, and in the direction of arrow B in FIG. Be transported. That is, a certain amount of the developer 32 supplied and carried on the developing sleeve 34a passes through the portion facing the agent regulating member 35 as shown by the arrow B while being carried on the developing sleeve 34a. At this time, the excess developer 32 out of the developer 32 carried on the surface of the developing sleeve 34a passes through the portion facing the agent regulating member 35 as indicated by an arrow B1 in FIG. It is scraped off by the member 35.

剤規制部材35との対向部を通過した適正量の現像剤32は、図1中矢印B2で示すように現像スリーブ34aと感光体1との間の現像領域Aを通過したのち、現像スリーブ34aから離れ、現像容器33の底部33bへ流れて循環搬送路38へと受け渡される。
すなわち、現像スリーブ34a上に担持されて現像領域Aに搬送され、現像領域Aを通過した後、現像領域Aにおいて感光体1の表面の供給されずに現像スリーブ34a上に残った現像剤32は、現像スリーブ34aの回転に伴って供給搬送路37に再度回収されるのではなく、一度、循環搬送路38に回収される。そして、回収された現像剤32は循環搬送路38中で詳細は後述する補給されたトナーと攪拌されつつ搬送され、再度、供給搬送路37へ受け渡される。このために供給搬送路37内には常に循環搬送路38で十分攪拌された現像剤のみが存在する状態となる。
The proper amount of developer 32 that has passed through the portion facing the agent regulating member 35 passes through the developing area A between the developing sleeve 34a and the photosensitive member 1 as shown by an arrow B2 in FIG. , Flows to the bottom 33 b of the developing container 33, and is delivered to the circulation conveyance path 38.
That is, the developer 32 that is carried on the developing sleeve 34a, conveyed to the developing area A, passes through the developing area A, and remains on the developing sleeve 34a without being supplied to the surface of the photoreceptor 1 in the developing area A. Instead of being collected again in the supply conveyance path 37 with the rotation of the developing sleeve 34a, it is once collected in the circulation conveyance path 38. Then, the collected developer 32 is conveyed in the circulation conveyance path 38 while being agitated with replenished toner, which will be described in detail later, and is transferred to the supply conveyance path 37 again. Therefore, only the developer sufficiently stirred in the circulation conveyance path 38 is always present in the supply conveyance path 37.

なお、供給搬送路37の下流端に到達した現像剤32と、現像領域Aを通過して現像スリーブ34aの表面から離脱した現像剤とは循環搬送路38によって搬送され供給搬送路37の上流端に受け渡される。循環搬送路38内の現像剤32は現像領域Aを通過してトナー濃度が低下した現像剤32を含むため、トナーを補給する必要がある。よって、潜像の画像情報から求めるトナー消費量に応じて、または、循環搬送路38内の現像剤のトナー濃度の測定結果に応じて、循環搬送路38内の現像剤32にトナーを補給することによって、適正なトナー濃度の現像剤32を供給搬送路37に受け渡すことが出来る。   The developer 32 that has reached the downstream end of the supply conveyance path 37 and the developer that has passed through the development region A and separated from the surface of the developing sleeve 34 a are conveyed by the circulation conveyance path 38 and are upstream of the supply conveyance path 37. Is passed on. Since the developer 32 in the circulation conveyance path 38 includes the developer 32 having passed through the development area A and having a lowered toner concentration, it is necessary to replenish the toner. Accordingly, the toner is replenished to the developer 32 in the circulation conveyance path 38 according to the toner consumption calculated from the image information of the latent image or according to the measurement result of the toner density of the developer in the circulation conveyance path 38. Thus, the developer 32 having an appropriate toner concentration can be transferred to the supply conveyance path 37.

図3は、現像装置3を図1の矢印C方向から見た、現像容器33中の現像剤32の流れを説明する模式図である。また、図4は、現像装置3を図1の矢印C方向からみた供給スクリュ39の回転軸近傍の断面説明図である。図3及び図4中の矢印が現像容器33中の現像剤32の流れを示している。
図1、図3、及び図4に示すように、現像装置3では、供給搬送路37と循環搬送路38との位置関係が上下に並ぶように構成されている。このため、仕切り板36の両端に設けられた開口部のうち図3及び図4中右側の開口部である落下口42では供給搬送路37の下流端から循環搬送路38の上流端へと現像剤32は上から下へと移動する。一方、仕切り板36の両端に設けられた開口部のうち図3及び図4中左側の開口部である持ち上げ口41では循環搬送路38の下流端から供給搬送路37の上流端へと現像剤32は下から上へと移動する。持ち上げ口41での循環搬送路38から供給搬送路37への現像剤の移動は、循環搬送路38内の搬送方向下流端に溜まった現像剤32の圧力により下から上と押し上げられるようにして現像剤が受け渡される。
また、現像装置3は、図3及び図4中の矢印Tで示すように、トナー補給口45から循環搬送路38の上流側にトナー補給がなされる。このトナー補給によって現像容器33内に補給されたトナーが落下口42から循環搬送路38の搬送方向上流側端部に落下して循環搬送路38内の現像剤32にトナーを補給することができる。
FIG. 3 is a schematic diagram for explaining the flow of the developer 32 in the developing container 33 when the developing device 3 is viewed from the direction of arrow C in FIG. 4 is a cross-sectional explanatory view in the vicinity of the rotation axis of the supply screw 39 when the developing device 3 is viewed from the direction of arrow C in FIG. The arrows in FIGS. 3 and 4 indicate the flow of the developer 32 in the developing container 33.
As shown in FIGS. 1, 3, and 4, the developing device 3 is configured such that the positional relationship between the supply conveyance path 37 and the circulation conveyance path 38 is aligned vertically. For this reason, of the openings provided at both ends of the partition plate 36, development is performed from the downstream end of the supply conveyance path 37 to the upstream end of the circulation conveyance path 38 at the opening 42 on the right side in FIGS. 3 and 4. The agent 32 moves from top to bottom. On the other hand, among the openings provided at both ends of the partition plate 36, the developer 41 from the downstream end of the circulation conveyance path 38 to the upstream end of the supply conveyance path 37 is formed at the lifting opening 41 which is the opening on the left side in FIGS. 32 moves from bottom to top. The developer moves from the circulation conveyance path 38 to the supply conveyance path 37 at the lifting port 41 so as to be pushed up from below by the pressure of the developer 32 accumulated at the downstream end in the conveyance direction in the circulation conveyance path 38. Developer is delivered.
Further, the developing device 3 replenishes toner from the toner replenishing port 45 to the upstream side of the circulation conveyance path 38 as indicated by an arrow T in FIGS. 3 and 4. The toner replenished in the developing container 33 by this toner replenishment can fall from the drop port 42 to the upstream end portion in the transport direction of the circulation transport path 38 and replenish the toner to the developer 32 in the circulation transport path 38. .

現像装置3では、循環搬送路38から供給搬送路37へと受け渡された現像剤32のすべてが供給搬送路37内の供給スクリュ39の搬送方向下流端に到達するわけではない。図3中の矢印Bで示すように、供給搬送路37内を搬送される途中で現像スリーブ34aの表面に供給され、現像領域Aを通過した後、循環搬送路38に回収される成分が存在する。このような現像スリーブ34aの表面への現像剤32の受渡しは、現像スリーブ34aの回転軸方向の幅の略全域に渡ってなされる。
このため、供給搬送路37内で供給スクリュ39によって搬送力が付与されて搬送される現像剤32の量は、上述したように現像剤32が現像スリーブ34a表面から循環搬送路38に回収されることにより、供給搬送路37内の上流端から下流端に向かうに従い徐々に減少する傾向がある。
一方、循環搬送路38内で循環スクリュ40によって搬送力が付与されて搬送される現像剤32の量は、循環搬送路38内の上流端から下流端に向かうに従い徐々に増加する傾向がある。即ち、現像装置3内の現像剤32の量の分布には片寄りが存在する。
In the developing device 3, not all of the developer 32 transferred from the circulation conveyance path 38 to the supply conveyance path 37 reaches the downstream end in the conveyance direction of the supply screw 39 in the supply conveyance path 37. As indicated by an arrow B in FIG. 3, there is a component that is supplied to the surface of the developing sleeve 34 a while being transported in the supply transport path 37, passes through the development region A, and is collected in the circulation transport path 38. To do. The delivery of the developer 32 to the surface of the developing sleeve 34a is performed over substantially the entire width of the developing sleeve 34a in the rotation axis direction.
For this reason, the amount of the developer 32 that is transported with the transport force applied by the supply screw 39 in the supply transport path 37 is recovered from the surface of the developing sleeve 34a to the circulation transport path 38 as described above. As a result, there is a tendency to gradually decrease from the upstream end to the downstream end in the supply conveyance path 37.
On the other hand, the amount of the developer 32 that is transported with the transporting force applied by the circulating screw 40 in the circulating transport path 38 tends to gradually increase from the upstream end to the downstream end in the circulating transport path 38. That is, there is a deviation in the distribution of the amount of the developer 32 in the developing device 3.

実施例1の現像装置3では、供給搬送路37から現像スリーブ34aに供給され現像領域Aを通過してトナー濃度が低下した現像剤は循環搬送路38と対向する位置で現像スリーブ34aの表面から離脱し、循環搬送路38内に回収される。また、循環搬送路38内に回収された現像剤は循環搬送路38内の搬送方向上流側端部に補給されるトナーと循環搬送路38内で攪拌され、所望のトナー濃度となった状態で供給搬送路37に供給される。このように実施例1の現像装置3では、現像領域Aを通過してトナー濃度が低下した現像剤は供給搬送路37では回収されないため供給スクリュ39による搬送方向の上流側と下流側とで供給搬送路37内での現像剤32のトナー濃度が変化しない。
〔現像ローラの基本構成〕
In the developing device 3 according to the first exemplary embodiment, the developer that is supplied from the supply conveyance path 37 to the development sleeve 34 a and passes through the development region A and has a reduced toner concentration is positioned from the surface of the development sleeve 34 a at a position facing the circulation conveyance path 38. It is separated and collected in the circulation conveyance path 38. Further, the developer collected in the circulation conveyance path 38 is agitated in the circulation conveyance path 38 with the toner replenished at the upstream end in the conveyance direction in the circulation conveyance path 38, and in a state where a desired toner concentration is obtained. It is supplied to the supply conveyance path 37. As described above, in the developing device 3 according to the first embodiment, the developer whose toner density has decreased after passing through the developing region A is not collected in the supply conveyance path 37, and thus is supplied on the upstream side and the downstream side in the conveyance direction by the supply screw 39. The toner density of the developer 32 in the transport path 37 does not change.
[Basic configuration of developing roller]

次に、現像装置3の現像ローラ34についてより詳しく説明する。
図1に示すように、現像ローラ34を構成するマグネットローラ34bは、現像スリーブ34a上の現像剤32を保持し得る強さの磁界を発生させる磁極である現像剤担持極は、2つのN極(N1、N2)と1つのS極(S1)との3つの磁極である。
図5は、現像スリーブ34a内のマグネットローラ34bの磁石の配置の断面説明図である。
実施例1の現像装置3が備えるマグネットローラ34bは現像磁極であるS1極を構成する磁石として断面が3[mm]×2[mm]の大きさのものを用いる。また、他の磁極であるN1極及びN2極を構成する磁石には断面が2[mm]×2[mm]の大きさのものを用いる。
図5に示すように現像ローラ34は、現像スリーブ34aの回転中心に現像ローラ軸34cを配置し、その周りに3つの磁石を配置している。なお、マグネットローラ34bを構成する各磁石の断面の一辺を小さくしすぎると加工精度が低下するため、磁石は断面の一辺が2[mm]以上であることが望ましい。そして、現像ローラ軸34cの径を3[mm]とした場合、スリーブ厚さ0.5[mm]でスリーブ径9[mm]の現像スリーブ34aの内部に配置することができた。
図6は、現像スリーブ34a上の現像剤32を保持し得る強さの磁界を形成する磁極が5極の場合に、磁石やスリーブとして図5の現像ローラ34と同じ大きさのものを用いようとした場合の説明図である。現像磁極34sを構成する磁石として断面が3[mm]×2[mm]の大きさのものを用い、他の4つの磁極を構成する磁石には断面が2[mm]×2[mm]の大きさのもの用いる5極構成を、Φ3[mm]の現像ローラ軸34cと厚さ0.5[mm]でΦ9[mm]の現像スリーブ34aとの間に配置しようとすると、図6に示すように磁石同士が重なる構成となってしまい、実際には配置することができない。
このように、磁石の数を3つとして、現像スリーブ34a上の現像剤32を保持し得る強さの磁界を発生させる磁極を3極とすることで、小径の現像スリーブ34a内に配置することができ、現像ローラ34を小径にすることができる。
なお、現像スリーブ34a内に配置する磁界発生手段としては、上述のマグネットローラ34bのように磁石を埋め込む方式の他に、樹脂に磁性粉を混合してなる円柱状の部材に対し、その周面に着磁ヨークを対向させて着磁処理を施し、上述のマグネットローラ34bと同様の磁極を形成する方法も可能である。この場合も着磁ヨークを周囲に配設するスペースが狭くなってしまう可能性があるが、3極であればその余裕度が増す。
〔剤離れについて〕
Next, the developing roller 34 of the developing device 3 will be described in more detail.
As shown in FIG. 1, the magnet roller 34b constituting the developing roller 34 has two N poles as developer carrying poles, which are magnetic poles that generate a magnetic field having a strength capable of holding the developer 32 on the developing sleeve 34a. These are three magnetic poles: (N1, N2) and one S pole (S1).
FIG. 5 is a cross-sectional explanatory view of the arrangement of the magnets of the magnet roller 34b in the developing sleeve 34a.
The magnet roller 34b provided in the developing device 3 of the first embodiment uses a magnet having a cross section of 3 [mm] × 2 [mm] as a magnet constituting the S1 pole as the developing magnetic pole. In addition, a magnet having a cross section of 2 [mm] × 2 [mm] is used for the magnets constituting the other magnetic poles N1 pole and N2 pole.
As shown in FIG. 5, in the developing roller 34, a developing roller shaft 34c is arranged at the rotation center of the developing sleeve 34a, and three magnets are arranged around it. Note that if one side of the cross section of each magnet constituting the magnet roller 34b is too small, the processing accuracy is lowered. Therefore, it is desirable that one side of the magnet has a cross section of 2 mm or more. When the diameter of the developing roller shaft 34c was 3 [mm], the developing roller shaft 34c could be disposed inside the developing sleeve 34a having a sleeve thickness of 0.5 [mm] and a sleeve diameter of 9 [mm].
FIG. 6 shows that when the magnetic pole forming the magnetic field having a strength capable of holding the developer 32 on the developing sleeve 34a has five poles, a magnet or sleeve having the same size as the developing roller 34 in FIG. 5 is used. FIG. A magnet having a cross section of 3 [mm] × 2 [mm] is used as the magnet constituting the developing magnetic pole 34s, and the other four magnets constituting the magnetic pole have a cross section of 2 [mm] × 2 [mm]. FIG. 6 shows an arrangement of a five-pole configuration using a large size between a developing roller shaft 34c having a diameter of 3 [mm] and a developing sleeve 34a having a thickness of 0.5 [mm] and a diameter of 9 [mm]. In this way, the magnets overlap each other and cannot be actually arranged.
In this way, the number of magnets is three, and the magnetic poles for generating a magnetic field with a strength capable of holding the developer 32 on the developing sleeve 34a are set to three poles, so that they are arranged in the developing sleeve 34a having a small diameter. And the developing roller 34 can have a small diameter.
As a magnetic field generating means arranged in the developing sleeve 34a, in addition to a method of embedding a magnet as in the above-described magnet roller 34b, a circumferential surface of a cylindrical member formed by mixing magnetic powder with resin is used. A method of forming a magnetic pole similar to that of the above-described magnet roller 34b by performing a magnetizing process with the magnetizing yoke facing each other is also possible. In this case as well, there is a possibility that the space in which the magnetized yoke is disposed around will be narrow, but if it is three poles, the margin increases.
[About drug separation]

実施例1の現像装置3の感光体1と対向する位置に現像磁極であるS1極を配置している。また、現像磁極であるS1極に対して現像スリーブ34aの表面移動方向上流側に汲み上げ磁極及び現像前搬送磁極として機能する現像前磁極であるN2極を配置し、表面移動方向下流側に現像後搬送磁極及び剤離れ磁極として機能する現像後磁極であるN1極を配置している。このように、3極構成では、現像磁極を中心として上流側に隣接する磁極が汲み上げ磁極及び現像前搬送磁極として機能する現像前磁極であり、下流側に隣接する磁極が現像後搬送磁極及び剤離れ磁極として機能する現像後磁極である。また、現像前磁極であるN2極は、現像スリーブ34aと剤規制部材35とが対向する剤規制領域に磁界を発生させる剤規制磁極としての機能も備える。
一方、従来の5極構成では図6に示すように、現像磁極34sの上流側には汲み上げ磁極34rとの間に他の磁極があり、現像磁極34sの下流側にも剤離れ磁極34uとの間に他の磁極がある。このため、5極構成で現像ローラ34を小径にすると、剤離れ磁極34uに対して現像スリーブ34aの表面移動方向下流側での剤離れ磁極34uと汲み上げ磁極34rとの現像スリーブ34a上の間隔が狭くなり、剤離れを良好に行うことができないという不具合があった。
3極構成であれば、上述したように現像磁極に対して汲み上げ磁極として機能する現像前磁極と剤離れ磁極として機能する現像後磁極とが隣接しているため、現像ローラ34を小径としても図5に示すように剤離れ磁極として機能するN1極に対して現像スリーブ34aの表面移動方向下流側での剤離れ磁極として機能するN1極と汲み上げ磁極として機能するN2極との現像スリーブ34a上の間隔を広くすることができる。
The S1 pole, which is the developing magnetic pole, is disposed at a position facing the photosensitive member 1 of the developing device 3 of the first embodiment. In addition, an N2 pole that is a pre-development magnetic pole that functions as a pumping magnetic pole and a pre-development transporting magnetic pole is disposed upstream of the developing sleeve 34a in the surface movement direction with respect to the S1 pole that is the development magnetic pole, and the post-development is downstream in the surface movement direction. An N1 pole, which is a post-development magnetic pole that functions as a conveyance magnetic pole and an agent separation magnetic pole, is disposed. As described above, in the three-pole configuration, the magnetic pole adjacent to the upstream side around the development magnetic pole is the pre-development magnetic pole that functions as the pumping magnetic pole and the pre-development transport magnetic pole, and the magnetic pole adjacent to the downstream side is the post-development transport magnetic pole and the agent. This is a post-development magnetic pole that functions as a separate magnetic pole. The N2 pole, which is a pre-development magnetic pole, also has a function as an agent regulating magnetic pole that generates a magnetic field in the agent regulating region where the developing sleeve 34a and the agent regulating member 35 face each other.
On the other hand, in the conventional 5-pole configuration, as shown in FIG. 6, there is another magnetic pole between the developing magnetic pole 34s and the pumping magnetic pole 34r, and the downstream side of the developing magnetic pole 34s is connected to the agent separating magnetic pole 34u. There are other magnetic poles in between. For this reason, if the developing roller 34 has a small diameter in the five-pole configuration, the distance on the developing sleeve 34a between the agent separating magnetic pole 34u and the pumping magnetic pole 34r on the downstream side in the surface movement direction of the developing sleeve 34a with respect to the agent separating magnetic pole 34u. There was a problem that it became narrower and the agent could not be separated well.
With the three-pole configuration, as described above, the pre-development magnetic pole that functions as the pumping magnetic pole and the post-development magnetic pole that functions as the agent separation magnetic pole are adjacent to the development magnetic pole. 5, on the developing sleeve 34a, the N1 pole functioning as the agent separating magnetic pole and the N2 pole functioning as the pumping magnetic pole on the downstream side in the surface movement direction of the developing sleeve 34a with respect to the N1 pole functioning as the agent separating magnetic pole. The interval can be widened.

次に、実施例1の現像装置3における剤離れについて説明する。
上述したように現像領域Aを通過した現像剤32は、現像スリーブ34a上の循環搬送路38との対向部へと搬送される。その後、剤離れ部46近傍にて現像スリーブ34aから離脱する。このとき、現像剤32が現像スリーブ34aから離れない、もしくは、一度は現像スリーブ34aから離れた現像剤32が循環搬送路38内から再度汲み上げされてしまうと、現像領域Aを通過してトナー濃度が低くなった現像剤32が再び現像領域Aへと搬送されてしまい、画像濃度低下してしまうため望ましくない。このため、剤離れ部46近傍にて良好に剤離れが行われることが重要である。
Next, the agent separation in the developing device 3 of Example 1 will be described.
As described above, the developer 32 that has passed through the developing area A is transported to a portion of the developing sleeve 34a facing the circulation transport path 38. Thereafter, the developer is separated from the developing sleeve 34 a in the vicinity of the agent separating portion 46. At this time, if the developer 32 does not leave the developing sleeve 34a, or if the developer 32 that has once separated from the developing sleeve 34a is pumped up again from within the circulation conveyance path 38, the toner density passes through the developing region A. Since the developer 32 having a low value is conveyed again to the development area A and the image density is lowered, it is not desirable. For this reason, it is important that the agent separation is performed well in the vicinity of the agent separation portion 46.

現像装置3の剤離れのメカニズムについて説明する。
現像スリーブ34a上の現像剤32は、現像スリーブ34a表面と現像剤32との間に働く摩擦力により搬送される。この摩擦力は、現像スリーブ34a上の現像剤32に負荷される垂直抗力に比例するため、現像スリーブ34a表面上の現像剤32に働く法線方向に働く磁気力が吸引側に大きければ摩擦力も大きくなり、現像剤32を搬送する能力も高くなる。
ここでは、現像スリーブ34aに内包されるマグネットローラ34bが発生する磁気力のうち、現像スリーブ34aの表面に対して法線方向に働く力を法線方向磁気力、接線方向に働く力を接線方向磁気力と呼ぶ。また、法線方向磁気力が現像スリーブ34aの回転中心34pに向う方向に働く場合は法線方向磁気吸引力、現像スリーブ34aの回転中心34pから遠ざかる方向に働く場合は、法線方向磁気反発力と呼ぶ。
つまり、現像スリーブ34a上の現像剤32は、法線方向磁気吸引力が大きければ、現像スリーブ34aから搬送力をもらい、現像スリーブ34aの駆動に伴い搬送されることが可能となる。逆に、法線方向磁気吸引力が小さくなれば、現像スリーブ34aとの間に働く摩擦力も弱くなるため、現像スリーブ34aの表面で駆動力がなくなり(滑りやすくなり)、現像スリーブ34a表面に現像剤32が吸着していたとしても現像剤32は搬送されなくなる。
A mechanism for separating the agent of the developing device 3 will be described.
The developer 32 on the developing sleeve 34 a is conveyed by a frictional force acting between the surface of the developing sleeve 34 a and the developer 32. Since this frictional force is proportional to the normal force applied to the developer 32 on the developing sleeve 34a, if the magnetic force acting in the normal direction acting on the developer 32 on the surface of the developing sleeve 34a is large on the suction side, the frictional force is also increased. The capacity of the developer 32 is increased.
Here, out of the magnetic force generated by the magnet roller 34b included in the developing sleeve 34a, the force acting in the normal direction with respect to the surface of the developing sleeve 34a is the normal magnetic force, and the force acting in the tangential direction is the tangential direction. Called magnetic force. Further, when the normal magnetic force acts in the direction toward the rotation center 34p of the developing sleeve 34a, the normal magnetic repulsive force acts in the direction away from the rotation center 34p of the developing sleeve 34a. Call it.
That is, the developer 32 on the developing sleeve 34a can be transported as the developing sleeve 34a is driven by receiving a transporting force from the developing sleeve 34a if the normal magnetic attracting force is large. On the contrary, if the normal magnetic attractive force is reduced, the frictional force acting on the developing sleeve 34a is also weakened, so that the driving force is lost on the surface of the developing sleeve 34a (slippery), and the developing sleeve 34a is developed on the surface. Even if the agent 32 is adsorbed, the developer 32 is not conveyed.

さらに、法線方向磁気吸引力が現像剤32の自重よりも小さくなる、もしくは、法線方向磁気力が現像スリーブ34aから離れる方向に働く(法線方向磁気反発力が働く)と現像スリーブ34a上の現像剤32は、現像スリーブ34aの表面より離脱する。
また、法線方向磁気吸引力が大きい場合は、現像スリーブ34aと現像スリーブ34aの表面上の現像剤32との間に働く摩擦力も大きいため、現像スリーブ34a上の現像剤32は現像スリーブ34aの表面移動速度とほぼ同速度で搬送することが可能となる。つまり、現像スリーブ34a上の現像剤32も現像スリーブ34aと同様に高速で回転駆動しているため現像剤32には慣性力が働いている。
よって、現像スリーブ34aから現像剤32を離したい部位(以下、剤離れ部46と呼ぶ)において、法線方向磁気吸引力を小さくしておけば、現像剤32は、現像剤32の自重のみではなく、上述した慣性力を利用して現像剤32を現像スリーブ34aから離すことが可能となる。
つまり、現像スリーブ34aから現像剤32を離すためには、上述したように剤離れ部46の法線方向磁気吸引力を非常に小さくし、現像剤32の自重もしくは慣性力を利用して現像スリーブ34aから現像剤32を離すか、法線方向磁気反発力を発生して、磁気的な力により現像剤32を現像スリーブ34aから離す必要がある。
〔磁極間における剤離れ〕
Furthermore, when the normal magnetic attracting force is smaller than the weight of the developer 32 or when the normal magnetic force acts away from the developing sleeve 34a (normal magnetic repulsive force acts), The developer 32 is detached from the surface of the developing sleeve 34a.
Further, when the normal magnetic attracting force is large, the friction force acting between the developing sleeve 34a and the developer 32 on the surface of the developing sleeve 34a is also large. It becomes possible to convey at almost the same speed as the surface moving speed. That is, since the developer 32 on the developing sleeve 34a is driven to rotate at a high speed similarly to the developing sleeve 34a, an inertial force acts on the developer 32.
Therefore, if the normal magnetic attracting force is reduced at a portion where the developer 32 is desired to be separated from the developing sleeve 34a (hereinafter referred to as the agent separating portion 46), the developer 32 can be obtained only by its own weight. Instead, the developer 32 can be separated from the developing sleeve 34a using the inertial force described above.
That is, in order to separate the developer 32 from the developing sleeve 34a, as described above, the normal-direction magnetic attractive force of the agent separating portion 46 is made extremely small, and the developing sleeve is utilized by utilizing the self-weight or inertial force of the developer 32. It is necessary to separate the developer 32 from 34a or generate a normal direction magnetic repulsive force to separate the developer 32 from the developing sleeve 34a by magnetic force.
[Agent separation between magnetic poles]

図7は、3極構成の法線磁束密度分布の一例を示すグラフである。
ここで、図7に示すように3つの磁極によって発生されるそれぞれの磁界での現像ローラ34の表面上の法線方向の磁束密度が最大となる法線方向磁束密度ピーク位置を、現像前磁極中心M1、現像磁極中心M2、及び、現像後磁極中心M3とし、これら3つの法線方向磁束密度ピーク位置と現像スリーブ34aの回転中心34pとを結んだ3つの直線を、現像前磁極中心線L1、現像磁極中心線L2、及び、現像後磁極中心線L3とする。
図7では、現像磁極と現像前磁極との2つの法線磁束密度ピーク位置と回転中心34pとを直線(図7中の破線L1及びL2)で結んで形成される中心角の開き角度をθ1、現像磁極と現像後磁極との2つの法線磁束密度ピーク位置と回転中心34pとを直線(図7中の破線L2及びL3)で結んで形成される中心角の開き角度をθ2、現像後磁極と現像前磁極との2つの法線磁束密度ピーク位置と回転中心34pとを直線(図7中の破線L3及びL1)で結んで形成される中心角の開き角度をθ3とする。
このとき、現像後磁極中心線L3と現像前磁極中心線L1とが成す中心角の角度θ3が180[°]以上となるように剤離れ磁極として機能する現像後磁極(N1極)と汲み上げ磁極として機能する現像前磁極(N2極)とを配置することにより、剤離れ磁極として機能する磁極の磁束が現像磁極に流れやすくなるため、剤離れ磁極として機能する磁極と汲み上げ磁極として機能する磁極との極間に発生する磁場を小さくすることができ、剤離れをさらに良好に行うことが出来る。
FIG. 7 is a graph showing an example of a normal magnetic flux density distribution having a three-pole configuration.
Here, as shown in FIG. 7, the normal direction magnetic flux density peak position where the normal direction magnetic flux density on the surface of the developing roller 34 in the respective magnetic fields generated by the three magnetic poles becomes the maximum is shown as a pre-development magnetic pole. The three straight lines connecting the three normal direction magnetic flux density peak positions and the rotation center 34p of the developing sleeve 34a as the center M1, the developing magnetic pole center M2, and the post-developing magnetic pole center M3 are the pre-developing magnetic pole center line L1. The development magnetic pole center line L2 and the post-development magnetic pole center line L3.
In FIG. 7, the opening angle of the central angle formed by connecting two normal magnetic flux density peak positions of the developing magnetic pole and the pre-developing magnetic pole and the rotation center 34p with a straight line (broken lines L1 and L2 in FIG. 7) is θ1. The opening angle of the central angle formed by connecting the two normal magnetic flux density peak positions of the development magnetic pole and the post-development magnetic pole and the rotation center 34p with a straight line (broken lines L2 and L3 in FIG. 7) is θ2, and after development An opening angle of a central angle formed by connecting two normal magnetic flux density peak positions of the magnetic pole and the pre-development magnetic pole and the rotation center 34p with a straight line (broken lines L3 and L1 in FIG. 7) is defined as θ3.
At this time, the post-development magnetic pole (N1 pole) and the pumping magnetic pole functioning as the agent separation magnetic pole so that the central angle θ3 formed by the post-development magnetic pole center line L3 and the pre-development magnetic pole centerline L1 is 180 [°] or more. By arranging the pre-development magnetic pole (N2 pole) that functions as the magnetic flux of the magnetic pole that functions as the agent separation magnetic pole, the magnetic flux that functions as the agent separation magnetic pole and the magnetic pole that functions as the pumping magnetic pole The magnetic field generated between the two electrodes can be reduced, and the agent can be separated more satisfactorily.

図8は、図1に示す実施例1の現像装置3の概略構成図に現像ローラ34周りの磁場波形を追記した説明図である。
図1及び図8に示す実施例1の現像装置3のように、3極構成で、供給搬送路37内の現像剤32を現像スリーブ34aの表面に上方から掛け流すように供給する一方向循環方式の構成をとることにより、良好な汲み上げ性と連れ回り性を実現することができる。つまり、一方向循環方式の現像装置では、現像スリーブ34aから離脱した現像剤32を回収する現像剤搬送路(循環搬送路38)と現像スリーブ34aに現像剤32を供給する現像剤搬送路(供給搬送路37)とが異なるため、剤離れ部46と汲み上げ部47の間隔を離すことができる。
特に、現像前磁極であるN2極と現像後磁極であるN1極との2つ法線磁束密度ピーク位置と回転中心34pとを直線で結んで形成される中心角の開き角度θ3をθ3≧180[°]にすることで剤離れ部46の現像スリーブ34a表面の法線方向磁気吸引力を低減でき良好な剤離れ性を得ることが可能となる。
FIG. 8 is an explanatory diagram in which a magnetic field waveform around the developing roller 34 is added to the schematic configuration diagram of the developing device 3 of the first embodiment shown in FIG.
As in the developing device 3 of Embodiment 1 shown in FIGS. 1 and 8, the three-way configuration is used to supply the developer 32 in the supply conveyance path 37 so as to flow over the surface of the developing sleeve 34a from above. By adopting the configuration of the system, it is possible to realize good pumping performance and carryability. That is, in the one-way circulation type developing device, a developer conveyance path (circulation conveyance path 38) for collecting the developer 32 separated from the development sleeve 34a and a developer conveyance path (supply) for supplying the developer 32 to the development sleeve 34a. Since the conveyance path 37) is different, the space between the agent separating part 46 and the pumping part 47 can be separated.
In particular, the opening angle θ3 of the central angle formed by connecting the two normal flux density peak positions of the N2 pole that is the pre-development magnetic pole and the N1 pole that is the post-development magnetic pole and the rotation center 34p is θ3 ≧ 180. By setting [°], the normal direction magnetic attractive force on the surface of the developing sleeve 34a of the agent separating portion 46 can be reduced, and good agent separating property can be obtained.

図9は、現像後磁極中心線L3と現像前磁極中心線L1とが成す中心角の角度θ3を180[°]としたときの磁場と剤離れとの説明図である。図9(a)は、角度θ3を180[°]としたときの現像スリーブ34aの表面上の法線方向の磁束密度の大きさを示す磁場波形である。図9(b)は図9(a)の磁場波形を用いた場合の現像剤の動きを計算によって推定した結果を示す図である。この計算は、現像スリーブ34aの条件として、スリーブ径を10[mm]、スリーブの表面移動速度を200[mm/sec]と設定し、粒子の条件として、磁気モーメントを75[emu/g]、粒子径を40[μm]に設定して行った。
角度θ3を180[°]とすると、図9(a)に示すように、剤離れ磁極として機能する現像後磁極と汲み上げ磁極として機能する現像前磁極との極間の法線磁束密度の最大値は5[mT]程度であり、各磁石によって発生される磁界は、現像後磁極と現像前磁極との極間での現像スリーブ34a表面上で現像剤32を保持することはできない。また、図9(b)に示すように、感光体1と対向する位置を通過した剤は循環スクリュ40と対向する位置で離脱し、剤離れが良好に行われていることがわかる。
FIG. 9 is an explanatory diagram of the magnetic field and the agent separation when the central angle θ3 formed by the post-development magnetic pole center line L3 and the pre-development magnetic pole center line L1 is 180 [°]. FIG. 9A is a magnetic field waveform showing the magnitude of the magnetic flux density in the normal direction on the surface of the developing sleeve 34a when the angle θ3 is 180 °. FIG. 9B is a diagram showing a result of estimating the movement of the developer by calculation when the magnetic field waveform of FIG. 9A is used. In this calculation, the sleeve diameter is set to 10 [mm] and the sleeve moving speed is set to 200 [mm / sec] as the conditions for the developing sleeve 34a, and the magnetic moment is set to 75 [emu / g] as the particle conditions. The particle diameter was set to 40 [μm].
Assuming that the angle θ3 is 180 °, as shown in FIG. 9A, the maximum value of the normal magnetic flux density between the poles of the post-development magnetic pole that functions as the agent separation magnetic pole and the pre-development magnetic pole that functions as the pumping magnetic pole, as shown in FIG. Is about 5 [mT], and the magnetic field generated by each magnet cannot hold the developer 32 on the surface of the developing sleeve 34a between the post-development magnetic pole and the pre-development magnetic pole. Further, as shown in FIG. 9B, it can be seen that the agent that has passed through the position facing the photoreceptor 1 is detached at the position facing the circulating screw 40, and the agent separation is performed well.

図10は、比較例1として現像後磁極中心線L3と現像前磁極中心線L1とが成す中心角の角度θ3を150[°]としたときの磁場と剤離れとの説明図である。図10(a)は、角度θ3を150[°]としたときの磁場波形である。図10(b)は図10(a)の磁場波形を用いた場合の現像剤の動きを計算によって推定した結果を示す図である。なお、角度θ3の値以外の計算に用いた各条件は図9(a)と同じ条件である。
角度θ3を150[°]とした比較例1では、図10(a)に示すように、現像後磁極と現像前磁極との極間の法線磁束密度は12[mT]であった。また、図10(b)に示すように、比較例1では感光体1と対向する位置を通過した剤は循環スクリュ40と対向する位置で離脱しきれず、供給スクリュ39と対向する位置まで現像スリーブ34aの表面移動に連れ回りしており、剤離れ不良を起こしていることがわかる。
FIG. 10 is an explanatory diagram of the magnetic field and the agent separation when the central angle θ3 formed by the post-development magnetic pole center line L3 and the pre-development magnetic pole centerline L1 is 150 [°] as Comparative Example 1. FIG. 10A shows a magnetic field waveform when the angle θ3 is 150 [°]. FIG. 10B is a diagram showing a result of estimating the movement of the developer by calculation when the magnetic field waveform of FIG. 10A is used. Each condition used for the calculation other than the value of the angle θ3 is the same as that in FIG.
In Comparative Example 1 in which the angle θ3 was 150 [°], the normal magnetic flux density between the post-development magnetic pole and the pre-development magnetic pole was 12 [mT] as shown in FIG. Further, as shown in FIG. 10B, in Comparative Example 1, the agent that has passed through the position facing the photoreceptor 1 cannot be completely separated at the position facing the circulation screw 40, and the developing sleeve reaches the position facing the supply screw 39. It turns out that it is accompanied by the surface movement of 34a, and the agent separation defect is caused.

次に、現像スリーブ34aとして小径のスリーブを用いた場合で、マグネットローラ34bが5極構成である場合と、3極構成である場合との比較を説明する。
通常、現像スリーブ34a内に現像剤担持極を5極以上配置した場合においては、現像スリーブ34aの表面に対して法線方向に現像剤32を現像スリーブ34aから離すことが可能な程度の大きさの法線方向磁気反発力を発生することが可能であるが、3極構成である場合、法線方向磁気反発力を発生することが困難である。
現像スリーブ34aの径が比較的大きい構成においては、現像スリーブ34a内にマグネットローラ34bとして複数個の磁石を配置した場合においても、各磁石の間にある程度のクリアランスを取ることができるため、現像スリーブ34aの径が大きくなるに従い、磁石配置の自由度が高くなる。
Next, a comparison between a case where a small-diameter sleeve is used as the developing sleeve 34a and the magnet roller 34b has a five-pole configuration and a three-pole configuration will be described.
Normally, when five or more developer carrying poles are arranged in the developing sleeve 34a, the developer 32 can be separated from the developing sleeve 34a in a direction normal to the surface of the developing sleeve 34a. The normal direction magnetic repulsive force can be generated, but in the case of the three-pole configuration, it is difficult to generate the normal direction magnetic repulsive force.
In the configuration in which the diameter of the developing sleeve 34a is relatively large, even when a plurality of magnets are arranged as the magnet roller 34b in the developing sleeve 34a, a certain amount of clearance can be provided between the magnets. As the diameter of 34a increases, the degree of freedom in magnet arrangement increases.

しかし、現像スリーブ34aの径に対し配置する磁石数が少なく、各磁石が形成する磁極の間隔が広くなりすぎると、磁極間に発生される磁束密度ベクトルに大きなムラが生じやすくなり、現像剤を上手く搬送できなくなる。
つまり、現像スリーブ34aの径に対して、磁石の数が多すぎると、各磁石間が狭くなり、互いの磁石が発生する磁界の影響を強く受けすぎ必要とされる磁束密度分布を形成し難くなり、逆に、磁石数が少なすぎると、磁極の間隔が広くなりすぎ、現像剤32の搬送に支障をきたし易くなるため、現像スリーブ34aのスリーブ径に応じて、適切な磁石数(磁極の数)を選択する必要がある。
However, if the number of magnets to be arranged is small with respect to the diameter of the developing sleeve 34a and the interval between the magnetic poles formed by the magnets becomes too large, a large unevenness is likely to occur in the magnetic flux density vector generated between the magnetic poles. Cannot be transported successfully.
That is, if the number of magnets is too large with respect to the diameter of the developing sleeve 34a, the space between the magnets becomes narrow, and it is difficult to form a required magnetic flux density distribution that is too strongly influenced by the magnetic field generated by each magnet. On the other hand, if the number of magnets is too small, the interval between the magnetic poles becomes too large, and the conveyance of the developer 32 is liable to be hindered. Number) must be selected.

図11は比較例2の現像装置3の概略構成図である。
比較例2の現像装置3は、現像ローラ34が5極構成である点で図1及び図8に示す実施例1の現像装置3と異なる。
スリーブ径Φ6[mm]〜Φ12[mm]程度の小径の現像スリーブ34aを使用した場合、比較例2のように5極構成であると、現像スリーブ34aが小径であるため、各磁石の配置間隔が狭くなり、各磁石が発生する磁力線の影響を互いに受けやすくなる。つまり、狙いの磁束密度分布を得るためには、高精度に磁石を配置する必要があり、狙いどおりの磁束密度分布を形成することが困難になる。
FIG. 11 is a schematic configuration diagram of the developing device 3 of Comparative Example 2.
The developing device 3 of Comparative Example 2 differs from the developing device 3 of Example 1 shown in FIGS. 1 and 8 in that the developing roller 34 has a five-pole configuration.
When the developing sleeve 34a having a small diameter of about a sleeve diameter of Φ6 [mm] to Φ12 [mm] is used, since the developing sleeve 34a has a small diameter as in the comparative example 2, the arrangement interval of the magnets is small. Becomes narrower and it becomes easier to be affected by the lines of magnetic force generated by each magnet. That is, in order to obtain the intended magnetic flux density distribution, it is necessary to arrange the magnets with high accuracy, and it becomes difficult to form the intended magnetic flux density distribution.

図1及び図8に示す実施例1の現像装置3のように3極構成の磁石配置にすると、図11に示した5極構成の磁石配置と比べ磁石間の距離が離れているため、互いの磁石が発生する磁力線が他の磁石に与える影響が少なくなるため、形成できる磁束密度分布の自由度は高くなる。
つまり、スリーブ径Φ6[mm]〜Φ12[mm]程度の小径の現像スリーブ34aにおいては、3極構成の場合であっても、互いの磁極間が十分に近いため、現像剤32の搬送を良好に行うことができ、さらに、磁束密度分布形成の自由度が高くなるため、現像ローラ34は5極構成よりも3極構成の方が望ましい。
When the arrangement of the three-pole magnets is used as in the developing device 3 of Example 1 shown in FIGS. 1 and 8, the distance between the magnets is larger than that of the five-pole magnet arrangement shown in FIG. Since the influence of the magnetic field lines generated by the magnets on other magnets is reduced, the degree of freedom of the magnetic flux density distribution that can be formed is increased.
That is, in the developing sleeve 34a having a small diameter of about Φ6 [mm] to Φ12 [mm], the developer 32 is transported well because the magnetic poles are sufficiently close to each other even in a three-pole configuration. Further, since the degree of freedom in forming the magnetic flux density distribution is increased, the developing roller 34 is preferably a three-pole configuration rather than a five-pole configuration.

キャリアに働く磁気力F[N]は、磁束密度をB[T]、真空の透磁率をμ[H/m]、キャリアの比透磁率をμ、キャリアの粒径をa[m]とすると、以下の数1で表すことができる。

Figure 0005517092
以下のグラフは一例として、キャリアの粒径を35[μm]、キャリアの比透磁率を8としたときの磁気力をプロットしたものである。 The magnetic force F [N] acting on the carrier is as follows: the magnetic flux density is B [T], the vacuum permeability is μ 0 [H / m], the carrier's relative permeability is μ, and the carrier particle size is a [m]. Then, it can be expressed by the following formula 1.
Figure 0005517092
As an example, the following graph plots the magnetic force when the particle diameter of the carrier is 35 [μm] and the relative permeability of the carrier is 8.

図12は、図8で示した3極構成の現像装置3と図11で示した5極構成の現像装置3とで現像スリーブ34a表面上の剤離れ部46近傍の位置における法線方向磁気力を比較したグラフである。図12中の「○」で示すものが3極構成の場合のプロットであり、「×」で示すものが5極構成のプロットである。なお、図12に示すプロットは実測した結果である。
なお、図12のグラフで、法線方向磁気力の値が0[N]に近いほど現像スリーブ34aの表面に磁気的に現像剤32をひきつける力が無くなるので、現像スリーブ34aの表面の現像剤32は重力によって現像スリーブ34aから離脱する。一方、法線方向磁気力の値が図12のグラフでマイナス側に大きいほど現像スリーブ34aの表面に磁気的に現像剤32をひきつける力が大きくなり、現像剤32が現像スリーブ34aの表面から離れ難くなり、剤離れ性が悪化する。
図12の横軸の角度は図8で示すように回転中心34pから水平方向に感光体1は逆方向に引いた線である水平軸34hと現像スリーブ34aの表面とが交わる位置の角度を0[°]として、この位置から図8中の矢印D方向の角度をプラス方向としたものである。なお、本実施形態において、特に説明がない限り「角度」という場合は、現像スリーブ34a表面上のある位置と回転中心34pとを結んだ直線と回転中心34pを通る水平軸とによって形成される中心角の角度である。
また、図12で示すグラフの縦軸である法線方向磁気力がプラス側のときが法線磁気反発力になり、マイナス側のときが法線磁気吸引力となる。つまりマイナス側に法線方向磁気力が大きい方が、現像スリーブ34aの表面から現像剤32が離れ難く、かつ、現像スリーブ34aの表面と現像剤32との間に働く摩擦力が大きくなり、剤離れ部46でも現像スリーブ34aの表面の磁気力が法線磁気吸引力となって場合は、現像剤32が現像スリーブ34aの表面から離れず、連れ回りなどの不具合を引き起こすため望ましくない。
12 shows a normal magnetic force at a position in the vicinity of the agent separating portion 46 on the surface of the developing sleeve 34a in the three-pole developing device 3 shown in FIG. 8 and the five-pole developing device 3 shown in FIG. It is the graph which compared. In FIG. 12, what is indicated by “◯” is a plot in the case of a three-pole configuration, and what is indicated by “x” is a plot of a five-pole configuration. In addition, the plot shown in FIG. 12 is a result of actual measurement.
In the graph of FIG. 12, the closer the normal magnetic force value is to 0 [N], the more the magnetic force attracting the developer 32 to the surface of the developing sleeve 34a is eliminated, so the developer on the surface of the developing sleeve 34a. 32 is separated from the developing sleeve 34a by gravity. On the other hand, as the value of the normal direction magnetic force increases in the negative direction in the graph of FIG. It becomes difficult and the drug releasability deteriorates.
As shown in FIG. 8, the angle of the horizontal axis in FIG. 12 is the angle at the position where the horizontal axis 34h, which is a line drawn from the rotation center 34p in the horizontal direction in the reverse direction, and the surface of the developing sleeve 34a intersects. As [°], the angle in the direction of arrow D in FIG. In this embodiment, unless otherwise specified, the term “angle” refers to a center formed by a straight line connecting a certain position on the surface of the developing sleeve 34a and the rotation center 34p and a horizontal axis passing through the rotation center 34p. The angle of the angle.
Further, when the normal magnetic force, which is the vertical axis of the graph shown in FIG. 12, is positive, the normal magnetic repulsive force is obtained, and when the normal magnetic force is negative, the normal magnetic attractive force is obtained. In other words, the larger the normal magnetic force on the minus side, the more difficult the developer 32 is to be separated from the surface of the developing sleeve 34a, and the frictional force acting between the surface of the developing sleeve 34a and the developer 32 is increased. If the magnetic force on the surface of the developing sleeve 34a becomes a normal magnetic attraction force even in the separated portion 46, the developer 32 is not separated from the surface of the developing sleeve 34a, and this causes an inconvenience such as rotation.

図1、図8及び図11に示した構成の現像装置3では、剤離れ部46が−40[°]〜0[°]の間となるように設定している。スリーブ径Φ10[mm]の現像スリーブ34aを用いて、図11の比較例2の現像装置3のように、5極構成の現像ローラ34を作成して検証を行ったところ、5極構成の現像ローラ34には剤離れ部46近傍の法線方向磁気力FrがおおよそFr≦−1×10−10[N]となっており、現像スリーブ34aから現像剤32が離れない連れ回りが発生した。
このときのキャリアの磁化は30〜120[emu/g]、キャリアの粒径は20〜80[μm]、キャリアの密度は3〜8[g/cm]の範囲である。
In the developing device 3 configured as shown in FIGS. 1, 8, and 11, the agent separation portion 46 is set to be between −40 [°] and 0 [°]. Using a developing sleeve 34a having a sleeve diameter of Φ10 [mm], a five-pole developing roller 34 was created and verified as in the developing device 3 of Comparative Example 2 in FIG. The normal magnetic force Fr in the normal direction in the vicinity of the agent separating portion 46 is approximately Fr ≦ −1 × 10 −10 [N] on the roller 34, and the developer 32 is not separated from the developing sleeve 34 a.
At this time, the magnetization of the carrier is in the range of 30 to 120 [emu / g], the particle size of the carrier is in the range of 20 to 80 [μm], and the density of the carrier is in the range of 3 to 8 [g / cm 3 ].

通常、5極構成の現像装置3における現像スリーブ34a上からの剤離れは、剤離れ部46に法線方向磁気反発力を発生し、磁気反発力を利用して剤離れを行うことが可能である。しかし、スリーブ径Φ6[mm]〜Φ12[mm]程度の小径の現像スリーブ34aを使用した場合においては、互いの磁石間の間隔が非常に狭くなり、互いの磁石が発生する磁力線の影響を非常に受けやすくなるため、狙い通りの法線方向磁気反発力を発生することが困難になる。
〔汲み上げ部と剤離れについて〕
Normally, the agent separation from the developing sleeve 34a in the five-pole developing device 3 can generate a normal direction magnetic repulsive force in the agent separating portion 46, and can be separated using the magnetic repulsive force. is there. However, in the case where the developing sleeve 34a having a small diameter of the sleeve diameter of Φ6 [mm] to Φ12 [mm] is used, the interval between the magnets becomes very narrow, and the influence of the magnetic lines generated by the magnets is extremely small. Therefore, it becomes difficult to generate a normal direction magnetic repulsive force as intended.
[About pumping part and separation of agent]

3極構成の現像装置3では、汲み上げ部47の磁束密度を低減することによって剤離れ部46での剤離れ性が向上する。実施例1の現像装置3で実験を行ったところ現像前磁極であるN2極の法線磁束密度ピーク位置である現像前磁極中心M1での法線方向の磁束密度(N2極の法線方向の磁束密度のピーク値)が30[mT]以下となるように構成することで良好な剤離れ性を得ることができた。
現像後磁極であるN1極から出た磁力線の一部は現像磁極であるS1極へと流れ込み、残りの磁力線は、剤離れ部46近傍を通過して再びN1極へと戻る。同じように、現像前磁極であるN2極から出た磁力線の一部は現像磁極であるS1極へと流れ込み、残りの磁力線は、剤離れ部46近傍を通過して再びN2極へと戻る。
剤離れ部46近傍の磁気力ベクトルは、現像後磁極であるN1極から出て再びN1極に戻る磁力線と、現像前磁極であるN2極から出て再びN2極に戻る磁力線のバランスにより決まる。このとき、現像前磁極であるN2極の磁束密度を低減すれば、相対的にN2極から現像磁極であるS1極へ流れ込む磁力線が増え、剤離れ部46近傍を通過する磁力線の数を減らすことができるため、結果として、剤離れ部46での法線方向磁気吸引力を低減することが可能となる。
In the developing device 3 having the three-pole configuration, the agent separating property at the agent separating unit 46 is improved by reducing the magnetic flux density of the pumping unit 47. When the experiment was performed with the developing device 3 of Example 1, the magnetic flux density in the normal direction at the magnetic flux center M1 before development which is the normal magnetic flux density peak position of the N2 pole which is the magnetic pole before development (in the normal direction of the N2 pole). A good agent releasability could be obtained by configuring the magnetic flux density so that the peak value of the magnetic flux density was 30 [mT] or less.
A part of the magnetic force lines coming out from the N1 pole that is the magnetic pole after development flows into the S1 pole that is the developing magnetic pole, and the remaining magnetic field lines pass through the vicinity of the agent separation part 46 and return to the N1 pole again. Similarly, a part of the magnetic field lines coming out from the N2 pole as the pre-development magnetic pole flows into the S1 pole as the development magnetic pole, and the remaining magnetic field lines pass through the vicinity of the agent separation part 46 and return to the N2 pole again.
The magnetic force vector in the vicinity of the agent separating portion 46 is determined by the balance between the magnetic force lines that exit from the N1 pole that is the post-development magnetic pole and return to the N1 pole, and the magnetic lines that exit from the N2 pole that is the pre-development magnetic pole and return to the N2 pole. At this time, if the magnetic flux density of the N2 pole that is the pre-development magnetic pole is reduced, the magnetic field lines that flow relatively from the N2 pole to the S1 pole that is the development magnetic pole increase, and the number of magnetic field lines that pass near the agent separation portion 46 is reduced. Therefore, as a result, it is possible to reduce the normal direction magnetic attractive force at the agent separating portion 46.

図13は、図1及び図8に示した実施例1の現像装置3で、現像前磁極であるN2極の法線方向の磁束密度のピーク値が30[mT]となるように設定した場合と60[mT]となるように設定にした場合とにおいて、剤離れ部46近傍の各位置での法線方向磁気吸引力を比較したグラフである。また、図13に示すグラフは実測した結果である。なお、実施例1の現像装置3では、図8中の矢印D方向の角度で−40[°]〜0[°]の間を剤離れ部46に設定している。そして、図13に示すように、N2極の法線方向の磁束密度のピーク値を半分にすることで、剤離れ部46での法線方向磁気吸引力をほぼ0に低減することができ、良好な剤離れ性を得ることができた。
〔現像極及び剤離れ極の磁束密度の大きさと剤離れとについて〕
FIG. 13 shows a case in which the peak value of the magnetic flux density in the normal direction of the N2 pole, which is the magnetic pole before development, is set to 30 [mT] in the developing device 3 of Example 1 shown in FIGS. 6 is a graph comparing the normal-direction magnetic attractive force at each position in the vicinity of the agent separation portion 46 in the case where the setting is made to be 60 [mT]. Moreover, the graph shown in FIG. 13 is a result of actual measurement. In the developing device 3 of Example 1, the agent separation portion 46 is set between -40 [°] and 0 [°] in the direction of the arrow D in FIG. And, as shown in FIG. 13, by halving the peak value of the magnetic flux density in the normal direction of the N2 pole, the normal direction magnetic attractive force at the agent separating portion 46 can be reduced to almost zero, Good agent releasability could be obtained.
[Magnitude of magnetic flux density and developer separation at development electrode and agent separation electrode]

現像磁極であるS1極の法線方向の磁束密度のピーク値をBr、現像後磁極であるN1極の法線方向の磁束密度のピーク値をBr、現像前磁極であるN2極の法線方向の磁束密度のピーク値をBrとしたとき、Br>Brという関係を満たすように構成することで剤離れ部46の法線方向磁気吸引力を低減することできる。
また、図14は、後述する図26に示した実施例2の現像装置3で、BrとBrとを略同じ値とした場合と、Br>Brの関係を満たした場合とで、剤離れ部46近傍の法線方向磁気吸引力を比較した結果を示すグラフである。また図14に示すグラフは実測した結果である。なお、実施例1の現像装置3では、図8中の水平軸34hを0[°]とした場合の矢印D方向の角度で−20[°]〜50[°]の間を剤離れ部46に設定している。
現像後磁極であるN1極から出た磁力線の一部は現像磁極であるS1極へと流れ込み、残りの磁力線は、剤離れ部46近傍を通過して再びN1極へと戻る。このとき、N1極の法線方向の磁束密度のピーク値をS1極の法線方向の磁束密度のピーク値よりも低減することで、現像後磁極であるN1から現像磁極であるS1極へと流れ込む磁力線の量が多くなり、相対的に現像後磁極であるN1極から剤離れ部46近傍を通過する磁力線の数を減らすことができるため、結果として剤離れ部46の法線磁気吸引力を低減することが可能となる。
なお、上述の記載より、Br1>Br2、Br1>Br3の関係が満たされることで剤離れ部46の法線方向磁気吸引力をより低減させることができることが理解できる。
ついで、Br2と、Br3の関係について述べる。
ここで、現像後磁極のN1極には現像に利用された後の現像剤を搬送する機能が必要である。また、現像領域Aにおいて、感光体1に付着したキャリアを再度現像スリーブ34aに吸着させる機能をもたせている。
よって、Br2には現像後の現像剤搬送能力や、キャリア吸着力をもつだけの大きさが必要となってくる。
Br3、Br2の磁力に関しても現像スリーブ34aの表面上における磁力のバランスを保つためにはいずれかを大きくする場合には他方を小さくする必要がある。
これは、両方の磁力を大きくしてしまうと、それだけ磁力が大きくなるため、剤離れに不利となる。よって、本実施例では、Br2に上述した機能を持たせるためにBr2>Br3の関係を持たせている。
つまりBr1>Br2>Br3となる。
The peak value of the magnetic flux density in the normal direction of the S1 pole that is the development magnetic pole is Br 1 , the peak value of the magnetic flux density in the normal direction of the N1 pole that is the magnetic pole after development is Br 2 , and the method of the N2 pole that is the magnetic pole before development. When the peak value of the magnetic flux density in the linear direction is Br 3 , the normal direction magnetic attractive force of the agent separating portion 46 can be reduced by satisfying the relationship of Br 1 > Br 2 .
FIG. 14 shows a case where Br 1 and Br 2 are set to substantially the same value and a case where the relationship of Br 1 > Br 2 is satisfied in the developing device 3 of Example 2 shown in FIG. 26 described later. It is a graph which shows the result of having compared the normal direction magnetic attraction force of the agent separation part 46 vicinity. Further, the graph shown in FIG. 14 is a result of actual measurement. In the developing device 3 of the first embodiment, the agent separation portion 46 is between -20 [°] and 50 [°] in the direction of arrow D when the horizontal axis 34h in FIG. 8 is 0 [°]. Is set.
A part of the magnetic force lines coming out from the N1 pole that is the magnetic pole after development flows into the S1 pole that is the developing magnetic pole, and the remaining magnetic field lines pass through the vicinity of the agent separation part 46 and return to the N1 pole again. At this time, by reducing the peak value of the magnetic flux density in the normal direction of the N1 pole from the peak value of the magnetic flux density in the normal direction of the S1 pole, the post-development magnetic pole N1 is changed to the development magnetic pole S1 pole. The amount of magnetic lines of force that flow increases, and the number of magnetic lines of force that pass through the vicinity of the agent separation part 46 from the N1 pole, which is the post-development magnetic pole, can be reduced. As a result, the normal magnetic attraction force of the agent separation part 46 is reduced. It becomes possible to reduce.
In addition, it can be understood from the above description that the normal-direction magnetic attractive force of the agent separating portion 46 can be further reduced by satisfying the relationship of Br1> Br2 and Br1> Br3.
Next, the relationship between Br2 and Br3 will be described.
Here, the N1 pole of the post-development magnetic pole needs a function of transporting the developer after being used for development. Further, in the developing area A, a function of adsorbing the carrier adhering to the photosensitive member 1 to the developing sleeve 34a again is provided.
Therefore, Br2 needs to be large enough to have a developer transport capability after development and a carrier adsorption force.
Regarding the magnetic force of Br3 and Br2, in order to maintain the balance of the magnetic force on the surface of the developing sleeve 34a, it is necessary to decrease the other when increasing either one.
If both magnetic forces are increased, the magnetic force increases accordingly, which is disadvantageous for the agent separation. Therefore, in the present embodiment, the relationship of Br2> Br3 is given in order to give Br2 the above-described function.
That is, Br1>Br2> Br3.

次に、現像スリーブ上の現像剤を保持し得る強さの磁界を形成する磁極が、仮に1極である場合について説明する。
図15は、1極の場合で、磁極の条件が異なる3つの例について、法線方向磁束密度ピーク位置を180[°]としたときの現像スリーブ上の各位置の法線方向磁束密度分布を示すグラフである。図15中のdDEG(dDEG1及びdDEG2)は、現像スリーブ上の法線方向磁束密度が0[mT]となる周方向の2つの位置と現像スリーブの回転中心とを直線で結んで形成される中心角の開き角度のうち、法線方向磁束密度ピーク位置を含む領域の角度である。図15の条件1〜3で示す磁極の条件を表1に示す。
Next, a description will be given of a case where the magnetic pole forming the magnetic field having a strength capable of holding the developer on the developing sleeve is one pole.
FIG. 15 shows the normal direction magnetic flux density distribution at each position on the developing sleeve when the normal direction magnetic flux density peak position is 180 ° for three examples with different magnetic pole conditions. It is a graph to show. The dDEG (dDEG1 and dDEG2) in FIG. 15 is a center formed by connecting two circumferential positions where the normal direction magnetic flux density on the developing sleeve is 0 [mT] and the rotation center of the developing sleeve by a straight line. It is an angle of a region including the normal direction magnetic flux density peak position among the opening angles of the corners. Table 1 shows the magnetic pole conditions indicated by Conditions 1 to 3 in FIG.

Figure 0005517092
Figure 0005517092

図15及び表1におけるΔZ(60)は、現像スリーブの周面上の60[°]の位置における法線方向磁束密度の値である。図15に示すように、何れの条件においても、法線方向磁束密度ピーク位置の近傍では磁束の変動が大きいが、現像スリーブの周面上の60[°]の位置近傍で磁束の変動が落ち着いている。また、現像スリーブの周面上の60[°]の位置は、図15に示すグラフで正になっている磁束密度の平均の値となる磁束密度を示すおおよその位置をとったものである。   In FIG. 15 and Table 1, ΔZ (60) is a value of the normal direction magnetic flux density at a position of 60 ° on the peripheral surface of the developing sleeve. As shown in FIG. 15, under any condition, the fluctuation of the magnetic flux is large in the vicinity of the normal direction magnetic flux density peak position, but the fluctuation of the magnetic flux is settled in the vicinity of the position of 60 [°] on the peripheral surface of the developing sleeve. ing. Further, the position of 60 [°] on the circumferential surface of the developing sleeve is an approximate position showing the magnetic flux density that is an average value of the magnetic flux density that is positive in the graph shown in FIG.

1極構成の場合、法線方向磁束密度ピーク位置における極性をN極とした場合(図15中のマイナス方向)、ピーク位置と同極性の磁場となる領域(図15中のdDEG1及びdDEG2を形成する領域)以外の現像スリーブの周面上には反対極であるS極(図15中のプラス方向)の磁場が形成される。
このとき、現像スリーブの周面上のN極となる領域の法線方向磁束密度を積算した値と、S極となる領域の法線方向磁束密度を積算した値とはほぼ同じ値となる。
ピーク位置と同極性となる領域の法線方向磁束密度を積算した値は、その磁極の磁束密度のピーク値Brと、半値幅θhとの積の値で近似表現できる。以下、ピーク値Brと半値幅θhとの積で求まる値を磁束密度積算値Xとする。ここで、半値幅θhとは、一つの磁極によって発生される磁界での現像スリーブの表面上の法線方向の磁束密度がその磁極の磁束密度のピーク値Brの半分となる現像スリーブ表面上の2つの位置と現像スリーブの回転中心とを直線で結んで形成される中心角の開き角度のうち、法線方向磁束密度ピーク位置を含む領域の角度である。
In the case of a single pole configuration, when the polarity at the normal magnetic flux density peak position is N pole (negative direction in FIG. 15), regions (dDEG1 and dDEG2 in FIG. On the peripheral surface of the developing sleeve other than the area to be developed, a magnetic field of the S pole (positive direction in FIG. 15), which is the opposite pole, is formed.
At this time, the value obtained by integrating the normal direction magnetic flux density of the N pole region on the peripheral surface of the developing sleeve is substantially the same as the value obtained by integrating the normal direction magnetic flux density of the S pole region.
The value obtained by integrating the normal direction magnetic flux density in the region having the same polarity as the peak position can be approximated by the product of the peak value Br of the magnetic flux density of the magnetic pole and the half width θh. Hereinafter, a value obtained by the product of the peak value Br and the half width θh is referred to as a magnetic flux density integrated value X. Here, the full width at half maximum θh means that the magnetic flux density in the normal direction on the surface of the developing sleeve in the magnetic field generated by one magnetic pole is half the peak value Br of the magnetic flux density of the magnetic pole. Of the opening angle of the central angle formed by connecting the two positions and the rotation center of the developing sleeve with a straight line, this is the angle of the region including the normal direction magnetic flux density peak position.

また、ピーク位置と同極性の磁場となるの法線方向磁束密度を積算した値と、反対極となる領域の法線方向磁束密度を積算した値とはほぼ同等の値となるため、反対極の法線方向磁束密度の平均値は、磁束密度積算値Xを、反対極を構成する領域の中心角の開き角度(360−dDEG)で割ったものとほぼ等しい値となる。
また、表1に示すように、何れの条件においても「X値/(360−dDEG)」の値はΔZ(60)と同等の値となっており、ピーク位置と異極性となる領域の法線方向磁束密度を積算した値がピーク値Brと半値幅θhとの積の値で近似表現することが妥当であることが分かる。
In addition, the value obtained by integrating the normal direction magnetic flux density of the magnetic field having the same polarity as the peak position is almost equal to the value obtained by integrating the normal direction magnetic flux density of the region serving as the opposite pole. The average value of the normal direction magnetic flux density is substantially equal to the value obtained by dividing the integrated magnetic flux density X by the opening angle (360-dDEG) of the central angle of the region constituting the opposite pole.
Further, as shown in Table 1, under any condition, the value of “X value / (360−dDEG)” is a value equivalent to ΔZ (60), and is a method of a region having a polarity different from that of the peak position. It can be seen that it is appropriate to approximate the value obtained by integrating the linear magnetic flux density with the product of the peak value Br and the half-value width θh.

表1に示すように、条件1の磁極は、ピーク値が−23[mT]、半値幅が30.5[°]である。そして、これらの積であるX値は、640.5となり、反対極の法線方向磁束密度の平均値は、2.1[mT]となる。条件2では、同様にX値は1313.5となり、反対極の法線方向磁束密度の平均値は、4.1[mT]となる。条件2は条件1に対して、X値が約2.05倍、反対極の法線方向磁束密度の平均値が約1.95倍となっている。このように、dDEGの値が同じである条件1と条件2では、反対極の法線方向磁束密度の平均値の大きさは、X値に略比例している。またdDEGが異なる条件である条件3においても、同様の関係が示されている。   As shown in Table 1, the magnetic pole of Condition 1 has a peak value of −23 [mT] and a half-value width of 30.5 [°]. The X value, which is the product of these, is 640.5, and the average value of the normal direction magnetic flux density of the opposite pole is 2.1 [mT]. In condition 2, similarly, the X value is 1313.5, and the average value of the normal direction magnetic flux density of the opposite pole is 4.1 [mT]. Condition 2 has an X value of about 2.05 times that of Condition 1 and an average value of the normal magnetic flux density of the opposite pole of about 1.95 times. Thus, in condition 1 and condition 2 in which the dDEG value is the same, the average magnitude of the normal magnetic flux density of the opposite pole is substantially proportional to the X value. A similar relationship is also shown in condition 3 where dDEG is different.

上述した説明では、1極構成の場合について説明したが、複数極構成の場合でも、基本的には、1極構成の場合の法線方向磁束密度分布を足し合わせた考えでできる。厳密には、現像スリーブの内部での磁気回路が形成され、表面に磁場が漏れない場合があるため、単純ではないが、本実施例のように磁極の数がすくない場合は、このような1極の構成を足し合わせることで、およその法線方向磁束密度分布のグラフを作成できる。すなわち、現像ローラの周面上において、極性がS極となる法線方向磁束密度の積算値と、極性がN極となる法線方向磁束密度の積算値とは略同一の値となる。   In the above description, the case of the single-pole configuration has been described. However, even in the case of the multi-pole configuration, the normal direction magnetic flux density distribution in the case of the single-pole configuration can be basically added. Strictly speaking, a magnetic circuit is formed inside the developing sleeve, and the magnetic field may not leak to the surface. Therefore, it is not simple, but in the case where the number of magnetic poles is small as in this embodiment, such a 1 By adding the pole configurations, an approximate normal direction magnetic flux density distribution graph can be created. That is, on the peripheral surface of the developing roller, the integrated value of the normal direction magnetic flux density having the polarity of the S pole and the integrated value of the normal direction magnetic flux density having the polarity of the N pole are substantially the same value.

また、図15の条件2及び条件3のように、磁束密度のピーク値が大きいと、現像スリーブの周面上で法線方向磁束密度が反転する位置近傍で生じるの反対極の磁束密度のピーク値も大きくなる。このような反対極の磁束密度のピーク値も考慮した、現像スリーブ34a周りの法線方向磁束密度分布の一例を図16に示す。また、図16に示す現像スリーブ34a内に配置された各磁極のピーク値、半値幅、及びXの値を表2に示す。

Figure 0005517092
Further, as in the condition 2 and the condition 3 in FIG. 15, when the peak value of the magnetic flux density is large, the peak of the opposite pole magnetic flux density generated near the position where the normal direction magnetic flux density is reversed on the peripheral surface of the developing sleeve. The value also increases. FIG. 16 shows an example of a normal direction magnetic flux density distribution around the developing sleeve 34a in consideration of the peak value of the magnetic flux density of the opposite pole. Table 2 shows the peak value, half-value width, and X value of each magnetic pole disposed in the developing sleeve 34a shown in FIG.
Figure 0005517092

本実施例ではN1極の磁束密度のピーク値が大きく設定されているため、図16に示すように、N1極に対して現像スリーブ34aの表面移動方向下流側にN1極の反対極であるS2極が形成される。N1極に対して現像スリーブ34aの表面移動方向上流側にもN1極の反対極であるS極が形成されるが、この反対極よりも磁束密度のピーク値が十分に大きいS1極があるため、N1極の上流側の反対極の法線方向磁束密度分布は、S1極の法線方向磁束密度分布に含まれた状態となる。また、S1極の磁束密度のピーク値も大きく設定されているが、その反対極よりも磁束密度のピーク値が十分に大きいN1極及びN2極で挟まれているため、S1極の反対極の法線方向磁束密度分布は、N1極及びN2極の法線方向磁束密度分布に含まれた状態となる。   In this embodiment, since the peak value of the magnetic flux density of the N1 pole is set large, as shown in FIG. 16, S2 which is the opposite pole of the N1 pole on the downstream side in the surface movement direction of the developing sleeve 34a with respect to the N1 pole. A pole is formed. An S pole opposite to the N1 pole is also formed on the upstream side of the surface movement direction of the developing sleeve 34a with respect to the N1 pole. However, there is an S1 pole having a sufficiently larger peak value of magnetic flux density than the opposite pole. The normal direction magnetic flux density distribution of the opposite pole upstream of the N1 pole is included in the normal direction magnetic flux density distribution of the S1 pole. Also, the peak value of the magnetic flux density of the S1 pole is set to be large, but since the peak value of the magnetic flux density is sufficiently larger than the opposite pole, it is sandwiched between the N1 pole and the N2 pole. The normal direction magnetic flux density distribution is included in the normal direction magnetic flux density distribution of the N1 pole and the N2 pole.

ここで、図16に示すように、N1極に対して現像スリーブ34aの表面移動方向下流側にN1極の反対極であるS2極が形成されると、N1極と対向する位置を通過した現像剤32に対して、S2極が搬送磁極として作用し、剤離れ性が低下するおそれがある。このため、S2極の作用を抑制する構成が求められる。
本実施例では、S2極の作用を抑制するため、S1極の磁束密度のピーク値と半値幅との積が、N1極の磁束密度のピーク値と半値幅との積にN2の磁束密度のピーク値と半値幅との積を加えた値よりも大きくなるように設定することが望ましい。
以下、この設定について説明する。
Here, as shown in FIG. 16, when the S2 pole opposite to the N1 pole is formed on the downstream side in the surface movement direction of the developing sleeve 34a with respect to the N1 pole, the development that has passed through the position facing the N1 pole. With respect to the agent 32, the S2 pole acts as a transport magnetic pole, which may reduce the agent releasability. For this reason, the structure which suppresses the effect | action of S2 pole is calculated | required.
In this embodiment, in order to suppress the action of the S2 pole, the product of the peak value and the full width at half maximum of the magnetic flux density of the S1 pole is equal to It is desirable to set the value to be larger than a value obtained by adding the product of the peak value and the half value width.
Hereinafter, this setting will be described.

本実施例の現像磁極であるS1極の法線方向の磁束密度のピーク値をBr1、S1極の半値幅をθh、S1極の磁束密度積算値X1とする。また、同極性のN1極及びN2極のうち、法線方向の磁束密度のピーク値が高い方となり現像後磁極であるN1極の法線方向の磁束密度のピーク値をBr、N1極の半値幅をθh、N1極の磁束密度積算値X2とする。さらに、同極性のN1極及びN2極のうち、法線方向の磁束密度のピーク値が低い方となり現像前磁極であるN2極の法線方向の磁束密度のピーク値をBr、N2極の半値幅をθh、N2極の磁束密度積算値X3とする。 The peak value of the magnetic flux density in the normal direction of the S1 pole which is the developing magnetic pole of this embodiment is Br1, the half width of the S1 pole is θh 1 , and the integrated magnetic flux density X1 of the S1 pole. In addition, among the N1 pole and N2 pole of the same polarity, the peak value of the magnetic flux density in the normal direction is higher, and the peak value of the magnetic flux density in the normal direction of the N1 pole that is the post-development magnetic pole is set to Br 2 and N1 pole. The full width at half maximum is θh 2 and the integrated magnetic flux density X2 of the N1 pole. Further, of the N1 pole and N2 pole of the same polarity, the peak value of the magnetic flux density in the normal direction becomes the lower one, and the peak value of the magnetic flux density in the normal direction of the N2 pole that is the magnetic pole before development is set to the Br 3 and N2 poles. The full width at half maximum is θh 3 and the magnetic flux density integrated value X3 of the N2 pole.

このとき、Br>Br>Br、かつ、Br・θh>Br・θh+Br・θhの関係を満たす現像ローラ34であれば、図16中の領域εにおける法線方向磁束密度の平均値の極性は、X1−(X2+X3)の値で決まる。領域εは、現像後磁極としてのN1極に対して表面移動方向下流側の法線方向の磁束密度が0[mT]となる位置から、現像前磁極としてのN2極に対して表面移動方向上流側の法線方向の磁束密度が0[mT]となる位置までの領域である。X1−(X2+X3)の値が負であれば、図16中の領域εにおける極性はSとなる。
そして、領域εにおける表面移動方向下流側端部で、現像ローラの表面上の法線方向の磁極が反転し、極性がNに変化する。
At this time, if the developing roller 34 satisfies the relationship of Br 1 > Br 2 > Br 3 and Br 1 · θh 1 > Br 2 · θh 2 + Br 3 · θh 3 , the normal line in the region ε in FIG. The polarity of the average value of the directional magnetic flux density is determined by the value of X1- (X2 + X3). The region ε is upstream of the N2 pole as the pre-development magnetic pole in the surface movement direction from the position where the magnetic flux density in the normal direction downstream of the surface movement direction with respect to the N1 pole as the post-development magnetic pole is 0 [mT]. This is a region up to a position where the magnetic flux density in the normal direction on the side becomes 0 [mT]. If the value of X1- (X2 + X3) is negative, the polarity in the region ε in FIG.
Then, the magnetic pole in the normal direction on the surface of the developing roller is reversed at the downstream end in the surface movement direction in the region ε, and the polarity changes to N.

一方、X1−(X2+X3)の値が正であれば、図16中の領域εにおける極性はNとなる。すなわち、X1>X2+X3 を満たすことで、剤離れ磁極から汲み上げ磁極までの間の領域εの磁場の全体的な極性を、現像後磁極であるN1の異極(S)ではなく同極(N)に形成することができる。
剤離れ磁極から汲み上げ磁極までの間の磁場の極性を剤離れ磁極と同極性となるように構成することにより、現像領域Aを通過した現像剤32の現像スリーブ34aからの剤離れ性を高めることができる。
On the other hand, if the value of X1- (X2 + X3) is positive, the polarity in the region ε in FIG. That is, by satisfying X1> X2 + X3, the overall polarity of the magnetic field in the region ε from the agent separating magnetic pole to the pumping magnetic pole is the same polarity (N), not the different polarity (S) of N1 as the post-development magnetic pole. Can be formed.
By making the polarity of the magnetic field between the agent separating magnetic pole and the pumping magnetic pole the same as that of the agent separating magnetic pole, the agent separating property from the developing sleeve 34a of the developer 32 that has passed through the developing area A is improved. Can do.

図16中のN1のピーク値が高いため、S2極というS極の磁極が形成されるが、X1>X2+X3 を満たす構成により、S2極による現像ローラ表面上での磁束密度は小さくなり、S2極による極性がSとなる磁場が形成されても、現像スリーブ32aの表面移動方向下流側ですぐに、磁場の極性がN極に反転している。このため、S2極の作用を抑制することができ、N1極からN2極までの間の法線方向磁束密度の変化量をなだらかにすることが可能になり、現像領域Aを通過した現像剤32の現像スリーブ34aからの剤離れ性を高めることができる。
また、S2極によって形成される極性がSとなる磁場が、N極に変化する点は、主に、汲み上げ極であるN2極の半値幅で調整することができる。
〔剤離れ部の角度〕
Since the peak value of N1 in FIG. 16 is high, a magnetic pole of S pole called S2 pole is formed. However, by the configuration satisfying X1> X2 + X3, the magnetic flux density on the developing roller surface by S2 pole is reduced, and S2 pole Even when a magnetic field having a polarity of S is formed, the polarity of the magnetic field is reversed to the N pole immediately on the downstream side of the surface movement direction of the developing sleeve 32a. For this reason, the action of the S2 pole can be suppressed, the amount of change in the normal direction magnetic flux density between the N1 pole and the N2 pole can be made smooth, and the developer 32 that has passed through the development area A can be reduced. Therefore, it is possible to improve the agent detachability from the developing sleeve 34a.
Further, the point where the magnetic field formed by the S2 pole and having the polarity S changes to the N pole can be adjusted mainly by the half-value width of the N2 pole that is the pumping pole.
[Angle of the agent separation part]

実施例1の現像装置3のように現像スリーブ34aが反時計回り方向に回転する構成で、図7に示すように水平軸を0[°]としたときに、剤離れ角度と連れ回り量との関係は図17のグラフで示すようになった。図17のグラフでは縦軸が連れ回り量の変化を示している。
なお、剤離れ角度が変更する条件は2つあり、1つは現像ローラの磁気力が変更された場合であり、もう1つは循環搬送路38内の現像剤32の容量(嵩)が変動した場合である。本実施例では、現像ローラ34内に内包された磁石を固定する冶具を回転させることで擬似的に剤離れ角度を振るとともに、現像容器33内の現像剤の容量を振って擬似的に循環搬送路38内の現像剤の容量(嵩)を変動させて実際の剤離れ角度を測定し、図17に示すグラフのようなデータを取得した。
The developing sleeve 34a rotates counterclockwise as in the developing device 3 of the first embodiment, and when the horizontal axis is 0 [°] as shown in FIG. The relationship is as shown in the graph of FIG. In the graph of FIG. 17, the vertical axis indicates the change in the follow-up amount.
There are two conditions for changing the agent separation angle, one is when the magnetic force of the developing roller is changed, and the other is that the capacity (bulk) of the developer 32 in the circulation conveyance path 38 varies. This is the case. In this embodiment, by rotating a jig for fixing a magnet contained in the developing roller 34, the pseudo agent separation angle is swung, and the developer capacity in the developing container 33 is swung to simulate the cyclic conveyance. The actual agent separation angle was measured while varying the developer volume (bulk) in the path 38, and data such as the graph shown in FIG. 17 was obtained.

図18(a)は、現像ローラ34として剤離れ部46近傍の磁気力のみを異ならせた2種類の現像ローラを用いて剤離れ部46付近の法線方向磁気力を比較したグラフであり、図18(b)は、接線方向磁気力を比較したグラフである。なお、図18(a)、(b)に示すグラフは実測した結果である。
図18(a)、(b)で示されるような2種類の現像ローラを用いて画像出力を行ったところ、図18中の「〇」で示す現像ローラを用いて画像を出力した際には連れ回り画像が発生せず、「×」で示す現像ローラを用いて画像を出力した際には連れ回り画像が発生した。
図18(a)に示すように剤離れ部46付近での磁気吸引力を比較すると図18(a)中の「〇」の現像ローラでは−30[°]〜80[°]付近の法線方向磁気吸引力がほぼ0になっており、図18(a)中の「×」の現像ローラでは10[°]〜110[°]付近の法線方向磁気吸引力がほぼ0になっている。
本実施例では、−20[°]〜50[°]の間を剤離れ部46と設定しているが、剤離れ部46近傍の法線方向磁気吸引力は図18(a)で示されたどちらの現像ローラにおいてもほぼ0となっているが、「〇」で示す現像ローラは連れ回り画像が発生せず、「×」で示す現像ローラは連れ回り画像が発生しており、剤離れ性に差異があることがわかった。
このとき、剤離れ部46近傍での法線方向磁気吸引力はほぼ0で接線方向磁気力が0になる領域が異なる現像ローラを用いて、剤離れ角度と接線方向磁気力の0になる領域の関係を調べると、図19で示すグラフのようになった。図19の横軸の接線磁気力が0になる位置の角度とは、接線方向磁気力の0になる領域における現像スリーブ34aの回転方向上流側端部となる現像スリーブ34a表面の位置の角度である。図19のグラフより、剤離れ部46付近の現像剤32は、接線方向磁気力が0になる位置の近傍まで搬送されていることがわかった。
なお、ここでの剤離れ角度とは、観察を行ったときに、現像スリーブ34a上で現像剤32が離脱し始める位置の角度である。
FIG. 18A is a graph comparing the normal direction magnetic force in the vicinity of the agent separating portion 46 using two types of developing rollers in which only the magnetic force in the vicinity of the agent separating portion 46 is different as the developing roller 34. FIG. 18B is a graph comparing tangential magnetic forces. The graphs shown in FIGS. 18A and 18B are actual measurement results.
When an image is output using two types of developing rollers as shown in FIGS. 18A and 18B, an image is output using the developing roller indicated by “◯” in FIG. No accompanying image was generated, and an accompanying image was generated when the image was output using the developing roller indicated by “x”.
As shown in FIG. 18A, when the magnetic attraction force in the vicinity of the agent separating portion 46 is compared, the normal line in the vicinity of −30 [°] to 80 [°] is obtained with the developing roller “◯” in FIG. The directional magnetic attraction force is almost zero, and the normal direction magnetic attraction force in the vicinity of 10 [°] to 110 [°] is almost zero in the developing roller “×” in FIG. .
In the present embodiment, the agent separation portion 46 is set between −20 [°] and 50 [°], but the normal magnetic attractive force in the vicinity of the agent separation portion 46 is shown in FIG. However, the developing roller indicated by “◯” does not generate a follow-up image, and the developing roller indicated by “×” generates a follow-up image. It was found that there was a difference in sex.
At this time, using a developing roller in which the normal magnetic attractive force in the vicinity of the agent separating portion 46 is almost 0 and the tangential magnetic force is 0, a region where the agent separating angle and the tangential magnetic force are 0 is used. As a result, the graph shown in FIG. 19 was obtained. The angle at which the tangential magnetic force on the horizontal axis in FIG. 19 is 0 is the position angle of the surface of the developing sleeve 34a that is the upstream end in the rotation direction of the developing sleeve 34a in the region where the tangential magnetic force is 0. is there. From the graph of FIG. 19, it was found that the developer 32 in the vicinity of the agent separation portion 46 is transported to the vicinity of the position where the tangential magnetic force becomes zero.
Here, the agent separation angle is an angle at a position where the developer 32 starts to be detached on the developing sleeve 34a when observation is performed.

また、上述のつれ回り画像とは、循環搬送路38中の現像剤32が現像スリーブ34aによって搬送されて引き起こされる画像の総称である。具体的には、例えば循環搬送路38中の現像剤32は基本的には現像に利用された後の現像剤であるため、トナー濃度が低い。よって、この状態の現像剤32が連れまわって、再び現像に利用されると画像が薄くなる。また、逆に、循環搬送路38中にトナーが補給された直後であったりした場合にはトナー濃度が濃い場合もあり、その場合には画像が濃くなるといった現象も生じる。このように、単に薄い画像か濃い画像かだけであると、つれ回りが原因なのかそれ以外の要因が存在するのかを判断することは困難である。しかし、つれ回り画像として特徴的なものは循環搬送路38中の現像剤32の状態が画像に反映されることに有り、例えば、循環搬送路38内に配置された循環スクリュ40のピッチと一致する濃度ムラ等が上述したような薄い画像、濃い画像中に現れることがあり、この現象はつれ回り特有の物と考えられる。なお、濃度の濃淡のみでは他の要因も考えられるが、循環搬送路38における環境が画像に現れることでつれ回りによる画像異常であることが強く推測されるものとなる。   Further, the above-described spinning image is a general term for images caused by the developer 32 in the circulation transport path 38 being transported by the developing sleeve 34a. Specifically, for example, since the developer 32 in the circulation conveyance path 38 is basically a developer after being used for development, the toner density is low. Therefore, when the developer 32 in this state is brought and used again for development, the image becomes light. Conversely, when the toner has just been replenished into the circulation conveyance path 38, the toner density may be high, and in such a case, the image may become dark. As described above, if the image is merely a thin image or a dark image, it is difficult to determine whether the cause of the rotation is caused or other factors exist. However, what is characteristic as the spinning image is that the state of the developer 32 in the circulation conveyance path 38 is reflected in the image, and for example, coincides with the pitch of the circulation screw 40 arranged in the circulation conveyance path 38. The density unevenness or the like that appears may appear in the above-mentioned thin image or dark image, and this phenomenon is considered to be a peculiar thing. Although other factors can be considered only by the density of the density, the environment in the circulation conveyance path 38 appears in the image, so that it is strongly estimated that the image is abnormal due to the rotation.

現像スリーブ34aが内包するマグネットローラ34bの磁石が発生する磁界は大きさと向きを持っており、この磁界によって作り出される磁気力も大きさと向きを持っている。
上述したように剤離れ部46では、法線方向磁気吸引力が小さくなるとともに、磁気力ベクトルが現像スリーブ34aの表面に対して垂直になる位置、つまりは、図19で示すように接線方向磁気力が0になる位置の近傍まで現像剤32が搬送されていることがわかった。
図20は、現像ローラ34の周り法線方向磁束密度分布と磁気力ベクトルとの位置関係を示す説明図である。
現像剤32は、現像スリーブ34aが内包するマグネットローラ34bの磁石が発生する磁気力ベクトルに沿って磁気的な力を受けるが、剤離れ部46では法線方向磁気吸引力も小さく、接線方向磁気力の向きが変化する領域48を乗り越えるための搬送力が現像剤に与えられないため、この磁気力ベクトルが変化する領域48までしか現像剤は搬送されないことになる。なお、ここでの接線方向磁気力の向きが変化する領域48は接線方向磁気力がほぼ0になる領域である。
The magnetic field generated by the magnet of the magnet roller 34b included in the developing sleeve 34a has a magnitude and direction, and the magnetic force generated by this magnetic field also has a magnitude and direction.
As described above, in the agent separation portion 46, the normal magnetic attracting force is reduced and the magnetic force vector is perpendicular to the surface of the developing sleeve 34a, that is, as shown in FIG. It was found that the developer 32 was transported to the vicinity of the position where the force becomes zero.
FIG. 20 is an explanatory diagram showing the positional relationship between the normal direction magnetic flux density distribution around the developing roller 34 and the magnetic force vector.
The developer 32 receives a magnetic force along the magnetic force vector generated by the magnet of the magnet roller 34b included in the developing sleeve 34a. However, the normal magnetic attracting force is small at the agent separating portion 46, and the tangential magnetic force is small. Therefore, the developer is not transported only to the region 48 where the magnetic force vector changes. Here, the region 48 where the direction of the tangential magnetic force changes is a region where the tangential magnetic force becomes almost zero.

図17に示すグラフは、上述の剤離れ角度が異なる現像ローラを用いて、剤離れ角度連れ回り量を測定した実験結果であるが、法線方向磁気吸引力が非常に小さい場合であっても、剤離れ角度が50[°]〜60[°]程度になると急激に連れ回りが悪化していることがわかる。
これは、単純に磁気力がまったくない状態であっても現像スリーブ34aの上部まで現像剤が存在した場合、現像剤32の自重によって現像スリーブ34aから受ける垂直抗力が増加し、現像スリーブ34aと現像スリーブ34a表面にある現像剤32の摩擦力が増加し、その結果、現像剤32を搬送する力も増加し、連れ回る現像剤32の量が増加するためである。
図17及び図19に示す結果から、接線方向磁気力が0になる領域(図20中の領域48)を、現像スリーブ34a上の位置で角度が50[°]以下となる位置に設けることにより、良好な剤離れ性を確保することが可能であることが確認された。
〔一方向循環方式〕
The graph shown in FIG. 17 is an experimental result of measuring the amount of rotation with the agent separation angle using the above-described developing rollers with different agent separation angles, but even when the normal magnetic attraction force is very small It can be seen that when the agent separation angle is about 50 [°] to 60 [°], the accompanying rotation rapidly deteriorates.
This is because, even when there is simply no magnetic force, when the developer is present up to the upper part of the developing sleeve 34a, the vertical drag received from the developing sleeve 34a due to the weight of the developer 32 increases, and the developing sleeve 34a and the developing sleeve 34a are developed. This is because the frictional force of the developer 32 on the surface of the sleeve 34a is increased, and as a result, the force for conveying the developer 32 is also increased, and the amount of the developer 32 to be accompanied increases.
From the results shown in FIGS. 17 and 19, by providing a region where the tangential magnetic force is zero (region 48 in FIG. 20) at a position where the angle is 50 [°] or less on the developing sleeve 34a. It was confirmed that it was possible to ensure good agent release properties.
[One-way circulation system]

図1に示す実施例1の現像装置3は、供給搬送路37から現像ローラ34の表面に供給されて現像領域Aを通過した現像剤32は供給搬送路37ではなく、循環搬送路38に受け渡されるいわゆる一方向循環方式の現像装置である。
ここで、供給搬送路37から現像ローラ34の表面に供給されて現像領域Aを通過した現像剤32が供給搬送路37に受け渡される非一方向循環方式の比較例3の現像装置について説明する。
In the developing device 3 of Embodiment 1 shown in FIG. 1, the developer 32 supplied to the surface of the developing roller 34 from the supply conveyance path 37 and passed through the developing area A is received by the circulation conveyance path 38 instead of the supply conveyance path 37. This is a so-called one-way circulation developing device.
Here, a developing device of a comparative example 3 of a non-unidirectional circulation method in which the developer 32 supplied to the surface of the developing roller 34 from the supply conveyance path 37 and passed through the development area A is transferred to the supply conveyance path 37 will be described. .

図21は、比較例3の現像装置3の概略説明図である。
比較例3の現像装置3は、実施例1の現像装置3と同様に仕切り板36における供給スクリュ39の搬送方向の上流側端部近傍の位置と下流側端部近傍の位置とに供給搬送路37と循環搬送路38とを連通する連通開口部を設け、循環スクリュ40が現像剤32を供給スクリュ39とは逆方向に搬送する構成である。このような構成により、現像容器33内の現像剤32を供給搬送路37と循環搬送路38との間で循環させる構成となっている。しかし、比較例3の現像装置3は、供給搬送路37から現像ローラ34の表面に供給されて現像領域Aを通過した現像剤32が受け渡される現像剤搬送路が、循環搬送路38ではなく供給搬送路37であるで実施例1の現像装置3とは異なる。
比較例3の現像装置3のように、非一方向循環方式の現像装置においては、現像領域Aを通過した後の現像スリーブ34a上の現像剤32を回収する現像剤搬送路と現像スリーブ34a上に現像剤を供給する現像剤搬送路が同じである。つまり、現像スリーブ34aから現像剤32を離脱させる剤離れ部46と現像剤搬送路から現像剤32を汲み上げる汲み上げ部47が同一の現像剤搬送路内にあるため、特に小径の現像スリーブ34aのように、剤離れ部46と汲み上げ部47とが近接する場合には、連れ回りや汲み上げ不良などの不具合を発生しやすくなる。
FIG. 21 is a schematic explanatory diagram of the developing device 3 of Comparative Example 3.
The developing device 3 of the comparative example 3 is similar to the developing device 3 of the first embodiment in that the supply conveyance path is located at a position near the upstream end in the conveyance direction of the supply screw 39 and a position near the downstream end of the partition plate 36. 37 is provided with a communication opening for communicating with the circulation conveyance path 38, and the circulation screw 40 conveys the developer 32 in the opposite direction to the supply screw 39. With such a configuration, the developer 32 in the developing container 33 is circulated between the supply conveyance path 37 and the circulation conveyance path 38. However, in the developing device 3 of Comparative Example 3, the developer conveyance path through which the developer 32 supplied from the supply conveyance path 37 to the surface of the developing roller 34 and passed through the development area A is not the circulation conveyance path 38. The supply transport path 37 is different from the developing device 3 of the first embodiment.
In the developing device of the non-unidirectional circulation type like the developing device 3 of the comparative example 3, the developer conveying path for collecting the developer 32 on the developing sleeve 34a after passing through the developing area A and the developing sleeve 34a. The developer conveyance path for supplying the developer is the same. That is, since the agent separating portion 46 for releasing the developer 32 from the developing sleeve 34a and the pumping portion 47 for pumping the developer 32 from the developer conveying path are in the same developer conveying path, the developing sleeve 34a is particularly small. In addition, when the agent separating part 46 and the pumping part 47 are close to each other, problems such as follow-up and pumping failure are likely to occur.

また、図21に示す比較例3のように、現像スリーブ34aの内のマグネットローラ34bの磁石が発生する磁気力によって現像剤32を現像スリーブ34aの表面に汲み上げる構成の場合、汲み上げ部47での磁気力が強ければ、現像剤32を安定して現像スリーブ34aへと供給することができる。しかし、汲み上げ部47に近接した位置にある剤離れ部46でも磁気力が強くなってしまい、剤離れ部46で磁気吸引力が大きくなり、連れ回りが発生しやすくなる。逆に、汲み上げ部47の磁気力を低減すれば、同時に剤離れ部46の磁気力も低減でき、連れ回りに対しては余裕度が向上するが、汲み上げ部47では、安定して現像剤32を汲み上げることができなくなってしまう。
つまり、剤離れ部46と汲み上げ部47との間隔を離し、互いの磁界同士が与える影響を小さくすることで、互いの機能を両立することが必要となる。
〔現像ローラとスクリュの位置について〕
Further, as in Comparative Example 3 shown in FIG. 21, when the developer 32 is pumped up to the surface of the developing sleeve 34a by the magnetic force generated by the magnet of the magnet roller 34b in the developing sleeve 34a, the pumping portion 47 If the magnetic force is strong, the developer 32 can be stably supplied to the developing sleeve 34a. However, the magnetic force is also increased at the agent separation portion 46 located in the vicinity of the pumping portion 47, and the magnetic attraction force is increased at the agent separation portion 46, so that accompanying rotation is likely to occur. On the contrary, if the magnetic force of the pumping portion 47 is reduced, the magnetic force of the agent separating portion 46 can be reduced at the same time, and the margin is improved with regard to the accompanying rotation. However, the pumping portion 47 stably supplies the developer 32. It can no longer be pumped up.
That is, it is necessary to make the functions compatible by separating the agent separating portion 46 and the pumping portion 47 from each other and reducing the influence of the mutual magnetic fields.
[Regarding the position of the developing roller and screw]

次に、現像スリーブ34aと循環スクリュ40との位置関係について説明する。
実施例1のように、一方向循環方式の現像装置3の場合、上述したように循環搬送路38における循環スクリュ40の搬送方向下流ほど現像剤の容量が増え、循環スクリュ40の最上端部まで現像剤32で埋まりやすくなる。
また、図17で示したように、現像スリーブ34aの上部まで現像剤32が存在すると連れ回りを誘発しやすくなるため望ましくない。そこで、循環スクリュ40の最上端部が現像スリーブ34a表面上の位置で角度が50[°]となる位置より低い位置となるように現像ローラ34と循環スクリュ40とを配置することが望ましい。より好ましくは0[°]より低い位置が良い。
Next, the positional relationship between the developing sleeve 34a and the circulation screw 40 will be described.
In the case of the one-way circulation type developing device 3 as in the first embodiment, as described above, the developer capacity increases toward the downstream of the circulation screw 40 in the conveyance direction of the circulation screw 40, and reaches the uppermost end of the circulation screw 40. It becomes easy to be filled with the developer 32.
In addition, as shown in FIG. 17, it is not desirable that the developer 32 is present up to the upper portion of the developing sleeve 34a because the accompanying rotation is likely to be induced. Therefore, it is desirable to arrange the developing roller 34 and the circulating screw 40 so that the uppermost end of the circulating screw 40 is located at a position on the surface of the developing sleeve 34a that is lower than the position where the angle is 50 [°]. A position lower than 0 [°] is more preferable.

図22は、供給搬送路37、循環搬送路38、及び、現像スリーブ34a表面上における回転軸方向の位置(横軸)に対するトナー濃度(縦軸)の変化を示すグラフである。図22(a)は、実施例1の現像装置3の場合のグラフであり、図22(b)は、比較例4の現像装置の場合のグラフである。なお、図22に示すグラフは、A3の用紙に全ベタ(単位面積当りのトナー付着量:0.45[g/cm])の作像条件で画像形成を行ったときの現像装置3内のトナー濃度を測定したものである。
ここでの比較例4の現像装置は、現像スリーブの回転軸方向に沿って現像剤を搬送する供給スクリュと、供給スクリュとは逆方向に現像剤を搬送する循環スクリュとを備え、供給スクリュが配置された供給搬送路と循環スクリュが配置された循環搬送路とで現像剤が循環する構成は実施例1の現像装置3と共通である。そして、比較例4の現像装置は、供給搬送路から現像スリーブ表面に供給された現像剤が現像領域を通過した後に供給搬送路に回収され、供給搬送路の現像剤搬送方向下流側端部に到達した現像剤のみが循環搬送路の搬送方向上流側端部に供給される点で実施例1の現像装置3とは構成が異なる。
また、図22中の「スリーブ上」のグラフは、剤規制部材35と対向する位置を通過直後の現像スリーブ34a表面上の現像剤を採取して、トナー濃度の測定を行ったグラフである。また、横軸の位置は、数値が大きいほど供給スクリュ39の搬送方向下流側で、循環スクリュ40の搬送方向上流側である。
実施例1の現像装置3では、図22(a)に示すようにスリーブ上のトナー濃度は供給スクリュ39の搬送方向のどの位置であってもほとんど変化していないことがわかる。一方、比較例4の現像装置では図22(b)に示すように供給スクリュの搬送方向下流側ほどスリーブ上のトナー濃度が低下していることがわかる。
FIG. 22 is a graph showing changes in toner density (vertical axis) with respect to the position (horizontal axis) in the rotation axis direction on the surface of the supply conveyance path 37, the circulation conveyance path 38, and the developing sleeve 34a. 22A is a graph in the case of the developing device 3 of Example 1, and FIG. 22B is a graph in the case of the developing device of Comparative Example 4. Note that the graph shown in FIG. 22 shows the inside of the developing device 3 when the image is formed on the A3 sheet under the image forming condition of all solids (toner adhesion amount per unit area: 0.45 [g / cm 2 ]). The toner density was measured.
The developing device of Comparative Example 4 here includes a supply screw that conveys the developer along the rotation axis direction of the developing sleeve, and a circulation screw that conveys the developer in a direction opposite to the supply screw. The configuration in which the developer circulates between the arranged supply conveyance path and the circulation conveyance path where the circulation screw is arranged is common to the developing device 3 of the first embodiment. In the developing device of Comparative Example 4, the developer supplied from the supply conveyance path to the surface of the developing sleeve passes through the development region, and is then collected in the supply conveyance path, and at the downstream end of the supply conveyance path in the developer conveyance direction. The configuration is different from the developing device 3 of the first embodiment in that only the reached developer is supplied to the upstream end portion in the transport direction of the circulation transport path.
In addition, the graph “on the sleeve” in FIG. 22 is a graph obtained by collecting the developer on the surface of the developing sleeve 34a immediately after passing through the position facing the agent regulating member 35 and measuring the toner density. Further, the position of the horizontal axis is more downstream in the transport direction of the supply screw 39 and more upstream in the transport direction of the circulation screw 40 as the numerical value is larger.
In the developing device 3 of Example 1, it can be seen that the toner density on the sleeve hardly changes at any position in the conveying direction of the supply screw 39 as shown in FIG. On the other hand, in the developing device of Comparative Example 4, as shown in FIG. 22B, it can be seen that the toner concentration on the sleeve decreases toward the downstream side in the conveying direction of the supply screw.

なお、小型化した現像装置の場合、現像剤収納部での現像剤容量が少なくなるため、現像によって同量のトナーを消費した場合であっても、小型化した現像装置の方が現像装置内の現像剤全体に対するトナーの占める割合の減少量は大きい。このため、比較例4の現像装置のように現像領域を通過した後の現像剤が供給搬送路に回収される構成であると、小型化して現像剤収納部での現像剤容量が少なくなった場合、供給スクリュの搬送方向下流側ほどスリーブ上のトナー濃度が低下する不具合がさらに顕著になる。
一方、実施例1の現像装置3のように、現像領域を通過した後の現像剤を供給搬送路とは異なる循環搬送路で回収する構成であると、小型化して現像剤収納部での現像剤容量が少なくなった場合であっても、スリーブ上のトナー濃度を所定の濃度に保つことができる。このため、実施例1の現像装置3であれば、小さくても安定した画質を維持することができる。
〔ストレス〕
In the case of a miniaturized developing device, the developer capacity in the developer accommodating portion is reduced, so even if the same amount of toner is consumed by development, the miniaturized developing device is more The reduction amount of the ratio of the toner to the whole developer is large. For this reason, when the developer after passing through the developing region is collected in the supply conveyance path as in the developing device of Comparative Example 4, the developer is reduced in size and the developer capacity in the developer accommodating portion is reduced. In such a case, the problem that the toner density on the sleeve decreases toward the downstream side in the conveying direction of the supply screw becomes more remarkable.
On the other hand, as in the developing device 3 of the first embodiment, the developer after passing through the developing region is collected in a circulation conveyance path different from the supply conveyance path, so that the development in the developer storage unit is reduced in size. Even when the agent capacity is reduced, the toner density on the sleeve can be maintained at a predetermined density. For this reason, the developing device 3 of the first embodiment can maintain a stable image quality even if it is small.
〔stress〕

さらに、実施例1の現像装置3のように、回転中心34pよりも上方に供給スクリュ39の回転軸が位置するように配置して、供給搬送路37の現像剤32を現像スリーブ34aの表面に上方から掛け流すように供給する構成をとると、障壁43を乗り越えた現像剤32が重力落下により現像スリーブ34aへと供給される。つまり、現像スリーブ34aに現像剤32を供給する際に、汲み上げ部47の磁束密度を低減しても安定した汲み上げ性を得ることができる。
この構成は上述したBr1>Br2>Br3の関係をもたせる場合により効果的な構成である。つまり、3極構成のマグネットローラ34bにおいて、上述した関係を持たせることで、Br2をキャリアキャッチャ等に利用できるとともに、剤離れを良好にすることができる。そして、必然的に小さくなったBr3の汲み上げ能力を上述したように、供給搬送路37から現像スリーブ34aに現像剤32を掛け流す構成で補えるようになる。
また、汲み上げ部47の磁束密度低減すると剤規制部材35に対して現像スリーブ34aの表面移動方向上流側で現像剤32に対して負荷されるストレスが大幅に低減できるため現像剤32の寿命が伸びる。また、剤規制部材35の手前でのストレスが大幅に低減すれば、現像スリーブ34aに負荷されるストレスも低減するため、強度が低下する小径スリーブにおいても現像スリーブ34aがたわみ難くなる利点がある。
Further, like the developing device 3 of the first embodiment, the supply screw 39 is disposed above the rotation center 34p so that the rotation shaft of the supply screw 39 is positioned, and the developer 32 in the supply conveyance path 37 is placed on the surface of the development sleeve 34a. If the supply is made so as to flow from above, the developer 32 that has passed over the barrier 43 is supplied to the developing sleeve 34a by gravity drop. That is, when supplying the developer 32 to the developing sleeve 34a, stable pumping performance can be obtained even if the magnetic flux density of the pumping section 47 is reduced.
This configuration is more effective when the above-described relationship of Br1>Br2> Br3 is provided. That is, by providing the above-described relationship in the magnet roller 34b having the three-pole configuration, Br2 can be used for a carrier catcher and the like, and the agent separation can be improved. As described above, the pumping capacity of Br3, which has been inevitably reduced, can be compensated by the configuration in which the developer 32 is poured from the supply conveyance path 37 to the developing sleeve 34a.
Further, if the magnetic flux density of the pumping portion 47 is reduced, the stress applied to the developer 32 on the upstream side in the surface movement direction of the developing sleeve 34a with respect to the agent regulating member 35 can be greatly reduced, so that the life of the developer 32 is extended. . Further, if the stress in front of the agent regulating member 35 is significantly reduced, the stress applied to the developing sleeve 34a is also reduced, so that there is an advantage that the developing sleeve 34a is hardly bent even in a small-diameter sleeve whose strength is lowered.

実施例1の現像装置3では、現像剤収納部から現像スリーブ34aへの現像剤32の供給に重力が作用するように供給搬送路37を形成する障壁43及び現像スリーブ34aを配置している。供給搬送路37内の現像剤32は供給スクリュ39の回転によって持ち上げられ、障壁43を乗り越えて、現像スリーブ34aの表面に供給されるが、図1に示すように障壁43の下方に現像スリーブ34aの表面が位置するように配置することで、重力を利用して現像剤32の供給を行うことが出来る。実施例1の現像装置3では、供給搬送路37内の現像剤32を現像スリーブ34aの表面に上方から掛け流すように供給する。
実施例1の現像装置3のように、重力を利用して現像剤32を現像スリーブ34aに供給する構成とすることにより、汲み上げ磁極として機能する現像前磁極であるN2極の磁束密度を小さくしても現像スリーブ34a上での現像剤の循環を良好に行うことができる。そして、汲み上げ磁極として機能する磁極の磁束密度を小さくすることにより、剤規制部材35との対向部である剤規制部での大幅な低ストレス化を実現することができる。特に、N2極の現像前磁極中心M1における法線方向の磁束密度を30[mT]以下とすることで、現像スリーブ34aに対して働く荷重や現像スリーブ34a上の現像剤32にかかるストレスを軽減することができる。
ここで現像スリーブ34aに現像剤32が供給される箇所、並びに現像前磁極であるN2極の磁束密度の大きさの関係としては、現像剤32が乗り越える障壁43は現像スリーブ34aに供給された現像剤32が現像スリーブ34aの摩擦力と、現像前磁極の磁力によって現像スリーブ34aの移動につれまわることが可能な状態となるように設定されるものである。
また、現像剤が落下させられる位置としては、上述のようにつれまわり可能な位置であると共に、N1極とN2極との間である。
In the developing device 3 according to the first exemplary embodiment, the barrier 43 and the developing sleeve 34a that form the supply conveyance path 37 are arranged so that gravity acts on the supply of the developer 32 from the developer accommodating portion to the developing sleeve 34a. The developer 32 in the supply conveyance path 37 is lifted by the rotation of the supply screw 39, gets over the barrier 43, and is supplied to the surface of the developing sleeve 34a. However, as shown in FIG. The developer 32 can be supplied by using gravity. In the developing device 3 according to the first exemplary embodiment, the developer 32 in the supply conveyance path 37 is supplied so as to flow over the surface of the developing sleeve 34a from above.
As in the developing device 3 of the first embodiment, the developer 32 is supplied to the developing sleeve 34a using gravity, so that the magnetic flux density of the N2 pole that is the pre-development magnetic pole that functions as the pumping magnetic pole is reduced. However, it is possible to satisfactorily circulate the developer on the developing sleeve 34a. Then, by reducing the magnetic flux density of the magnetic pole that functions as the pumping magnetic pole, it is possible to achieve a significant reduction in stress at the agent restricting portion that is the portion facing the agent restricting member 35. In particular, the load acting on the developing sleeve 34a and the stress applied to the developer 32 on the developing sleeve 34a are reduced by setting the magnetic flux density in the normal direction at the N2 pole pre-development magnetic pole center M1 to 30 [mT] or less. can do.
Here, regarding the relationship between the location where the developer 32 is supplied to the developing sleeve 34a and the magnitude of the magnetic flux density of the N2 pole which is the magnetic pole before development, the barrier 43 over which the developer 32 gets over the development 43 supplied to the developing sleeve 34a. The agent 32 is set so as to be able to be involved in the movement of the developing sleeve 34a by the frictional force of the developing sleeve 34a and the magnetic force of the magnetic pole before development.
Further, the position where the developer is dropped is a position where the developer can rotate as described above, and is between the N1 pole and the N2 pole.

現像スリーブ34aを小径化した場合、スリーブ強度は低下する。
図23は、現像スリーブ34aとして、スリーブ径Φ10のアルミニウム製(図23中のAl)またはステンレス鋼製(図23中のSUS)のスリーブを用いた場合の撓み量を、スリーブ径Φ18[mm]のアルミニウム製のスリーブを用いた場合の撓み量を比較したグラフである。
図23中の横軸は、スリーブ径Φ10のスリーブの肉厚tの値であり、縦軸は、スリーブ径Φ18[mm]で肉厚tが0.8[mm]のアルミニウム製のスリーブ(以下、比較例5のスリーブとよぶ)の撓み量を1とした場合の撓み量の比率である。
なお、ここでの撓み量は両端支持梁に等分布荷重が加わっている場合の撓み量の最大値(中央部の撓み量)を算出する、以下の数2の式で算出されるδmaxの値を用いた。

Figure 0005517092
なお、数2のwは単位長さあたりの荷重、lはスリーブの長さ、Eはスリーブに用いる材料のヤング率、Iはスリーブの断面二次モーメントである。
ヤング率は、アルミニウムのヤング率を69090[MPa]、普通鋼のヤング率を205800[MPa]、ステンレス(SUS)のヤング率を199920[MPa]で計算した。
また、スリーブの断面二次モーメントIは、以下の数3で示す式で算出する。
Figure 0005517092
なお、数3のdはスリーブ径、diはスリーブの内径である。 When the diameter of the developing sleeve 34a is reduced, the sleeve strength decreases.
FIG. 23 shows the amount of bending when a sleeve made of aluminum (Al in FIG. 23) or stainless steel (SUS in FIG. 23) having a sleeve diameter Φ10 is used as the developing sleeve 34a, and the sleeve diameter Φ18 [mm]. It is the graph which compared the deflection amount at the time of using the sleeve made from aluminum.
The horizontal axis in FIG. 23 is the value of the wall thickness t of the sleeve having the sleeve diameter Φ10, and the vertical axis is the aluminum sleeve (hereinafter referred to as the sleeve diameter Φ18 [mm] and the wall thickness t of 0.8 [mm]). The ratio of the deflection amount when the deflection amount of the sleeve of Comparative Example 5 is 1.
In addition, the amount of bending here is the value of δmax calculated by the following formula 2 which calculates the maximum value of the amount of bending (the amount of bending at the center) when an equally distributed load is applied to the both end support beams. Was used.
Figure 0005517092
In Equation 2, w is the load per unit length, 1 is the length of the sleeve, E is the Young's modulus of the material used for the sleeve, and I is the secondary moment of the section of the sleeve.
The Young's modulus was calculated as 69090 [MPa] for aluminum, 205800 [MPa] for ordinary steel, and 199920 [MPa] for stainless steel (SUS).
Further, the cross-sectional secondary moment I of the sleeve is calculated by the following equation (3).
Figure 0005517092
In Equation 3, d is the sleeve diameter, and di is the inner diameter of the sleeve.

スリーブ径Φ10[mm]でスリーブの肉厚tが約0.7[mm]のアルミニウム製のスリーブの場合、図23に示すように、たわみ量の比率は7であり、比較例5のスリーブの撓み量と比べて約7倍の撓み量となった。スリーブ径及び肉厚が同じでスリーブ材質をSUSとした場合であっても、比較例5のスリーブの撓み量と比べて2倍以上の撓み量となった。
なお、現像スリーブ34aを撓ませるように作用する荷重は、剤規制部材35と対向する位置の上流側で現像剤が溜まり、ケーシングと現像スリーブ34aとの間の現像剤がケーシングと現像スリーブ34aとの隙間を押し広げようとする作用と現像剤の重量とによって現像スリーブ34aを剤規制部材35とは反対方向に押圧する荷重である。このような荷重によって現像スリーブ34aが撓むと、現像スリーブ34a表面と剤規制部材35との間隔である剤規制ギャップが撓み量の大きな現像スリーブ34aの回転軸方向の中央部ほど広くなる。これにより、現像スリーブ34aの回転軸方向両端部に比べて中央部の方が剤規制ギャップを通過する現像剤の量が多くなり、現像領域Aに搬送される現像剤の量に回転軸方向の中央部と両端部とで偏りが生じた状態となる。さらに、現像剤の量に偏りがある状態の現像スリーブ34aの表面が現像領域Aに到達すると、現像剤の量が多い中央部の現像剤が感光体1と現像スリーブ34aとの隙間を押し広げるように作用し、現像領域Aでの感光体1表面と現像スリーブ34a表面との間隙である現像ギャップの中央部が両端部と比較して広くなり現像ギャップについて回転軸方向の中央部と両端部とで偏りが生じた状態となる。このように、現像領域Aに搬送される現像剤の量と現像ギャップとが回転軸方向の中央部と両端部とで偏りが生じた状態となると画像の濃度ムラが発生する。
In the case of an aluminum sleeve having a sleeve diameter Φ10 [mm] and a sleeve thickness t of about 0.7 [mm], the ratio of the deflection amount is 7 as shown in FIG. The amount of bending was about 7 times the amount of bending. Even when the sleeve diameter and wall thickness were the same and the sleeve material was SUS, the amount of bending was more than twice that of the sleeve of Comparative Example 5.
The load acting to bend the developing sleeve 34a is such that the developer accumulates on the upstream side of the position facing the agent regulating member 35, and the developer between the casing and the developing sleeve 34a moves between the casing and the developing sleeve 34a. This is a load that presses the developing sleeve 34a in the direction opposite to the agent regulating member 35 due to the action of pushing the gap between the two and the weight of the developer. When the developing sleeve 34a is bent by such a load, the agent regulating gap, which is the distance between the surface of the developing sleeve 34a and the agent regulating member 35, becomes wider at the central portion in the rotation axis direction of the developing sleeve 34a having a large deflection amount. As a result, the amount of developer passing through the agent regulating gap is larger in the central portion than both ends in the rotational axis direction of the developing sleeve 34a, and the amount of developer conveyed to the developing area A is increased in the rotational axis direction. A deviation occurs between the center and both ends. Further, when the surface of the developing sleeve 34a in a state where the amount of the developer is biased reaches the developing region A, the developer at the central portion where the amount of the developer is large pushes the gap between the photoreceptor 1 and the developing sleeve 34a. The central part of the developing gap, which is the gap between the surface of the photosensitive member 1 and the surface of the developing sleeve 34a in the developing area A, becomes wider than both end parts, and the central part and both end parts in the rotation axis direction of the developing gap. It becomes the state where the bias has occurred. As described above, when the amount of the developer conveyed to the development area A and the development gap are uneven at the central portion and both end portions in the rotation axis direction, the density unevenness of the image occurs.

実施例1の現像装置3では、汲み上げ磁極として機能するN2極の磁束密度を従来装置の汲み上げ磁極よりも小さくすることにより、剤規制部での荷重を低減することができるため、現像スリーブ34aを小径とした構成であっても撓みを抑制することができる。図23を用いて説明したように、現像スリーブ34aを小径化すると、現像スリーブ34aの撓み量が増加して画像の濃度ムラの原因となるが、実施例1の現像装置3では剤規制部での荷重を低減することができるため、現像スリーブ34aを小径とすることに起因する画像の濃度ムラを抑制することが出来る。   In the developing device 3 of the first embodiment, the load at the agent restricting portion can be reduced by making the magnetic flux density of the N2 pole functioning as the pumping magnetic pole smaller than the pumping magnetic pole of the conventional device. Even if it is the structure made into the small diameter, bending can be suppressed. As described with reference to FIG. 23, when the diameter of the developing sleeve 34a is reduced, the amount of deflection of the developing sleeve 34a increases and causes density unevenness in the image. Therefore, it is possible to suppress the density unevenness of the image due to the developing sleeve 34a having a small diameter.

図24は、現像前磁極中心M1での法線方向の磁束密度を30[mT]とした実施例と、現像前磁極中心M1での法線方向の磁束密度を従来機の汲み上げ磁極のように57[mT]とした比較例6とのスリーブトルクを示すグラフである。図24に示すように実施例の装置であれば、比較例6の装置と比較して荷重を20[%]にすることができるため、小径のスリーブとしてアルミニウム製のスリーブを使用してもスリーブの撓みは従来の装置と同等程度とすることができた。   FIG. 24 shows an example in which the magnetic flux density in the normal direction at the magnetic pole center M1 before development is 30 [mT], and the magnetic flux density in the normal direction at the magnetic pole center M1 before development is the same as that of the conventional pumping magnetic pole. It is a graph which shows the sleeve torque with the comparative example 6 set to 57 [mT]. As shown in FIG. 24, in the case of the apparatus of the embodiment, the load can be 20% as compared with the apparatus of Comparative Example 6. Therefore, even if an aluminum sleeve is used as the small diameter sleeve, the sleeve Was able to be comparable to that of the conventional apparatus.

図25は、図1及び図8に示す実施例1の現像装置3の構成で、汲み上げ磁極として機能する現像前磁極であるN2極を構成する磁石を変えて、現像前磁極中心M1での法線方向の磁束密度を変えた場合の磁気的吸引力から算出した荷重を求めた結果を示すグラフである。図25に示すように、現像前磁極中心M1での法線方向の磁束密度を30[mT]以下とすることで、荷重低減の効果が強くなることがわかる。
このように、実施例1の現像装置3の構成であれば、現像スリーブ34aを小径化してスリーブ強度が低下しても、スリーブにかかる荷重を低減できるため、撓みがなく、良好な画像を形成することができる。
〔汲み上げ部〕
FIG. 25 shows the configuration of the developing device 3 of the first embodiment shown in FIGS. 1 and 8, in which the magnet constituting the N2 pole, which is the pre-development magnetic pole that functions as the pumping magnetic pole, is changed and the method at the pre-development magnetic pole center M1 is changed. It is a graph which shows the result of having calculated | required the load calculated from the magnetic attraction force at the time of changing the magnetic flux density of a line direction. As shown in FIG. 25, it can be seen that the effect of reducing the load is enhanced by setting the magnetic flux density in the normal direction at the pre-development magnetic pole center M1 to 30 [mT] or less.
As described above, with the configuration of the developing device 3 according to the first embodiment, even when the diameter of the developing sleeve 34a is reduced and the strength of the sleeve is reduced, the load applied to the sleeve can be reduced. can do.
[Pumping part]

〔実施例2〕
図26は、本実施形態のプリンタ100に適用可能な現像装置3の二つ目の実施例(以下、実施例2と呼ぶ)の概略構成図である。
実施例2の現像装置3は以下の点で実施例1の現像装置3と相異して他の構成は共通するため、ここでは相異点についてのみ説明し、共通する構成については説明を省略する。
実施例1の現像装置3では現像磁極であるS1極が現像スリーブ34aの回転中心34pとほぼ同じ高さの位置となるように磁石を配置しているが、実施例2の現像装置3ではS1極が回転中心34pよりも低い位置となるように磁石を配置している。また、実施例1では、現像前磁極であるN2極を現像スリーブ34aの表面の最上端部と対向する位置となるように磁石を配置しているが、N2極が現像スリーブ34aの表面の最上端部よりも現像スリーブ34aの表面移動方向下流側の位置と対向する位置となるように磁石を配置している。さらに、障壁43の形状が実施例1の現像装置3とは異なる。
図27は、図26に示す実施例2の現像装置3の概略構成図に現像ローラ34周りの磁場波形を追記した説明図である。なお、実施例2の現像装置3の法線磁束密度分布は図28のようになる。
[Example 2]
FIG. 26 is a schematic configuration diagram of a second example (hereinafter referred to as Example 2) of the developing device 3 applicable to the printer 100 of the present embodiment.
Since the developing device 3 according to the second embodiment is different from the developing device 3 according to the first embodiment in the following points, the other configurations are the same. Therefore, only the differences are described here, and the description of the common configurations is omitted. To do.
In the developing device 3 of the first embodiment, the magnet is arranged so that the S1 pole as the developing magnetic pole is positioned at almost the same height as the rotation center 34p of the developing sleeve 34a. The magnets are arranged so that the poles are positioned lower than the rotation center 34p. In the first embodiment, the magnet is arranged so that the N2 pole that is the magnetic pole before development faces the uppermost end portion of the surface of the developing sleeve 34a. However, the N2 pole is the topmost surface of the developing sleeve 34a. The magnet is disposed so as to be opposed to the position on the downstream side in the surface movement direction of the developing sleeve 34a with respect to the upper end portion. Further, the shape of the barrier 43 is different from the developing device 3 of the first embodiment.
FIG. 27 is an explanatory diagram in which a magnetic field waveform around the developing roller 34 is added to the schematic configuration diagram of the developing device 3 according to the second embodiment illustrated in FIG. 26. The normal magnetic flux density distribution of the developing device 3 of Example 2 is as shown in FIG.

〔実施例3〕
図29は、本実施形態のプリンタ100に適用可能な現像装置3の三つ目の実施例(以下、実施例3と呼ぶ)の概略構成図である。
実施例3の現像装置3は、分離板49を備える点で実施例2の現像装置3と相異して他の構成は共通するため共通する構成については説明を省略する。
実施例3の現像装置3のように、剤離れ部46近傍に現像スリーブ34aから現像剤32を離す分離板49を設けることにより、循環搬送路38内の循環スクリュ40の搬送方向下流側で現像剤32の量が増加している場合ではあっても、剤離れ性を向上させることができる。このとき分離板49の先端は、接線方向磁気力が0になる点を0[°]とした場合に、角度が−20[°]〜+5[°]となる現像スリーブ34aの表面の位置に近接して設けることが望ましい。
なお、離す分離板49の配置としては、図30に示す配置であってもよい。
Example 3
FIG. 29 is a schematic configuration diagram of a third example (hereinafter referred to as Example 3) of the developing device 3 applicable to the printer 100 of the present embodiment.
The developing device 3 according to the third embodiment is different from the developing device 3 according to the second embodiment in that a separation plate 49 is provided, and thus other configurations are common, and thus description of common configurations is omitted.
As in the developing device 3 of the third embodiment, a separation plate 49 that separates the developer 32 from the developing sleeve 34 a is provided in the vicinity of the agent separating portion 46, thereby developing on the downstream side in the transport direction of the circulation screw 40 in the circulation transport path 38. Even when the amount of the agent 32 is increased, the agent releasability can be improved. At this time, the tip of the separating plate 49 is positioned on the surface of the developing sleeve 34a where the angle becomes −20 [°] to +5 [°] when the point where the tangential magnetic force becomes 0 is 0 [°]. It is desirable to provide them in close proximity.
In addition, the arrangement shown in FIG. 30 may be used as the arrangement of the separating plate 49 to be separated.

〔実施例4〕
図31は、本実施形態のプリンタ100に適用可能な現像装置3の四つ目の実施例(以下、実施例4と呼ぶ)の概略構成図である。また、図32は、図31に示す実施例4の現像装置3の概略構成図に現像ローラ34周りの磁場波形を追記した説明図である。
実施例4の現像装置3は、供給位置調整部材81を備える点で実施例2の現像装置3と相異して他の構成は共通するため共通する構成については説明を省略する。
なお、実施例4の現像装置3の法線磁束密度分布も図28のようになる。また、実施例4においても感光体1と対向して設けられたS1極を現像磁極、S1極に対して現像スリーブ34aの表面移動方向下流側に設けたN1極を現像後磁極、S1極に対して現像スリーブ34aの表面移動方向上流側に設けたN2極を現像前磁極と定義する。さらに、図31及び図32で示すように、供給搬送路37から溢れ落ちた現像剤32が現像スリーブ34aの表面と接触する位置を汲み上げ部47と呼ぶ。
Example 4
FIG. 31 is a schematic configuration diagram of a fourth example (hereinafter referred to as Example 4) of the developing device 3 applicable to the printer 100 of the present embodiment. FIG. 32 is an explanatory diagram in which a magnetic field waveform around the developing roller 34 is added to the schematic configuration diagram of the developing device 3 according to the fourth embodiment illustrated in FIG. 31.
The developing device 3 according to the fourth embodiment is different from the developing device 3 according to the second embodiment in that the supply position adjusting member 81 is provided, and thus the description of the common configuration is omitted.
The normal magnetic flux density distribution of the developing device 3 of Example 4 is as shown in FIG. Also in Example 4, the S1 pole provided opposite to the photoreceptor 1 is the developing magnetic pole, and the N1 pole provided on the downstream side in the surface movement direction of the developing sleeve 34a with respect to the S1 pole is the post-developing magnetic pole and the S1 pole. On the other hand, the N2 pole provided on the upstream side in the surface movement direction of the developing sleeve 34a is defined as a pre-development magnetic pole. Further, as shown in FIGS. 31 and 32, a position where the developer 32 overflowing from the supply conveyance path 37 comes into contact with the surface of the developing sleeve 34 a is called a pumping unit 47.

通常、現像装置3内の現像剤32は、現像スリーブ34aと剤規制部材35との対向部である現像ドクタ部に対して現像スリーブ34aの表面移動方向上流側で大きな圧力を受け、現像剤の劣化が進行する。つまり、現像スリーブ34aに供給される現像剤量に対し、現像ドクタ部を通過し、現像領域Aへと搬送される現像剤量は非常に少ないため、現像ドクタ部に対して現像スリーブ34aの表面移動方向上流側には現像剤が滞留し大きな圧力が負荷される。
また、循環スクリュ40から現像スリーブ34aへと現像剤32が供給される際、現像スリーブ34aに内包された磁石のうち、供給スクリュ39と対向する位置の近傍に設けられた磁石によって形成される磁極であるN2極の磁気力により現像剤32は現像スリーブ34aへと吸い上げられ現像スリーブ34aの表面に供給される。
このとき、供給スクリュ39が現像スリーブ34aより下方側に設けられている場合、供給スクリュ39によって搬送される供給搬送路37内の現像剤32は、現像剤32の自重に逆らい現像スリーブ34aへと供給される状態となるため、汲み上げ磁極として機能するN2極の磁束密度をある程度強くしないと安定して現像スリーブ34aへと現像剤32を供給することが出来ない。
Normally, the developer 32 in the developing device 3 receives a large pressure on the upstream side in the surface movement direction of the developing sleeve 34a with respect to the developing doctor portion which is the facing portion between the developing sleeve 34a and the agent regulating member 35, and the developer Deterioration progresses. That is, since the amount of developer passing through the developing doctor portion and transported to the developing area A is very small relative to the amount of developer supplied to the developing sleeve 34a, the surface of the developing sleeve 34a with respect to the developing doctor portion. The developer stays on the upstream side in the moving direction, and a large pressure is applied.
Further, when the developer 32 is supplied from the circulation screw 40 to the developing sleeve 34a, a magnetic pole formed by a magnet provided in the vicinity of a position facing the supply screw 39 among the magnets included in the developing sleeve 34a. The developer 32 is sucked up to the developing sleeve 34a by the magnetic force of the N2 pole, and is supplied to the surface of the developing sleeve 34a.
At this time, when the supply screw 39 is provided below the developing sleeve 34 a, the developer 32 in the supply conveyance path 37 conveyed by the supply screw 39 moves to the developing sleeve 34 a against the dead weight of the developer 32. Since it is in a supplied state, the developer 32 cannot be stably supplied to the developing sleeve 34a unless the magnetic flux density of the N2 pole functioning as a pumping magnetic pole is increased to some extent.

現像スリーブ34aと供給スクリュ39とが離れている程、もしくは、現像スリーブ34aに対し、供給スクリュ39が下方に設けられている程、汲み上げ磁極として機能するN2極の磁束密度を大きく(磁力を強く)しなければ現像スリーブ34aに現像剤32を安定的に供給できなくなる。しかし、汲み上げ磁極として機能するN2極の磁束密度を大きくすると現像スリーブ34aに現像剤32を安定して供給することができるが、現像スリーブ34aに供給された後は、現像剤32と現像スリーブ34aとの摩擦力が強くなるため現像剤32が劣化しやすいという課題があった。
そこで、汲み上げ磁極として機能する磁極の磁力が弱くても安定して現像スリーブ34aへと現像剤32を供給することができれば、現像スリーブ34aへ現像剤32を安定に供給しつつ、現像剤32の劣化を抑制することができる。
The further away the developing sleeve 34a and the supply screw 39 are, or the lower the supply screw 39 is provided with respect to the developing sleeve 34a, the larger the magnetic flux density of the N2 pole that functions as the pumping magnetic pole (the stronger the magnetic force). Otherwise, the developer 32 cannot be stably supplied to the developing sleeve 34a. However, if the magnetic flux density of the N2 pole that functions as a pumping magnetic pole is increased, the developer 32 can be stably supplied to the developing sleeve 34a. However, after being supplied to the developing sleeve 34a, the developer 32 and the developing sleeve 34a. As a result, the developer 32 is likely to deteriorate.
Therefore, if the developer 32 can be stably supplied to the developing sleeve 34a even if the magnetic force of the magnetic pole functioning as the pumping magnetic pole is weak, the developer 32 can be stably supplied to the developing sleeve 34a while the developer 32 is supplied stably. Deterioration can be suppressed.

実施例1〜実施例3の現像装置3のように、供給スクリュ39を現像スリーブ34aの上方に設けると、汲み上げ磁極として機能するN2極の磁束密度が弱くても、供給スクリュ39の搬送によって供給搬送路37から溢れ落ちた現像剤32が重力落下を利用して、現像スリーブ34aへと供給することができるため、安定して一定量の現像剤32を現像スリーブ34aへと供給することが可能となる。   When the supply screw 39 is provided above the developing sleeve 34a as in the developing device 3 of the first to third embodiments, the supply screw 39 is supplied even if the magnetic flux density of the N2 pole that functions as the pumping magnetic pole is weak. Since the developer 32 overflowed from the conveyance path 37 can be supplied to the developing sleeve 34a by using gravity drop, a constant amount of the developer 32 can be stably supplied to the developing sleeve 34a. It becomes.

さらに、実施例4の現像装置3では、汲み上げ部47が、現像スリーブ34aの最上端部であるスリーブ上端部34tに対して現像スリーブ34aの表面移動方向下流側となるように供給位置調整部材81を配置し、汲み上げ部47近傍の磁束密度が小さい場合、重力落下により現像スリーブ34a上に現像剤を供給することができても供給された現像剤32を重力に反して保持する力が弱いため、剤汲み上げ部47近傍の現像剤32の一部が供給搬送路37の下面を形成する仕切り板36と現像スリーブ34aの表面との間を通過して、循環搬送路38へと落下してしまうというおそれを低減している。
実施例4の現像装置3では、障壁43を乗り越えた現像剤32は供給位置調整部材81によって、スリーブ上端部34tに対して現像スリーブ34aの表面移動方向下流側に案内される。
すなわち、図28で示すように水平軸34hの位置を0[°]とした場合、汲み上げ部47が、角度が90[°]以上となる位置となるように構成することによって、供給搬送路37から供給された現像剤32は、循環搬送路38へと落下することなく現像ドクタ部へと供給することができる。
Further, in the developing device 3 according to the fourth embodiment, the supply position adjusting member 81 is arranged so that the scooping portion 47 is on the downstream side in the surface movement direction of the developing sleeve 34a with respect to the sleeve upper end portion 34t that is the uppermost end portion of the developing sleeve 34a. When the magnetic flux density in the vicinity of the pumping portion 47 is small, even if the developer can be supplied onto the developing sleeve 34a due to gravity drop, the force to hold the supplied developer 32 against the gravity is weak. Then, a part of the developer 32 in the vicinity of the agent pumping portion 47 passes between the partition plate 36 forming the lower surface of the supply conveyance path 37 and the surface of the developing sleeve 34 a and falls to the circulation conveyance path 38. This reduces the risk of
In the developing device 3 according to the fourth embodiment, the developer 32 over the barrier 43 is guided by the supply position adjusting member 81 to the downstream side in the surface movement direction of the developing sleeve 34a with respect to the sleeve upper end portion 34t.
That is, as shown in FIG. 28, when the position of the horizontal axis 34h is set to 0 [°], the pumping section 47 is configured to be at a position where the angle is 90 [°] or more. The developer 32 supplied from can be supplied to the developing doctor section without falling to the circulation conveyance path 38.

このとき、汲み上げ部47(ここでは、供給位置調整部材81の下流側端部と現像スリーブ34aとが対向する位置)と現像ドクタ部との間隔を広げすぎると、剤規制部材35と障壁43との間のスペース(以下、バッファ部と呼ぶ)に存在する現像剤32の量が増えてしまい望ましくない。つまり、バッファ部に存在する現像剤32の量が多すぎると現像ドクタ部に対して現像スリーブ34aの表面移動方向上流側で滞留する現像剤32が増え、現像剤32の劣化を促進してしまう。
またバッファ部に溜まった現像剤32はその自重により現像スリーブ34aに押圧力を与えるため現像スリーブ34aの特に長手方向(回転軸方向)中心部付近で現像スリーブ34aが撓んでしまい望ましくない。
汲み上げ部47の位置が変化するように、実施例4の現像装置3の供給位置調整部材81を形状を変えて実験を行った結果では、現像スリーブ34aの表面上の剤規制部材35と対向する位置と、汲み上げ部47となる位置との間隔は、中心角が30[°]以下となるように構成することが望ましいことがわかった。
At this time, if the gap between the pumping portion 47 (here, the position where the downstream end of the supply position adjusting member 81 and the developing sleeve 34a face each other) and the developing doctor portion is excessively widened, the agent regulating member 35 and the barrier 43 The amount of the developer 32 existing in the space between them (hereinafter referred to as the buffer portion) increases, which is not desirable. That is, if the amount of the developer 32 present in the buffer part is too large, the developer 32 staying on the upstream side in the surface movement direction of the developing sleeve 34a with respect to the developing doctor part increases, and the deterioration of the developer 32 is promoted. .
Further, since the developer 32 accumulated in the buffer portion applies a pressing force to the developing sleeve 34a by its own weight, the developing sleeve 34a is bent in the vicinity of the central portion of the developing sleeve 34a particularly in the longitudinal direction (rotating axis direction), which is not desirable.
As a result of an experiment conducted by changing the shape of the supply position adjusting member 81 of the developing device 3 of Example 4 so that the position of the pumping portion 47 is changed, it is opposed to the agent regulating member 35 on the surface of the developing sleeve 34a. It has been found that it is desirable to configure the distance between the position and the position to be the pumping portion 47 so that the central angle is 30 [°] or less.

〔実施例5〕
図33は、本実施形態のプリンタ100に適用可能な現像装置3の五つ目の実施例(以下、実施例5と呼ぶ)の概略構成図である。実施例5の現像装置3は、汲み上げ部47がスリーブ上端部34tに対して現像スリーブ34aの表面移動方向上流側であるが、現像前磁極であるN2極が汲み上げ部47の近傍となるように磁石を配置した点で実施例1の現像装置3と相異して他の構成は共通するため共通する構成については説明を省略する。
汲み上げ部47をスリーブ上端部34tに対して現像スリーブ34aの表面移動方向上流側に設けた場合でも、実施例5の現像装置3のように、汲み上げ磁極として機能する現像前磁極であるN2極の法線方向磁束密度ピーク位置が汲み上げ部47近傍となるように磁石を配置することで安定して現像剤32の供給を行うことができる。
N2極の法線方向の磁束密度のピーク値を変化させて実験を行ったところ、現像スリーブ34a表面上の水平軸34hに対して約80[°]以下となる領域では法線方向磁束密度ピーク位置での法線方向磁束密度が10[mT]以下になると、汲み上げ磁極として機能するN2極が発生する磁界の磁気力によって現像剤32を拘束する力に比較して、現像剤32の自重によって現像剤32が落下してしまう力の方が大きくなり、循環搬送路38へと落下する現像剤32の量が増化してしまうことがわかった。このため、汲み上げ部47での法線方向磁束密度は10[mT]以上あることが望ましい。
このとき、N2極の法線方向磁束密度ピーク位置と汲み上げ部47の位置とが同位置である必要はないが、法線方向磁束密度ピークが10[mT]以下になると上述したように、汲み上げ磁極として機能するN2極の磁力で保持できない現像剤が生じてしまうため望ましくない。
Example 5
FIG. 33 is a schematic configuration diagram of a fifth example (hereinafter referred to as Example 5) of the developing device 3 applicable to the printer 100 of the present embodiment. In the developing device 3 of the fifth embodiment, the pumping portion 47 is upstream of the sleeve upper end portion 34t in the surface movement direction of the developing sleeve 34a, but the N2 pole that is the pre-development magnetic pole is in the vicinity of the pumping portion 47. Unlike the developing device 3 of the first embodiment in that the magnets are arranged, the other configurations are the same, and thus the description of the common configurations is omitted.
Even when the scooping portion 47 is provided on the upstream side in the surface movement direction of the developing sleeve 34a with respect to the sleeve upper end portion 34t, as in the developing device 3 of the fifth embodiment, the N2 pole that is a pre-development magnetic pole that functions as a scooping magnetic pole is used. By arranging the magnet so that the normal direction magnetic flux density peak position is in the vicinity of the pumping portion 47, the developer 32 can be supplied stably.
Experiments were performed by changing the peak value of the magnetic flux density in the normal direction of the N2 pole, and the normal direction magnetic flux density peak was found in a region of about 80 [°] or less with respect to the horizontal axis 34h on the surface of the developing sleeve 34a. When the magnetic flux density in the normal direction at the position becomes 10 [mT] or less, the developer 32 has its own weight compared to the force that restrains the developer 32 by the magnetic force of the magnetic field generated by the N2 pole that functions as a pumping magnetic pole. It has been found that the force that causes the developer 32 to drop increases, and the amount of the developer 32 that falls into the circulation conveyance path 38 increases. For this reason, it is desirable that the normal direction magnetic flux density at the pumping portion 47 is 10 [mT] or more.
At this time, the normal direction magnetic flux density peak position of the N2 pole and the position of the pumping portion 47 do not have to be the same position, but when the normal direction magnetic flux density peak is 10 [mT] or less, the pumping is performed as described above. Since a developer that cannot be held by the magnetic force of the N2 pole that functions as a magnetic pole is generated, it is not desirable.

〔実施例6〕
図34は、本実施形態のプリンタ100に適用可能な現像装置3の六つ目の実施例(以下、実施例6と呼ぶ)の概略構成図である。実施例6の現像装置3は、実施例5の現像装置3と比較して、現像ローラ34に対する供給スクリュ39及び循環スクリュ40の位置が異なるが、符号が同一の部材は同一の機能を有する部材であり、供給スクリュ39及び循環スクリュ40の位置以外の構成は共通するため共通する構成については説明を省略する。
図34に示す実施例6のように汲み上げ部47が角度が0[°]となる位置の付近となるように構成した場合は、汲み上げ磁極として機能する現像前磁極であるN2極の法線方向磁束密度ピーク位置と汲み上げ部47の位置とが略同位置(−5〜+15[°]の範囲)となるように構成することで安定して現像スリーブ34aへと現像剤32を供給することができ、かつ、現像スリーブ34aで保持しなかった現像剤32は、供給搬送路37内へと落下し、循環搬送路38へと落下することはない。
なお、実施例6の現像装置3は、供給搬送路37内にある程度まで現像剤32が溜まっていないと現像剤32が供給搬送路37を形成する障壁43を乗り越えて現像スリーブ34aへと供給されないため、実施例1〜5の現像装置3に比べて剤枯渇に対しては不利になる。しかし、剤離れに関しては、現像剤32の自重を利用して現像スリーブ34aから現像剤32を離脱させることができるため剤離れ性は良好となり望ましい。
Example 6
FIG. 34 is a schematic configuration diagram of a sixth example (hereinafter referred to as Example 6) of the developing device 3 applicable to the printer 100 of the present embodiment. The developing device 3 of the sixth embodiment is different from the developing device 3 of the fifth embodiment in that the positions of the supply screw 39 and the circulating screw 40 with respect to the developing roller 34 are different, but members having the same reference numerals have the same function. Since the configuration other than the positions of the supply screw 39 and the circulation screw 40 is common, the description of the common configuration is omitted.
When the pumping portion 47 is configured in the vicinity of the position where the angle is 0 [°] as in the sixth embodiment shown in FIG. 34, the normal direction of the N2 pole that is the pre-development magnetic pole that functions as the pumping magnetic pole By configuring the magnetic flux density peak position and the position of the pumping portion 47 to be substantially the same position (in the range of −5 to +15 [°]), the developer 32 can be stably supplied to the developing sleeve 34a. The developer 32 that can be used but is not held by the developing sleeve 34 a falls into the supply conveyance path 37 and does not fall into the circulation conveyance path 38.
In the developing device 3 according to the sixth exemplary embodiment, the developer 32 is not supplied to the developing sleeve 34 a over the barrier 43 that forms the supply conveyance path 37 unless the developer 32 is accumulated to some extent in the supply conveyance path 37. For this reason, it is disadvantageous for the depletion of the agent as compared with the developing devices 3 of the first to fifth embodiments. However, regarding agent separation, the developer 32 can be detached from the developing sleeve 34a by utilizing the weight of the developer 32, so that the agent separation property is favorable.

〔実施例7〕
図35は、本実施形態のプリンタ100に適用可能な現像装置3の七つ目の実施例(以下、実施例7と呼ぶ)の概略構成図である。実施例7の現像装置3は、汲み上げ部47に対して現像スリーブ34aの表面移動方向上流側に埋め部材82を備える点で実施例1の現像装置3と相異して他の構成は共通するため共通する構成については説明を省略する。
汲み上げ部47を現像スリーブの最上端部よりも(現像スリーブの回転方向に対して)上流側に設けた場合でも、実施例7の現像装置3のように供給搬送路37を形成する仕切り板36と現像スリーブ34aの表面との間の隙間を狭くする埋め部材82を仕切り板36に設けることにより、循環搬送路38への現像剤32の落下を防止することが出来る。
Example 7
FIG. 35 is a schematic configuration diagram of a seventh example (hereinafter referred to as Example 7) of the developing device 3 applicable to the printer 100 of the present embodiment. The developing device 3 according to the seventh embodiment is different from the developing device 3 according to the first embodiment in that the other configuration is common in that the embedding member 82 is provided on the upstream side in the surface movement direction of the developing sleeve 34a with respect to the pumping portion 47. Therefore, the description of the common configuration is omitted.
Even when the pumping portion 47 is provided upstream of the uppermost end portion of the developing sleeve (relative to the rotation direction of the developing sleeve), the partition plate 36 that forms the supply conveyance path 37 as in the developing device 3 of the seventh embodiment. By providing the partition plate 36 with a filling member 82 that narrows the gap between the developing sleeve 34a and the surface of the developing sleeve 34a, it is possible to prevent the developer 32 from dropping into the circulation conveyance path 38.

汲み上げ部47が現像スリーブ34aの表面上の70[°]〜80[°]の位置となるように構成した場合には、埋め部材82と現像スリーブ34aとの間隔が0.5[mm]〜1[mm]程度となるように、埋め部材を設けることで、循環搬送路38への現像剤32の落下を防止し、安定した現像剤32の供給を行うことできる。このとき、埋め部材82と現像スリーブ34aが接触すると現像スリーブ34aが磨耗するおそれがあるため、埋め部材82としてはウレタンなどのやわらかい材料からなる部材を使用することが望ましい。
さらに、汲み上げ部47が現像スリーブ34aの表面上の80[°]〜90[°]の位置となるように構成した場合には、埋め部材82と現像スリーブ34aとの間隔が1[mm]〜3[mm]程度であれば、循環搬送路38への現像剤32の落下を防止し、安定した現像剤32の供給を行うことでき、現像スリーブ34aを磨耗させることなく、安定した現像剤供給を行えるため望ましい。
In the case where the pumping portion 47 is configured to be located at a position of 70 [°] to 80 [°] on the surface of the developing sleeve 34a, the distance between the filling member 82 and the developing sleeve 34a is 0.5 [mm] to By providing the filling member so as to be about 1 [mm], it is possible to prevent the developer 32 from dropping into the circulation conveyance path 38 and to supply the developer 32 stably. At this time, if the filling member 82 and the developing sleeve 34 a come into contact with each other, the developing sleeve 34 a may be worn. Therefore, it is desirable to use a member made of a soft material such as urethane as the filling member 82.
Further, when the pumping portion 47 is configured to be positioned at 80 [°] to 90 [°] on the surface of the developing sleeve 34a, the interval between the filling member 82 and the developing sleeve 34a is 1 [mm] to If it is about 3 [mm], the developer 32 can be prevented from dropping into the circulation conveyance path 38, the developer 32 can be supplied stably, and the developer can be supplied without wearing the developing sleeve 34a. This is desirable because

なお、実施例7では、仕切り板36に埋め部材82を設けることにより、循環搬送路38への現像剤32の落下を防止する構成であるが、仕切り板36と現像スリーブ34aの表面とのクリアランスを精度良く設定することができる場合は、仕切り板36と現像スリーブ34aの表面の間隔を狭くすることで、循環搬送路38への現像剤32の落下を防止することができる。
そして、汲み上げ部47が現像スリーブ34aの表面上の70[°]〜80[°]の位置となるように構成した場合には、仕切り板36と現像スリーブ34aの表面の間隔が0.5[mm]〜1[mm]程度となるように設定することにより、循環搬送路38への現像剤32の落下を防止し、安定した現像剤32の供給を行うことできる。また、汲み上げ部47が現像スリーブ34aの表面上の80[°]〜90[°]の位置となるように構成した場合には、仕切り板36と現像スリーブ34aの表面の間隔が1[mm]〜3[mm]程度であれば、循環搬送路38への現像剤32の落下を防止し、安定した現像剤32の供給を行うことでき、現像スリーブ34aを磨耗させることなく、安定した現像剤供給を行えるため望ましい。
In the seventh embodiment, the filling member 82 is provided in the partition plate 36 to prevent the developer 32 from dropping into the circulation conveyance path 38. However, the clearance between the partition plate 36 and the surface of the developing sleeve 34a is not limited. Can be set with high accuracy, the developer 32 can be prevented from dropping into the circulation conveyance path 38 by narrowing the distance between the surface of the partition plate 36 and the developing sleeve 34a.
When the pumping portion 47 is configured to be positioned at 70 [°] to 80 [°] on the surface of the developing sleeve 34a, the distance between the partition plate 36 and the surface of the developing sleeve 34a is 0.5 [ By setting so as to be about mm] to 1 [mm], it is possible to prevent the developer 32 from dropping into the circulation conveyance path 38 and to supply the developer 32 stably. Further, when the pumping portion 47 is configured to be positioned at 80 [°] to 90 [°] on the surface of the developing sleeve 34a, the distance between the partition plate 36 and the surface of the developing sleeve 34a is 1 [mm]. If it is about ˜3 [mm], it is possible to prevent the developer 32 from dropping into the circulation conveyance path 38, to supply the developer 32 stably, and to stabilize the developer without wearing the developing sleeve 34a. It is desirable because it can supply.

〔変形例1〕
図36は、上述の実施形態のプリンタ100とは感光体1の回転方向が異なる不図示のプリンタに適用可能な現像装置3の一つ目の変形例(以下、変形例1と呼ぶ)の概略構成図である。変形例1の現像装置3は現像ローラ34が感光体1対向する現像領域Aでの感光体1の表面移動方向と現像スリーブ34aの表面移動方向とが逆方向である点で実施例4の現像装置3と相異して他の構成は共通するため共通する構成については説明を省略する。
[Modification 1]
FIG. 36 schematically shows a first modification (hereinafter referred to as modification 1) of the developing device 3 that can be applied to a printer (not shown) in which the rotation direction of the photosensitive member 1 is different from that of the printer 100 of the above-described embodiment. It is a block diagram. The developing device 3 according to the first modified example is different from the developing device according to the fourth embodiment in that the surface moving direction of the photosensitive member 1 and the surface moving direction of the developing sleeve 34a in the developing region A where the developing roller 34 faces the photosensitive member 1 are opposite to each other. Unlike the apparatus 3, other configurations are common, and therefore description of the common configurations is omitted.

図36に示す変形例1の現像装置3では、現像領域Aにおける現像スリーブ34aの表面移動方向と感光体1の表面移動方向方向とが逆になるいわゆる逆現像方式の構成である。このような、従来、逆現像方式を用いると画像の先端が抜ける不良画像が発生しやすいという課題がある。これは以下の理由による。
すなわち、感光体1と現像スリーブ34aとが逆方向に表面移動しているため、現像領域Aにて感光体1側に現像されたトナーは、現像ニップ中(現像スリーブ34a表面上の現像剤32と感光体1とが接触している範囲を現像ニップ、現像ニップ中で現像電界により現像が行われる領域を現像領域と呼ぶ)を通過して、現像ニップの外へと搬送させる。このとき、現像領域Aの手前(現像領域Aに対して現像スリーブ34aの表面移動方向上流側)では、現像スリーブ34a表面上の現像剤32のキャリアによって形成される磁気ブラシの先端のトナーは、非画像部に印加されている電界により、現像スリーブ34a側へと移動する。このとき、磁気ブラシの先端には、正電界(以下、カウンターチャージと呼ぶ)が残っているため、このカウンターチャージにより一度は感光体1の表面へと現像させたトナーを電気的に掻きとってしまい、画像の先端が抜けやすくなる。また、現像スリーブ34aと感光体1とが逆方向に表面移動しているため、一度は感光体1の表面へと現像させたトナーを機械的に掻きとってしまい、画像の先端が抜けやすくなる。
The developing device 3 of Modification 1 shown in FIG. 36 has a so-called reverse developing system configuration in which the surface moving direction of the developing sleeve 34a in the developing area A and the surface moving direction of the photoreceptor 1 are reversed. Conventionally, when the reverse development method is used, there is a problem that a defective image in which the leading edge of the image is lost is likely to occur. This is due to the following reason.
That is, since the surface of the photosensitive member 1 and the developing sleeve 34a are moved in the opposite directions, the toner developed on the photosensitive member 1 side in the developing region A is in the developing nip (the developer 32 on the surface of the developing sleeve 34a). The area where the photosensitive member 1 and the photosensitive member 1 are in contact with each other passes through a developing nip, and an area where development is performed by a developing electric field in the developing nip is referred to as a developing area). At this time, the toner at the tip of the magnetic brush formed by the carrier of the developer 32 on the surface of the developing sleeve 34a is in front of the developing area A (upstream of the developing area 34 in the surface movement direction of the developing sleeve 34a). The developing sleeve 34a is moved by the electric field applied to the non-image area. At this time, since a positive electric field (hereinafter referred to as counter charge) remains at the tip of the magnetic brush, the toner once developed on the surface of the photoreceptor 1 by this counter charge is electrically scraped off. As a result, the leading edge of the image is easily removed. Further, since the developing sleeve 34a and the photosensitive member 1 are moved in the opposite directions, the toner once developed on the surface of the photosensitive member 1 is mechanically scraped and the leading edge of the image is easily removed. .

このような逆現像方式であっても、実施例1〜7と同様に現像スリーブ34aのスリーブ径を小径にすることによって、変形例1では逆現像方式の現像装置3であっても画像の先端が抜ける不具合を抑制することができる。
つまり、小径スリーブでは、現像スリーブ34aの曲率が大きくなるため以下の利点がある。
すなわち、小径スリーブでは、現像ニップの幅が非常に狭くなっている。ここで、現像スリーブのスリーブ径Φ10[mm]、感光体1のドラム径Φ30[mm]として、現像スリーブ34aの表面と感光体1表面との最近接部の間隙を0.35[mm]、現像ドクタ部を通過した現像スリーブ34a表面上の現像剤32の量である汲み上げ量を50[mg/cm]としたとき、現像ニップの幅は1.5[mm]〜2.5[mm]程度となる。同条件で現像スリーブ34aのみスリーブ径Φ18[mm]にすると現像ニップの幅は、4[mm]〜5[mm]となる。このように、小径スリーブを用いると、現像ニップの幅が非常に狭くなっているため、現像後に感光体1からすぐさま磁気ブラシを離すことができ、機械的なトナーの掻きとりを低減することができる。また、曲率が大きいため、現像スリーブ34aと感光体1の最近接部から離れた際の電界の低減率も大きくなるため、現像領域A外での電界も小さくなり、電気的なトナーの掻きとりも低減することができる。
Even in such a reverse developing system, the sleeve diameter of the developing sleeve 34a is reduced in the same manner as in the first to seventh embodiments. It is possible to suppress the problem of falling off.
That is, the small-diameter sleeve has the following advantages because the curvature of the developing sleeve 34a increases.
That is, in the small diameter sleeve, the width of the development nip is very narrow. Here, assuming that the sleeve diameter Φ10 [mm] of the developing sleeve and the drum diameter Φ30 [mm] of the photosensitive member 1, the gap between the surface of the developing sleeve 34 a and the surface of the photosensitive member 1 is 0.35 [mm], When the pumping amount, which is the amount of the developer 32 on the surface of the developing sleeve 34a that has passed through the developing doctor section, is 50 [mg / cm 2 ], the width of the developing nip is 1.5 [mm] to 2.5 [mm]. ]. If only the developing sleeve 34a has the sleeve diameter Φ18 [mm] under the same conditions, the width of the developing nip is 4 [mm] to 5 [mm]. As described above, when the small-diameter sleeve is used, the width of the developing nip is very narrow. Therefore, the magnetic brush can be immediately separated from the photoreceptor 1 after development, and mechanical toner scraping can be reduced. it can. In addition, since the curvature is large, the reduction rate of the electric field when the developing sleeve 34a and the photosensitive member 1 are separated from each other is increased. Can also be reduced.

さらに、逆現像方式の場合、感光体1と現像剤32との摺擦能力が高まるため、現像後の残像の影響を受け難く感光体1のクリーニング機構を設けずとも良好な画像を得られるという利点がある。
つまり、小径の現像スリーブ34aを用いた現像装置3を用いて、逆現像方式を用いること、従来の逆現像方式のデメリットであった画像の先端抜けといった不具合を抑制しつつ、現像装置3の小型化とクリーニング機構を用いない作像システムを構成できるため、より小型な作像システムを構築することが可能となる。
Further, in the case of the reverse development method, since the rubbing ability between the photosensitive member 1 and the developer 32 is enhanced, it is difficult to be affected by the afterimage after development, and a good image can be obtained without providing a cleaning mechanism for the photosensitive member 1. There are advantages.
That is, using the developing device 3 using the developing sleeve 34a having a small diameter, the reverse developing method is used, and the disadvantage of the conventional reverse developing method, such as omission of the leading edge of the image, is suppressed, and the developing device 3 is reduced in size. Therefore, it is possible to construct a smaller image forming system.

また、実施例1〜7及び変形例1のように、供給搬送路37内の現像剤32を現像スリーブ34aの表面に上方から掛け流すように供給する構成では、現像前磁極であるN2極の法線磁束密度を低減しているため、剤規制部材35の材料が磁性であっても非磁性であっても同等の安定性を得ることができた。
図37は、図31を用いて説明した実施例4の現像装置3を用いて剤規制部材35先端の現像スリーブ34aの表面に対する距離を変動させたときの、剤規制ギャップのギャップ幅Gdの値に対する剤規制ギャップを通過する現像剤32の量(以下、「ρ」と呼ぶ。)の値を示すグラフである。図37(a)は、規制磁極として機能するN2極の法線方向の磁束密度のピーク値が15[mT]となるように構成した場合のグラフであり、図37(b)は、規制磁極として機能するN2極の法線方向の磁束密度のピーク値が30[mT]となるように構成した場合のグラフである。
図37に示すように、剤規制部材35の材料が磁性であっても非磁性であっても剤規制ギャップのギャップ幅Gdと剤規制ギャップを通過する現像剤量ρとの関係を示すグラフの傾きが同じであるため、剤規制ギャップのギャップ幅Gdの変動に対するρの変動量は同程度となる。
In the configuration in which the developer 32 in the supply conveyance path 37 is supplied so as to flow from above onto the surface of the developing sleeve 34a as in the first to seventh embodiments and the first modification, the N2 pole that is the pre-development magnetic pole is provided. Since the normal magnetic flux density is reduced, the same stability can be obtained regardless of whether the material of the agent regulating member 35 is magnetic or non-magnetic.
FIG. 37 shows the value of the gap width Gd of the agent regulating gap when the distance between the tip of the agent regulating member 35 and the surface of the developing sleeve 34a is changed using the developing device 3 of Example 4 described with reference to FIG. 5 is a graph showing the value of the amount of developer 32 (hereinafter referred to as “ρ”) passing through the agent regulation gap. FIG. 37A is a graph in a case where the peak value of the magnetic flux density in the normal direction of the N2 pole functioning as the regulating magnetic pole is 15 [mT], and FIG. Is a graph when the peak value of the magnetic flux density in the normal direction of the N2 pole functioning as is 30 [mT].
As shown in FIG. 37, a graph showing the relationship between the gap width Gd of the agent restriction gap and the developer amount ρ passing through the agent restriction gap, regardless of whether the material of the agent restriction member 35 is magnetic or non-magnetic. Since the inclination is the same, the amount of change in ρ with respect to the change in the gap width Gd of the agent restriction gap is approximately the same.

次に、実施例1〜7の現像装置3内で現像剤を搬送する構成について、より詳しく説明する。
図38は、実施例1〜7の現像装置3の現像剤搬送路(供給搬送路37及び循環搬送路38)内での現像剤32の流れと現像剤32の量の分布とを説明する模式図である。
持ち上げ部41aは、循環搬送路38から持ち上げ口41を通って供給搬送路37へ現像剤32を運ぶ部分であり、現像剤32を重力に逆らって搬送する部分である。そのため持ち上げ部41aの近傍には現像剤32が溜まりやすい。
Next, the configuration for conveying the developer in the developing device 3 of Examples 1 to 7 will be described in more detail.
FIG. 38 is a schematic diagram for explaining the flow of the developer 32 and the distribution of the amount of the developer 32 in the developer conveyance path (the supply conveyance path 37 and the circulation conveyance path 38) of the developing device 3 according to the first to seventh embodiments. FIG.
The lifting part 41a is a part that transports the developer 32 from the circulation transport path 38 through the lifting port 41 to the supply transport path 37, and is a part that transports the developer 32 against gravity. Therefore, the developer 32 tends to accumulate in the vicinity of the lifting portion 41a.

ここで、循環搬送路38内の現像剤搬送方向下流側で生じるおそれがある、現像剤漏れ、現像剤連れ回りについて説明する。
図38に示すように、循環搬送路38から供給搬送路37に現像剤32を受け渡す部分である持ち上げ口41は供給搬送路37から落下口42を通って循環搬送路38に現像剤32を受け渡す部分である落下部42aに比べて単位時間当りに通過する現像剤32の量が多くなる。そのため持ち上げ部41a付近には現像剤が溜まり易い。その結果、持ち上げ部41a近傍だけでなく、循環搬送路38内の持ち上げ部41aに対して循環スクリュ40の現像剤搬送方向上流側にも現像剤32が溜まり易い。
Here, a description will be given of developer leakage and developer rotation that may occur on the downstream side in the developer conveyance direction in the circulation conveyance path 38.
As shown in FIG. 38, the lifting port 41, which is a portion that delivers the developer 32 from the circulation conveyance path 38 to the supply conveyance path 37, passes the developer 32 from the supply conveyance path 37 through the drop opening 42 to the circulation conveyance path 38. The amount of the developer 32 passing per unit time is larger than that of the dropping portion 42a that is a delivery portion. Therefore, the developer tends to collect in the vicinity of the lifting portion 41a. As a result, the developer 32 is likely to accumulate not only in the vicinity of the lifting portion 41 a but also on the upstream side of the circulating screw 40 in the developer transport direction with respect to the lifting portion 41 a in the circulation transport path 38.

図38は、循環搬送路38内の持ち上げ部41aに対して循環スクリュ40の現像剤搬送方向上流側にも現像剤32が溜まった状態を示している。図38に示す状態になると、図38中の領域αの部分は現像スリーブ34aからの現像剤32を循環搬送路38に回収できなくなってしまう。この場合、供給搬送路37から現像スリーブ34aへと受け渡されて現像領域Aを通過した現像剤32は、循環搬送路38内に行き場が無くなっているため、ケーシングの隙間から現像装置3の外に漏れ出してしまう。この現象を剤漏れと呼ぶ。   FIG. 38 shows a state where the developer 32 has accumulated also on the upstream side of the circulating screw 40 in the developer conveyance direction with respect to the lifting portion 41a in the circulation conveyance path 38. In the state shown in FIG. 38, the portion 32 in FIG. 38 cannot collect the developer 32 from the developing sleeve 34a in the circulation conveyance path 38. In this case, the developer 32 that has been transferred from the supply conveyance path 37 to the developing sleeve 34a and has passed through the development region A has no place in the circulation conveyance path 38, and therefore, the developer 32 is removed from the developing device 3 through the gap in the casing. Leaks out. This phenomenon is called agent leakage.

さらに、図38で示すように循環搬送路38内の現像剤搬送方向下流側端部近傍に現像剤32が溜まった状態となると、剤漏れ以外にも連れ回りという不具合が発生する。連れ回りは一度、現像領域Aを通過した現像スリーブ34a上の現像剤32が現像スリーブ34aと循環搬送路38とが対向する位置で現像スリーブ34aの表面から離脱せずに、再度、現像領域Aに運ばれる現象である。一度、現像領域Aを通過した現像剤32はトナー濃度が下がっている。そのトナー濃度が下がった現像剤32が何度も現像領域Aに運ばれるため、連れ回りが発生すると現像領域Aで必要なトナー量が確保できずに画像濃度が下がってしまう。   Furthermore, as shown in FIG. 38, when the developer 32 is accumulated in the vicinity of the downstream end portion in the developer conveyance direction in the circulation conveyance path 38, there is a problem that it is accompanied by a problem other than the agent leakage. In the rotation, once the developer 32 on the developing sleeve 34a that has passed through the developing area A is not separated from the surface of the developing sleeve 34a at a position where the developing sleeve 34a and the circulation conveyance path 38 face each other, the developing area A again. It is a phenomenon that is carried to. Once the developer 32 has passed through the development area A, the toner density is lowered. Since the developer 32 whose toner density has been lowered is conveyed to the development area A many times, if the accompanying rotation occurs, the required toner amount cannot be ensured in the development area A and the image density is lowered.

なお、剤漏れ及び連れ回りは共に循環搬送路38内の現像剤搬送方向下流側端部近傍の現像剤量が多いことによって発生する。したがって、循環搬送路38内の現像剤搬送方向下流側端部近傍の現像剤量が少なくなれば(循環搬送路38内の現像剤32の高さが低くなれば)発生しない。   Note that both agent leakage and follow-up occur when the amount of developer in the vicinity of the downstream end in the developer conveyance direction in the circulation conveyance path 38 is large. Therefore, it does not occur if the amount of developer in the vicinity of the downstream end in the developer conveyance direction in the circulation conveyance path 38 decreases (if the height of the developer 32 in the circulation conveyance path 38 decreases).

次に、現像装置3に適用可能な剤漏れや連れ回りの発生を防止する構成について説明する。
循環搬送路38内の現像剤搬送方向下流側端部近傍の現像剤量を少なくする構成としては下記(a)または(b)の構成を挙げることができる。
(a)循環搬送路38内の現像剤搬送方向下流側端部近傍の現像剤搬送力を大きくする。
(b)持ち上げ口41の開口面積及び開口位置を適切に設定する。
Next, a configuration that prevents the occurrence of agent leakage and accompanying rotation applicable to the developing device 3 will be described.
As a configuration for reducing the amount of developer in the vicinity of the downstream end portion in the developer transport direction in the circulation transport path 38, the following configuration (a) or (b) may be mentioned.
(A) The developer conveying force in the vicinity of the downstream end in the developer conveying direction in the circulation conveying path 38 is increased.
(B) The opening area and opening position of the lifting port 41 are set appropriately.

〔実施例8〕
次に、実施例1〜7の現像装置3に適用可能な現像装置3内で現像剤を搬送する構成で上記(a)の構成を備えた実施例(以下、実施例8と呼ぶ)について説明する。
上記(a)の構成は、現像装置3ではスクリュ部材である循環スクリュ40によって循環搬送路38内の現像剤搬送を行っているため、循環スクリュ40のリード角を適切に設定することが望ましい。
図39は、循環スクリュ40や供給スクリュ39として用いることが出来るスクリュ部材80におけるリード角の説明図である。リード角βはスクリュ軸部80aに固定された螺旋状のスクリュ羽部80bの面とスクリュ軸部80aに直交する仮想平面80cとが成す角である。そして、スクリュ軸部80aに対してスクリュ羽部80bが垂直に近くなるほどリード角βの角度が小さくなる。
なおリード角βの角度θは、スクリュ径A、スクリュピッチをBとした場合、以下の数4の式で定義される。

Figure 0005517092
Example 8
Next, an example (hereinafter referred to as Example 8) having the above-described configuration (a) in which the developer is transported in the development device 3 applicable to the development device 3 of Examples 1 to 7 will be described. To do.
In the configuration of (a), since the developer in the circulation conveyance path 38 is conveyed by the circulation screw 40 that is a screw member in the developing device 3, it is desirable to set the lead angle of the circulation screw 40 appropriately.
FIG. 39 is an explanatory view of the lead angle in the screw member 80 that can be used as the circulation screw 40 or the supply screw 39. The lead angle β is an angle formed by the surface of the spiral screw blade portion 80b fixed to the screw shaft portion 80a and a virtual plane 80c orthogonal to the screw shaft portion 80a. The lead angle β becomes smaller as the screw blade 80b becomes closer to the vertical with respect to the screw shaft 80a.
The angle θ of the lead angle β is defined by the following formula 4 when the screw diameter A and the screw pitch are B.
Figure 0005517092

図40は、スクリュ部材のリード角βの角度と搬送速度との関係を示すグラフである。図40のグラフはスクリュ径が14[mm]のスクリュ部材を800[rpm]で回転させたときのスクリュ軸方向の搬送速度を測定した結果である。
図40に示すように、リード角βの角度を45[°]近傍の値に設定することで搬送速度を速くできるため循環搬送路38内の現像剤搬送方向下流側端部近傍の循環スクリュ40のリード角の角度は45[°]に設定する。また、循環スクリュ40の回転数を高くしても現像剤32の搬送速度を速くすることができる。しかし、スクリュ部材の回転数を高くするとスクリュ部材と軸受けの部分との摩擦により熱が発生してしまう。その熱により現像剤中のトナーが凝集し、固化してしまうおそれがあるので、スクリュ部材の回転数は可能な限り小さくすることが望ましい。そのため現像装置3では循環スクリュ40の循環搬送路38内の現像剤搬送方向下流側端部近傍に位置する箇所のリード角の角度を45[°]に設定した上で、必要なスクリュ回転数に設定する。本実施例8では循環スクリュ40を800[rpm]の回転数で回転させている。
FIG. 40 is a graph showing the relationship between the lead angle β of the screw member and the conveyance speed. The graph of FIG. 40 is a result of measuring the conveying speed in the screw axis direction when a screw member having a screw diameter of 14 [mm] is rotated at 800 [rpm].
As shown in FIG. 40, the conveyance speed can be increased by setting the lead angle β to a value in the vicinity of 45 [°]. The lead angle is set to 45 [°]. Further, even if the rotational speed of the circulation screw 40 is increased, the conveyance speed of the developer 32 can be increased. However, when the rotational speed of the screw member is increased, heat is generated due to friction between the screw member and the bearing portion. Since the toner in the developer may aggregate and solidify due to the heat, it is desirable that the number of rotations of the screw member be as small as possible. Therefore, in the developing device 3, the lead angle of a portion located in the vicinity of the downstream end portion in the developer conveyance direction in the circulation conveyance path 38 of the circulation screw 40 is set to 45 [°], and the necessary screw rotation speed is set. Set. In the eighth embodiment, the circulating screw 40 is rotated at a rotational speed of 800 [rpm].

さらに、循環搬送路38内の持ち上げ口41が設けられた位置では、現像剤32に対して上向きの力を与える構成を循環スクリュ40に設けたほうが良い。具体的には、循環搬送路38内の持ち上げ口41に位置する箇所では循環スクリュ40のリード角の角度を60[°]近傍の値(45[°]〜70[°])に設定すると良い。   Furthermore, it is better to provide the circulating screw 40 with a structure that applies an upward force to the developer 32 at the position where the lifting port 41 is provided in the circulation conveyance path 38. Specifically, the lead angle of the circulation screw 40 may be set to a value in the vicinity of 60 [°] (45 [°] to 70 [°]) at a position located in the lifting port 41 in the circulation conveyance path 38. .

ここで、循環スクリュ40のリード角の角度を60[°]近傍の値に設定することによって、現像剤32に対して上向きの力を与える構成について説明する。
図41は、現像装置3の循環搬送路38内の現像剤搬送方向下流側端部近傍の現像剤32の流れの説明図である。
図41では、現像剤搬送方向下流側端部近傍を、持ち上げ口41の下方の領域である持ち上げ部41aと、持ち上げ部41aに対して現像剤搬送方向上流側の領域である持ち上げ手前部41bとに分ける。図41に示すように、循環搬送路38内では持ち上げ手前部41bまでは現像剤32を図41中の左側に向かって搬送するが、持ち上げ部41aでは現像剤32を上向きに搬送する。このため、持ち上げ手前部41bと持ち上げ部41aとでは循環スクリュ40に求められる機能が異なる。
持ち上げ手前部41bでは現像剤を横方向に効率よく運ぶ機能が求められるので、循環スクリュ40の持ち上げ手前部41bに位置する箇所ではリード角の角度が45[°]近傍の値となるように設定する。
一方、持ち上げ部41aでは現像剤32を上方に搬送するので、現像剤32に対して、より上向きの力を加えられる機能が求められる。その構成として、循環スクリュ40の持ち上げ部41aに位置する箇所では、傾斜したパドルを設ける、または、リード角の角度を45[°]よりも大きくなるように設定すると良い。
Here, a configuration in which an upward force is applied to the developer 32 by setting the lead angle of the circulation screw 40 to a value in the vicinity of 60 [°] will be described.
FIG. 41 is an explanatory diagram of the flow of the developer 32 in the vicinity of the downstream end in the developer transport direction in the circulation transport path 38 of the developing device 3.
In FIG. 41, in the vicinity of the downstream end portion in the developer transport direction, a lift portion 41a that is a region below the lift port 41, and a lift front portion 41b that is a region upstream in the developer transport direction with respect to the lift portion 41a Divide into As shown in FIG. 41, the developer 32 is transported toward the left side in FIG. 41 up to the front portion 41b in the circulation transport path 38, but the developer 32 is transported upward in the lift portion 41a. For this reason, the function requested | required of the circulation screw 40 differs in the front part 41b and the lifting part 41a.
The lifting front portion 41b is required to have a function of efficiently transporting the developer in the lateral direction, so that the lead angle is set to a value in the vicinity of 45 [°] at the position positioned on the lifting front portion 41b of the circulation screw 40. To do.
On the other hand, since the developer 32 is transported upward in the lifting portion 41a, a function capable of applying an upward force to the developer 32 is required. As a configuration thereof, an inclined paddle may be provided at a position located on the lifting portion 41a of the circulation screw 40, or the lead angle may be set to be larger than 45 [°].

図42はリード角の角度が小さいスクリュ部材80の模式図であり、図43はリード角の角度が大きいスクリュ部材80の模式図である。図42及び図43の図中の矢印Eは、現像剤の搬送方向を示している。
スクリュ部材80のスクリュ羽部80bは現像剤32に対してスクリュ羽部80bの面に対して垂直な方向の力である垂直抗力(図中の矢印fで示す)を加える。つまりこの垂直抗力の向きはリード角の角度の大きさによって決まっている。リード角の角度が小さいときは図42に示すように、垂直抗力はスクリュ部材80の軸方向の成分(図中f)が多くなる。一方、リード角の角度を大きくするとスクリュ部材の軸方向の成分(図中f)は小さくなり、軸方向と直交する方向の成分(図中f)が大きくなる。
よって、循環スクリュ40の持ち上げ部41aに位置する箇所ではリード角の角度を大きくすることにより、現像剤32に対して上向きに加える力を大きくできる。しかし、リード角の角度が大きくなりすぎて垂直抗力の軸方向に直交する方向の成分が支配的になることも好ましくない。これは、垂直抗力の軸方向に直交する方向の成分が支配的になると、持ち上げ部41aに現像剤32が入って来なくなるからである。すなわち、持ち上げ手前部41bでは現像剤32を循環スクリュ40の軸方向送ろうとしても、循環スクリュ40の持ち上げ部41aに位置する箇所に軸方向に送る力がないと、持ち上げ部41aと持ち上げ手前部41bとの領域の境界近傍に現像剤が溜まってしまう。その結果、持ち上げ部41aに現像剤32が入ってこなくなり、持ち上げ部41aでの上方への移送効率が低下してしまう。
FIG. 42 is a schematic view of the screw member 80 having a small lead angle, and FIG. 43 is a schematic view of the screw member 80 having a large lead angle. An arrow E in FIGS. 42 and 43 indicates the developer transport direction.
The screw blade 80b of the screw member 80 applies a normal force (indicated by an arrow f in the figure) that is a force in a direction perpendicular to the surface of the screw blade 80b to the developer 32. In other words, the direction of this vertical drag is determined by the size of the lead angle. When the lead angle is small, the component of the axial force of the screw member 80 in the axial direction (f 2 in the figure) increases as shown in FIG. On the other hand, when the lead angle is increased, the axial component (f 2 in the figure) of the screw member decreases, and the component in the direction orthogonal to the axial direction (f 1 in the figure) increases.
Therefore, the force applied upward to the developer 32 can be increased by increasing the lead angle at the position located on the lifting portion 41 a of the circulation screw 40. However, it is not preferable that the lead angle is too large and the component in the direction perpendicular to the axial direction of the normal force becomes dominant. This is because when the component in the direction orthogonal to the axial direction of the normal force becomes dominant, the developer 32 does not enter the lifting portion 41a. That is, even if the developer 32 is to be fed in the axial direction of the circulating screw 40 at the lifting front portion 41b, there is no force to send the developer 32 in the axial direction to a position located on the lifting portion 41a of the circulating screw 40. The developer accumulates near the boundary between the region 41b and the region 41b. As a result, the developer 32 does not enter the lifting portion 41a, and the upward transfer efficiency at the lifting portion 41a is reduced.

図44は、循環スクリュ40の持ち上げ部41aに位置する箇所のリード角の角度を変えた場合の、現像装置3内での現像剤の搬送が平衡状態になっている状態でのリード角の角度と持ち上げ部41aでの上方への現像剤の搬送量との関係を示すグラフである。
図44に示すグラフから、リード角の角度が60[°]近傍の値のときに持ち上げ部41aでの上方への現像剤搬送量がもっとも多くなっていることがわかる。
図44に示す結果より、循環スクリュ40の持ち上げ部41aに位置する箇所のリード角の角度は60[°]近傍の値とすることで、持ち上げ部41aでの循環搬送路38から供給搬送路37への現像剤の受け渡しを効率良く行えることが分かる。なお、羽部のリード角を60[°]とするものに限らず、循環スクリュ40の持ち上げ部41aに位置する箇所にパドルを設け、このパドルのリード角の角度を60[°]近傍の値に設定してもよい。
FIG. 44 shows the angle of the lead angle in a state where the transport of the developer in the developing device 3 is in an equilibrium state when the angle of the lead angle of the portion located in the lifting portion 41a of the circulation screw 40 is changed. 4 is a graph showing the relationship between the developer transport amount upward and the lifting portion 41a.
From the graph shown in FIG. 44, it can be seen that when the lead angle is a value in the vicinity of 60 [°], the amount of developer transported upward at the lifting portion 41a is the largest.
From the result shown in FIG. 44, the angle of the lead angle of the portion located in the lifting portion 41a of the circulating screw 40 is set to a value in the vicinity of 60 [°], so that the supply transporting passage 37 from the circulation transporting passage 38 in the lifting portion 41a. It can be seen that the developer can be efficiently transferred to the printer. Note that the lead angle of the wing portion is not limited to 60 [°], but a paddle is provided at a position located on the lifting portion 41a of the circulating screw 40, and the lead angle of the paddle is a value in the vicinity of 60 [°]. May be set.

実施例8現像装置3では、循環搬送路38内を現像剤搬送方向に3等分した場合の搬送方向下流側1/3の領域を現像剤搬送方向下流側端部近傍の領域として、循環スクリュ40の循環搬送路38内の現像剤搬送方向下流側端部近傍に位置する箇所のリード角の角度を45[°]に設定し、現像剤搬送方向下流側端部近傍よりも上流側に位置する箇所の循環スクリュ40のリード角の角度を45[°]よりも大きい角度に設定している。さらに、循環搬送路38内の現像剤搬送方向下流側端部近傍内でも持ち上げ部41aに位置する箇所の循環スクリュ40のリード角の角度を60[°]に設定している。
このような実施例8の現像装置3では、循環搬送路38内の現像剤搬送方向下流側端部近傍の現像剤搬送力を大きくすることができ、さらに、持ち上げ部41aでの循環搬送路38から供給搬送路37への効率のよい現像剤32の受け渡しができるため、循環搬送路38内の現像剤搬送方向下流側端部近傍の現像剤量を少なくすることができ、剤漏れや連れ回りの発生を防止することが出来る。
In the developing device 3 of the eighth embodiment, the circulation screw 38 is divided into three equal parts in the developer conveyance direction, and the area on the downstream side 1/3 in the conveyance direction is defined as the area near the downstream end in the developer conveyance direction. The lead angle of the position located in the vicinity of the downstream end portion in the developer transport direction in the circulation transport path 38 of 40 is set to 45 [°], and is positioned upstream from the vicinity of the downstream end portion in the developer transport direction. The angle of the lead angle of the circulating screw 40 at the place to be set is set to an angle larger than 45 [°]. Further, the lead angle of the circulating screw 40 at a position located in the lifting portion 41a is set to 60 [°] even in the vicinity of the downstream end portion in the developer conveying direction in the circulation conveying path 38.
In the developing device 3 of the eighth embodiment, the developer conveying force in the vicinity of the downstream end portion in the developer conveying direction in the circulation conveying path 38 can be increased, and the circulating conveying path 38 in the lifting portion 41a. Since the developer 32 can be efficiently delivered from the supply conveyance path 37 to the supply conveyance path 37, the amount of developer in the vicinity of the downstream end in the developer conveyance direction in the circulation conveyance path 38 can be reduced, and the leakage of the agent and the accompanying rotation Can be prevented.

〔実施例9〕
次に、実施例1〜8の現像装置3に適用可能な現像装置3内で現像剤を搬送する構成で上記(b)の構成を備えた実施例(以下、実施例9と呼ぶ)について説明する。
上記(b)の構成について、持ち上げ口41の位置での現像スリーブ34aの回転軸に直交する仮想平面における現像スリーブ34aに対する持ち上げ口41の位置と、持ち上げ口41の形状とが重要な項目である。
図45は、現像スリーブ34aの回転軸方向の持ち上げ部41aの位置における現像スリーブ34aの回転軸に直交する仮想平面での実施例9の現像装置3の断面説明図である。なお、回転軸方向における持ち上げ口41の位置では、現像スリーブ34aへの現像剤32の供給、及び、現像スリーブ34a上の現像剤32の回収は行わない。このため、障壁43の上方の供給スクリュ39と現像スリーブ34aとの間は供給仕切り壁65によって仕切られており、供給スクリュ39と現像スリーブ34aとの間は循環仕切り壁66によって仕切られている。
Example 9
Next, an example (hereinafter referred to as Example 9) having the above-described configuration (b) in which the developer is transported in the development device 3 applicable to the development device 3 of Examples 1 to 8 will be described. To do.
Regarding the configuration of (b) above, the position of the lifting port 41 relative to the developing sleeve 34a in the virtual plane orthogonal to the rotation axis of the developing sleeve 34a at the position of the lifting port 41 and the shape of the lifting port 41 are important items. .
FIG. 45 is a cross-sectional explanatory view of the developing device 3 of Embodiment 9 in a virtual plane orthogonal to the rotation axis of the developing sleeve 34a at the position of the lifting portion 41a in the rotation axis direction of the developing sleeve 34a. At the position of the lifting port 41 in the rotation axis direction, the supply of the developer 32 to the developing sleeve 34a and the recovery of the developer 32 on the developing sleeve 34a are not performed. Therefore, the supply screw 39 above the barrier 43 and the developing sleeve 34a are partitioned by the supply partition wall 65, and the supply screw 39 and the developing sleeve 34a are partitioned by the circulation partition wall 66.

図45に示すように、実施例9の現像装置3では、この仮想平面上での持ち上げ口41の位置がこの仮想平面上での現像スリーブ34aの位置に対して遠い側となるような仕切り板36における位置に持ち上げ口41を開口している。   As shown in FIG. 45, in the developing device 3 of Embodiment 9, the partition plate is such that the position of the lifting port 41 on the virtual plane is far from the position of the developing sleeve 34a on the virtual plane. A lifting port 41 is opened at a position 36.

また、実施例9の現像装置3では、循環スクリュ40が図45中の反時計回り方向(矢印J方向)に回転している。これにより、循環スクリュ軸部40aを挟んで図45中の右側の領域では循環スクリュ羽部40bが下方から上方に移動し、循環スクリュ軸部40a挟んで図45中の左側の領域では循環スクリュ羽部40bが上方から下方に移動する。このため、循環搬送路38内では循環スクリュ軸部40aを挟んで図45中の右側の領域の現像剤32の剤面が高くなる。そして、実施例9の現像装置3では、循環搬送路38の循環スクリュ軸部40aを挟んで図45中の右側の上部に持ち上げ口41を設けているため、現像剤32の剤面が高い方から現像剤32を供給搬送路37へと持ち上げる構成となっている。循環搬送路38から供給搬送路37へと現像剤32を持ち上げる場合は、実施例9の現像装置3のように、現像剤32の剤面が高い方から持ち上げるように構成することで、持ち上げ部41aでの上方への移送効率が向上する。   Further, in the developing device 3 of the ninth embodiment, the circulation screw 40 rotates in the counterclockwise direction (arrow J direction) in FIG. Thereby, in the right region in FIG. 45 with the circulation screw shaft portion 40a interposed therebetween, the circulation screw blade portion 40b moves upward from below, and in the left region in FIG. 45 with the circulation screw shaft portion 40a interposed therebetween, the circulation screw blades. The part 40b moves downward from above. For this reason, in the circulation conveyance path 38, the surface of the developer 32 in the right region in FIG. 45 becomes high across the circulation screw shaft portion 40a. In the developing device 3 according to the ninth embodiment, since the lifting port 41 is provided on the upper right side in FIG. 45 with the circulation screw shaft portion 40a of the circulation conveyance path 38 interposed therebetween, the developer surface of the developer 32 is higher. The developer 32 is lifted up to the supply conveyance path 37. When the developer 32 is lifted from the circulation transport path 38 to the supply transport path 37, as in the developing device 3 according to the ninth embodiment, the developer 32 is lifted from a higher level so that the lift portion The upward transfer efficiency at 41a is improved.

図46は、上述の仮想平面上での持ち上げ口41の位置を実施例9の現像装置3よりも現像スリーブ側の位置とした比較例7の現像装置3の断面説明図である。
図45や図46で示す現像装置3では、循環搬送路38内の持ち上げ口41の位置で現像剤32が詰まった状態とならないと、図46で示すように持ち上げ口41に隙間ができ、矢印Kで示すように、一度は供給搬送路37に持ち上がった現像剤32が持ち上げ口41の隙間から循環搬送路38へ落下してしまう。また、比較例7の現像装置3の循環スクリュ40の回転方向は実施例9の現像装置3と同じであるので、循環搬送路38内での現像スリーブ34aから遠い側の方が現像スリーブ34aに近い側よりも現像剤32の剤面が高くなっている。このため、比較例7の現像装置3では、実施例9の現像装置3よりも循環搬送路38内の持ち上げ部41aの位置で現像剤32の量が多く、循環搬送路38内のが詰まっていないと、循環搬送路38から現像剤32を持ち上げて供給搬送路37に受け渡すことができない。図45と図46とでは、現像剤32の剤面をそろえて記載しているが、比較例7の構成で、図46の状態では、矢印Kで示すように、持ち上げ口41の現像スリーブ34aに近い側の隙間から供給搬送路37内の現像剤32が循環搬送路38へ落下してしまう。そのため、比較例7の現像装置3では図46に示す状態よりも更に現像スリーブ34aの近傍まで現像剤32で埋まるように、循環搬送路38内の持ち上げ部41aに現像剤32を溜めないと現像剤32を供給搬送路37へ持ち上げることができない。そして、持ち上げ部41aに現像剤32が溜まると、持ち上げ手前部41bにも現像剤32が溜まるので、結果的に連れ回りや剤漏れが発生し易くなる。
FIG. 46 is a cross-sectional explanatory view of the developing device 3 of the comparative example 7 in which the position of the lifting port 41 on the above-described virtual plane is located on the developing sleeve side with respect to the developing device 3 of the ninth embodiment.
In the developing device 3 shown in FIGS. 45 and 46, if the developer 32 is not clogged at the position of the lifting port 41 in the circulation conveyance path 38, a gap is formed in the lifting port 41 as shown in FIG. As indicated by K, the developer 32 lifted to the supply conveyance path 37 once falls from the clearance of the lifting port 41 to the circulation conveyance path 38. Further, since the rotation direction of the circulation screw 40 of the developing device 3 of Comparative Example 7 is the same as that of the developing device 3 of Example 9, the side farther from the developing sleeve 34a in the circulating conveyance path 38 becomes the developing sleeve 34a. The developer surface of the developer 32 is higher than the closer side. For this reason, in the developing device 3 of the comparative example 7, the amount of the developer 32 is larger at the position of the lifting portion 41a in the circulation conveyance path 38 than in the development device 3 in the ninth embodiment, and the circulation conveyance path 38 is clogged. Otherwise, the developer 32 cannot be lifted from the circulation conveyance path 38 and transferred to the supply conveyance path 37. 45 and 46, the developer surfaces of the developer 32 are aligned, but in the configuration of Comparative Example 7, in the state of FIG. 46, as indicated by the arrow K, the developing sleeve 34a of the lifting port 41 is shown. The developer 32 in the supply conveyance path 37 falls into the circulation conveyance path 38 from the gap close to. Therefore, in the developing device 3 of the comparative example 7, the developer 32 is not accumulated in the lifting portion 41a in the circulation conveyance path 38 so that the developer 32 is buried in the vicinity of the developing sleeve 34a further than the state shown in FIG. The agent 32 cannot be lifted to the supply conveyance path 37. When the developer 32 accumulates in the lifting portion 41a, the developer 32 also accumulates in the lifting front portion 41b. As a result, it is easy to cause follow-up and agent leakage.

一方、実施例9の現像装置3のように、持ち上げ口41を現像スリーブ34aから離れた位置に設けることにより、持ち上げ部41aに溜める現像剤32の量が比較例7の現像装置3よりも少ない状態で循環搬送路38から現像剤32を持ち上げて供給搬送路37に受け渡すことができる。持ち上げ部41aの現像剤32の量を少なくすることで、持ち上げ手前部41bの現像剤32の量も少なくすることができ、その結果、剤漏れや連れ回りの発生を抑制することができる。よって、現像スリーブ34aの回転軸に直交する仮想平面における持ち上げ口41の位置がこの仮想平面における現像スリーブ34aの位置に対して遠い位置となるように配置することが望ましい。   On the other hand, by providing the lifting port 41 at a position away from the developing sleeve 34a as in the developing device 3 of the ninth embodiment, the amount of the developer 32 accumulated in the lifting portion 41a is smaller than that of the developing device 3 of the comparative example 7. In this state, the developer 32 can be lifted from the circulation conveyance path 38 and transferred to the supply conveyance path 37. By reducing the amount of the developer 32 in the lifting portion 41a, the amount of the developer 32 in the lifting portion 41b can also be reduced, and as a result, the occurrence of agent leakage and accompanying rotation can be suppressed. Therefore, it is desirable to arrange the lifting port 41 in a virtual plane orthogonal to the rotation axis of the developing sleeve 34a so that it is far from the position of the developing sleeve 34a in this virtual plane.

次に持ち上げ開口部の形状について説明する。
図47は、実施例9の現像装置3の循環搬送路38の現像剤搬送方向下流側端部近傍を上方から見た模式図である。
図47中の領域γは循環搬送路38内の現像剤32が仕切り板36の下面に接触している領域を示している。上述したように、循環搬送路38内の持ち上げ口41の位置で現像剤32が詰まった状態とならないと、循環搬送路38内の現像剤32を供給搬送路37に受け渡すことができないが、循環搬送路38内の持ち上げ口41の位置で現像剤32が詰まった状態では循環搬送路38内の現像剤が持ち上げ口41の周りの仕切り板36に接触した状態となる。すなわち、持ち上げ口41は図47中の領域γで示す循環搬送路38内の現像剤32が仕切り板36の下面に接触している領域の内側になければならない。
Next, the shape of the lifting opening will be described.
FIG. 47 is a schematic view of the vicinity of the downstream end portion in the developer conveyance direction of the circulation conveyance path 38 of the developing device 3 of Example 9 as viewed from above.
An area γ in FIG. 47 indicates an area where the developer 32 in the circulation conveyance path 38 is in contact with the lower surface of the partition plate 36. As described above, if the developer 32 is not clogged at the position of the lifting port 41 in the circulation conveyance path 38, the developer 32 in the circulation conveyance path 38 cannot be transferred to the supply conveyance path 37. When the developer 32 is clogged at the position of the lifting port 41 in the circulation transport path 38, the developer in the circulation transport path 38 is in contact with the partition plate 36 around the lifting port 41. That is, the lifting port 41 must be inside the region where the developer 32 in the circulation conveyance path 38 indicated by the region γ in FIG. 47 is in contact with the lower surface of the partition plate 36.

持ち上げ口41の開口の形状としては、図47に示すものに限らず、図48のように三角形になっていても良いし、図49のように台形になっていてもよい。さらに図50のように丸みを帯びた形状でもよい。持ち上げ口41の形状がどのような形状であっても、持ち上げ口41の位置を仕切り板36における現像スリーブ34aから遠い側とし、持ち上げ口41の開口面積が循環スクリュ40のスクリュ断面積よりも大きくなるように設定し、さらに、持ち上げ口41の開口の現像スリーブ34aの回転軸方向についての長さが現像スリーブ34aから遠いほど長くなるような形状とすることが望ましい。   The shape of the opening of the lifting opening 41 is not limited to that shown in FIG. 47, and may be a triangle as shown in FIG. 48 or a trapezoid as shown in FIG. Further, it may be rounded as shown in FIG. Whatever the shape of the lifting port 41, the position of the lifting port 41 is the side far from the developing sleeve 34 a in the partition plate 36, and the opening area of the lifting port 41 is larger than the screw cross-sectional area of the circulating screw 40. Further, it is desirable that the length of the opening of the lifting opening 41 in the direction of the rotation axis of the developing sleeve 34a be longer as it is farther from the developing sleeve 34a.

次に、本実施例の現像装置3の補給トナーの分散性について説明する。
図51は、図38の模式図にトナーの補給位置(図中の位置T)を示した概略図である。トナーは循環搬送路38上流側に補給している。補給したトナーは「循環搬送路38」→「持ち上げ口41」→「供給搬送路37」→「現像スリーブ34aの表面」の順に撹拌されながら搬送される。
現像装置3に対して、トナーを補給するときは1回の補給動作によって、トナーが0.05[g]程度づつ補給され、消費したトナーの量と同じ量を目指して補給される。たとえば、トナーを0.3[g]補給する場合は間欠動作で6回の補給動作によって補給されるようになっている。
一回の補給動作で補給されるトナー補給量は0.05[g]だが、このトナーが搬送中に長手方向(現像スリーブ34aの回転軸方向)に分散させる必要がある。
Next, the dispersibility of the replenishment toner of the developing device 3 of this embodiment will be described.
FIG. 51 is a schematic view showing the toner supply position (position T in the drawing) in the schematic diagram of FIG. The toner is supplied to the upstream side of the circulation conveyance path 38. The replenished toner is conveyed while being stirred in the order of “circulation conveyance path 38” → “lifting port 41” → “supply conveyance path 37” → “surface of developing sleeve 34a”.
When toner is replenished to the developing device 3, the toner is replenished by about 0.05 [g] by one replenishment operation, aiming at the same amount as the amount of consumed toner. For example, when 0.3 [g] of toner is supplied, the toner is supplied in six intermittent operations.
The amount of toner replenished in one replenishment operation is 0.05 [g], but this toner needs to be dispersed in the longitudinal direction (the direction of the rotation axis of the developing sleeve 34a) during conveyance.

循環搬送路38での循環スクリュ40によって現像剤を搬送しながら補給トナーを分散させる構成については後述する。
ここでは持ち上げ部41aで補給トナーを分散させる構成について説明する。
補給トナーを長手方向に分散する構成としては、持ち上げ部41aでの現像剤32の搬送経路を分割する方法がある。例えば、図52のように持ち上げ口41を2分割して、第一持ち上げ口411と第二持ち上げ口412とを設ける方法である。このように分割すると図53に示すように持ち上げ部41aでの現像剤32の流れに2種類の搬送経路ができる。これにより、持ち上げ部41aに局所的にトナー濃度が濃い現像剤32が入ってきても、2種類の搬送経路に分割されることで、持ち上げ部41aを通過した後の現像剤32のトナー濃度を均すことができる。
なお、持ち上げ口41を分割するときには、図52に示すように循環搬送路38の現像剤搬送方向上流側の第二持ち上げ口412の開口面積を第一持ち上げ口411の開口面積よりも小さくすることが望ましい。第二持ち上げ口412の方の開口面積を大きくすると、大部分の現像剤32が第二持ち上げ口412を通過して持ち上がるため、分散効果が低下する。
A configuration in which the replenishment toner is dispersed while the developer is conveyed by the circulation screw 40 in the circulation conveyance path 38 will be described later.
Here, a configuration in which the replenishment toner is dispersed by the lifting portion 41a will be described.
As a configuration for dispersing the replenishment toner in the longitudinal direction, there is a method of dividing the transport path of the developer 32 in the lifting portion 41a. For example, as shown in FIG. 52, the lifting port 41 is divided into two parts, and a first lifting port 411 and a second lifting port 412 are provided. When divided in this way, two types of transport paths are formed in the flow of the developer 32 at the lifting portion 41a as shown in FIG. As a result, even if the developer 32 having a high toner concentration locally enters the lifting portion 41a, the toner concentration of the developer 32 after passing through the lifting portion 41a is reduced by being divided into two types of transport paths. Can be leveled.
When the lifting port 41 is divided, as shown in FIG. 52, the opening area of the second lifting port 412 on the upstream side in the developer transport direction of the circulation transport path 38 is made smaller than the opening area of the first lifting port 411. Is desirable. When the opening area of the second lifting opening 412 is increased, most of the developer 32 passes through the second lifting opening 412 and is lifted, so that the dispersion effect is reduced.

また、補給トナーの分散性を向上する意味では図48や図49のように、持ち上げ口41の開口形状の条件が循環搬送路38の現像剤搬送方向上流側ほど現像スリーブ34aの回転軸方向に直交する方向の開口幅が狭い条件でも分散性を向上することができる。この理由は、持ち上げ口41を分割した場合と同じで、持ち上げ部41aにおける循環搬送路38の現像剤搬送方向上流側から持ち上がる現像剤32と搬送方向下流側から持ち上がる現像剤32とで持ち上げに時間差ができるためである。   In addition, as shown in FIGS. 48 and 49, in order to improve the dispersibility of the replenishing toner, the condition of the opening shape of the lifting opening 41 is closer to the rotation axis direction of the developing sleeve 34a toward the upstream side in the developer conveying direction of the circulation conveying path 38. Dispersibility can be improved even when the opening width in the orthogonal direction is narrow. The reason for this is the same as when the lifting port 41 is divided, and there is a time difference in lifting between the developer 32 that lifts from the upstream side in the developer transport direction of the circulation transport path 38 in the lifting portion 41a and the developer 32 that lifts from the downstream side in the transport direction. It is because it can do.

図54は持ち上げ口41の開口形状と拡散係数の関係を示すグラフである。
なお拡散係数とは以下の数5の式で表す現像剤の移送拡散方程式にて用いる係数Dのことをさす。

Figure 0005517092
上記数5の式で、Cはトナー濃度をあらわしており、左辺は時間当たりのトナー濃度の変化量を表す。右辺第一項は移送項と、第二項を拡散項と呼ぶ。第一項は現像剤の軸方向に移動に関わる項をあらわし、第二項は現像剤の周囲との分散を表す項である。拡散係数は上式のDであり、分散性が良い、つまり長手方向でよく混ざる条件はDが大きくなる。
なお、測定は補給直後と持ち上げ後のトナー濃度を求め、移動距離及び移動時間から係数uとDを算出する。
この拡散係数算出結果が図54に示すグラフである。図54中の横軸の「長方形」は持ち上げ口41の開口形状が図47の形状のときの結果である。どうように、「三角形」は持ち上げ口41の開口形状が図48の形状のときの結果であり、「分割」は持ち上げ口41の開口形状が図52の形状のときの結果である。
このように、補給トナーの分散性を向上するためには、持ち上げ口41の開口形状が図47のような長方形の構成よりも図48〜図50、及び図52で示した形状の方が良い。 FIG. 54 is a graph showing the relationship between the opening shape of the lifting opening 41 and the diffusion coefficient.
The diffusion coefficient is a coefficient D used in the developer transfer diffusion equation expressed by the following equation (5).
Figure 0005517092
In the above equation (5), C represents the toner density, and the left side represents the amount of change in the toner density per time. The first term on the right side is called the transfer term, and the second term is called the diffusion term. The first term represents a term related to the movement of the developer in the axial direction, and the second term represents the dispersion with the periphery of the developer. The diffusion coefficient is D in the above equation, and the dispersibility is good.
In the measurement, the toner density immediately after replenishment and after lifting is obtained, and the coefficients u and D are calculated from the movement distance and movement time.
This diffusion coefficient calculation result is a graph shown in FIG. The “rectangle” on the horizontal axis in FIG. 54 is the result when the opening shape of the lifting opening 41 is the shape of FIG. Thus, “triangle” is the result when the opening shape of the lifting port 41 is the shape of FIG. 48, and “divided” is the result when the opening shape of the lifting port 41 is the shape of FIG. 52.
As described above, in order to improve the dispersibility of the replenishing toner, the opening shape of the lifting opening 41 is preferably the shape shown in FIGS. 48 to 50 and 52 rather than the rectangular configuration as shown in FIG. .

〔実施例10〕
次に、実施例1〜9の現像装置3に適用可能な現像装置3内で現像剤を搬送する構成の実施例(以下、実施例10と呼ぶ)について説明する。
まず、本実施例現像装置3内での現像剤32の流れについて説明する。
図51に示すように、本実施例の現像装置3内の現像剤32は「循環搬送路上流側端部38a」→「循環搬送路下流側端部38b」→「供給搬送路上流側端部37a」→「供給搬送路下流側端部37b」→「循環搬送路上流側端部38a」・・・・と循環し、還流を形成している(以下、この循環の還流を基本還流と呼ぶ)。また、現像装置3内では基本還流のほかに、「供給搬送路37」→「現像スリーブ34a表面」→「循環搬送路38」という現像剤32の流れが存在する(以下、この流れを分岐流と呼ぶ)。
現像装置3では、基本還流がどの場所も同じ現像剤搬送速度で還流している場合は、循環搬送路38では現像剤搬送方向の下流側ほど現像剤量が多くなり、供給搬送路37では現像剤搬送方向の上流側ほど現像剤量が多くなる。このため、現像剤32の剤面32fは図51に示すように長手方向に対して斜めになっている。
Example 10
Next, an example (hereinafter referred to as Example 10) in which the developer is transported in the developing device 3 applicable to the developing device 3 of Examples 1 to 9 will be described.
First, the flow of the developer 32 in the developing device 3 of this embodiment will be described.
As shown in FIG. 51, the developer 32 in the developing device 3 of the present embodiment is “circulation conveyance path upstream end 38a” → “circulation conveyance path downstream end 38b” → “supply conveyance path upstream end. 37a "→" feed conveyance path downstream end 37b "→" circulation conveyance path upstream end 38a "... to form a reflux (hereinafter referred to as basic reflux). ). In addition to the basic reflux, there is a flow of the developer 32 in the developing device 3 in the order of “supply conveyance path 37” → “surface of the developing sleeve 34a” → “circulation conveyance path 38” (hereinafter, this flow is branched. Called).
In the developing device 3, when the basic reflux is refluxing at the same developer conveyance speed at any place, the developer amount increases in the circulation conveyance path 38 toward the downstream side in the developer conveyance direction, and the supply conveyance path 37 develops. The developer amount increases toward the upstream side in the agent transport direction. For this reason, the agent surface 32f of the developer 32 is inclined with respect to the longitudinal direction as shown in FIG.

図55は、図51に示すの循環搬送路38内の任意の領域Ζにおける現像剤32の流れの説明図である。
循環搬送路38の任意の領域Ζでは、領域Ζよりも現像剤搬送方向上流側から領域Ζ内に流れてくる現像剤32の流れMuと、領域Ζから領域Zよりも現像剤搬送方向下流側に流れていく現像剤32の流れMkと、現像スリーブ34aの表面から領域Ζ内に落下して領域Z内に回収される現像剤32の流れMsとの3種類の現像剤32の流れが存在する。
現像装置3において、領域Z(以下、循環搬送路セルと呼ぶ)内の現像剤量が平衡状態になれば、上記3種類の現像剤32の流れの現像剤搬送量に対して下の式(1)が成り立つ。
Mk=Mu+Ms・・・・・(1)
つまり循環搬送路セルに入って来る現像剤32の量と循環搬送路セルから出て行く現像剤32の量が等しくなる。
FIG. 55 is an explanatory diagram of the flow of the developer 32 in an arbitrary region in the circulation conveyance path 38 shown in FIG.
In an arbitrary region Ζ of the circulation conveyance path 38, the developer Mu flow Mu flowing from the upstream side of the developer conveyance direction into the region も with respect to the region と and the downstream side of the developer conveyance direction with respect to the region Z from the region Ζ. There are three types of developer 32 flows: a flow Mk of the developer 32 that flows into the area M, and a flow Ms of the developer 32 that falls from the surface of the developing sleeve 34a into the area Z and is collected in the area Z. To do.
In the developing device 3, if the amount of developer in the region Z (hereinafter referred to as a circulation conveyance path cell) reaches an equilibrium state, the following equation (with respect to the developer conveyance amount of the three types of developer 32 flows) 1) holds.
Mk = Mu + Ms (1)
That is, the amount of the developer 32 entering the circulation conveyance path cell is equal to the amount of the developer 32 exiting from the circulation conveyance path cell.

また、Muの現像剤量は、循環搬送路セルの現像剤搬送方向上流側端部(以下、上流側端部と呼ぶ)の現像剤32の断面積Suと循環搬送路セルの上流側端部での現像剤搬送速度Vuの積によって決まり、以下の式(2)が成り立つ。
Mu=Su×Vu・・・・(2)
同様に、Mkの現像剤量は、循環搬送路セルの現像剤搬送方向下流側端部(以下、上流側端部と呼ぶ)の現像剤32の断面積Skと循環搬送路セルの下流側端部での現像剤搬送速度Vkの積によって決まり、以下の式(3)が成り立つ。
Mk=Sk×Vk・・・・(3)
Further, the developer amount of Mu is determined by the cross-sectional area Su of the developer 32 at the upstream end portion in the developer transport direction (hereinafter referred to as the upstream end portion) of the circulation transport path cell and the upstream end portion of the circulation transport path cell. Is determined by the product of the developer conveyance speed Vu at (1), and the following equation (2) is established.
Mu = Su × Vu (2)
Similarly, the developer amount of Mk depends on the cross-sectional area Sk of the developer 32 at the downstream end of the circulating transport path cell in the developer transport direction (hereinafter referred to as the upstream end) and the downstream end of the circulating transport path cell. Is determined by the product of the developer conveyance speed Vk in the section, and the following equation (3) is established.
Mk = Sk × Vk (3)

ここで、VuとVkとが同じ値である場合、現像スリーブ34aから循環搬送路セルに落下してくる現像剤32の分だけ循環搬送路セルの下流側端部の現像剤断面積Skの方が上流側端部の現像剤の断面積Suよりも大きくなる。ここで、Vk=Vu=Vとすると下記式(4)のようになる。
Sk×V=Su×V+Ms・・・・(4)
式(4)を変形すると下記式(5)のようになる。
Sk=Su+Ms÷V・・・・(5)
すなわち、Sk(下流側端部の現像剤の断面積)はSu(上流側端部の現像剤の断面積)に対して「Ms÷V」だけ大きくなる。
このような原理によって各実施例の現像装置3内では現像剤32の剤面32fが長手方向で斜めになる。
Here, when Vu and Vk have the same value, the developer cross-sectional area Sk at the downstream end of the circulation conveyance path cell by the amount of the developer 32 falling from the developing sleeve 34a to the circulation conveyance path cell. Becomes larger than the cross-sectional area Su of the developer at the upstream end. Here, when Vk = Vu = V, the following equation (4) is obtained.
Sk × V = Su × V + Ms (4)
When the equation (4) is modified, the following equation (5) is obtained.
Sk = Su + Ms ÷ V (5)
That is, Sk (the cross-sectional area of the developer at the downstream end) is larger by “Ms ÷ V” than Su (the cross-sectional area of the developer at the upstream end).
By such a principle, the developer surface 32f of the developer 32 is inclined in the longitudinal direction in the developing device 3 of each embodiment.

また、上記式(1)〜(3)より下記式(6)を導くことができる。
Sk×Vk=Su×Vu+Ms・・・(6)
仮にSk=Su=Sのように、循環搬送路セルの下流側端部の現像剤の断面積と上流側端部の現像剤の断面積とを同じ面積にしたい(現像剤の高さを一定にしたい)場合は、下記式(7)が成り立つように構成すれば現像剤32の剤面32fは斜めにならない。
Vk=Vu+Ms÷S・・・・(7)
上記式(7)は、各循環搬送路セルの下流側端部の現像剤搬送速度Vkを、上流側端部の現像剤搬送速度Vuに対して「Ms÷S」だけ大きくしてやればよいことを意味している。すなわち、循環搬送路38の現像剤搬送方向下流側ほど現像剤搬送速度を速くしてやれば循環搬送路38内の現像剤32の剤面32fは一定になる。
なお、上述の説明では循環搬送路38の現像剤搬送速度について説明したが、供給搬送路37でも同様の原理で現像剤搬送速度が決まる。
Further, the following formula (6) can be derived from the above formulas (1) to (3).
Sk × Vk = Su × Vu + Ms (6)
As in Sk = Su = S, it is desired that the cross-sectional area of the developer at the downstream end of the circulation conveyance path cell and the cross-sectional area of the developer at the upstream end be the same area (the height of the developer is constant). If it is desired to satisfy the following formula (7), the developer surface 32f of the developer 32 will not be inclined.
Vk = Vu + Ms / S (7)
The above equation (7) indicates that the developer transport speed Vk at the downstream end of each circulation transport path cell should be increased by “Ms ÷ S” with respect to the developer transport speed Vu at the upstream end. I mean. That is, the developer surface 32f of the developer 32 in the circulation conveyance path 38 becomes constant if the developer conveyance speed is increased toward the downstream side of the circulation conveyance path 38 in the developer conveyance direction.
In the above description, the developer conveyance speed of the circulation conveyance path 38 has been described. However, the developer conveyance speed is determined by the same principle in the supply conveyance path 37.

次に、供給搬送路下流側端部37b近傍で発生するおそれのある現像剤枯渇の不具合について説明する。
供給搬送路37内では現像剤32の搬送速度が一定であると図51に示すように現像剤搬送方向下流側ほど現像剤量が少なくなるため、供給搬送路下流側端部37b近傍では現像剤量が少なくなりやすい。供給搬送路下流側端部37b近傍で現像剤量が少なくなると、供給搬送路37から現像スリーブ34aに現像剤32を供給することができなくなる。その結果、図56中のように、現像スリーブ34aの右側の領域Ηに現像剤32が供給できなくなる現像剤枯渇が発生する。
Next, a problem of developer depletion that may occur in the vicinity of the supply conveyance path downstream end 37b will be described.
If the conveyance speed of the developer 32 is constant in the supply conveyance path 37, the developer amount decreases toward the downstream side in the developer conveyance direction as shown in FIG. 51. Therefore, the developer is near the downstream end 37b of the supply conveyance path. The amount tends to decrease. If the amount of developer decreases in the vicinity of the supply conveyance path downstream end portion 37b, the developer 32 cannot be supplied from the supply conveyance path 37 to the developing sleeve 34a. As a result, as shown in FIG. 56, developer depletion that prevents the developer 32 from being supplied to the right side region of the developing sleeve 34a occurs.

現像装置3で現像剤枯渇が発生しないための現像剤搬送条件について図57を用いて説明する。
図57で示す「循環搬送路38から供給搬送路37への単位時間当りの現像剤搬送量Mku」と「現像スリーブ34aの表面から循環搬送路38に単位時間当りに落下する現像剤32の総量Mzs」について、供給搬送路下流側端部37b近傍で現像剤枯渇が発生しないための最低限必要な条件と下記式(8)の条件がある。
Mku>Mzs・・・・(8)
すなわち、現像装置3内の現像剤の搬送状態が平衡状態となった場合においては、「循環搬送路38から供給搬送路37への単位時間当りの現像剤搬送量Mku」は、「現像スリーブ34aの表面から循環搬送路38に単位時間当りに落下する現像剤32の総量Mzs」よりも多くなければならない。上記式(8)の条件が成り立っていない場合、供給搬送路37内の供給搬送路上流側端部37a近傍以外の現像剤搬送速度をどんなに速くしようとも現像剤枯渇が発生する。
With reference to FIG. 57, a description will be given of developer transport conditions for preventing developer depletion from occurring in the developing device 3.
The “developer conveyance amount Mku per unit time from the circulation conveyance path 38 to the supply conveyance path 37” shown in FIG. 57 and “the total amount of developer 32 falling per unit time from the surface of the developing sleeve 34a to the circulation conveyance path 38”. With regard to “Mzs”, there are a minimum necessary condition for preventing developer depletion in the vicinity of the supply transport path downstream end portion 37b and a condition of the following formula (8).
Mku> Mzs (8)
That is, when the developer conveyance state in the developing device 3 is in an equilibrium state, the “developer conveyance amount Mku from the circulation conveyance path 38 to the supply conveyance path 37” per unit time is “development sleeve 34a”. The total amount Mzs of the developer 32 falling per unit time from the surface to the circulation conveyance path 38 must be larger. When the condition of the above formula (8) is not satisfied, the developer depletion occurs regardless of how fast the developer conveyance speed in the supply conveyance path 37 other than the vicinity of the upstream end 37a of the supply conveyance path.

次に、回収室下流側で発生する現像剤漏れ、現像剤連れ周りについて説明する。
図58は、現像剤漏れが発生した状態の現像剤搬送路の模式図である。図58に示したとおり、循環搬送路38から供給搬送路37に現像剤32を受け渡す部分である持ち上げ部41aは供給搬送路37から循環搬送路38に現像剤を受け渡す部分である落下部42aに比べて現像剤搬送量が多くなる。そのため持ち上げ部41a付近には現像剤が溜まりやすく、図58中の領域Λのような状態になると、現像スリーブ34aからの現像剤32を循環搬送路38に回収できなくなってしまう。この場合、「供給搬送路37」→「現像スリーブ34aの表面」と循環した現像剤32は循環搬送路38に行き場がなくなるために現像装置3の外に落下してしまう。この現象を剤漏れと呼ぶ。
さらに、持ち上げ部41a付近に現像剤32が溜まると剤漏れ以外にも連れ周りという不具合が発生する。連れまわりは一度は現像領域Aを通過した現像スリーブ34a上の現像剤32が現像スリーブ34aと循環搬送路38とが対向する位置で現像スリーブ34aの表面から離脱せずに、再度、現像領域Aに運ばれる現象である。一度、現像領域Aを通過した現像剤32はトナー濃度が下がっている。そのため、連れ周りが発生すると現像領域Aで必要なトナー量が確保できずに画像濃度が下がってしまう。
Next, a description will be given of the developer leakage occurring around the collection chamber and the surrounding of the developer.
FIG. 58 is a schematic diagram of a developer conveyance path in a state where developer leakage has occurred. As shown in FIG. 58, the lifting portion 41a, which is a portion that transfers the developer 32 from the circulation conveyance path 38 to the supply conveyance path 37, is a dropping portion that is a portion that transfers the developer from the supply conveyance path 37 to the circulation conveyance path 38. Compared to 42a, the developer conveyance amount increases. For this reason, the developer tends to accumulate in the vicinity of the lifting portion 41a, and if the state becomes a region Λ in FIG. 58, the developer 32 from the developing sleeve 34a cannot be collected in the circulation conveyance path 38. In this case, the developer 32 circulated as “supply conveyance path 37” → “surface of the developing sleeve 34 a” falls outside the developing device 3 because the circulation conveyance path 38 has no place to go. This phenomenon is called agent leakage.
Furthermore, if the developer 32 accumulates in the vicinity of the lifting portion 41a, there is a problem of accompanying rotation in addition to agent leakage. In the accompaniment, the developer 32 on the developing sleeve 34a that has once passed through the developing area A is not separated from the surface of the developing sleeve 34a at the position where the developing sleeve 34a and the circulation conveyance path 38 face each other. It is a phenomenon that is carried to. Once the developer 32 has passed through the development area A, the toner density is lowered. For this reason, when the accompaniment occurs, the necessary toner amount cannot be secured in the development area A, and the image density is lowered.

なお、剤漏れ及び連れ回りは共に循環搬送路38内の現像剤搬送方向下流側端部近傍の現像剤量が多いことによって発生する。したがって、循環搬送路38内の現像剤搬送方向下流側端部近傍の現像剤量が少なくなれば(循環搬送路38内の現像剤32の高さが低くなれば)発生しない。   Note that both agent leakage and follow-up occur when the amount of developer in the vicinity of the downstream end in the developer conveyance direction in the circulation conveyance path 38 is large. Therefore, it does not occur if the amount of developer in the vicinity of the downstream end in the developer conveyance direction in the circulation conveyance path 38 decreases (if the height of the developer 32 in the circulation conveyance path 38 decreases).

次に、現像装置3に適用可能な剤漏れや連れ回りの発生を防止する構成について説明する。
循環搬送路38内の現像剤搬送方向下流側端部近傍の現像剤量を少なくする構成としては下記(a)または(b)の構成を挙げることができる。
(a)循環搬送路38内の現像剤搬送方向下流側端部近傍の現像剤搬送力を大きくする。
(b)持ち上げ口41の開口面積及び開口位置を適切に設定する。
Next, a configuration that prevents the occurrence of agent leakage and accompanying rotation applicable to the developing device 3 will be described.
As a configuration for reducing the amount of developer in the vicinity of the downstream end portion in the developer transport direction in the circulation transport path 38, the following configuration (a) or (b) may be mentioned.
(A) The developer conveying force in the vicinity of the downstream end in the developer conveying direction in the circulation conveying path 38 is increased.
(B) The opening area and opening position of the lifting port 41 are set appropriately.

上記(a)の構成は、現像装置3ではスクリュ部材である循環スクリュ40によって循環搬送路38内の現像剤搬送を行っているため、循環スクリュ40のリード角を適切に設定することが望ましい。
図39を用いて説明したように、スクリュ軸部80aに対してスクリュ羽部80bが垂直に近くなるほどリード角βの角度が小さくなる。
また、スクリュ部材のリード角βの角度と搬送速度との関係は図40示すグラフのようになる。図40のグラフはスクリュ径が14[mm]のスクリュ部材を800[rpm]で回転させたときのスクリュ軸方向の搬送速度を測定した結果である。
図40に示すように、リード角βの角度を45[°]近傍の値に設定することで搬送速度を速くできるため循環搬送路38内の現像剤搬送方向下流側端部近傍の循環スクリュ40のリード角の角度は45[°]に設定する。また、循環スクリュ40の回転数を高くしても現像剤32の搬送速度を速くすることができる。しかし、スクリュ部材の回転数を高くするとスクリュ部材と軸受けの部分との摩擦により熱が発生してしまう。その熱により現像剤中のトナーが凝集し、固化してしまうおそれがあるので、スクリュ部材の回転数は可能な限り小さくすることが望ましい。そのため現像装置3では循環スクリュ40の循環搬送路38内の現像剤搬送方向下流側端部近傍に位置する箇所のリード角の角度を45[°]に設定した上で、必要なスクリュ回転数に設定する。上述の実施例8では循環スクリュ40を800[rpm]の回転数で回転させている。
In the configuration of (a), since the developer in the circulation conveyance path 38 is conveyed by the circulation screw 40 that is a screw member in the developing device 3, it is desirable to set the lead angle of the circulation screw 40 appropriately.
As described with reference to FIG. 39, the lead angle β becomes smaller as the screw blade portion 80b becomes closer to the screw shaft portion 80a.
Further, the relationship between the lead angle β of the screw member and the conveying speed is as shown in the graph of FIG. The graph of FIG. 40 is a result of measuring the conveying speed in the screw axis direction when a screw member having a screw diameter of 14 [mm] is rotated at 800 [rpm].
As shown in FIG. 40, the conveyance speed can be increased by setting the lead angle β to a value in the vicinity of 45 [°]. The lead angle is set to 45 [°]. Further, even if the rotational speed of the circulation screw 40 is increased, the conveyance speed of the developer 32 can be increased. However, when the rotational speed of the screw member is increased, heat is generated due to friction between the screw member and the bearing portion. Since the toner in the developer may aggregate and solidify due to the heat, it is desirable that the number of rotations of the screw member be as small as possible. Therefore, in the developing device 3, the lead angle of a portion located in the vicinity of the downstream end portion in the developer conveyance direction in the circulation conveyance path 38 of the circulation screw 40 is set to 45 [°], and the necessary screw rotation speed is set. Set. In the above-described eighth embodiment, the circulating screw 40 is rotated at a rotational speed of 800 [rpm].

図59は、スクリュ部材のリード角βの角度と分散性との関係を示すグラフである。図59より、リード角の角度が大きい方が分散性が大きくなっていることがわかる。なお、ここで言う分散性とはスクリュ部材の軸方向における単位距離あたり移動する間に現像剤が移動方向でどの程度分散するかを表している。   FIG. 59 is a graph showing the relationship between the lead angle β of the screw member and the dispersibility. FIG. 59 shows that the larger the lead angle, the greater the dispersibility. The dispersibility referred to here indicates how much the developer is dispersed in the moving direction while moving per unit distance in the axial direction of the screw member.

上記(b)の構成については、現像スリーブ34aの軸方向における持ち上げ口41と現像スリーブ34aとの距離(図41中の矢印W)を可能な限り広く設定し、持ち上げ口41を現像スリーブ34aから可能な限り遠い位置に設定した方が良い。
持ち上げ口41から現像剤32を持上げるためには、循環搬送路38内の持ち上げ部41aには現像剤が詰まってないと現像剤32は持ち上がらずに、供給搬送路37内の現像剤32が持ち上げ口41から落下して、循環搬送路38内の持ち上げ部41aに戻ってしまう。よって、現像剤が持ち上がるためには少なくとも循環搬送路38内の持ち上げ部41aに現像剤32が溜まることになる。このため、持ち上げ口41と現像スリーブ34aとの距離が大きければ持ち上げ部41aに溜まる現像剤32が現像スリーブ34aにかかりにくくなり、剤漏れや連れ回りの発生を抑制することができる。
With regard to the configuration (b), the distance between the lifting port 41 and the developing sleeve 34a in the axial direction of the developing sleeve 34a (arrow W in FIG. 41) is set as wide as possible, and the lifting port 41 is separated from the developing sleeve 34a. It is better to set it as far away as possible.
In order to lift the developer 32 from the lifting port 41, the developer 32 does not lift up unless the developer is clogged in the lifting portion 41 a in the circulation transport path 38, and the developer 32 in the supply transport path 37 does not rise. It drops from the lifting port 41 and returns to the lifting part 41a in the circulation conveyance path 38. Therefore, in order for the developer to be lifted up, the developer 32 accumulates at least in the lifting portion 41 a in the circulation conveyance path 38. For this reason, if the distance between the lifting opening 41 and the developing sleeve 34a is large, the developer 32 accumulated in the lifting portion 41a is less likely to be applied to the developing sleeve 34a, and the occurrence of agent leakage and accompanying rotation can be suppressed.

しかしながら、現像装置3を小型化するためには、持ち上げ口41を現像スリーブ34aの近傍に設ける必要があるため、持ち上げ口41と現像スリーブ34aとの距離Wを設定するだけでは現像装置3を小型化しつつ、剤漏れや連れ回りの発生を抑制することはできない。
現像装置3を小型化しつつ、剤漏れや連れ回りの発生を抑制するためには、持ち上げ口41の開口面積を循環スクリュ40のスクリュ断面積以上に設定する必要がある。
これは、上記式(2)及び(3)で示したように、現像剤搬送量は現像剤が移動可能な「断面積×搬送速度」で決まるためである。持ち上げ口41の開口面積が循環スクリュ40のスクリュ断面積よりも小さい場合は循環スクリュ40によって現像剤32に搬送力が付与される領域の現像剤搬送速度よりも速い搬送速度で持ち上げ口41を通過する現像剤32は移動しなければならなくなる。持ち上げ口41を通過する現像剤32の搬送速度が速い場合はその周りにかかる現像剤圧力も大きくなっており、その圧力は循環搬送路38の持ち上げ部41aに伝播する。そのため循環搬送路下流側端部38b近傍(持ち上げ部41aや持ち上げ手前部41b)に現像剤32が詰まりやすくなる。
However, since it is necessary to provide the lifting port 41 in the vicinity of the developing sleeve 34a in order to reduce the size of the developing device 3, the developing device 3 can be reduced in size only by setting the distance W between the lifting port 41 and the developing sleeve 34a. However, it is impossible to suppress the occurrence of agent leakage and accompanying rotation.
In order to suppress the occurrence of agent leakage and accompanying rotation while downsizing the developing device 3, it is necessary to set the opening area of the lifting port 41 to be equal to or larger than the screw cross-sectional area of the circulation screw 40.
This is because, as shown in the above formulas (2) and (3), the developer conveyance amount is determined by “cross-sectional area × conveying speed” at which the developer can move. When the opening area of the lifting port 41 is smaller than the screw cross-sectional area of the circulating screw 40, the lifting port 41 passes through the lifting port 41 at a transport speed faster than the developer transport speed in the region where the transport force is applied to the developer 32 by the circulating screw 40. The developer 32 to be moved must move. When the transport speed of the developer 32 passing through the lifting port 41 is fast, the developer pressure applied around the developer 32 is also increased, and the pressure propagates to the lifting portion 41 a of the circulation transport path 38. Therefore, the developer 32 is likely to be clogged in the vicinity of the downstream end portion 38b of the circulation conveyance path (the lifting portion 41a and the lifting front portion 41b).

図60は、持ち上げ口41の開口面積と持ち上げ口41での現像剤搬送量との関係を示すグラフである。
図60中の「開口面積小」は、持ち上げ口41の開口面積をスクリュ断面積の0.9倍としたときのグラフであり、「開口面積大」は持ち上げ口41の開口面積をスクリュ断面積の2.2倍としたときのグラフである。
図60に示すように、循環スクリュ40の回転数が同じ(循環スクリュ40の現像剤搬送力が同じ)値であったとしても、開口面積が広い方が持ち上げ口41の現像剤搬送量は多くなっている。すなわち、持ち上げ部41aでの現像剤圧力が小さくても持ち上げ口41の開口面積が広いと必要な現像剤搬送量が確保できる。そのため、持ち上げ部41aや持ち上げ手前部41bでの現像剤詰まりを少なくすることができる。
FIG. 60 is a graph showing the relationship between the opening area of the lifting opening 41 and the developer conveyance amount at the lifting opening 41.
“Small opening area” in FIG. 60 is a graph when the opening area of the lifting opening 41 is 0.9 times the screw sectional area, and “large opening area” is the opening area of the lifting opening 41 being the screw sectional area. It is a graph when it is set to 2.2 times.
As shown in FIG. 60, even if the rotational speed of the circulating screw 40 is the same (the developer conveying force of the circulating screw 40 is the same), the developer conveying amount of the lifting port 41 is larger when the opening area is larger. It has become. That is, even if the developer pressure at the lifting portion 41a is small, a necessary developer conveyance amount can be secured if the opening area of the lifting port 41 is large. Therefore, developer clogging at the lifting portion 41a and the lifting front portion 41b can be reduced.

次に、循環搬送路上流側端部38a近傍での分散能力について説明する。
本実施例の現像装置3は小型の現像装置であるために現像容器33に収納さている現像剤32の量が、従来の現像装置に比べて少ない。このように現像剤32が少ない場合にトナーの分散能力が必要になる。
時間当りの印刷枚数が同じで、現像容器内に収納する現像剤の総量が異なる現像装置Aと現像装置Bとを比較したものを表3に示す。

Figure 0005517092
現像容器内に収納する現像剤の総量は、現像装置Aが90[g]で現像装置Bが270[g]である。そして、単位時間当たりの印刷枚数が同じ場合、同じ画像の印刷に使われるトナー消費量は現像装置A、現像装置B共に等しいが、現像容器内のトナーの総量に対するトナー消費量の割合は現像装置Aと現像装置Bとでは異なる。例えば、全面画像(黒トナーなら真っ黒な画像)を出力した場合のトナー消費で比較すると、現像装置Aでは現像容器内の総トナー量に対して全面画像出力時のトナー消費量の割合は6[%]使うのに対し、現像剤容量が大きい現像装置Bでは現像容器内の総トナー量に対して全面画像出力時のトナー消費量の割合は2[%]程度である。
そして、画像出力後は次の画像作成のために消費したトナー量と同じ量のトナーを現像容器内に補給する必要がある。これも現像装置Aでは現像容器内トナー量の6[%]、現像装置Bでは2[%]相当のトナーを補給する。全体のトナー量に対して補給されるトナー量が多いため、現像装置Aは現像装置Bに比べて補給したトナーを現像剤中に分散する能力を高くしなければならない。 Next, the dispersion capability in the vicinity of the upstream end portion 38a of the circulation conveyance path will be described.
Since the developing device 3 of this embodiment is a small developing device, the amount of the developer 32 stored in the developing container 33 is smaller than that of the conventional developing device. Thus, when the amount of the developer 32 is small, a toner dispersion capability is required.
Table 3 shows a comparison between the developing device A and the developing device B in which the number of printed sheets per hour is the same and the total amount of the developer stored in the developing container is different.
Figure 0005517092
The total amount of developer stored in the developing container is 90 [g] for the developing device A and 270 [g] for the developing device B. When the number of prints per unit time is the same, the toner consumption used for printing the same image is the same for both the developing device A and the developing device B, but the ratio of the toner consumption to the total amount of toner in the developing container is the developing device. A and the developing device B are different. For example, in comparison with the toner consumption when outputting the entire image (black image if black toner), the ratio of the toner consumption when outputting the entire image to the total toner amount in the developing container is 6 [ On the other hand, in the developing device B having a large developer capacity, the ratio of the toner consumption amount when outputting the entire image to the total toner amount in the developing container is about 2 [%].
After the output of the image, it is necessary to supply the same amount of toner as the amount of toner consumed for creating the next image into the developing container. In this case, the developing device A replenishes toner corresponding to 6 [%] of the toner amount in the developing container, and the developing device B supplies 2 [%]. Since the amount of toner to be replenished is larger than the total amount of toner, the developing device A must have a higher ability to disperse the replenished toner in the developer than the developing device B.

ここで、本実施例の現像装置3のように小型化した現像装置で補給したトナーを現像剤中に分散する能力を高くする構成について説明する。
本実施例の現像装置3のトナー補給位置Tは、図51に示すように循環搬送路上流側端部38aである。トナー補給位置としては供給搬送路37内の現像剤搬送方向下流側の現像スリーブ34aの端部に現像剤32を受け渡す位置よりも現像剤搬送方向下流側の供給搬送路37内であってもよい。
Here, a configuration for increasing the ability to disperse the toner replenished by the downsized developing device like the developing device 3 of the present embodiment in the developer will be described.
As shown in FIG. 51, the toner replenishment position T of the developing device 3 of the present embodiment is the upstream end 38a of the circulation conveyance path. The toner replenishment position may be in the supply conveyance path 37 on the downstream side in the developer conveyance direction from the position where the developer 32 is delivered to the end of the developing sleeve 34a on the downstream side in the developer conveyance direction in the supply conveyance path 37. Good.

補給したトナーを現像剤中に分散する能力を高めためには、下記(c)〜(e)の項目を満たすことが必要である。
(c)補給したトナーを長手方向で分散する。
(d)分散したトナーを現像剤中に取り込む。
(e)取り込んだトナーをキャリアと接触させる(トナーを帯電させるため)。
In order to enhance the ability to disperse the replenished toner in the developer, it is necessary to satisfy the following items (c) to (e).
(C) Dispersing the replenished toner in the longitudinal direction.
(D) Taking the dispersed toner into the developer.
(E) The toner taken in is brought into contact with the carrier (to charge the toner).

先ず、上記(c)は、循環搬送路上流側端部38a近傍で行う必要がある。
上記(c)の項目を、循環スクリュ40による現像剤搬送中に行うためには、図61中の矢印Gで示すように、循環スクリュ羽部40bを乗り越えてトナーが移動しないと分散されない。なお、図61では現像剤搬送方向(図61中の矢印Eの方向)と逆方向に循環スクリュ羽部40bを乗り越えるトナーの移動方向を記載しているが、現像剤搬送方向と逆方向に進むという意味ではなく、現像剤と同じ速度で搬送されるトナーと循環スクリュ羽部40bのピッチを乗り越えて遅れるトナーとが存在するという意味で記載している。
また、循環スクリュ羽部40bのピッチを乗り越えて遅れるのは補給したトナーだけではなく、現像剤も一緒に遅れる。そのため、循環搬送路上流側端部38a近傍の現像剤搬送速度は必然的に遅くなる。
First, the above (c) needs to be performed in the vicinity of the upstream end portion 38a of the circulation conveyance path.
In order to perform the item (c) while the developer is being conveyed by the circulation screw 40, as indicated by an arrow G in FIG. 61, the toner is not dispersed unless it moves over the circulation screw blade 40b. In FIG. 61, the moving direction of the toner over the circulating screw blade 40b is shown in the direction opposite to the developer conveying direction (the direction of arrow E in FIG. 61), but the toner proceeds in the direction opposite to the developer conveying direction. It does not mean that the toner is conveyed at the same speed as that of the developer, and the toner that is delayed over the pitch of the circulating screw blades 40b.
Further, it is not only the replenished toner that is delayed over the pitch of the circulating screw blades 40b, but the developer is also delayed together. Therefore, the developer conveyance speed in the vicinity of the upstream end 38a of the circulation conveyance path is inevitably slow.

図62は、補給トナーの分散性を高める構成の一例の説明図である。
循環スクリュ羽部40bのピッチ間にパドル401がついている。パドル401は循環スクリュ40によって軸方向に搬送されている現像剤32を軸方向に直交する方向に跳ね飛ばす作用がある。パドル401によって跳ね飛ばされた現像剤32は軸方向の速度がほぼ0になっており、跳ね飛ばされている間に循環スクリュ40は回転する。そのため、跳ね飛ばされた現像剤32が戻ってくると循環スクリュ羽部40bのピッチを越えた遅れとなる。このような原理でパドル401をつけると補給トナーを長手方向に分散することができる。なおパドル401をつけることで軸方向の搬送速度も遅くなるため、循環搬送路上流側端部38a近傍に位置する循環スクリュ40にパドル401を取り付けることで、循環搬送路上流側端部38a近傍の分散能力を上げつつ、この位置での現像剤搬送速度を遅くすることができる。
FIG. 62 is an explanatory diagram of an example of a configuration that improves the dispersibility of the replenishment toner.
A paddle 401 is attached between the pitches of the circulating screw blades 40b. The paddle 401 has an action of jumping off the developer 32 conveyed in the axial direction by the circulation screw 40 in a direction orthogonal to the axial direction. The axial speed of the developer 32 splashed by the paddle 401 is almost zero, and the circulating screw 40 rotates while being splashed. Therefore, when the splashed developer 32 returns, there is a delay exceeding the pitch of the circulating screw blade 40b. When the paddle 401 is attached according to such a principle, the replenishment toner can be dispersed in the longitudinal direction. In addition, since the conveyance speed in the axial direction is slowed by attaching the paddle 401, the paddle 401 is attached to the circulation screw 40 located in the vicinity of the upstream end portion 38a of the circulation conveyance path, so that the vicinity of the upstream end portion 38a of the circulation conveyance path is attached. The developer conveying speed at this position can be decreased while increasing the dispersion capability.

補給トナーの分散性を高める構成としては図43に示すスクリュ部材80のようにリード角の角度を大きくしたスクリュを用いてもよい。
図43に示すようにリード角の角度を大きくする(スクリュ羽部80bを寝かせる)と、現像剤32がスクリュ羽部80bを乗り越えやすくなるので、トナーの長手方向の分散性を上げることができる。また、図40からもわかるように、リード角の角度が45[°]よりも大きい場合、リード角の角度が大きいほど搬送速度が遅くなる。
よって、本実施例の現像装置3の循環スクリュ40では、循環搬送路上流側端部38aに位置する箇所のリード角の角度を65[°]として、その位置から搬送方向下流側に位置する箇所ほどリード角の角度を小さくして、実施例8で説明した現像剤搬送方向下流側端部近傍の領域に位置する箇所ではリード角の角度が45[°]となるように設定している。
As a configuration for enhancing the dispersibility of the replenishing toner, a screw having a large lead angle, such as a screw member 80 shown in FIG. 43, may be used.
As shown in FIG. 43, when the lead angle is increased (the screw blade portion 80b is laid down), the developer 32 can easily get over the screw blade portion 80b, so that the dispersibility of the toner in the longitudinal direction can be improved. As can also be seen from FIG. 40, when the lead angle is larger than 45 [°], the conveyance speed becomes slower as the lead angle becomes larger.
Therefore, in the circulation screw 40 of the developing device 3 of the present embodiment, the position of the lead angle of the position located at the upstream end 38a of the circulation conveyance path is 65 [°], and the position located downstream from the position in the conveyance direction. As the lead angle is reduced, the lead angle is set to 45 [°] at a location located in the vicinity of the downstream end in the developer conveyance direction described in the eighth embodiment.

なお、補給トナーの分散性を高める構成としては図63にスクリュ断面を示す循環スクリュ40のように、循環スクリュ羽部40bの一部を切り取って切り欠き40dを形成したものでも良い。補給したトナーは現像剤32の上方(剤面32f近傍)を移動するため、図61を用いて説明したトナーの遅れを作る場合には、図63に示すような構成の循環スクリュ40でも達成できる。なお、図63に示す構成よりもさらに現像剤32の搬送速度を遅くしたい場合は、図64に示すように循環スクリュ羽部40bの中心部まで達する切り欠き40dを形成する循環スクリュ40としても良い。
このように、本実施例の現像装置3では、循環搬送路上流側端部38a近傍は現像剤の搬送速度を遅くしつつ、補給トナーを長手方向に分散できる機構を搭載する必要がある。
As a configuration for improving the dispersibility of the replenishment toner, a part of the circulating screw blade portion 40b may be cut out to form a notch 40d, such as the circulating screw 40 whose cross section is shown in FIG. Since the replenished toner moves above the developer 32 (in the vicinity of the agent surface 32f), when the toner delay described with reference to FIG. 61 is made, the circulation screw 40 configured as shown in FIG. . If it is desired to further reduce the transport speed of the developer 32 than the configuration shown in FIG. 63, a circulating screw 40 that forms a notch 40d reaching the center of the circulating screw blade 40b as shown in FIG. 64 may be used. .
Thus, in the developing device 3 of the present embodiment, it is necessary to mount a mechanism capable of dispersing the replenishment toner in the longitudinal direction while reducing the developer conveyance speed in the vicinity of the upstream end 38a of the circulation conveyance path.

図65は、通常形状(ノーマル)のスクリュと、図62に示したパドルを備えるスクリュ(パドル)と、図63に示した羽部の一部を切り取ったスクリュ(切り欠き)との3種類の形状が異なるスクリュで分散性と搬送速度とを比較したグラフである。
図65のグラフを得るのに用いた3種類のスクリュのすべてがリード角の角度が35.5[°]であり、パドルや切り欠きを設けた点以外の構成(スクリュ径、ピッチ幅、回転数、等)は共通のスクリュ部材である。
図65のグラフより、パドルをつけたり、切り欠きをつけたりすると搬送速度が遅くなり、分散性が向上することがわかる。なお、ここで言う分散性とはスクリュ部材の軸方向における単位距離あたり移動する間に現像剤が移動方向でどの程度分散するかを表している。
FIG. 65 shows three types of screws: a normal shape (normal) screw, a screw (paddle) including the paddle shown in FIG. 62, and a screw (notch) obtained by cutting a part of the wing shown in FIG. It is the graph which compared dispersibility and a conveyance speed with the screw from which a shape differs.
The three types of screws used to obtain the graph of FIG. 65 all have a lead angle of 35.5 [°], and have a configuration other than a paddle or notch (screw diameter, pitch width, rotation). Number, etc.) are common screw members.
From the graph of FIG. 65, it can be seen that if a paddle is attached or a notch is made, the conveying speed is reduced and the dispersibility is improved. The dispersibility here refers to how much the developer disperses in the moving direction while moving per unit distance in the axial direction of the screw member.

次に、上記(d)の分散したトナーを現像剤中に取り込む構成について説明する。
図66は、循環搬送路上流側端部38a近傍の現像装置3内の現像剤32と補給トナーTとの状態を模式的に示した断面図である。
図66中の矢印Qで示すように、本実施例の現像装置3では、現像スリーブ34aを離れた現像剤32を循環搬送路38で回収する。一方、補給トナーTは循環搬送路38内の現像剤32の上方を移動しており、現像スリーブ34aを離れた現像剤32が上方から降りかかってくる。このため、上から降ってきた現像剤32によって補給トナーTは循環搬送路38内の現像剤32中に取り込みやすい構成になっている。このように、循環搬送路38内の現像剤32の上方にある補給トナーTに対して現像スリーブ34aから離れた現像剤32が上から降ってくる構成になっており、補給トナーTの現像剤32への取り込みがしやすい。
Next, a configuration for taking the dispersed toner (d) into the developer will be described.
FIG. 66 is a cross-sectional view schematically showing the state of the developer 32 and the replenishment toner T in the developing device 3 in the vicinity of the upstream end 38a of the circulation conveyance path.
As indicated by an arrow Q in FIG. 66, in the developing device 3 of this embodiment, the developer 32 that has left the developing sleeve 34a is collected by the circulation conveyance path 38. On the other hand, the replenishment toner T moves above the developer 32 in the circulation conveyance path 38, and the developer 32 that has left the developing sleeve 34a falls from above. Therefore, the replenishment toner T is easily taken into the developer 32 in the circulation conveyance path 38 by the developer 32 falling from above. In this way, the developer 32 away from the developing sleeve 34a falls from above with respect to the replenishment toner T above the developer 32 in the circulation conveyance path 38, and the developer of the replenishment toner T Easy to import to 32.

上記(e)に記載のトナーとキャリアとの接触は持ち上げ部41aで行うことができる。上記(c)及び(d)について説明した構成により、現像容器33内に補給されたトナーは循環搬送路38内の現像剤32中に分散されている。持ち上げ部41aでは現像剤32を上方に持ち上げるため、現像剤圧力が大きくなっており、この現像剤圧力によりトナーとキャリアの接触回数を増やすことができる。このため、本実施例の現像装置3のようの構成であれば、小型化して現像容器33に収容できる現像剤32の量が少なくても、補給トナーを分散させて用いることができる。   The contact between the toner and the carrier described in (e) above can be performed by the lifting portion 41a. With the configuration described in (c) and (d) above, the toner replenished in the developing container 33 is dispersed in the developer 32 in the circulation conveyance path 38. Since the developer 32 is lifted upward in the lifting portion 41a, the developer pressure is increased, and the number of contact between the toner and the carrier can be increased by the developer pressure. Therefore, with the configuration of the developing device 3 of the present embodiment, the replenishment toner can be dispersed and used even if the amount of the developer 32 that can be reduced in size and accommodated in the developing container 33 is small.

次に、循環搬送路38の上流側及び供給搬送路37の下流側の現像剤量を増やす構成について説明する。
現像剤搬送路内の任意の領域で、単位時間当りにこの領域に入ってくる現像剤量と、単位時間当りにこの領域から出て行く現像剤量が決まっている場合、この領域での現像剤の搬送速度を遅くすることでこの領域内の現像剤量を多くすることができ、現像剤の嵩を高くすることができる。
よって、循環搬送路38の上流側及び供給搬送路37の下流側で現像剤搬送速度を遅くすることにより、その部分の現像剤量を多く(現像剤の嵩を高く)できる
Next, a configuration for increasing the developer amount on the upstream side of the circulation conveyance path 38 and on the downstream side of the supply conveyance path 37 will be described.
If the amount of developer that enters this area per unit time and the amount of developer that leaves this area per unit time is determined in any area in the developer conveyance path, development in this area By slowing down the conveying speed of the developer, the amount of developer in this region can be increased, and the bulk of the developer can be increased.
Therefore, by reducing the developer conveyance speed on the upstream side of the circulation conveyance path 38 and on the downstream side of the supply conveyance path 37, the amount of developer in that portion can be increased (the volume of the developer is increased).

このように、循環搬送路38の上流側及び供給搬送路37の下流側の現像剤量を増やすことによって、下記(f)及び(g)に示す効果を奏することができる。
(f)現像装置内の現像剤の寿命向上
(g)トナー消費及びトナー補給による現像装置内の現像剤のトナー濃度変動の低減
As described above, by increasing the developer amount on the upstream side of the circulation conveyance path 38 and on the downstream side of the supply conveyance path 37, the following effects (f) and (g) can be obtained.
(F) Improving the life of the developer in the developing device (g) Reducing the toner density fluctuation of the developer in the developing device by toner consumption and toner replenishment

上記(f)の効果については、現像装置3を小型化しても剤規制部材35近傍で現像剤32に対して負荷されるストレスを小さくすることで現像剤32の長寿命を達成できることは実施例1にて説明した。しかし、現像剤32の寿命は現像装置3内の現像剤量にほぼ比例する。したがって現像容器33内に収容できる現像剤の量を増やすことができればその分寿命を長くできる。   As for the effect (f), it is possible to achieve a long life of the developer 32 by reducing the stress applied to the developer 32 in the vicinity of the agent regulating member 35 even if the developing device 3 is downsized. 1 explained. However, the lifetime of the developer 32 is substantially proportional to the amount of developer in the developing device 3. Therefore, if the amount of developer that can be accommodated in the developing container 33 can be increased, the life can be extended accordingly.

図67は、循環搬送路38及び供給搬送路37内の現像剤搬送速度を現像剤搬送方向の上流側端部から下流側端部まで同じ速度とした場合の現像装置の循環搬送路38及び供給搬送路37内の現像剤搬送方向の位置における現像剤量を示している。
詳しくは、循環スクリュ40及び供給スクリュ39ともにリード角の角度が45[°]で一様なスクリュ部材にて構成した場合である。この場合は、現像装置3内の現像剤32は、図51に示すように剤面32f(現像剤の高さ)は斜めになる。
FIG. 67 shows the developer transport speed and the transport transport path 38 and the supply transport path 37 at the same speed from the upstream end to the downstream end in the developer transport direction. The developer amount at the position in the developer conveyance direction in the conveyance path 37 is shown.
Specifically, both the circulation screw 40 and the supply screw 39 are configured by a uniform screw member with a lead angle of 45 [°]. In this case, the developer surface 32f (the height of the developer) of the developer 32 in the developing device 3 is inclined as shown in FIG.

図68は、循環搬送路38及び供給搬送路37内の現像剤搬送速度を現像剤搬送方向の現像剤搬送方向の位置によって現像剤搬送速度を変えた場合の現像装置の循環搬送路38及び供給搬送路37内の現像剤搬送方向の位置における現像剤量を示している。
具体的には、循環搬送路下流側端部38b近傍に位置する箇所の循環スクリュ40のリード角の角度を45[°]として、そこから現像剤搬送方向上流側に位置する箇所ほどリード角の角度が徐々に大きくなるようにして、循環搬送路上流側端部38a近傍に位置する箇所の循環スクリュ40のリード角の角度が65[°]となるように設定した。同様に、供給搬送路上流側端部37a近傍に位置する箇所の供給スクリュ39のリード角の角度を45[°]として、そこから現像剤搬送方向下流側に位置する箇所ほどリード角の角度が徐々に大きくなるようにして、供給搬送路下流側端部37b近傍に位置する箇所の供給スクリュ39のリード角の角度が65[°]となるように設定した。
FIG. 68 shows the developer conveyance speed in the circulation conveyance path 38 and the supply conveyance path 37 when the developer conveyance speed is changed depending on the position of the developer conveyance direction in the developer conveyance direction. The developer amount at the position in the developer conveyance direction in the conveyance path 37 is shown.
Specifically, the angle of the lead angle of the circulating screw 40 in the vicinity of the downstream end portion 38b of the circulation conveyance path is set to 45 [°], and the lead angle of the position located upstream from the developer conveyance direction is increased. The angle was gradually increased so that the lead angle of the circulating screw 40 at a location located in the vicinity of the upstream end 38a of the circulating conveyance path was set to 65 [°]. Similarly, the lead angle of the supply screw 39 at a location located in the vicinity of the upstream end portion 37a of the supply conveyance path is set to 45 [°], and the lead angle from the location located downstream in the developer conveyance direction from there. The lead angle of the supply screw 39 at a location located in the vicinity of the supply conveyance path downstream end 37b was set to 65 [°] so as to gradually increase.

図67と図68とを比較すると、図中のRで示す循環搬送路下流側端部と供給搬送路上流側端部との現像剤量は等しくなっている。これは、現像剤漏れ、現像剤連れ周りを発生させないように現像剤32を循環搬送路38から供給搬送路37へ現像剤32を受け渡すために必要な条件によるものである。一方、循環搬送路38上流側と供給搬送路37下流側との現像剤量は図68に示す場合のほうが多くなっている。   67 and 68 are compared, the developer amounts at the downstream end of the circulating conveyance path and the upstream end of the supply conveyance path indicated by R in the figure are equal. This is due to conditions necessary for delivering the developer 32 from the circulation conveyance path 38 to the supply conveyance path 37 so as not to cause the developer leakage and the accompanying developer. On the other hand, the developer amount on the upstream side of the circulation conveyance path 38 and the downstream side of the supply conveyance path 37 is larger in the case shown in FIG.

本実施例の現像装置3で、図67を用いて説明した構成から図68を用いて説明した構成に変更することにより、現像容器33内に収納できる現像剤量を70[g]から90[g]まで増やすことができ、現像剤32の寿命も約1.3倍に延ばすことができた。また、同様に現像容器内トナー量に対するA4サイズ紙全面画像出力時のトナー消費量の割合は7.9[%]から6.1[%]まで低減することができた。これにより、トナー消費やトナー補給による現像装置3内の現像剤32のトナー濃度の変動を抑制し、現像装置3を小型化した構成であっても画像濃度の変動を低減することができる。   In the developing device 3 of the present embodiment, the amount of developer that can be accommodated in the developing container 33 is changed from 70 [g] to 90 [g] by changing the configuration described using FIG. 67 to the configuration described using FIG. g], and the lifetime of the developer 32 can be extended by about 1.3 times. Similarly, the ratio of the toner consumption amount when outputting the entire image of the A4 size paper to the toner amount in the developing container could be reduced from 7.9 [%] to 6.1 [%]. Thereby, fluctuations in the toner density of the developer 32 in the developing device 3 due to toner consumption and toner supply can be suppressed, and fluctuations in image density can be reduced even if the developing device 3 is downsized.

なお、実施例8〜10で説明した現像装置3内の現像剤搬送路の構成は、実施例1〜7の現像装置3のようにマグネットローラ34bを3極構成として現像スリーブ34aを小径とし、現像装置3を小型化した構成に好適に適用することができる。なお、実施例8〜10で説明した現像剤搬送路の構成は、マグネットローラ34bを3極構成とした現像装置に限るものではなく、図11で示す比較例2のように5極構成とした現像装置のように、現像スリーブ上の現像剤を保持し得る強さの磁界を発生させる磁極を4極以上備える現像装置であっても適用可能である。すなわち、現像剤を現像スリーブの回転軸方向に搬送しながら、現像剤を現像スリーブに供給する供給搬送路と、供給搬送路の下方に配置され、供給搬送路の搬送方向下流側端部まで到達した現像剤を受け渡されて、現像剤を現像スリーブの回転軸方向で供給搬送路とは逆方向に搬送しながら現像スリーブから現像剤を回収し、現像剤搬送方向下流側端部まで到達した現像剤を供給搬送路の搬送方向上流側端部に受け渡す循環搬送路とを備える現像装置であれば実施例8〜10で説明した現像剤を搬送する構成は適用可能である。
なお、上記実施例において、循環搬送路38内に配置した循環スクリュ40の駆動を停止した際に現像スリーブ34aが存在する範囲内においては、循環搬送路38内の現像剤32の剤面32fが現像スリーブ34aの中心から水平に延ばした水平線よりも下側に位置するように現像剤量が設定されていることが望ましい。このように設定することで現像スリーブ34aとその重力によって循環搬送路38内の現像剤32がつれまわるおそれが低減する。
In addition, the configuration of the developer transport path in the developing device 3 described in the eighth to tenth embodiments is the same as the developing device 3 in the first to seventh embodiments. The developing device 3 can be suitably applied to a downsized configuration. Note that the configuration of the developer conveyance path described in Examples 8 to 10 is not limited to the developing device in which the magnet roller 34b has a three-pole configuration, but a five-pole configuration as in Comparative Example 2 shown in FIG. The present invention can also be applied to a developing device having four or more magnetic poles that generate a magnetic field having a strength capable of holding the developer on the developing sleeve, such as a developing device. In other words, while the developer is transported in the direction of the rotation axis of the developing sleeve, it is arranged below the supply transport path for supplying the developer to the developing sleeve and reaches the downstream end of the supply transport path in the transport direction. The developer was delivered, and the developer was collected from the developing sleeve while conveying the developer in the direction of the rotation axis of the developing sleeve in the direction opposite to the supply conveying path, and reached the downstream end in the developer conveying direction. The configuration for transporting the developer described in the eighth to tenth embodiments is applicable as long as the developing device includes a circulation transport path that transfers the developer to the upstream end portion in the transport direction of the supply transport path.
In the above embodiment, the developer surface 32f of the developer 32 in the circulation conveyance path 38 is within the range where the developing sleeve 34a exists when the driving of the circulation screw 40 arranged in the circulation conveyance path 38 is stopped. It is desirable that the developer amount be set so as to be positioned below a horizontal line extending horizontally from the center of the developing sleeve 34a. By setting in this way, the possibility that the developer 32 in the circulation conveyance path 38 is entangled by the developing sleeve 34a and its gravity is reduced.

〔実施例11〕
次に、実施例1〜10の現像装置3に適用可能な剤規制部材35に対して現像スリーブ34aの表面移動方向上流側の領域で現像剤32を攪拌する構成(以下、実施例11と呼ぶ)について説明する。
図69は実施例11を適用可能なプロセスカートリッジである作像装置17の断面図である。図69に示すように、感光体1の周囲には、現像装置3、帯電ローラ2aを備える帯電装置2及びクリーニングブレード6aを備えるクリーニング装置6が配置されており、現像装置3としては、実施例1〜10で説明した現像装置3が適用可能である。
Example 11
Next, a configuration in which the developer 32 is agitated in a region on the upstream side in the surface movement direction of the developing sleeve 34a with respect to the agent regulating member 35 applicable to the developing device 3 of the first to tenth embodiments (hereinafter referred to as an eleventh embodiment). ).
FIG. 69 is a cross-sectional view of the image forming apparatus 17 which is a process cartridge to which the eleventh embodiment can be applied. As shown in FIG. 69, a developing device 3, a charging device 2 including a charging roller 2a, and a cleaning device 6 including a cleaning blade 6a are disposed around the photosensitive member 1. The developing device 3 described in 1 to 10 is applicable.

本実施例の現像装置3は、現像スリーブ34aの上方から供給搬送路37内の現像剤32を重力を利用して現像スリーブ34aの表面に図69中の矢印Iで示すように、供給搬送路37から現像剤32を掛け流すようにして現像剤供給する構成である。このため、剤規制及び汲み上げに寄与するN2極の磁力が弱くても良好な現像剤の汲み上げ、剤規制が可能である。そして、現像剤に対するストレスを軽減するために、N2極を構成する磁石として従来の剤規制磁極に比べて磁力の弱い磁石を用いている。このため、剤規制部材35に対して現像スリーブ34aの表面移動方向上流側の領域であるバッファ部50内の現像剤32に影響を与える磁界の磁力は弱く、現像剤32はバッファ部で柔らかく抱え込まれている状態である。   In the developing device 3 of the present embodiment, the developer 32 in the supply conveyance path 37 is applied to the surface of the development sleeve 34a from above the development sleeve 34a on the surface of the development sleeve 34a as indicated by an arrow I in FIG. The developer is supplied in such a manner that the developer 32 is poured from 37. For this reason, even if the N2 pole magnetic force that contributes to agent regulation and pumping is weak, good developer pumping and agent regulation are possible. And in order to reduce the stress with respect to a developing agent, the magnet with a magnetic force weaker than the conventional agent control magnetic pole is used as a magnet which comprises N2 pole. For this reason, the magnetic force of the magnetic field that affects the developer 32 in the buffer unit 50, which is the upstream region in the surface movement direction of the developing sleeve 34a with respect to the agent regulating member 35, is weak, and the developer 32 is softly held in the buffer unit. It is in the state.

供給搬送路37から供給スクリュ39によって現像剤32をバッファ部50に向けて供給する場合、スクリュピッチで波打つように補給されることがあり、供給量にムラが生じることがある。従来の現像装置では剤規制磁極の磁力が強いため、バッファ部内の現像剤にはある程度の圧力がかかっており、この圧力によって現像剤が混ぜられ供給量のムラは均させる。
さらに、現像剤32内にはトナーやキャリアが緩く凝集した緩凝集体が存在することがある。このような凝集体が現像ドクタ部の間隙に詰まると白スジなどの画像不良の原因となる。従来の現像装置ではバッファ部内の現像剤にかかる圧力によって緩凝集体が解され、これが現像ドクタ部の間隙に詰まることを防止することができた。
When the developer 32 is supplied from the supply conveyance path 37 to the buffer unit 50 by the supply screw 39, the developer 32 may be replenished so as to wave at the screw pitch, and the supply amount may be uneven. In the conventional developing device, since the magnetic force of the agent-regulating magnetic pole is strong, a certain amount of pressure is applied to the developer in the buffer unit, and the developer is mixed by this pressure and the unevenness of the supply amount is equalized.
Furthermore, there may be a slow aggregate in the developer 32 in which toner and carrier are loosely aggregated. If such agglomerates are clogged in the gap between the development doctor portions, it causes image defects such as white streaks. In the conventional developing device, the loose agglomerates are released by the pressure applied to the developer in the buffer portion, and this can be prevented from clogging in the gap between the developing doctor portions.

一方、本実施例の現像装置3では、バッファ部50内の現像剤32に影響を与える磁界の磁力が弱いため、バッファ部50内の現像剤32にかかる圧力が小さく、磁力によって混ぜられる作用が小さい。このため、スクリュピッチによる供給量のピッチムラが生じると、このピッチムラが現像スリーブの担持量のムラとなり、画像濃度のムラが発生してしまう。さらに、バッファ部50内の現像剤32の中に緩凝集体が発生すると解され難く、これが現像ドクタ部の間隙に詰まることによって白スジなどの画像不良の原因となり易い。   On the other hand, in the developing device 3 of this embodiment, since the magnetic force of the magnetic field that affects the developer 32 in the buffer unit 50 is weak, the pressure applied to the developer 32 in the buffer unit 50 is small, and the action of mixing by the magnetic force is performed. small. For this reason, when a pitch unevenness of the supply amount due to the screw pitch occurs, the pitch unevenness becomes an unevenness of the carrying amount of the developing sleeve, and unevenness of the image density occurs. Further, it is difficult to understand that a loose aggregate is generated in the developer 32 in the buffer unit 50, and this is likely to cause image defects such as white streaks due to clogging in the gaps of the development doctor unit.

このような不具合を防止する構成として、本実施例の現像装置3は図70(a)で示すように攪拌部材としてパドル部材51を備えている。図70(b)はパドル部材51の斜視図である。
実施例11の現像装置3はパドル部材51を備え、パドル回転軸51aを中心に回転、または、揺動させることによってバッファ部50内の現像剤32を攪拌することができ、供給量のピッチムラを解消することができるので、画像濃度ムラの発生を防止することができる。さらに、バッファ部50内の現像剤32の中に緩凝集体が発生しても、パドル部材51によって解され、緩凝集体が現像ドクタ部の間隙に詰まることに起因する白スジなどの画像不良の発生を防止することができる。
なお、パドル部材51として図70(a)に示す形状に限るものではない。パドル羽部51bの個数は4つに限るものではなく、パドル羽部51bの形状としては図70(b)にしめすように長手方向に連続な形状であっても断片的な形状であってもよい。
As a configuration for preventing such a problem, the developing device 3 of this embodiment includes a paddle member 51 as a stirring member as shown in FIG. FIG. 70B is a perspective view of the paddle member 51.
The developing device 3 according to the eleventh embodiment includes a paddle member 51. The developer 32 in the buffer unit 50 can be agitated by rotating or swinging about a paddle rotation shaft 51a. Since it can be eliminated, it is possible to prevent the occurrence of uneven image density. Further, even if a slow aggregate is generated in the developer 32 in the buffer unit 50, it is unwound by the paddle member 51, and an image defect such as a white stripe caused by the loose aggregate being clogged in the gap between the development doctor units. Can be prevented.
The paddle member 51 is not limited to the shape shown in FIG. The number of paddle wings 51b is not limited to four. The shape of paddle wings 51b may be a continuous shape in the longitudinal direction or a fragmentary shape as shown in FIG. Good.

図71は、実施例11の現像装置3において、パドル部材51の代わりに攪拌部材としてローラ部材52を設けた構成の説明図である。図71(a)は現像装置3の断面図、図71(b)はローラ部材52の斜視図である。パドル部材51の代わりにローラ部材52を備える構成であっても、ローラ回転軸52aを中心に回転、または、揺動させることによってバッファ部50内の現像剤32を攪拌することができ、供給量のピッチムラを解消することができるので、画像濃度ムラの発生を防止することができる。さらに、バッファ部50内の現像剤32の中に緩凝集体が発生しても、ローラ部材52によって解され、緩凝集体が現像ドクタ部の間隙に詰まることに起因する白スジなどの画像不良の発生を防止することができる。
なお、ローラ部材52のローラ部52bの材質は、どのようなものであってもよく、金属やスポンジのものを用いることができる。
FIG. 71 is an explanatory diagram of a configuration in which a roller member 52 is provided as a stirring member instead of the paddle member 51 in the developing device 3 according to the eleventh embodiment. 71A is a sectional view of the developing device 3, and FIG. 71B is a perspective view of the roller member 52. FIG. Even in the configuration including the roller member 52 instead of the paddle member 51, the developer 32 in the buffer unit 50 can be agitated by rotating or swinging about the roller rotation shaft 52a. Therefore, the occurrence of image density unevenness can be prevented. Further, even if a slow aggregate is generated in the developer 32 in the buffer unit 50, it is unwound by the roller member 52. Can be prevented.
The material of the roller portion 52b of the roller member 52 may be any material, and a metal or sponge can be used.

図72は、実施例11の現像装置3において、パドル部材51の代わりに攪拌部材としてワイヤ部材53を設けた構成の説明図である。図72(a)は現像装置3の断面図、図72(b)はワイヤ部材53の斜視図である。パドル部材51の代わりにワイヤ部材53を備える構成であっても、ワイヤ回転軸53aを中心に回転、または、揺動させることによってバッファ部50内の現像剤32を攪拌することができ、供給量のピッチムラを解消することができるので、画像濃度ムラの発生を防止することができる。さらに、バッファ部50内の現像剤32の中に緩凝集体が発生しても、ワイヤ部材53によって解され、緩凝集体が現像ドクタ部の間隙に詰まることに起因する白スジなどの画像不良の発生を防止することができる。   FIG. 72 is an explanatory diagram of a configuration in which a wire member 53 is provided as a stirring member in place of the paddle member 51 in the developing device 3 of the eleventh embodiment. 72A is a sectional view of the developing device 3, and FIG. 72B is a perspective view of the wire member 53. FIG. Even in the configuration including the wire member 53 instead of the paddle member 51, the developer 32 in the buffer unit 50 can be agitated by rotating or swinging about the wire rotation shaft 53a. Therefore, the occurrence of image density unevenness can be prevented. Further, even if a slow aggregate is generated in the developer 32 in the buffer unit 50, it is unwound by the wire member 53, and an image defect such as a white streak caused by the loose aggregate being clogged in the gap of the development doctor unit. Can be prevented.

このような実施例11の現像装置3では、供給スクリュ39による現像剤32の補給が不均一(長手方向での不均一も含む)であったとしても、上述した攪拌部材によってバッファ部50(現像剤抱え込み部)内の現像剤をほぐす(均す)ことにより、現像ドクタ部の上流側で均一になり安定した汲み上げ量を確保することが出来る。これにより、濃度ムラやスクリュピッチムラのない良好な画像を得ることが出来る。また、上述の攪拌部材を設けることにより、緩凝集体が発生した場合でも崩すことが出来るので、白スジやトナー核付着のない良好な画像を得ることが出来る。
なお、実施例11の現像装置3では、現像スリーブ34aの上方に剤規制部材35を備えるいわゆる上ドクタの構成であったが、実施例11のように攪拌部材を備える構成は、現像スリーブの下方に剤規制部材を備えるいわゆる下ドクタの構成にも適用可能である。
In the developing device 3 of the eleventh embodiment, even if the supply of the developer 32 by the supply screw 39 is non-uniform (including non-uniform in the longitudinal direction), the buffer unit 50 (development) is performed by the stirring member described above. By loosening (equalizing) the developer in the developer holding portion), it becomes uniform on the upstream side of the developing doctor portion, and a stable pumping amount can be secured. As a result, a good image free from density unevenness and screw pitch unevenness can be obtained. In addition, by providing the above-mentioned stirring member, even when a slow aggregate is generated, it can be broken down, so that a good image free from white streaks and toner nuclei can be obtained.
In the developing device 3 of the eleventh embodiment, the so-called upper doctor is provided with the agent regulating member 35 above the developing sleeve 34a. However, the configuration having the stirring member as in the eleventh embodiment is provided below the developing sleeve. The present invention can also be applied to the structure of a so-called lower doctor provided with an agent regulating member.

〔実施例12〕
次に、実施例1〜11の現像装置3に適用可能な現像スリーブ34aの構成(以下、実施例12と呼ぶ)について説明する。
従来の現像装置のように、下方にある現像剤を現像スリーブで汲み上げる構成の場合、現像スリーブ表面上にある程度の表面粗さがあって、機械的にも担持する構成が必要であった。このため、従来の現像装置に用いる現像スリーブに対してはブラスト加工などの表面加工が必要であった。
一方、本実施例の現像装置3は、図69の矢印Iで示すように、現像スリーブ34aに対し現像剤32を掛け流すタイプなので現像剤32を汲み上げるための搬送力が不要である。
よって、現像スリーブ34aの表面性状に関しては表面粗さRzが1[μm]〜8[μm]であっても問題ないため、本実施例の現像スリーブ34aとしては、その表面粗さRzが1[μm]〜8[μm]のものを用いる。そして、表面粗さRzが1[μm]〜8[μm]となる表面性状は、通常の旋盤加工で得られる表面性状であり、場合によってはアルミ押し出し加工の様に除去加工の無い加工で現像スリーブ34aを作成しても達成出来る表面性状の数値である。よって、従来の現像スリーブに施していたブラスト加工などの表面加工が不要となる。
Example 12
Next, the configuration of the developing sleeve 34a applicable to the developing device 3 of Examples 1 to 11 (hereinafter referred to as Example 12) will be described.
In the case of a configuration in which the developer underneath is pumped up by the developing sleeve as in the conventional developing device, a configuration in which the surface of the developing sleeve has a certain degree of surface roughness and is supported mechanically is necessary. For this reason, surface processing such as blast processing is required for the developing sleeve used in the conventional developing device.
On the other hand, as shown by an arrow I in FIG. 69, the developing device 3 according to the present embodiment is a type in which the developer 32 is poured over the developing sleeve 34a, so that a conveying force for pumping up the developer 32 is unnecessary.
Therefore, regarding the surface properties of the developing sleeve 34a, there is no problem even if the surface roughness Rz is 1 [μm] to 8 [μm]. [μm] to 8 [μm] are used. The surface texture with a surface roughness Rz of 1 [μm] to 8 [μm] is a surface texture obtained by normal lathe processing, and in some cases, developed with processing without removal processing such as aluminum extrusion processing. It is a numerical value of the surface property that can be achieved even when the sleeve 34a is formed. Therefore, surface processing such as blast processing applied to the conventional developing sleeve becomes unnecessary.

このような、表面粗さRzが1[μm]〜8[μm]の範囲となる現像スリーブ34aを用いることで、現像スリーブ34aの表面加工に掛かるコストを低コストに出来る。特に、本実施例の現像装置3では3極構成で現像スリーブ34aを小径化しており、スリーブ径Φが10[mm]の小径スリーブを現像スリーブ34aに用いることができる。しかし、スリーブ径Φが10[mm]の小径スリーブで現像剤32の汲み上げに適した表面性状となるように表面を加工することはコスト高に繋がる。これに対して、本実施例の現像装置3では現像スリーブ34aで現像剤32を汲み上げる搬送力は不要であり、現像スリーブ34aの表面としては非常に小さな搬送力を備えた表面性状であれば問題がない。このため、汲み上げに適さない表面性状のスリーブを現像スリーブ34aに用いることができるので、低コスト化を図ることができる、本実施例の現像スリーブ34a(表面粗さRzが1[μm]〜8[μm]の範囲)を問題なく使用することができる。
なお、表面性状に関しては、通常の旋盤加工であっても表面粗さRz0.8[μm]程度の表面性状を出すことは可能であり、アルミ押し出し加工でも表面粗さRz3.2[μm]程度の表面性状を出すことは可能である。
By using the developing sleeve 34a having such a surface roughness Rz in the range of 1 [μm] to 8 [μm], the cost for surface processing of the developing sleeve 34a can be reduced. In particular, in the developing device 3 of the present embodiment, the developing sleeve 34a has a small diameter in a three-pole configuration, and a small diameter sleeve having a sleeve diameter Φ of 10 [mm] can be used as the developing sleeve 34a. However, processing the surface so as to obtain a surface property suitable for pumping up the developer 32 with a small-diameter sleeve having a sleeve diameter Φ of 10 [mm] leads to high costs. On the other hand, the developing device 3 of the present embodiment does not require a conveying force for pumping up the developer 32 by the developing sleeve 34a, and there is a problem if the surface property of the developing sleeve 34a has a very small conveying force. There is no. For this reason, a sleeve having a surface property that is not suitable for pumping can be used for the developing sleeve 34a, so that the cost can be reduced. The developing sleeve 34a of this embodiment (surface roughness Rz is 1 [μm] to 8 μm). [Μm] range) can be used without problems.
As for the surface texture, it is possible to obtain a surface texture with a surface roughness of about Rz 0.8 [μm] even with normal lathe processing, and with a surface roughness of about Rz 3.2 [μm] even with aluminum extrusion. It is possible to bring out the surface texture.

また、実施例12の現像スリーブ34aを備える現像装置3であれば、表面性状の凹凸が少ないため磨耗の影響も受け難く、現像スリーブ34aの寿命に関しても長寿命化が可能となる。さらに、従来の現像スリーブに溝加工を行った現像装置と異なり、現像スリーブ34a上の現像剤32の穂立ちが均一となるので現像効率が向上し、高画像を得ることが出来る。   Further, in the developing device 3 including the developing sleeve 34a according to the twelfth embodiment, since the surface texture has few irregularities, the developing device 3 is hardly affected by wear, and the life of the developing sleeve 34a can be extended. Further, unlike the conventional developing device in which the groove is formed on the developing sleeve, the rising of the developer 32 on the developing sleeve 34a becomes uniform, so that the developing efficiency is improved and a high image can be obtained.

〔実施例13〕
次に、実施例1〜12の現像装置3に適用可能な現像スリーブ34aの駆動ギヤの実施例(以下、実施例13と呼ぶ)について説明する。
図73は、本実施例の現像装置3が備える現像スリーブ34a及び現像スリーブ34aに回転駆動を伝達する現像ギヤ34gと感光体1との配置を模式的に示す説明図である。
また、図74は、従来の現像装置3が備える現像スリーブ34a及び現像ギヤ34gと感光体1との配置を模式的に示す説明図である。
Example 13
Next, an example (hereinafter referred to as Example 13) of a drive gear for the developing sleeve 34a applicable to the developing device 3 of Examples 1 to 12 will be described.
FIG. 73 is an explanatory diagram schematically showing the arrangement of the photosensitive member 1 and the developing sleeve 34a provided in the developing device 3 of the present embodiment and the developing gear 34g that transmits the rotational drive to the developing sleeve 34a.
FIG. 74 is an explanatory view schematically showing the arrangement of the developing sleeve 34a and the developing gear 34g and the photosensitive member 1 provided in the conventional developing device 3.

図74に示す従来の現像装置の構成のように、現像ギヤ34gのモジュールが大きい場合や歯数が多い場合は、現像ギヤ34gの外径が現像スリーブ34a外径より大きくなっていた。このため、現像ギヤ34gを現像スリーブ34aに対向する感光体1の長手方向の領域内には配置することが出来ず、結果として現像装置3が大きくなってしまっていた。
一方、図73に示す本実施例の現像装置であれば、現像ギヤ34gの外径を現像スリーブ34aの外径よりも小さくすることによって、現像スリーブ34aに対向する感光体1の長手方向の領域に現像ギヤ34gが入り込むように配置しても干渉されず、感光体1の長手方向の領域に配置できる分、現像装置3の小型化を図ることができる。
As in the configuration of the conventional developing device shown in FIG. 74, when the module of the developing gear 34g is large or the number of teeth is large, the outer diameter of the developing gear 34g is larger than the outer diameter of the developing sleeve 34a. For this reason, the developing gear 34g cannot be disposed in the longitudinal region of the photoreceptor 1 facing the developing sleeve 34a, and as a result, the developing device 3 has become large.
On the other hand, in the case of the developing device of this embodiment shown in FIG. 73, the outer diameter of the developing gear 34g is made smaller than the outer diameter of the developing sleeve 34a, whereby the longitudinal region of the photoreceptor 1 facing the developing sleeve 34a. Even if the developing gear 34g is arranged so as to enter, the developing device 3 can be downsized by the amount that it can be arranged in the longitudinal region of the photoreceptor 1 without interference.

本実施例の現像装置3では、現像装置の小型化、特に長手方向の小型化に制約を受けないように、現像ギヤ34gが感光体1の長手方向の領域に入っても干渉しないように構成した。
本実施例の現像装置に用いる平歯車での実施例を以下に記載する。
平歯車の歯先円直径は、以下の式(9)で求めることができる。
dk=do+2・m ・・・・(9)
(dk:歯先円直径 do:ピッチ円直径(z・m) m:モジュール z:歯数)
そして、現像スリーブ外径:Φ10[mm]、及び、切り下げ限界歯数:17を考慮して歯車の歯先円直径をΦ10[mm]以下にするには、上記(9)式より、
10=17・m+2・m
m=0.53となり、
モジュールを0.5[mm]としなければならない。
The developing device 3 of the present embodiment is configured so that the developing gear 34g does not interfere even if the developing gear 34g enters the longitudinal region of the photoconductor 1 so as not to be restricted by the downsizing of the developing device, particularly in the longitudinal direction. did.
Examples of spur gears used in the developing device of this example are described below.
The diameter of the tip circle of the spur gear can be obtained by the following equation (9).
dk = do + 2 · m (9)
(Dk: diameter of tooth tip circle do: pitch circle diameter (z · m) m: module z: number of teeth)
Then, considering the developing sleeve outer diameter: Φ10 [mm] and the lower limit number of teeth: 17, the tooth tip diameter of the gear is Φ10 [mm] or less, from the above equation (9),
10 = 17 ・ m + 2 ・ m
m = 0.53,
The module must be 0.5 mm.

モジュールを小さくすることで歯数を稼ぎ、ギヤを小さくすることができるが、モジュールを小さくすると強度が低下し、現像スリーブ34aへの駆動伝達ができなくなるおそれがある。しかし、本実施例の現像装置3は剤規制部材35との対向部である剤規制部での低ストレス化を実現し、現像スリーブ34aの回転トルクが小さいためモジュールが0.5[mm]と小さくても問題ない。
このように、現像ギヤ34gを現像スリーブ34aの外径よりも小さくすることにより、感光体1との干渉を避けられるので、現像装置3を小型化することが出来る。
By making the module smaller, the number of teeth can be increased and the gear can be made smaller. However, if the module is made smaller, the strength is lowered, and there is a possibility that drive transmission to the developing sleeve 34a cannot be performed. However, the developing device 3 of the present embodiment realizes a reduction in stress at the agent restricting portion that is the portion facing the agent restricting member 35, and since the rotational torque of the developing sleeve 34a is small, the module is 0.5 [mm]. There is no problem even if it is small.
Thus, by making the developing gear 34g smaller than the outer diameter of the developing sleeve 34a, interference with the photosensitive member 1 can be avoided, so that the developing device 3 can be downsized.

〔実施例14〕
次に、実施例1〜13の現像装置3に適用可能なプリセットシールの実施例(以下、実施例14と呼ぶ)について説明する。
現像装置3を現像ユニットとして出荷する際には、現像容器33内に予め現像剤32を入れておくことが望ましい。そして、本実施例の現像装置3では輸送中に現像容器33内の現像剤32が漏れないようにプリセットシールを備えている。
Example 14
Next, an example of a preset seal (hereinafter referred to as Example 14) applicable to the developing device 3 of Examples 1 to 13 will be described.
When the developing device 3 is shipped as a developing unit, it is desirable to put the developer 32 in the developing container 33 in advance. The developing device 3 of this embodiment is provided with a preset seal so that the developer 32 in the developing container 33 does not leak during transportation.

図75及び図76は本実施例の現像装置3内の現像剤32の流れを示す説明図であり、図75が現像装置3の軸方向に直交する断面図、図76が現像装置3を図75中の矢印C方向から見たN−N´断面の断面図である。
図中のI〜Iの矢印が現像剤32の流れを示す。
現像装置3内の短手方向(現像スリーブ34aの軸方向に直交する方向)では、図75に示すように、「供給搬送路37」→「現像スリーブ34aの表面」→「循環搬送路38」の順に現像剤が循環する。
一方、現像装置3内の長手方向(現像スリーブ34aの軸方向)では、「循環搬送路38」→「持ち上げ口41」→「供給搬送路37」→「落下口42」→「循環搬送路38」の順に現像剤が循環する。
75 and 76 are explanatory views showing the flow of the developer 32 in the developing device 3 of this embodiment. FIG. 75 is a cross-sectional view orthogonal to the axial direction of the developing device 3, and FIG. 75 is a cross-sectional view of the NN ′ cross section viewed from the direction of arrow C in FIG.
The arrows I 1 to I 7 in the figure indicate the flow of the developer 32.
In the short direction in the developing device 3 (the direction orthogonal to the axial direction of the developing sleeve 34a), as shown in FIG. 75, “supply conveyance path 37” → “surface of the developing sleeve 34a” → “circulation conveyance path 38”. The developer circulates in this order.
On the other hand, in the longitudinal direction in the developing device 3 (the axial direction of the developing sleeve 34a), “circulation conveyance path 38” → “lifting port 41” → “supply conveyance path 37” → “falling opening 42” → “circulation conveyance path 38”. The developer circulates in this order.

図77は、プリセットシールとして2つのシール部材60(第1シール部材60a、第2シール部材60b)によって、現像スリーブ34aを配置した空間と供給搬送路37との連通部(矢印Iの流れが通る連通部)、及び、現像スリーブ34aを配置した空間と循環搬送路38との連通部(矢印Iの流れが通る連通部)のそれぞれを塞ぐ構成の現像装置3の説明図である。図77(a)は現像装置3の断面図、図77(b)は、2つのシール部材60を各々引く構成の現像装置3の斜視図であり、図77(c)は、2つのシール部材60を同時に引き抜く構成の斜視図である。
この構成では、供給搬送路37と循環搬送路38とに現像剤32をプリセットすることが可能となる。
Figure 77 is two sealing member 60 (first seal member 60a, second seal member 60b) as a preset sealed by, the communication portion (the arrow I 1 flows to the space of arranging the developing sleeve 34a and the supply path 37 communicating portion through), and is an explanatory view of the developing device 3 of the arrangement for closing the respective communicating portions of the space of arranging the developing sleeve 34a and the circulation path 38 (communicating portion through which flow arrows I 3). 77 (a) is a sectional view of the developing device 3, FIG. 77 (b) is a perspective view of the developing device 3 configured to pull the two seal members 60, and FIG. 77 (c) is two seal members. It is a perspective view of the composition which pulls out 60 simultaneously.
In this configuration, the developer 32 can be preset in the supply conveyance path 37 and the circulation conveyance path 38.

図78は、プリセットシールとして1つのシール部材60によって、現像スリーブ34aを配置した空間と供給搬送路37との連通部(矢印Iの流れが通る連通部)、及び、現像スリーブ34aを配置した空間と循環搬送路38との連通部(矢印Iの流れが通る連通部)を塞ぐ構成の現像装置3の説明図である。図78(a)は現像装置3の断面図、図78(b)は、現像装置3の横方向からシール部材60を引き抜く構成の現像装置3の斜視図であり、図78(c)は、現像装置3の上方向からシール部材60を引き抜く構成の現像装置3の斜視図である。
なお、図78(c)で示す構成の現像装置3では、シール部材60は表面に付着した現像剤32を落とす為にシール清掃部材61の隙間を通して引き抜く。なお、シール清掃部材61としては発泡PUR等の柔軟性があるものが望ましい。このような構成であっても、図77の構成と同様に供給搬送路37と循環搬送路38とに現像剤32をプリセットすることが可能となる。
Figure 78 is by a single sealing member 60 as a preset seal, developing communication portion between the sleeve 34a was arranged space and the supply conveyance path 37 (communicating portion through which flow arrows I 1), and were placed developing sleeve 34a FIG. 4 is an explanatory diagram of the developing device 3 configured to block a communication portion (a communication portion through which the flow of the arrow I 3 passes) between the space and the circulation conveyance path 38. 78A is a cross-sectional view of the developing device 3, FIG. 78B is a perspective view of the developing device 3 configured to pull out the seal member 60 from the lateral direction of the developing device 3, and FIG. 3 is a perspective view of the developing device 3 configured to pull out a seal member 60 from above the developing device 3. FIG.
In the developing device 3 configured as shown in FIG. 78C, the seal member 60 is pulled out through the gap of the seal cleaning member 61 in order to drop the developer 32 adhering to the surface. The seal cleaning member 61 is preferably a flexible member such as foamed PUR. Even with such a configuration, the developer 32 can be preset in the supply conveyance path 37 and the circulation conveyance path 38 as in the configuration of FIG. 77.

図79は、プリセットシールとして2つのシール部材60(第1シール部材60a、第2シール部材60b)によって、現像スリーブ34aを配置した空間と供給搬送路37との連通部(矢印Iの流れが通る連通部)、及び、供給搬送路37と循環搬送路38との連通部(矢印I及び矢印Iの流れが通る連通部である、仕切り板36に設けた落下口42及び持ち上げ口41)のそれぞれを塞ぐ構成の現像装置3の説明図である。図79(a)は現像装置3の断面図、図79(b)は、2つのシール部材60を各々引く構成の現像装置3の斜視図であり、図79(c)は、2つのシール部材60を同時に引き抜く構成の斜視図である。
この構成では、供給搬送路37に現像剤32をプリセットすることが可能となる。
Figure 79 is two sealing member 60 (first seal member 60a, second seal member 60b) as a preset sealed by, the communication portion (the arrow I 1 flows to the space of arranging the developing sleeve 34a and the supply path 37 And a drop port 42 and a lift port 41 provided in the partition plate 36, which are communication portions between the supply conveyance path 37 and the circulation conveyance path 38 (communication portions through which the flow of the arrows I 5 and I 7 passes). ) Is an explanatory diagram of the developing device 3 configured to block each of the above. 79A is a cross-sectional view of the developing device 3, FIG. 79B is a perspective view of the developing device 3 configured to pull the two seal members 60, and FIG. 79C is two seal members. It is a perspective view of the structure which pulls out 60 simultaneously.
In this configuration, the developer 32 can be preset in the supply conveyance path 37.

図80は、プリセットシールとして1つのシール部材60によって、現像スリーブ34aを配置した空間と供給搬送路37との連通部(矢印Iの流れが通る連通部)、及び、供給搬送路37と循環搬送路38との連通部(矢印I及び矢印Iの流れが通る連通部である、仕切り板36に設けた落下口42及び持ち上げ口41)を塞ぐ構成の現像装置3の説明図である。図80(a)は現像装置3の断面図、図80(b)は、現像装置3の横方向からシール部材60を引き抜く構成の現像装置3の斜視図であり、図80(c)は、現像装置3の上方向からシール部材60を引き抜く構成の現像装置3の斜視図である。
なお、図80(c)で示す構成の現像装置3では、シール部材60は表面に付着した現像剤32を落とす為にシール清掃部材61の隙間を通して引き抜く。なお、シール清掃部材61としては発泡PUR等の柔軟性があるものが望ましい。このような構成であっても、図79の構成と同様に供給搬送路37に現像剤32をプリセットすることが可能となる。
Figure 80 is by a single sealing member 60 as a preset seal, developing communication portion between the sleeve 34a was arranged space and the supply conveyance path 37 (communicating portion through which flow arrows I 1), and circulating the supply conveyance path 37 (a communicating portion through which flow arrows I 5 and arrow I 7, the chute 42 and lifting opening 41 provided in the partition plate 36) communicating portion between the conveying path 38 is an explanatory view of the developing device 3 of the arrangement to block the . 80A is a cross-sectional view of the developing device 3, FIG. 80B is a perspective view of the developing device 3 configured to pull out the seal member 60 from the lateral direction of the developing device 3, and FIG. 3 is a perspective view of the developing device 3 configured to pull out a seal member 60 from above the developing device 3. FIG.
In the developing device 3 having the configuration shown in FIG. 80C, the seal member 60 is pulled out through the gap of the seal cleaning member 61 in order to drop the developer 32 adhering to the surface. The seal cleaning member 61 is preferably a flexible member such as foamed PUR. Even with such a configuration, the developer 32 can be preset in the supply conveyance path 37 as in the configuration of FIG.

図81は、プリセットシールとして2つのシール部材60(第1シール部材60a、第2シール部材60b)によって、現像スリーブ34aを配置した空間と循環搬送路38との連通部(矢印Iの流れが通る連通部)、及び、供給搬送路37と循環搬送路38との連通部(矢印I及び矢印Iの流れが通る連通部である、仕切り板36に設けた落下口42及び持ち上げ口41)のそれぞれを塞ぐ構成の現像装置3の説明図である。図81(a)は現像装置3の断面図、図81(b)は、2つのシール部材60を各々引く構成の現像装置3の斜視図であり、図81(c)は、2つのシール部材60を同時に引き抜く構成の斜視図である。
この構成では、循環搬送路38に現像剤32をプリセットすることが可能となる。
Figure 81 is two sealing member 60 (first seal member 60a, second seal member 60b) as a preset sealed by the flow of the communication portion (arrow I 3 the space of arranging the developing sleeve 34a and the circulation path 38 And a drop port 42 and a lift port 41 provided in the partition plate 36, which are communication portions between the supply conveyance path 37 and the circulation conveyance path 38 (communication portions through which the flow of the arrows I 5 and I 7 passes). ) Is an explanatory diagram of the developing device 3 configured to block each of the above. 81A is a cross-sectional view of the developing device 3, FIG. 81B is a perspective view of the developing device 3 configured to pull the two seal members 60, and FIG. 81C is two seal members. It is a perspective view of the composition which pulls out 60 simultaneously.
In this configuration, the developer 32 can be preset in the circulation conveyance path 38.

図82は、プリセットシールとして1つのシール部材60によって、現像スリーブ34aを配置した空間と循環搬送路38との連通部(矢印Iの流れが通る連通部)、及び、供給搬送路37と循環搬送路38との連通部(矢印I及び矢印Iの流れが通る連通部である、仕切り板36に設けた落下口42及び持ち上げ口41)を塞ぐ構成の現像装置3の説明図である。図82(a)は現像装置3の断面図、図82(b)は、現像装置3の横方向からシール部材60を引き抜く構成の現像装置3の斜視図であり、図82(c)は、現像装置3の上方向からシール部材60を引き抜く構成の現像装置3の斜視図である。
なお、図82(c)で示す構成の現像装置3では、シール部材60は表面に付着した現像剤32を落とす為にシール清掃部材61の隙間を通して引き抜く。なお、シール清掃部材61としては発泡PUR等の柔軟性があるものが望ましい。このような構成であっても、図81の構成と同様に循環搬送路38に現像剤32をプリセットすることが可能となる。
Figure 82 is by a single sealing member 60 as a preset seal, developing communication portion of the sleeve 34a and the spatial placement and circulation path 38 (communicating portion through which flow arrows I 3), and circulating the supply conveyance path 37 (a communicating portion through which flow arrows I 5 and arrow I 7, the chute 42 and lifting opening 41 provided in the partition plate 36) communicating portion between the conveying path 38 is an explanatory view of the developing device 3 of the arrangement to block the . 82A is a cross-sectional view of the developing device 3, FIG. 82B is a perspective view of the developing device 3 configured to pull out the seal member 60 from the lateral direction of the developing device 3, and FIG. 3 is a perspective view of the developing device 3 configured to pull out a seal member 60 from above the developing device 3. FIG.
In the developing device 3 configured as shown in FIG. 82C, the seal member 60 is pulled out through the gap of the seal cleaning member 61 in order to drop the developer 32 adhering to the surface. The seal cleaning member 61 is preferably a flexible member such as foamed PUR. Even with such a configuration, it is possible to preset the developer 32 in the circulation conveyance path 38 as in the configuration of FIG.

図77〜図82を用いて説明した構成では、現像装置3を用いて説明しているが、プロセスカートリッジとなっても同様の形態を取ることが可能である。
また、シール部材60を上方向から引き抜く構成のみしかシール清掃部材61を記載していないが、横方向から引き抜く場合に関しても同様にシール清掃部材を設置するのが望ましい。
The configuration described with reference to FIGS. 77 to 82 is described using the developing device 3, but the same configuration can be adopted even when the process cartridge is formed.
Further, the seal cleaning member 61 is described only for the configuration in which the seal member 60 is pulled out from above, but it is desirable to similarly install the seal cleaning member when pulling out from the lateral direction.

このように、現像剤32のプリセットを可能とするために、現像スリーブ34aを配置した空間、供給搬送路37、循環搬送路38の連通部を塞ぐシール部材60を設けることにより、現像装置3が新品の際の輸送時に現像剤漏れ等が発生せず、画像形成装置であるプリンタ100の機内を汚すことが無い。またサービスパーツの際は梱包箱内を汚すことも無い。
よって、ユーザに汚れによる不快感を与えることが無く、また現像剤漏れによる異常画像の発生や機械の故障等を引き起こすことを防止することができる。
また、実施例14で説明したシール部材60は、塞ぐ対象の連通部の縁部を形成するケーシングに熱溶着されることによって、連通部を塞ぐ構成である。また、本実施例のシール部材60は現像装置3に対して引き抜く方向の反対側で折り返して、折り返し部を挟んでケーシングに熱溶着されていない側の端部を引っ張ることで現像装置3から引き抜かれる構成となっている。折り返したシール部材60を引き抜く構成により、シール部材60のケーシングに対する溶着部分全体を一度に引き剥がすのではなく、引き抜く方向とは反対側の端部の溶着部分から順に引き剥がすことができるので、シール部材60を引き抜くときに大きな力が不要となる。また、シール部材60を引き抜くときに大きな力が不要であるため、シール部材60に対して大きな力が働くことを防止し、引き抜き動作の途中でシール部材60が破損して、シール部材60が引き抜けなくなるおそれを低減できる。
なお、シール部材60としては本実施例のように折り返すように溶着する構成に限らない。さらに、連通部を塞ぐ構成としては熱溶着に限るものではなく、現像装置3に対して引き抜くことができるシール部材60によって所定の連通部を塞ぐことができればどのような構成であってもよい。
As described above, in order to allow the developer 32 to be preset, the developing device 3 is provided by providing the seal member 60 that closes the communication portion of the space in which the developing sleeve 34 a is disposed, the supply conveyance path 37, and the circulation conveyance path 38. There is no developer leakage or the like during transportation of a new article, and the inside of the printer 100 as the image forming apparatus is not soiled. Moreover, the inside of a packing box is not polluted in the case of service parts.
Therefore, it is possible to prevent the user from feeling uncomfortable due to dirt, and to prevent the occurrence of an abnormal image due to the developer leakage or the failure of the machine.
Moreover, the sealing member 60 demonstrated in Example 14 is the structure which plugs up a communicating part by heat-welding to the casing which forms the edge of the communicating part of the block | closed object. Further, the seal member 60 of the present embodiment is folded back on the opposite side of the drawing direction with respect to the developing device 3, and is pulled out from the developing device 3 by pulling the end portion on the side that is not thermally welded to the casing across the folded portion. It is the composition which becomes. Since the folded seal member 60 is pulled out, the entire welded portion of the seal member 60 with respect to the casing can be peeled off in order from the welded portion at the end opposite to the pulling direction. A large force is not required when the member 60 is pulled out. Further, since a large force is not required when pulling out the seal member 60, it is possible to prevent a large force from acting on the seal member 60, and the seal member 60 is broken during the pulling operation, so that the seal member 60 is pulled. It is possible to reduce the possibility that it will not come off.
Note that the sealing member 60 is not limited to the configuration in which the sealing member 60 is welded so as to be folded back as in this embodiment. Further, the configuration for closing the communication portion is not limited to heat welding, and any configuration may be used as long as the predetermined communication portion can be closed by the seal member 60 that can be pulled out from the developing device 3.

なお、実施例14で説明した現像装置3のように、使用前の現像装置3の連通部をシール部材60によって塞いで、現像剤搬送経路内に現像剤32をプリセットする構成は、実施例1〜7の現像装置3のようにマグネットローラ34bを3極構成として現像スリーブ34aを小径とし、現像装置3を小型化した構成に好適に適用することができる。なお、実施例14で説明した現像剤32をプリセットする構成は、マグネットローラ34bを3極構成とした現像装置に限るものではなく、図11で示す比較例2のように5極構成とした現像装置のように、現像スリーブ上の現像剤を保持し得る強さの磁界を発生させる磁極を4極以上備える現像装置であっても適用可能である。すなわち、現像剤を現像スリーブの回転軸方向に搬送しながら、現像剤を現像スリーブに供給する供給搬送路と、供給搬送路の下方に配置され、供給搬送路の搬送方向下流側端部まで到達した現像剤を受け渡されて、現像剤を現像スリーブの回転軸方向で供給搬送路とは逆方向に搬送しながら現像スリーブから現像剤を回収し、現像剤搬送方向下流側端部まで到達した現像剤を供給搬送路の搬送方向上流側端部に受け渡す循環搬送路とを備える現像装置であれば実施例14で説明した現像剤32をプリセットする構成は適用可能である。   As in the developing device 3 described in the fourteenth embodiment, the configuration in which the communicating portion of the developing device 3 before use is closed by the seal member 60 and the developer 32 is preset in the developer conveying path is the first embodiment. The developing device 3 can be suitably applied to a configuration in which the developing roller 3 is reduced in size with the magnet roller 34b having a three-pole configuration, the developing sleeve 34a having a small diameter, and the like. Note that the configuration for presetting the developer 32 described in the embodiment 14 is not limited to the developing device in which the magnet roller 34b has a three-pole configuration, and a development having a five-pole configuration as in the comparative example 2 shown in FIG. The present invention can also be applied to a developing device having four or more magnetic poles that generate a magnetic field having a strength capable of holding the developer on the developing sleeve, such as the device. In other words, while the developer is transported in the direction of the rotation axis of the developing sleeve, it is arranged below the supply transport path for supplying the developer to the developing sleeve and reaches the downstream end of the supply transport path in the transport direction. The developer was delivered, and the developer was collected from the developing sleeve while conveying the developer in the direction of the rotation axis of the developing sleeve in the direction opposite to the supply conveying path, and reached the downstream end in the developer conveying direction. The configuration in which the developer 32 described in the fourteenth embodiment is preset can be applied to any developing device that includes a circulation conveyance path that delivers the developer to the upstream end in the conveyance direction of the supply conveyance path.

本実施例の現像装置3のように、現像ローラ34を3極構成とすることにより、現像スリーブ34aを小径にすることが出来る。また、3極構成として、3つの磁極に現像剤の汲み上げ、現像、剤離れの機能を持たせることで、従来の5つの磁極の構成と同様に現像スリーブ表面への汲み上げ、現像スリーブ表面上の現像剤の規制、現像、剤離れという各工程を良好に実行することが出来る。
また、3極構成であれば、ように現像後磁極であるN1極に対して現像スリーブ34aの表面移動方向下流側での剤離れ磁極として機能するN1極と汲み上げ磁極として機能するN2極との現像スリーブ34a上の間隔を広くすることができる。特に、現像後磁極中心線L3と現像前磁極中心線L1とが成す中心角の角度θ3が180[°]以上となるように構成することが可能であるため、小径の現像スリーブ34aを用いる構成であっても、良好な剤離れが可能になる。
また、剤離れ磁極として機能する磁極と汲み上げ磁極として機能する磁極との間の間隔を広くすることにより、現像スリーブ34a上で現像領域Aを通過した現像剤32を供給搬送路37とは異なる循環搬送路38に回収することができる。現像剤32の現像スリーブ34aへの供給と現像スリーブ34aからの回収を分離することが可能になり、現像装置3を小型化することによって現像剤収納部が小容量となったとしても画像濃度の変動を低減することができる。
また、供給搬送路37を形成する障壁43の下方に現像スリーブ34aの表面が位置するように配置することで、重力を利用して現像剤32の供給を行うことが出来る。これにより重力によって、現像剤32を現像スリーブ34aの表面に供給することが可能になり、従来の汲み上げ磁極と規制磁極とをそれぞれ備える構成に比べて、本実施例のように汲み上げ磁極および規制磁極として機能する磁極を1つ備え、磁極の数を低減した構成としても現像剤を良好に現像領域に供給することができる。
また、本実施例の現像装置3であれば、重力を用いて現像スリーブ34aの表面に現像剤を供給するため、汲み上げ磁極として機能する磁極(N2極)によって発生される磁界の現像スリーブ34a表面上での法線方向の磁束密度の最大値が従来の現像装置の汲み上げ磁極の1/4程度となるような構成にしても良好な剤搬送が可能である。この場合、現像スリーブ34aに作用する荷重を従来の20[%]〜30[%]にまで低減できる。
このように、本実施例の現像装置3では、剤規制部での荷重を低減することができるため、現像スリーブ34aを小径とすることに起因して現像ギャップが一様でなくなることを抑制し、良好な現像を行うことができる。
As in the developing device 3 of the present embodiment, the developing roller 34 can be made to have a small diameter by forming the developing roller 34 in a three-pole configuration. In addition, as a three-pole configuration, the three magnetic poles have the functions of pumping up developer, developing, and separating agents, so that the pump is drawn up on the surface of the developing sleeve in the same manner as the conventional five-pole configuration. Each step of developer regulation, development, and agent separation can be performed satisfactorily.
Further, in the case of the three-pole configuration, the N1 pole that functions as the agent separation magnetic pole and the N2 pole that functions as the pumping magnetic pole on the downstream side in the surface movement direction of the developing sleeve 34a with respect to the N1 pole that is the post-development magnetic pole. The interval on the developing sleeve 34a can be increased. In particular, since it is possible to configure the central angle formed by the post-development magnetic pole center line L3 and the pre-development magnetic pole center line L1 to be 180 [°] or more, a configuration using a small-diameter development sleeve 34a. Even so, good separation of the agent is possible.
Further, the developer 32 that has passed through the developing area A on the developing sleeve 34 a is circulated differently from the supply conveyance path 37 by widening the interval between the magnetic pole that functions as the agent separating magnetic pole and the magnetic pole that functions as the pumping magnetic pole. It can be collected in the transport path 38. It becomes possible to separate the supply of the developer 32 to the developing sleeve 34a and the recovery from the developing sleeve 34a, and even if the capacity of the developer container is reduced by downsizing the developing device 3, the image density can be reduced. Variations can be reduced.
Further, the developer 32 can be supplied using gravity by arranging the developing sleeve 34 a so that the surface of the developing sleeve 34 a is positioned below the barrier 43 that forms the supply conveyance path 37. As a result, the developer 32 can be supplied to the surface of the developing sleeve 34a by gravity, and the pumping magnetic pole and the regulating magnetic pole as in the present embodiment are compared with the conventional configuration including the pumping magnetic pole and the regulating magnetic pole. The developer can be satisfactorily supplied to the development area even with a configuration in which one magnetic pole functioning as one is provided and the number of magnetic poles is reduced.
Further, in the case of the developing device 3 of the present embodiment, the developer is supplied to the surface of the developing sleeve 34a using gravity, and therefore the surface of the developing sleeve 34a of the magnetic field generated by the magnetic pole (N2 pole) functioning as a pumping magnetic pole. Even if it is configured such that the maximum value of the magnetic flux density in the normal direction above is about ¼ of the pumping magnetic pole of the conventional developing device, good agent conveyance is possible. In this case, the load acting on the developing sleeve 34a can be reduced to the conventional 20 [%] to 30 [%].
As described above, in the developing device 3 of the present embodiment, the load at the agent restricting portion can be reduced, so that the development gap is not uniform due to the development sleeve 34a having a small diameter. Good development can be performed.

以上、本実施形態によれば、上述した各実施例の現像装置3は、複数の磁極を有する磁界発生手段であるマグネットローラ34bを内包し、トナー及び磁性キャリアからなる二成分現像剤である現像剤32を表面に担持して、表面を回転駆動することによって表面上の現像剤32を搬送する円筒状の現像剤担持体である現像スリーブ34aと、現像スリーブ34aの表面に供給する現像剤を収納する現像剤収納部である現像容器33とを有し、マグネットローラ34bが有する磁極のうち現像スリーブ34aの表面上の現像剤32を保持し得る強さの磁界を発生させる現像剤担持極は、現像スリーブ34aと感光体1とが対向する現像領域Aに磁界を発生させるための現像磁極であるS1極と、現像容器33から供給された現像剤32を現像領域Aへ搬送する磁界を発生させる現像前磁極であるN2極と、現像領域Aを通過した後の現像剤32を現像スリーブ34aの表面から離脱させるようにN2極との間で現像剤32を離脱させる磁界を発生させる現像後磁極であるN1極との3つの磁極のみである。このように、現像剤担持極となる磁極の数が3つであることにより、従来の5つの現像剤担持極を備える構成にくらべてマグネットローラ34bの配置に要するスペースを小さくすることができるため、マグネットローラ34bを内包する現像スリーブ34aの小径化を図ることができる。また、現像スリーブ34aが同じ大きさであれば、現像剤担持極の数が3つの構成の方が、5つの現像剤担持極を備える構成に比べて、1つの現像剤担持極を形成するためのマグネットローラ34bのスペースを広く確保することが出来る。このため、5つの現像剤担持極を備える構成では一つ一つの現像剤担持極で必要な強さの磁界を発生させることができない程度に現像スリーブ34aを小径化しても、現像剤担持極の数が3つである現像装置3であれば、一つ一つの現像剤担持極で必要な強さの磁界を発生させることが出来る。さらに、現像装置3は、現像前磁極であるN2極が発生させる磁界によって現像スリーブ34aの表面上への現像剤32の汲み上げを行い、現像前磁極であるN2極、及び、現像磁極であるS1極が発生させる磁界によって汲み上げ部47から現像領域Aまでの現像スリーブ34a上の現像剤32の保持を行い、現像磁極であるS1極、及び、現像後磁極であるN1極が発生させる磁界によって現像領域Aから現像スリーブ34aの表面の現像剤32を離脱させる位置である剤離れ部46までの現像スリーブ34a上の現像剤32の保持を行うように構成している。このような構成より、従来の汲み上げ磁極と現像前搬送磁極との機能を1つの現像剤担持極であるN2極で実現し、従来の現像磁極、現像後搬送磁極、および、剤離れ磁極の3つの磁極の機能を2つの現像剤担持極であるS1極とN1極とで実現している。したがって、各工程に必要な強さの磁界を発生させることができ、且つ、汲み上げ、現像領域までの現像剤の搬送、現像、および、剤離れの各工程に寄与する現像剤担持極を備えているため、現像剤担持極の数を3つとした現像装置3でも、汲み上げ、現像領域Aまでの現像剤32の搬送、現像、および、剤離れの搬送の各工程を良好に実施することができる。
よって、本実施形態の現像装置3であれば、現像スリーブ34aを小径化することができるので、これを備える現像装置全体の小型化を図ることができる。
なお、現像スリーブ34aを小径化することで、それぞれの現像剤担持極(S1極、N1極、及び、N2極)が発生させる磁界での現像スリーブ34aの表面上の法線方向の磁束密度が最大となる法線方向磁束密度ピーク位置(M1とM2、M2とM3)同士の間隔が狭まる。これにより、従来の汲み上げ磁極と現像前搬送磁極との機能を1つの現像剤担持極であるN2極で実現することができ、従来の現像磁極、現像後搬送磁極、および、剤離れ磁極の3つの現像剤担持極の機能を2つの現像剤担持極であるS1極およびN1極で実現することができる。これにより、現像剤担持極の数を3つとして現像スリーブ34aを小径化しても、汲み上げ、現像領域Aまでの現像剤32の搬送、現像、および、剤離れの各工程を良好に実施することができる。
As described above, according to the present embodiment, the developing device 3 of each of the above-described examples includes a magnet roller 34b, which is a magnetic field generating unit having a plurality of magnetic poles, and is a two-component developer composed of toner and a magnetic carrier. A developer sleeve 34a, which is a cylindrical developer carrier that carries the developer 32 on the surface and conveys the developer 32 on the surface by rotating the surface, and a developer supplied to the surface of the developer sleeve 34a. A developer carrying pole that has a developer container 33 to be housed and generates a magnetic field having a strength capable of holding the developer 32 on the surface of the developing sleeve 34a among the magnetic poles of the magnet roller 34b. Develop S1 pole, which is a developing magnetic pole for generating a magnetic field in the developing area A where the developing sleeve 34a and the photosensitive member 1 face each other, and the developer 32 supplied from the developing container 33. The developer 32 is placed between the N2 pole, which is a pre-development magnetic pole that generates a magnetic field to be conveyed to the area A, and the N2 pole so that the developer 32 that has passed through the development area A is separated from the surface of the developing sleeve 34a. There are only three magnetic poles, the N1 pole, which is a post-development magnetic pole that generates a magnetic field to be detached. As described above, since the number of magnetic poles serving as developer carrying poles is three, the space required for the arrangement of the magnet roller 34b can be reduced as compared with the conventional configuration including five developer carrying poles. Further, the diameter of the developing sleeve 34a including the magnet roller 34b can be reduced. Further, if the developing sleeve 34a has the same size, the configuration in which the number of developer carrying poles is three forms one developer carrying electrode compared to the configuration in which five developer carrying poles are provided. A large space can be secured for the magnet roller 34b. For this reason, even if the diameter of the developing sleeve 34a is reduced to such an extent that a magnetic field having a required strength cannot be generated by each developer-carrying pole in the configuration including five developer-carrying poles, If the number of the developing devices 3 is three, a magnetic field having a required strength can be generated by each developer carrying pole. Further, the developing device 3 pumps the developer 32 onto the surface of the developing sleeve 34a by the magnetic field generated by the N2 pole that is the pre-development magnetic pole, and the N2 pole that is the pre-development magnetic pole and the S1 that is the development magnetic pole. The developer 32 on the developing sleeve 34a is held from the pumping portion 47 to the development area A by the magnetic field generated by the pole, and the development is performed by the magnetic field generated by the S1 pole as the developing magnetic pole and the N1 pole as the developing magnetic pole. The developer 32 on the developing sleeve 34a is held from the region A to the agent separation portion 46, which is a position for releasing the developer 32 on the surface of the developing sleeve 34a. With such a configuration, the functions of the conventional pumping magnetic pole and the pre-development transport magnetic pole are realized by the N2 pole as one developer carrying pole, and the conventional development magnetic pole, post-development transport magnetic pole, and agent separation magnetic pole 3 The function of two magnetic poles is realized by two S1 poles and N1 poles which are two developer carrying poles. Therefore, a developer-carrying electrode that can generate a magnetic field having a strength required for each process and contributes to each process of pumping up, transporting the developer to the development area, developing, and separating the agent is provided. Therefore, even with the developing device 3 having three developer-carrying electrodes, the steps of pumping up, transporting the developer 32 to the development area A, developing, and transporting away from the agent can be performed satisfactorily. .
Therefore, since the developing sleeve 34a can be reduced in diameter with the developing device 3 of the present embodiment, the entire developing device including the developing sleeve 34a can be reduced in size.
By reducing the diameter of the developing sleeve 34a, the magnetic flux density in the normal direction on the surface of the developing sleeve 34a in the magnetic field generated by each developer carrying pole (S1, N1, and N2 poles) can be increased. The distance between the maximum normal direction magnetic flux density peak positions (M1 and M2, M2 and M3) becomes narrower. As a result, the functions of the conventional pumping magnetic pole and the pre-development transport magnetic pole can be realized by the N2 pole that is one developer carrying pole, and the conventional development magnetic pole, post-development transport magnetic pole, and agent separation magnetic pole 3 The function of one developer carrying electrode can be realized by two developer carrying electrodes, S1 pole and N1 pole. Thus, even when the number of developer carrying poles is set to three and the developing sleeve 34a is reduced in diameter, the steps of pumping up, transporting the developer 32 to the developing region A, developing, and separating the agent are performed satisfactorily. Can do.

また、実施例1の現像装置3では、現像スリーブ34aの表面上の現像剤32を保持し得る強さの磁界を発生させる現像剤担持極(N1極、N2極、S3極)は現像スリーブ34aの表面上での法線方向の磁束密度の最大値が10[mT]以上となる磁極である。現像スリーブ34aの表面上での法線方向の磁束密度が10[mT]以上であればその磁界によって現像スリーブ34aの表面上に現像剤32を担持することができる磁界の強さとなる。このため、これらの磁極は現像剤32の現像スリーブ34aの表面上で現像剤を保持し得る磁界を発生させることができる。   In the developing device 3 of the first embodiment, the developer carrying poles (N1, N2, and S3 poles) that generate a magnetic field having a strength that can hold the developer 32 on the surface of the developing sleeve 34a are the developing sleeve 34a. This magnetic pole has a maximum value of the magnetic flux density in the normal direction on the surface of 10 mT or more. If the magnetic flux density in the normal direction on the surface of the developing sleeve 34a is 10 [mT] or more, the magnetic field is strong enough to carry the developer 32 on the surface of the developing sleeve 34a. For this reason, these magnetic poles can generate a magnetic field capable of holding the developer on the surface of the developing sleeve 34 a of the developer 32.

また、実施例1の現像装置3は現像スリーブ34aの回転軸に直交する仮想平面で、図7に示すように、3つの現像剤担持極のそれぞれによって発生される磁界での現像スリーブ34aの表面上の法線方向の磁束密度が最大となる3つの法線方向磁束密度ピーク位置のうち現像前磁極と現像磁極との2つの法線磁束密度ピーク位置(M1、M2)と回転中心34pとを直線(L1、L2)で結んで形成される中心角の開き角度をθ1、現像磁極と現像後磁極との2つの法線磁束密度ピーク位置(M2、M3)と回転中心34pとを直線(L2、L3)で結んで形成される中心角の開き角度をθ2、現像後磁極と現像前磁極との2つの法線磁束密度ピーク位置(M3、M1)と回転中心34pとを直線(L3、L1)で結んで形成される中心角の開き角度をθ3としたときに、θ3≧180°の関係を満たすように構成することにより、剤離れ部46の現像スリーブ34a表面の法線方向磁気吸引力を低減でき良好な剤離れ性を得ることが可能となる。   Further, the developing device 3 of Embodiment 1 is a virtual plane orthogonal to the rotation axis of the developing sleeve 34a, and as shown in FIG. 7, the surface of the developing sleeve 34a in the magnetic field generated by each of the three developer carrying poles. Among the three normal direction magnetic flux density peak positions where the normal direction magnetic flux density is maximized, two normal magnetic flux density peak positions (M1, M2) of the pre-development magnetic pole and the development magnetic pole and the rotation center 34p The opening angle of the central angle formed by connecting the straight lines (L1, L2) is θ1, the two normal magnetic flux density peak positions (M2, M3) of the developing magnetic pole and the post-developing magnetic pole and the rotation center 34p are straight lines (L2 , L3), the opening angle of the center angle formed by θ2 is θ2, the two normal magnetic flux density peak positions (M3, M1) of the post-development magnetic pole and the pre-development magnetic pole and the rotation center 34p are straight lines (L3, L1) ) When the opening angle is θ3, by configuring so as to satisfy the relationship of θ3 ≧ 180 °, the normal magnetic attracting force on the surface of the developing sleeve 34a of the agent separating portion 46 can be reduced, and good agent separating property is obtained. It becomes possible.

また、実施例1の現像装置3は、供給搬送路37を形成する障壁43の下方に現像スリーブ34aの表面が位置するように配置することで、現像容器33の供給搬送路37から現像スリーブ34aの表面への現像剤32の供給に重力を作用させることが出来る。重力によって現像剤32を搬送することにより、汲み上げ磁極として機能する現像前磁極であるN2極の現像前磁極中心M1における法線方向の磁束密度を低減することができ、現像剤に発生するストレスを低減することができる。さらに、現像前磁極中心M1における法線方向の磁束密度を低減することで、剤規制部で現像スリーブ34aにかかる荷重を低減することができ、小径化によって強度が低下した現像スリーブ34aの撓みを抑制することができる。   In addition, the developing device 3 according to the first exemplary embodiment is arranged so that the surface of the developing sleeve 34 a is positioned below the barrier 43 that forms the supplying and conveying path 37, so that the developing sleeve 34 a is supplied from the supplying and conveying path 37 of the developing container 33. Gravity can be applied to the supply of the developer 32 to the surface. By conveying the developer 32 by gravity, it is possible to reduce the magnetic flux density in the normal direction at the pre-development magnetic pole center M1 of the N2 pole that is the pre-development magnetic pole that functions as a pumping magnetic pole, and the stress generated in the developer is reduced. Can be reduced. Further, by reducing the magnetic flux density in the normal direction at the pre-development magnetic pole center M1, it is possible to reduce the load applied to the developing sleeve 34a at the agent restricting portion, and the developing sleeve 34a whose strength has been reduced due to the reduction in diameter can be reduced. Can be suppressed.

また、実施例4の現像装置3のように、現像剤収納部である現像容器33内の供給搬送路37から現像スリーブ34aへの現像剤32の供給に重力が作用するように現像容器33及び現像スリーブ34aを配置し、供給搬送路37から供給された現像剤32が現像スリーブ34aの表面に接触する位置である現像剤供給部である汲み上げ部47が、現像スリーブ34aの表面の最上端部であるスリーブ上端部34tに対して現像スリーブ34aの表面移動方向下流側となるように構成することによって、供給搬送路37から供給された現像剤32を循環搬送路38へと落下させることなく現像ドクタ部へと供給することができる。   Further, like the developing device 3 of the fourth embodiment, the developer container 33 and the developer container 33 and the developer container 33 so that gravity acts on the supply of the developer 32 from the supply conveyance path 37 in the developer container 33 which is a developer storage portion to the developing sleeve 34a. The developing sleeve 34a is disposed, and a pumping portion 47 which is a developer supply portion where the developer 32 supplied from the supply conveyance path 37 contacts the surface of the developing sleeve 34a is the uppermost end portion of the surface of the developing sleeve 34a. The developer 32 supplied from the supply conveyance path 37 is developed without dropping into the circulation conveyance path 38 by being configured to be downstream of the sleeve upper end portion 34t in the surface movement direction of the developing sleeve 34a. It can be supplied to the doctor part.

また、実施例5の現像装置3のように、現像剤収納部である現像容器33内の供給搬送路37から現像スリーブ34aへの現像剤32の供給に重力が作用するように現像容器33及び現像スリーブ34aを配置し、供給搬送路37から供給された現像剤32が現像スリーブ34aの表面に接触する位置である現像剤供給部である汲み上げ部47が、現像スリーブ34aの表面の最上端部であるスリーブ上端部34tに対して現像スリーブ34aの表面移動方向上流側であり、現像前磁極であるN2極によって発生される磁界での現像スリーブ34aの表面上の法線方向の磁束密度が最大となる現像前法線方向磁束密度ピーク位置である現像前磁極中心M1が、スリーブ上端部34tに対して現像スリーブ34aの表面移動方向上流側となるように構成することにより、供給搬送路37から供給された現像剤32を循環搬送路38へと落下させることなく安定して現像剤32の供給を行うことができる。   Further, like the developing device 3 of the fifth embodiment, the developer container 33 and the developer container 33 and the developer container 33 so that gravity acts on the supply of the developer 32 to the developing sleeve 34a from the supply conveyance path 37 in the developer container 33 which is a developer container. The developing sleeve 34a is disposed, and a pumping portion 47 which is a developer supply portion where the developer 32 supplied from the supply conveyance path 37 contacts the surface of the developing sleeve 34a is the uppermost end portion of the surface of the developing sleeve 34a. The magnetic flux density in the normal direction on the surface of the developing sleeve 34a at the upstream side in the surface moving direction of the developing sleeve 34a with respect to the sleeve upper end 34t and the magnetic field generated by the N2 pole as the pre-developing magnetic pole is maximum. The pre-development magnetic pole center M1, which is the normal direction pre-development magnetic flux density peak position, becomes upstream of the sleeve upper end 34t in the surface movement direction of the development sleeve 34a. In the a configuration, it is possible to supply the stable developer 32 without dropping the developer 32 supplied from the supply path 37 into the circulation path 38.

また、実施例1の現像装置3は、現像剤担持極(S1極、N1極、及び、N2極)のうち、供給搬送路37から現像スリーブ34aに向けて供給された現像剤32を現像スリーブ34aの表面上に汲み上げて担持する工程に寄与する汲み上げ磁極として機能するN2極よって発生される磁界で現像スリーブ34aの表面上での法線方向の磁束密度の最大値、すなわち、現像前磁極中心M1における法線方向の磁束密度の値を40[mT]以下としている。これにより、従来の現像ローラの汲み上げ磁極として機能する磁極による磁界の現像スリーブ上での磁束密度の最大値(50[mT]〜70[mT])に比べて、汲み上げ磁極として機能する現像前磁極の現像前磁極中心M1における法線方向の磁束密度を低減しているため、剤規制部で現像スリーブ34aにかかる荷重を低減することができ、小径化によって強度が低下した現像スリーブ34aの撓みを抑制することができる。なお、実施例1の現像装置3では、現像スリーブ34a表面への現像剤の供給に重力を作用させる構成であるため、汲み上げに寄与する磁極(N2極)による磁界の現像スリーブ34a上での法線方向の磁束密度の最大値が従来に比べて小さくなるように構成しても、現像スリーブ34a上での現像剤32の搬送を良好に行うことができる。   Further, the developing device 3 according to the first embodiment uses the developer 32 supplied from the supply conveyance path 37 toward the developing sleeve 34a among the developer carrying electrodes (S1, N1, and N2). The maximum value of the magnetic flux density in the normal direction on the surface of the developing sleeve 34a by the magnetic field generated by the N2 pole that functions as a pumping magnetic pole that contributes to the process of pumping and carrying on the surface of the surface 34a, that is, the center of the magnetic pole before development The value of the magnetic flux density in the normal direction at M1 is set to 40 [mT] or less. As a result, the pre-development magnetic pole that functions as the pumping magnetic pole as compared with the maximum magnetic flux density (50 [mT] to 70 [mT]) of the magnetic field on the developing sleeve by the magnetic pole that functions as the pumping magnetic pole of the conventional developing roller. Since the magnetic flux density in the normal direction at the pre-development magnetic pole center M1 is reduced, the load applied to the developing sleeve 34a at the agent regulating portion can be reduced, and the developing sleeve 34a having a reduced strength due to the smaller diameter can be bent. Can be suppressed. In the developing device 3 according to the first embodiment, gravity is applied to the developer supplied to the surface of the developing sleeve 34a. Therefore, the magnetic field generated by the magnetic pole (N2 pole) that contributes to the pumping is a method on the developing sleeve 34a. Even if the maximum value of the magnetic flux density in the linear direction is configured to be smaller than that in the prior art, the developer 32 can be transported satisfactorily on the developing sleeve 34a.

また、実施例1の現像装置3のように、現像磁極であるS1極の法線磁束密度ピーク位置である現像磁極中心M2における現像スリーブ34aの表面に対する法線方向の磁束密度である現像磁極磁束密度ピーク値をBr、現像後磁極であるN1極の法線磁束密度ピーク位置である現像後磁極中心M3における現像スリーブ34aの表面に対する法線方向の磁束密度である現像後磁極磁束密度ピーク値をBrとしたときに、Br>Brの関係を満たすように構成することで、剤離れ部46の法線方向磁気吸引力を低減することでき、良好な剤離れ性を得ることが可能となる。 Further, like the developing device 3 of the first embodiment, the developing magnetic pole magnetic flux that is the magnetic flux density in the normal direction with respect to the surface of the developing sleeve 34a at the developing magnetic pole center M2 that is the normal magnetic flux density peak position of the S1 pole that is the developing magnetic pole. The density peak value is Br 1 , and the post-development magnetic pole magnetic flux density peak value that is the magnetic flux density in the normal direction with respect to the surface of the development sleeve 34a at the post-development magnetic pole center M3 that is the normal magnetic flux density peak position of the N1 pole that is the post-development magnetic pole. When Br is set to Br 2 , by configuring so as to satisfy the relationship of Br 1 > Br 2 , the normal direction magnetic attractive force of the agent separation portion 46 can be reduced, and good agent separation property can be obtained. It becomes possible.

また、実施例1の現像装置3では、現像後磁極であるN1極によって発生される磁界での現像スリーブ34a表面上の法線方向の磁束密度が最大となる現像後法線磁束密度ピーク位置である現像後磁極中心M3に対して現像スリーブ34aの表面移動方向下流側、且つ、現像前磁極であるN2極によって発生される磁界での現像スリーブ34a表面上の法線方向の磁束密度が最大となる現像前法線磁束密度ピーク位置である現像前磁極中心M1に対して現像スリーブ34aの表面移動方向上流側の範囲の現像スリーブ34a表面上に現像スリーブ34a表面に対する接線方向の磁束密度が実質的に0[mT]となる接線方向磁力無し領域(領域48)が存在する。そして、図17および図19を用いて説明したように、領域48内の任意の点と現像スリーブ34aの中心である回転中心34pとを結ぶ直線と、水平線である水平軸34hとが成す角度が、50[°]以下となるように設定することにより、良好な剤離れ性を確保することができる。   Further, in the developing device 3 of Example 1, the normal flux density peak position after development at which the magnetic flux density in the normal direction on the surface of the developing sleeve 34a is the maximum in the magnetic field generated by the N1 pole that is the developed magnetic pole. The magnetic flux density in the normal direction on the surface of the developing sleeve 34a at the downstream side in the surface movement direction of the developing sleeve 34a with respect to a certain post-developing magnetic pole center M3 and on the surface of the developing sleeve 34a in the magnetic field generated by the N2 pole that is the pre-developing magnetic pole is maximum. The magnetic flux density in the tangential direction with respect to the surface of the developing sleeve 34a is substantially on the surface of the developing sleeve 34a on the upstream side in the surface moving direction of the developing sleeve 34a with respect to the pre-developing magnetic pole center M1 that is the normal magnetic flux density peak position before development. There is a region without tangential magnetic force (region 48) that becomes 0 [mT]. As described with reference to FIGS. 17 and 19, the angle formed by a straight line connecting an arbitrary point in the region 48 and the rotation center 34p that is the center of the developing sleeve 34a and the horizontal axis 34h that is a horizontal line is determined. , 50 [°] or less, it is possible to ensure good agent separation.

また、実施例5の現像装置3のように、現像前磁極であるN2極によって発生される磁界での現像スリーブ34aの表面上の法線方向の磁束密度が最大となる現像前法線方向磁束密度ピーク位置である現像前磁極中心M1における現像スリーブ34aの表面上の法線方向の磁束密度が10[mT]以上となるように設定することで、現像スリーブ34a表面上に供給された現像剤32が現像スリーブ34aの表面に担持される力よりも、その自重によって現像剤32が落下してしまう力の方が大きくなることを防止し、循環搬送路38へと現像剤32が落下することを防止することができる。   Further, as in the developing device 3 of Example 5, the normal magnetic flux before development that maximizes the magnetic flux density in the normal direction on the surface of the developing sleeve 34a in the magnetic field generated by the N2 pole that is the magnetic pole before development. By setting the magnetic flux density in the normal direction on the surface of the developing sleeve 34a at the magnetic pole center M1 before development at the density peak position to be 10 [mT] or more, the developer supplied onto the surface of the developing sleeve 34a The force by which the developer 32 falls due to its own weight is prevented from becoming larger than the force by which the 32 is carried on the surface of the developing sleeve 34 a, and the developer 32 falls to the circulation conveyance path 38. Can be prevented.

また、実施例1の現像装置3は、現像容器33内の現像剤32を現像スリーブ34aに供給する現像剤供給搬送部材である供給スクリュ39を備え、現像容器33内の供給スクリュ39を設けた供給現像剤収納空間である供給搬送路37と、その下方であって現像スリーブ34aの表面上の現像剤32を回収する回収現像剤収納空間である循環搬送路38とを仕切る仕切り板36と、供給スクリュ39の下方に配置され、現像容器33の循環搬送路38に収納された現像剤32を現像スリーブ34aの回転軸の軸方向に沿う方向に搬送する現像剤回収搬送部材である循環スクリュ40とを有する。このような構成により、現像領域Aを通過してトナー濃度が低下した現像剤は供給搬送路37では回収されないため供給スクリュ39による搬送方向の上流側と下流側とで供給搬送路37内での現像剤32のトナー濃度が変化しない。よって、現像装置3の小型化によって、剤容量が低下したとき発生する現像剤が供給スクリュ39の搬送方向下流側に進むにつれ、画像濃度が低下する不具合を解消し、良好な画像を得ることができる。
また、現像領域Aを通過した現像スリーブ34aの表面上の現像剤32を回収する循環搬送路38が供給搬送路37の下方となるように構成し、剤離れ磁極であるN1極と対向する位置から汲み上げ磁極として機能するN2極に対向する位置までの現像スリーブ34aの表面移動方向が鉛直上方になるように構成することで、剤離れ磁極として機能する磁極と汲み上げ磁極として機能する磁極との間での現像剤の離脱に重力を作用させることが出来る。
現像スリーブを小径化すると、現像スリーブ上での剤離れ磁極として機能する磁極の法線方向磁束密度ピーク位置と汲み上げ磁極として機能する磁極の法線方向磁束密度ピーク位置との距離が短くなり、剤離れ磁極として機能する磁極が作用する位置を通過した現像剤が汲み上げ磁極として機能する磁極に引き付けられて剤離れ不良となる不具合が生じ易い。これに対して、上述した各実施例の現像装置3のように剤離れ磁極として機能する磁極と汲み上げ磁極として機能する磁極との間での現像剤の離脱に重力を作用させる構成であれば、現像スリーブを小径化した構成であっても剤離れ不良を抑制することが出来る。
The developing device 3 according to the first exemplary embodiment includes a supply screw 39 that is a developer supply / conveying member that supplies the developer 32 in the developing container 33 to the developing sleeve 34 a, and the supply screw 39 in the developing container 33 is provided. A partition plate 36 that partitions a supply conveyance path 37 that is a supply developer storage space and a circulation conveyance path 38 that is a recovery developer storage space below and that collects the developer 32 on the surface of the developing sleeve 34a; A circulation screw 40 that is a developer collecting and conveying member that is disposed below the supply screw 39 and conveys the developer 32 stored in the circulation and conveyance path 38 of the developing container 33 in a direction along the axial direction of the rotation axis of the developing sleeve 34a. And have. With such a configuration, the developer whose toner density has decreased after passing through the developing region A is not collected in the supply conveyance path 37, and therefore, in the supply conveyance path 37 on the upstream side and the downstream side in the conveyance direction by the supply screw 39. The toner density of the developer 32 does not change. Therefore, the downsizing of the developing device 3 eliminates the problem that the image density is lowered as the developer generated when the agent capacity is reduced proceeds downstream in the conveying direction of the supply screw 39, thereby obtaining a good image. it can.
Further, the circulation conveyance path 38 for collecting the developer 32 on the surface of the developing sleeve 34a that has passed through the development area A is configured to be below the supply conveyance path 37, and is opposed to the N1 pole that is the agent separation magnetic pole. By constructing the developing sleeve 34a so that the surface movement direction of the developing sleeve 34a from the top to the position facing the N2 pole that functions as the pumping magnetic pole is vertically upward, the gap between the magnetic pole that functions as the agent separating magnetic pole and the magnetic pole that functions as the pumping magnetic pole Gravity can be applied to the detachment of the developer.
When the diameter of the developing sleeve is reduced, the distance between the normal direction magnetic flux density peak position of the magnetic pole functioning as the agent separating magnetic pole on the developing sleeve and the normal direction magnetic flux density peak position of the magnetic pole functioning as the pumping magnetic pole is shortened. The developer that has passed through the position where the magnetic pole functioning as the separation magnetic pole acts is attracted to the magnetic pole functioning as the pumping magnetic pole, which tends to cause a problem that the agent separation failure occurs. On the other hand, as in the developing device 3 of each of the embodiments described above, if it is a configuration that causes gravity to act on the detachment of the developer between the magnetic pole that functions as the agent separating magnetic pole and the magnetic pole that functions as the pumping magnetic pole, Even if the developing sleeve has a reduced diameter, it is possible to suppress poor agent separation.

また、実施例1の現像装置3は、仕切り板36における供給スクリュ39の搬送方向の上流側端部近傍の位置と下流側端部近傍の位置とに供給搬送路37と循環搬送路38とを連通する連通開口部である落下口42と持ち上げ口41とを設け、循環スクリュ40は現像剤32を供給スクリュ39とは逆方向に搬送する構成であることにより、供給搬送路37内で供給スクリュ39の搬送方向の下流側端部に到達した現像剤32は落下口42から循環搬送路38内の循環スクリュ40の搬送方向の上流側端部に供給される。さらに、循環搬送路38内の現像剤32は循環スクリュ40によって循環搬送路38内で循環スクリュ40の搬送方向の下流側端部まで搬送され、持ち上げ口41から供給搬送路37内の供給スクリュ39の搬送方向の上流側端部に供給される。このような構成により、現像容器33内の現像剤32を供給搬送路37と循環搬送路38との間で循環させる構成を実現できる。   Further, the developing device 3 according to the first exemplary embodiment includes the supply conveyance path 37 and the circulation conveyance path 38 at a position near the upstream end in the conveyance direction of the supply screw 39 in the partition plate 36 and a position near the downstream end. A drop port 42 and a lift port 41 that are communication openings are provided, and the circulation screw 40 is configured to convey the developer 32 in a direction opposite to that of the supply screw 39, so that the supply screw is provided in the supply conveyance path 37. The developer 32 that has reached the downstream end in the transport direction 39 is supplied from the drop port 42 to the upstream end in the transport direction of the circulating screw 40 in the circulation transport path 38. Further, the developer 32 in the circulation conveyance path 38 is conveyed by the circulation screw 40 to the downstream end in the conveyance direction of the circulation screw 40 in the circulation conveyance path 38, and the supply screw 39 in the supply conveyance path 37 from the lifting port 41. To the upstream end in the transport direction. With such a configuration, a configuration in which the developer 32 in the developing container 33 is circulated between the supply conveyance path 37 and the circulation conveyance path 38 can be realized.

また、実施例9の現像装置3のように、仕切り部材である仕切り板36に設けられた連通開口部のうち現像剤供給搬送部材である供給スクリュ39の搬送方向の上流側端部近傍に設けられた第一連通開口部である持ち上げ口41は、仕切り板36における現像スリーブ34aから遠い側に開口しているため、持ち上げ部41aの現像剤32の量を少なくすることができ、これにより、持ち上げ手前部41bの現像剤32の量も少なくすることができ、その結果、剤漏れや連れ回りの発生を抑制することができる。   Further, like the developing device 3 of the ninth embodiment, it is provided in the vicinity of the upstream end in the transport direction of the supply screw 39 that is a developer supply transport member among the communication openings provided in the partition plate 36 that is a partition member. Since the lifting opening 41, which is the first continuous opening portion, is opened to the side far from the developing sleeve 34a in the partition plate 36, the amount of the developer 32 in the lifting portion 41a can be reduced. Further, the amount of the developer 32 in the front portion 41b can be reduced, and as a result, the occurrence of the agent leakage and the accompanying rotation can be suppressed.

また、実施例9及び実施例10のように、現像装置3の持ち上げ口41の開口面積が循環スクリュ40のスクリュ断面積(スクリュの軸に対して直交する断面図において、羽部の外形によって形成される円の面積)よりも大きくなるように構成することにより、持ち上げ口41を、循環スクリュ40が一周するときに、循環スクリュ羽部40bによって押し込まれる現像剤量が通過することができるだけの開口面積とすることができ、持ち上げ部41aや持ち上げ手前部41bでの現像剤詰まりを少なくすることができ、剤漏れや連れ回りの発生を抑制することができる。また、現像剤詰まりを少なくすることで、現像剤32に対するストレスも軽減することができる。   Further, as in the ninth and tenth embodiments, the opening area of the lifting port 41 of the developing device 3 is formed by the screw cross-sectional area of the circulating screw 40 (in the cross-sectional view orthogonal to the screw axis, the outer shape of the blade portion). By configuring the lift port 41 so that the amount of the developer pushed by the circulating screw blade portion 40b can pass through the lifting port 41, the opening 41 can pass therethrough. It is possible to reduce the developer clogging at the lifting portion 41a and the lifting front portion 41b, and to prevent the occurrence of agent leakage and accompanying rotation. Further, the stress on the developer 32 can be reduced by reducing the clogging of the developer.

また、実施例9のように、現像装置3の持ち上げ口41の開口形状としては、図48〜図50に示すように、持ち上げ口41の長手方向(現像スリーブ34aの回転軸方向)についての長さが現像スリーブ34aから遠い側ほど長くなるように構成することにより、循環搬送路38内の現像スリーブ34aに近い側の現像剤32の剤面が高くなることを抑制し、剤漏れや連れ回りの発生を抑制することができる。   Further, as in the ninth embodiment, as the opening shape of the lifting port 41 of the developing device 3, as shown in FIGS. 48 to 50, the length of the lifting port 41 in the longitudinal direction (rotational axis direction of the developing sleeve 34a) is long. The length of the developer 32 on the side near the developing sleeve 34a in the circulation conveyance path 38 is suppressed, and the leakage of the agent and the accompanying rotation are suppressed. Can be suppressed.

また、実施例9の図52で示すように、持ち上げ口41を2分割して、第一持ち上げ口411と第二持ち上げ口412とを設けることで、持ち上げ部41aに局所的にトナー濃度が濃い現像剤32が入ってきても、2種類の搬送経路に分割されることで、持ち上げ部41aを通過した後の現像剤32のトナー濃度を均すことができる。さらに、第一持ち上げ口411と第二持ち上げ口412との開口面積の総和が循環スクリュ40のスクリュ断面積よりも大きくなるように構成することにより、持ち上げ部41aや持ち上げ手前部41bでの現像剤詰まりを少なくすることができ、剤漏れや連れ回りの発生を抑制することができる。   Further, as shown in FIG. 52 of the ninth embodiment, the lifting port 41 is divided into two parts, and the first lifting port 411 and the second lifting port 412 are provided, so that the toner density is locally high in the lifting part 41a. Even if the developer 32 enters, the toner density of the developer 32 after passing through the lifting portion 41a can be leveled by being divided into two types of conveyance paths. Furthermore, the developer in the lifting portion 41a and the lifting front portion 41b is configured such that the sum of the opening areas of the first lifting port 411 and the second lifting port 412 is larger than the screw cross-sectional area of the circulating screw 40. Clogging can be reduced, and the occurrence of agent leakage and accompanying rotation can be suppressed.

また、実施例10のように現像装置3は、仕切り部材である仕切り板36に設けられた連通開口部のうち現像剤供給搬送部材である供給スクリュ39の搬送方向の上流側端部近傍に設けられた第一連通開口部である持ち上げ口41を通って回収現像剤収納空間である循環搬送路38から供給現像剤収納空間である供給搬送路37へ単位時間当たりに搬送される現像剤の量は、現像剤担持体である現像スリーブ34aに担持されて現像スリーブ34aと潜像担持体である感光体1とが対向する現像領域Aを単位時間当りに通過する現像剤32の量(図57のMzs)以上である。このような構成により、現像剤枯渇の発生を防止するために必要な条件を満たすことができる。   Further, as in the tenth embodiment, the developing device 3 is provided in the vicinity of the upstream end in the transport direction of the supply screw 39 that is the developer supply transport member among the communication openings provided in the partition plate 36 that is the partition member. The developer transported per unit time from the circulating transport path 38, which is the recovered developer storage space, through the lifting port 41, which is the first continuous opening, is supplied to the supply transport path 37, which is the supply developer storage space. The amount of the developer 32 that is carried on the developing sleeve 34a that is a developer carrying member and passes through the developing area A where the developing sleeve 34a and the photosensitive member 1 that is the latent image carrying member face each other per unit time (see FIG. 57 Mzs) or more. With such a configuration, it is possible to satisfy the conditions necessary for preventing the occurrence of developer depletion.

実施例10のように現像装置3では、循環搬送路38内の現像剤32の搬送が、循環スクリュ40の現像剤搬送方向上流側ほど搬送速度が遅くなるように、循環スクリュ40を設定している。循環搬送路38内の現像剤搬送速度を長手方向で一定にすると循環搬送路38内の上流側ほど現像剤量が少なくなる。しかし、実施例10のように、循環搬送路38内の現像剤搬送方向上流側ほど搬送速度が遅くなるように設定することにより、循環搬送路38内での現像剤32の嵩を平らに近づけることができる。これにより、循環搬送路38内の搬送方向上流側で収容できる現像剤量を多くすることができ、現像剤32の寿命向上、及び、トナー消費及び補給時のトナー濃度変動を小さくすることができるため、画像濃度の変動を低減することができ、画質の向上を図ることができる。   As in the tenth embodiment, in the developing device 3, the circulation screw 40 is set so that the conveyance speed of the developer 32 in the circulation conveyance path 38 becomes slower toward the upstream side of the circulation screw 40 in the developer conveyance direction. Yes. When the developer conveyance speed in the circulation conveyance path 38 is made constant in the longitudinal direction, the developer amount decreases toward the upstream side in the circulation conveyance path 38. However, as in the tenth embodiment, by setting the conveyance speed to be slower toward the upstream side in the developer conveyance direction in the circulation conveyance path 38, the bulk of the developer 32 in the circulation conveyance path 38 is made closer to flat. be able to. As a result, the amount of developer that can be accommodated on the upstream side in the conveyance direction in the circulation conveyance path 38 can be increased, the life of the developer 32 can be improved, and toner concentration fluctuation during toner consumption and replenishment can be reduced. Therefore, fluctuations in image density can be reduced and image quality can be improved.

実施例10のように現像装置3では、供給搬送路37内の現像剤32の搬送が、供給スクリュ39の現像剤搬送方向上流側ほど搬送速度が速くなるように、供給スクリュ39を設定している。供給搬送路37内の現像剤搬送速度を長手方向で一定にすると供給搬送路37内の下流側ほど現像剤量が少なくなる。しかし、実施例10のように、供給搬送路37内の現像剤搬送方向上流側ほど搬送速度が速くなるように設定することにより、供給搬送路37内での現像剤32の嵩を平らに近づけることができる。これにより、供給搬送路37内の搬送方向下流側で収容できる現像剤量を多くすることができ、現像剤32の寿命向上、及び、トナー消費及び補給時のトナー濃度変動を小さくすることができるため、画像濃度の変動を低減することができ、画質の向上を図ることができる。   As in the tenth embodiment, in the developing device 3, the supply screw 39 is set so that the conveyance speed of the developer 32 in the supply conveyance path 37 becomes higher toward the upstream side of the supply screw 39 in the developer conveyance direction. Yes. When the developer conveyance speed in the supply conveyance path 37 is constant in the longitudinal direction, the developer amount decreases toward the downstream side in the supply conveyance path 37. However, as in the tenth embodiment, by setting the conveyance speed to be higher toward the upstream side in the developer conveyance direction in the supply conveyance path 37, the bulk of the developer 32 in the supply conveyance path 37 is made closer to flat. be able to. As a result, the amount of developer that can be accommodated in the supply conveyance path 37 on the downstream side in the conveyance direction can be increased, the life of the developer 32 can be improved, and toner concentration fluctuations during toner consumption and replenishment can be reduced. Therefore, fluctuations in image density can be reduced and image quality can be improved.

実施例10のように現像装置3では、循環搬送路38内の循環スクリュ40の搬送方向上流側端部近傍は、搬送方向下流側の位置よりも現像剤搬送方向の分散能力が高くなるように、循環スクリュ40にパドル401や切り欠き40dを設けることが望ましい。循環搬送路38の搬送方向上流側端部近傍は補給したトナーTが凝集した状態になっている。このトナーTを搬送しながら撹拌するために、まずトナーTの凝集を細かくしてやる必要がある。このため、循環搬送路38の搬送方向上流側端部近傍は搬送方向下流側に比べて現像剤搬送方向の分散能力が高いことが求められる。実施例10のように、循環搬送路38内の搬送方向上流側端部近傍の分散能力が高くなるように構成するとにより、補給されたトナーTを少ない現像剤32でも効率よく分散することができる。これにより、トナー濃度変動を小さくすることができるため、画像濃度の変動を低減することができ、画質の向上を図ることができる。   As in the tenth embodiment, in the developing device 3, the vicinity of the upstream end in the transport direction of the circulation screw 40 in the circulation transport path 38 has a higher dispersion capability in the developer transport direction than the position downstream in the transport direction. The paddle 401 and the cutout 40d are preferably provided in the circulation screw 40. Near the upstream end of the circulating conveyance path 38 in the conveyance direction, the replenished toner T is aggregated. In order to stir the toner T while being conveyed, it is first necessary to finely aggregate the toner T. For this reason, the vicinity of the upstream end in the transport direction of the circulation transport path 38 is required to have a higher dispersion capacity in the developer transport direction than the downstream side in the transport direction. As in the tenth embodiment, it is possible to efficiently disperse the replenished toner T even with a small amount of developer 32 by configuring so that the dispersibility in the vicinity of the upstream end in the transport direction in the circulation transport path 38 is increased. . As a result, the toner density fluctuation can be reduced, so that the fluctuation of the image density can be reduced and the image quality can be improved.

現像装置3では、実施例9及び10のように、循環スクリュ40の搬送方向の位置によって循環スクリュ軸部40aに対する循環スクリュ羽部40bのリード角の角度が異なる場合、循環スクリュ40の搬送方向上流側ほどリード角の角度が大きくなるように設定することが望ましい。これは、リード角の角度が45[°]以上の場合、角度が大きいほど、現像剤搬送速度が遅くなり、現像剤32の分散性は向上するためであり、循環搬送路38内の上流側ほど現像剤搬送速度が遅くなることにより、循環搬送路38内での現像剤32の嵩を平らに近づけることができる。これにより、循環搬送路38内の搬送方向上流側で収容できる現像剤量を多くすることができる。また、循環搬送路38内の上流側ほど現像剤32の分散性を向上することにより、補給されたトナーTを少ない現像剤32でも効率よく分散することができる。   In the developing device 3, as in the ninth and tenth embodiments, when the angle of the lead angle of the circulating screw blade portion 40b with respect to the circulating screw shaft portion 40a varies depending on the position in the conveying direction of the circulating screw 40, the upstream direction of the circulating screw 40 in the conveying direction. It is desirable to set the lead angle to be larger toward the side. This is because when the lead angle is 45 [°] or more, the larger the angle, the slower the developer conveyance speed, and the better the dispersibility of the developer 32, and the upstream side in the circulation conveyance path 38. As the developer conveyance speed becomes slower, the volume of the developer 32 in the circulation conveyance path 38 can be made flat. As a result, the amount of developer that can be accommodated on the upstream side in the conveyance direction in the circulation conveyance path 38 can be increased. Further, by improving the dispersibility of the developer 32 toward the upstream side in the circulation conveyance path 38, the replenished toner T can be efficiently dispersed even with a small amount of the developer 32.

また、図62を用いて説明した構成のように、現像装置3の現像剤回収搬送部材である循環スクリュ40の循環スクリュ羽部40bのピッチ間に循環スクリュ軸部40aの軸方向に沿ったパドル401が設けられ構成の場合、回転軸方向の単位長さあたりのパドル401の軸方向の長さが循環スクリュ40の搬送方向上流側ほど長くなるように構成してもよい。図62に示すパドル401を設けた箇所では、パドル401を設けない箇所に比して循環スクリュ40による現像剤32の搬送能力が低下し、現像剤32の分散性が向上する。そして、このような現像剤32の搬送能力の低下と分散性の向上とはパドル401が大きいほど顕著となるので、循環スクリュ40の搬送方向上流側ほどパドル401が長くなるように設定することにより、循環搬送路38内の搬送方向上流側ほど現像愛32の分散能力を上げつつ、この位置での現像剤搬送速度を遅くすることができる。なお、回転軸方向の単位長さあたりのパドル401の軸方向の長さとしては、パドル401を配置した箇所の循環スクリュ羽部40bのピッチが均等である場合は、各ピッチ間に設けたパドル401の一枚の軸方向の長さを循環スクリュ40の搬送方向上流側ほど長くなるように設定する。また、循環スクリュ羽部40bのピッチが均等ではない場合は、循環スクリュ40の軸方向の任意の長さにおけるパドル401が配置された長さが循環スクリュ40の搬送方向上流側ほど長くなるように設定する。   Further, as in the configuration described with reference to FIG. 62, the paddles along the axial direction of the circulating screw shaft 40a are arranged between the pitches of the circulating screw blades 40b of the circulating screw 40 that is the developer collecting and conveying member of the developing device 3. In the case where 401 is provided, the axial length of the paddle 401 per unit length in the rotation axis direction may be configured to be longer toward the upstream side in the conveyance direction of the circulation screw 40. 62, the conveying ability of the developer 32 by the circulating screw 40 is reduced and the dispersibility of the developer 32 is improved in the place where the paddle 401 is provided as shown in FIG. Such a decrease in the conveyance capacity and improvement in dispersibility of the developer 32 become more noticeable as the paddle 401 is larger. Therefore, by setting the paddle 401 to be longer toward the upstream side of the circulation screw 40 in the conveyance direction. The developer conveying speed at this position can be reduced while increasing the dispersion ability of the developing love 32 toward the upstream side in the conveying direction in the circulation conveying path 38. The axial length of the paddle 401 per unit length in the rotational axis direction is the paddle provided between the pitches when the pitch of the circulating screw wings 40b at the place where the paddle 401 is disposed is uniform. One axial length of 401 is set so as to become longer toward the upstream side in the conveyance direction of the circulation screw 40. In addition, when the pitch of the circulating screw blades 40b is not uniform, the length of the paddle 401 arranged at an arbitrary length in the axial direction of the circulating screw 40 becomes longer toward the upstream side in the conveying direction of the circulating screw 40. Set.

実施例10のように、循環スクリュ40の搬送方向上流側端部近傍の循環スクリュ羽部40bに切り欠き40dを設ける構成で、搬送方向上流側端部近傍よりも搬送方向下流側の位置の循環スクリュ羽部40bに切り欠きがある場合は、搬送方向上流側端部近傍の循環スクリュ羽部40bに切り欠き40dの面積が他の位置の循環スクリュ羽部40bに切り欠きの面積よりも大きく設定することが望ましい。切り欠きの大きさは大きいほど、現像剤搬送速度が遅くなり、現像剤32の分散性は向上するためであり、循環搬送路38内の上流側ほど現像剤搬送速度が遅くなることにより、循環搬送路38内での現像剤32の嵩を平らに近づけることができる。これにより、循環搬送路38内の搬送方向上流側で収容できる現像剤量を多くすることができる。また、循環搬送路38内の上流側ほど現像剤32の分散性を向上することにより、補給されたトナーTを少ない現像剤32でも効率よく分散することができる。
なお、循環スクリュ40の搬送方向上流側端部近傍の循環スクリュ羽部40bにのみ切り欠き40dを設け、他の位置には切り欠き40dを設けない構成であっても良い。
As in the tenth embodiment, the notch 40d is provided in the circulating screw blade 40b in the vicinity of the upstream end of the circulating screw 40 in the transport direction, and the circulation at the position downstream in the transport direction from the vicinity of the upstream end in the transport direction. When there is a notch in the screw blade portion 40b, the area of the notch 40d in the circulating screw blade portion 40b in the vicinity of the upstream end in the conveying direction is set larger than the area of the notch in the circulating screw blade portion 40b in other positions. It is desirable to do. This is because the larger the notch is, the slower the developer conveyance speed is, and the dispersibility of the developer 32 is improved. The developer conveyance speed is decreased toward the upstream side in the circulation conveyance path 38, and thus the circulation. The bulk of the developer 32 in the transport path 38 can be made nearly flat. As a result, the amount of developer that can be accommodated on the upstream side in the conveyance direction in the circulation conveyance path 38 can be increased. Further, by improving the dispersibility of the developer 32 toward the upstream side in the circulation conveyance path 38, the replenished toner T can be efficiently dispersed even with a small amount of the developer 32.
Note that the cutout 40d may be provided only in the circulation screw blade 40b in the vicinity of the upstream end of the circulation screw 40 in the conveyance direction, and the cutout 40d may not be provided in other positions.

実施例11のように、現像スリーブ34aの表面に対して一定の間隙をもって配置され現像スリーブ34a表面に担持される現像剤32の層厚を規制する剤規制部材35を有し、現像スリーブ34a、剤規制部材35、及び、供給スクリュ39によって囲まれたスペースであるバッファ部50に現像剤を攪拌するための攪拌部材を備えることことにより、攪拌部材によって、バッファ部50内の現像剤32を攪拌することができ、供給量のピッチムラを解消することができるので、画像濃度ムラの発生を防止することができる。さらに、バッファ部50内の現像剤32の中に緩凝集体が発生しても、攪拌部材によって解され、緩凝集体が現像ドクタ部の間隙に詰まることに起因する白スジなどの画像不良の発生を防止することができる。   As in the eleventh embodiment, there is an agent regulating member 35 that is arranged with a certain gap with respect to the surface of the developing sleeve 34a and regulates the layer thickness of the developer 32 carried on the surface of the developing sleeve 34a. By providing an agitating member for agitating the developer in the buffer portion 50 that is a space surrounded by the agent regulating member 35 and the supply screw 39, the developer 32 in the buffer portion 50 is agitated by the agitating member. Since it is possible to eliminate the uneven pitch of the supply amount, it is possible to prevent the occurrence of uneven image density. Further, even if a slow aggregate is generated in the developer 32 in the buffer unit 50, it is unraveled by the stirring member, and image defects such as white streaks due to the slow aggregate clogging in the gaps of the development doctor unit are caused. Occurrence can be prevented.

また、実施例11の現像装置3の攪拌部材としては、図70で示すパドル部材51を用いることで、バッファ部50内の現像剤32を攪拌する構成を実現できる。   Further, as the stirring member of the developing device 3 of Example 11, a configuration for stirring the developer 32 in the buffer unit 50 can be realized by using the paddle member 51 shown in FIG.

また、実施例11の現像装置3の攪拌部材としては、図71で示すローラ部材52を用いることで、バッファ部50内の現像剤32を攪拌する構成を実現できる。   Further, as the stirring member of the developing device 3 of Example 11, a configuration in which the developer 32 in the buffer unit 50 is stirred can be realized by using the roller member 52 shown in FIG.

また、実施例11の現像装置3の攪拌部材としては、図71で示すワイヤ部材53を用いることで、バッファ部50内の現像剤32を攪拌する構成を実現できる。   Further, as the stirring member of the developing device 3 of Example 11, a configuration in which the developer 32 in the buffer unit 50 is stirred can be realized by using the wire member 53 shown in FIG.

また、実施例3の現像装置3のように、現像後磁極であるN1極の法線磁束密度ピーク位置である現像後磁極中心M3に対して現像スリーブ34aの表面移動方向下流側、且つ、現像前磁極であるN2極の法線磁束密度ピーク位置である現像前磁極中心M1に対して現像スリーブ34aの表面移動方向上流側の範囲となる現像スリーブ34aの表面に先端が近接するように現像剤分離板である分離板49を配置してもよい。このような分離板49を設けることにより、循環搬送路38内の循環スクリュ40の搬送方向下流側で現像剤32の量が増加している場合ではあっても、剤離れ性を向上させることができる。   Further, as in the developing device 3 of the third embodiment, the developing sleeve 34a is on the downstream side in the surface movement direction with respect to the post-development magnetic pole center M3 that is the normal magnetic flux density peak position of the N1 pole as the post-development magnetic pole, Developer so that the tip is close to the surface of the developing sleeve 34a which is the upstream side in the surface moving direction of the developing sleeve 34a with respect to the magnetic pole center M1 before development which is the normal magnetic flux density peak position of the N2 pole which is the front magnetic pole A separation plate 49 which is a separation plate may be disposed. By providing such a separation plate 49, even if the amount of the developer 32 is increased on the downstream side in the conveyance direction of the circulation screw 40 in the circulation conveyance path 38, the agent separation property can be improved. it can.

実施例14のように、現像剤32のプリセットを可能とするために、現像スリーブ34aを配置した空間、供給搬送路37、循環搬送路38の連通部を塞ぐシール部材60を設けることにより、現像装置3が新品の際の輸送時に現像剤漏れ等が発生せず、画像形成装置であるプリンタ100の機内を汚すことが無い。またサービスパーツの際は梱包箱内を汚すことも無い。
よって、ユーザに汚れによる不快感を与えることが無く、また現像剤漏れによる異常画像の発生や機械の故障等を引き起こすことを防止することができる。
As in the fourteenth embodiment, in order to allow the developer 32 to be preset, a seal member 60 that closes the space where the developing sleeve 34 a is disposed, the communication portion of the supply conveyance path 37, and the circulation conveyance path 38 is provided. When the apparatus 3 is new, no developer leaks or the like occurs during transportation, and the inside of the printer 100 as the image forming apparatus is not soiled. Moreover, the inside of a packing box is not polluted in the case of service parts.
Therefore, it is possible to prevent the user from feeling uncomfortable due to dirt, and to prevent the occurrence of an abnormal image due to the developer leakage or the failure of the machine.

実施例14の図77及び図78に示す構成では、現像スリーブ34aを配置した空間と供給現像剤収納空間である供給搬送路37とを連通する現像供給間連通部(図75中の矢印Iの流れが通る連通部)、及び、現像スリーブ34aを配置した空間と回収現像剤収納空間である循環搬送路38とを連通する現像回収間連通部(図75中の矢印Iの流れが通る連通部)、の2つの連通部を現像剤32が通過することを防ぐように2つの連通部を塞ぐシール部材60を、現像装置3本体に対して離脱可能に設けることにより、供給搬送路37と循環搬送路38とに現像剤32をプリセットすることが可能となっている。 77 and 78 of the fourteenth embodiment, the developer supply communication section (the arrow I 1 in FIG. 75) communicates the space in which the developing sleeve 34a is disposed and the supply conveyance path 37 that is the supply developer storage space. communicating portion through which the stream), and, through the flow arrows I 3 of the developing recovery between communicating portion (in FIG. 75 for communicating the space of arranging the developing sleeve 34a and the collected developer circulation path 38 is a storage space By providing a seal member 60 that closes the two communicating portions so as to prevent the developer 32 from passing through the two communicating portions), the supply conveying path 37 is provided. The developer 32 can be preset in the circulation conveyance path 38.

特に、図77に示す構成では、シール部材60として、現像供給間連通部と現像回収間連通部との2つの連通部をそれぞれ塞ぐように2枚のシール部材として、第1シール部材60a及び第2シール部材60bを設けている。このような構成により、供給搬送路37と循環搬送路38とに現像剤32をプリセットすることができ、現像装置3に対して2枚のシール部材を引き抜くことで、現像装置3が使用可能となる。   In particular, in the configuration shown in FIG. 77, the first seal member 60a and the first seal member 60a are formed as two seal members so as to block the two communication portions of the development supply communication portion and the development collection communication portion, respectively. Two seal members 60b are provided. With such a configuration, the developer 32 can be preset in the supply conveyance path 37 and the circulation conveyance path 38, and the development apparatus 3 can be used by pulling out two sealing members from the development apparatus 3. Become.

特に、図77(c)に示すように、2枚のシール部材(第1シール部材60a及び第2シール部材60b)で共通の把手部を持ってシール部材60として引き抜くことで2枚のシール部材が同時に引き抜かれるように構成することにより、供給搬送路37と循環搬送路38とに現像剤32をプリセットした状態から一回の引き抜き動作で現像装置3が使用可能となる。   In particular, as shown in FIG. 77 (c), the two sealing members (the first sealing member 60a and the second sealing member 60b) have a common handle portion and are pulled out as the sealing member 60 to thereby remove the two sealing members. Is configured to be pulled out at the same time, the developing device 3 can be used in a single pulling operation from the state where the developer 32 is preset in the supply transport path 37 and the circulation transport path 38.

特に、図78で示す構成では、シール部材60として、現像供給間連通部と現像回収間連通部との2つの連通部を一枚で塞ぐシール部材60を設けている。このような構成により、供給搬送路37と循環搬送路38とに現像剤32をプリセットすることができ、現像装置3に対して一枚のシール部材60を引き抜くことで、現像装置3が使用可能となる。   In particular, in the configuration shown in FIG. 78, as the seal member 60, a seal member 60 that closes the two communication portions of the development supply communication portion and the development recovery communication portion with one sheet is provided. With such a configuration, the developer 32 can be preset in the supply conveyance path 37 and the circulation conveyance path 38, and the development apparatus 3 can be used by pulling out one seal member 60 from the development apparatus 3. It becomes.

実施例14の図79及び図80に示す構成では、現像スリーブ34aを配置した空間と供給搬送路37とを連通する現像供給間連通部(図75中の矢印Iの流れが通る連通部)、及び、循環搬送路38と供給搬送路37とを連通する供給回収間連通部(仕切り板36に設けた落下口42及び持ち上げ口41)、の2つの連通部を現像剤32が通過することを防ぐように2つの連通部を塞ぐシール部材60を、現像装置3本体に対して離脱可能に設けることにより、供給搬送路37に現像剤32をプリセットすることが可能となっている。 Figure 79 and in the configuration shown in FIG. 80, the developing supplied between communicating portion that communicates the supply path 37 and the space in which to place the developing sleeve 34a in Example 14 (communicating portion through which flow arrows I 1 in FIG. 75) Further, the developer 32 passes through two communication portions of the supply / recovery communication portion (the drop port 42 and the lifting port 41 provided in the partition plate 36) that connect the circulation transport path 38 and the supply transport path 37. The developer 32 can be preset in the supply conveyance path 37 by providing a seal member 60 that closes the two communicating portions so as to prevent the development device 3 from being detachable from the main body of the developing device 3.

特に、図79に示す構成では、シール部材60として、現像供給間連通部と供給回収間連通部との2つの連通部をそれぞれ塞ぐように2枚のシール部材として、第1シール部材60a及び第2シール部材60bを設けている。このような構成により、供給搬送路37に現像剤32をプリセットすることができ、現像装置3に対して2枚のシール部材を引き抜くことで、現像装置3が使用可能となる。   In particular, in the configuration shown in FIG. 79, the first seal member 60a and the first seal member 60a and the second seal member 60 are sealed as two seal members so as to block the two communication portions of the development supply communication portion and the supply / recovery communication portion. Two seal members 60b are provided. With such a configuration, the developer 32 can be preset in the supply conveyance path 37, and the developing device 3 can be used by pulling out the two seal members from the developing device 3.

特に、図79(c)に示すように、2枚のシール部材(第1シール部材60a及び第2シール部材60b)で共通の把手部を持ってシール部材60として引き抜くことで2枚のシール部材が同時に引き抜かれるように構成することにより、供給搬送路37に現像剤32をプリセットした状態から一回の引き抜き動作で現像装置3が使用可能となる。   In particular, as shown in FIG. 79 (c), the two sealing members (the first sealing member 60a and the second sealing member 60b) have a common handle portion and are pulled out as the sealing member 60 to thereby remove the two sealing members. Is configured to be pulled out at the same time, the developing device 3 can be used in a single pulling operation from the state where the developer 32 is preset in the supply conveyance path 37.

特に、図80で示す構成では、シール部材60として、現像供給間連通部と供給回収間連通部との2つの連通部を一枚で塞ぐシール部材60を設けている。このような構成により、供給搬送路37に現像剤32をプリセットすることができ、現像装置3に対して一枚のシール部材60を引き抜くことで、現像装置3が使用可能となる。   In particular, in the configuration shown in FIG. 80, as the seal member 60, a seal member 60 that closes two communication portions, that is, the communication portion between the development supply and the communication portion between the supply and recovery, is provided. With such a configuration, the developer 32 can be preset in the supply conveyance path 37, and the developing device 3 can be used by pulling out one seal member 60 from the developing device 3.

実施例14の図81及び図82に示す構成では、現像スリーブ34aを配置した空間と循環搬送路38とを連通する現像回収間連通部(図75中の矢印Iの流れが通る連通部)、及び、循環搬送路38と供給搬送路37とを連通する供給回収間連通部(仕切り板36に設けた落下口42及び持ち上げ口41)、の2つの連通部を現像剤32が通過することを防ぐように2つの連通部を塞ぐシール部材60を、現像装置3本体に対して離脱可能に設けることにより、循環搬送路38に現像剤32をプリセットすることが可能となっている。 In the configuration shown in FIGS. 81 and 82 of Example 14, the developing recovered between communicating portion for communicating the space in which to place the developing sleeve 34a and the circulation path 38 (communicating portion through which flow arrows I 3 in FIG. 75) Further, the developer 32 passes through two communication portions of the supply / recovery communication portion (the drop port 42 and the lifting port 41 provided in the partition plate 36) that connect the circulation transport path 38 and the supply transport path 37. The developer 32 can be preset in the circulation conveyance path 38 by providing a seal member 60 that closes the two communicating portions so as to prevent the development device 3 from being detached from the main body of the developing device 3.

特に、図81に示す構成では、シール部材60として、現像回収間連通部と供給回収間連通部との2つの連通部をそれぞれ塞ぐように2枚のシール部材として、第1シール部材60a及び第2シール部材60bを設けている。このような構成により、循環搬送路38に現像剤32をプリセットすることができ、現像装置3に対して2枚のシール部材を引き抜くことで、現像装置3が使用可能となる。   In particular, in the configuration shown in FIG. 81, the first seal member 60 a and the second seal member 60 are formed as two seal members so as to block the two communication portions of the development recovery communication portion and the supply recovery communication portion. Two seal members 60b are provided. With such a configuration, the developer 32 can be preset in the circulation conveyance path 38, and the developing device 3 can be used by pulling out the two sealing members from the developing device 3.

特に、図81(c)に示すように、2枚のシール部材(第1シール部材60a及び第2シール部材60b)で共通の把手部を持ってシール部材60として引き抜くことで2枚のシール部材が同時に引き抜かれるように構成することにより、循環搬送路38に現像剤32をプリセットした状態から一回の引き抜き動作で現像装置3が使用可能となる。   In particular, as shown in FIG. 81 (c), the two sealing members (the first sealing member 60a and the second sealing member 60b) have a common handle portion and are pulled out as the sealing member 60 to thereby remove the two sealing members. Is configured to be pulled out at the same time, the developing device 3 can be used in a single pulling operation from the state where the developer 32 is preset in the circulation conveyance path 38.

特に、図82で示す構成では、シール部材60として、現像回収間連通部と供給回収間連通部との2つの連通部を一枚で塞ぐシール部材60を設けている。このような構成により、循環搬送路38に現像剤32をプリセットすることができ、現像装置3に対して一枚のシール部材60を引き抜くことで、現像装置3が使用可能となる。   In particular, in the configuration shown in FIG. 82, as the seal member 60, a seal member 60 that closes the two communication portions of the development recovery communication portion and the supply recovery communication portion with one sheet is provided. With such a configuration, the developer 32 can be preset in the circulation conveyance path 38, and the developing device 3 can be used by pulling out one seal member 60 from the developing device 3.

実施例12のように、現像装置3の現像スリーブ34aとして、その表面を除去加工無し、または、通常の切削のみで加工したスリーブを用いることにより、現像スリーブ34aの加工コストの低減を図ることができ、現像装置3の低コスト化を図ることができる。なお、ここでの除去加工とは表面上の凹部を作るための加工であり実施例12の現像スリーブ34aではこの加工が不要である。また、「通常の切削のみ」とは、ブラスト加工などを施さない加工であって、所定のスリーブ径を得るために行う切削加工のみである。   As in the twelfth embodiment, as the developing sleeve 34 a of the developing device 3, the processing cost of the developing sleeve 34 a can be reduced by using a sleeve whose surface is not removed or processed only by normal cutting. Therefore, the cost of the developing device 3 can be reduced. Here, the removal process is a process for forming a concave portion on the surface, and this process is unnecessary in the developing sleeve 34a of the twelfth embodiment. Further, “only normal cutting” is processing that is not subjected to blasting or the like, and is only cutting that is performed to obtain a predetermined sleeve diameter.

また、実施例12のように、除去加工無し、または、通常の切削のみで加工した表面の現像スリーブ34aでは、その表面性状としての表面粗さRzが1[μm]〜8[μm]の範囲となり、機械的な担持力を備えない表面となるが、現像装置3では現像スリーブ34aに現像剤32を汲み上げるための搬送力は不要であるため、問題なく使用することができる。さらに、表面性状の凹凸が少ないため磨耗の影響も受け難く、現像スリーブ34aの寿命に関しても長寿命化が可能となる。さらに、従来の現像スリーブに溝加工を行った現像装置と異なり、現像スリーブ34a上の現像剤32の穂立ちが均一となるので現像効率が向上し、高画像を得ることが出来る。   Further, as in the twelfth embodiment, the surface roughness Rz as the surface property of the developing sleeve 34a having a surface processed without removal processing or only by normal cutting is in the range of 1 [μm] to 8 [μm]. However, the developing device 3 does not require a conveying force for pumping the developer 32 to the developing sleeve 34a, and thus can be used without any problem. Furthermore, since the surface texture has few irregularities, it is hardly affected by wear, and the life of the developing sleeve 34a can be extended. Further, unlike the conventional developing device in which the groove is formed on the developing sleeve, the rising of the developer 32 on the developing sleeve 34a becomes uniform, so that the developing efficiency is improved and a high image can be obtained.

また、変形例1の現像装置3のように、現像スリーブ34aが感光体1に対向する現像領域Aでの現像スリーブ34aの表面移動方向が、感光体1の表面移動方向に対して逆方向となるいわゆる逆現像方式の現像装置であっても、実施例とどうように3極構成とすることによって、現像スリーブ34aを小径化することができるので、これを備える現像装置3全体の小型化を図ることができる。   Further, as in the developing device 3 of Modification 1, the surface movement direction of the developing sleeve 34 a in the developing region A where the developing sleeve 34 a faces the photoreceptor 1 is opposite to the surface moving direction of the photoreceptor 1. Even in the so-called reverse developing type developing device, the developing sleeve 34a can be reduced in diameter by adopting a three-pole configuration as in the embodiment, so that the entire developing device 3 including this can be reduced in size. Can be planned.

実施例13のように、現像スリーブ34aと回転軸である現像ローラ軸34cが同軸で現像スリーブ34aに回転駆動を伝達する現像剤担持体駆動ギヤである現像ギヤ34gの外径を現像スリーブ34aの外径よりも小さくすることにより、感光体1との干渉を避けられるので、現像装置3を小型化することが出来る。   As in the thirteenth embodiment, the developing sleeve 34a and the developing roller shaft 34c, which is a rotating shaft, are coaxial, and the outer diameter of the developing gear 34g, which is a developer carrier driving gear that transmits rotational driving to the developing sleeve 34a, is set to be the same as that of the developing sleeve 34a. By making it smaller than the outer diameter, interference with the photoreceptor 1 can be avoided, so that the developing device 3 can be reduced in size.

特に、現像ギヤ34gのモジュールを0.5[mm]以下とすることで、現像ギヤ34gの外径を10[mm]未満に設定することができる。これにより、スリーブ径Φ10[mm]としたような小径の現像装置3であっても、現像ギヤ34gの感光体1との干渉を避けられるので、現像装置3をさらに小型化することが出来る。   In particular, by setting the module of the developing gear 34g to 0.5 [mm] or less, the outer diameter of the developing gear 34g can be set to less than 10 [mm]. As a result, even with the developing device 3 having a small diameter such as the sleeve diameter Φ10 [mm], the developing gear 34g can be prevented from interfering with the photoreceptor 1, so that the developing device 3 can be further downsized.

また、本実施形態のプリンタ100は、潜像を担持する潜像担持体である感光体1と、感光体1を帯電する帯電手段である帯電装置2と、感光体1に残留する転写残トナーをクリーニングするクリーニング手段であるクリーニング装置6と、感光体1上の潜像を現像する現像手段とを一体的に支持し、プリンタ100本体に対して着脱可能に構成したプロセスカートリッジである作像装置17を備え、作像装置17が備える現像手段として、実施例1の現像装置3のように小型化した現像装置3を用いることにより、作像装置17の小型化を図ることができる。   Further, the printer 100 according to the present embodiment includes a photoreceptor 1 that is a latent image carrier that carries a latent image, a charging device 2 that is a charging unit that charges the photoreceptor 1, and a transfer residual toner remaining on the photoreceptor 1. Image forming apparatus which is a process cartridge which integrally supports a cleaning device 6 which is a cleaning means for cleaning the toner and a developing means for developing a latent image on the photoreceptor 1 and is configured to be detachable from the printer 100 main body. As the developing means provided in the image forming device 17, the developing device 3 that is downsized like the developing device 3 of the first embodiment can be used, whereby the image forming device 17 can be reduced in size.

また、現像磁極であるS1の極現像磁極磁束密度ピーク値をBr、S1極のの半値幅をθh、現像後磁極であるN1極の現像後磁極磁束密度ピーク値をBr、N1極の半値幅をθh、現像前磁極であるN2極の現像前磁極磁束密度ピーク値をBr、N2極の半値幅をθh、としたときに、Br>Br、Br>Br、及び、Br・θh>Br・θh+Br・θhの関係を満たすことにより、現像領域Aを通過した現像剤32の現像スリーブ34aからの剤離れ性を高めることができる。 The development magnetic pole magnetic flux density peak value of S1 that is the development magnetic pole is Br 1 , the half-value width of the S1 pole is θh 1 , the post-development magnetic pole magnetic flux density peak value of the N1 pole that is the post-development magnetic pole is Br 2 , and the N1 pole Br 1 > Br 2 , Br 1 > Br, where θh 2 is the pre-development magnetic pole magnetic flux density peak value of the N2 pole, which is Br 3 , and the N2 pole half-value width is θh 3 . 3 and satisfying the relationship of Br 1 · θh 1 > Br 2 · θh 2 + Br 3 · θh 3 , it is possible to improve the agent separation property from the developing sleeve 34 a of the developer 32 that has passed through the developing region A. .

また、本実施形態のプリンタ100は、潜像を担持する潜像担持体である感光体1と、感光体1を帯電する帯電手段である帯電装置2と、感光体1上の潜像を現像する現像手段と、感光体1に残留する転写残トナーをクリーニングするクリーニング手段であるクリーニング装置6とを備える画像形成装置であり、プリンタ100が備える現像手段として、実施例1の現像装置3のように小型化した現像装置3を用いることにより、プリンタ100本体の小型化を図ることができる。   In addition, the printer 100 according to the present embodiment develops a photosensitive member 1 that is a latent image carrier that carries a latent image, a charging device 2 that is a charging unit that charges the photosensitive member 1, and a latent image on the photosensitive member 1. An image forming apparatus including a developing unit that performs cleaning and a cleaning device 6 that is a cleaning unit that cleans residual toner remaining on the photoreceptor 1, and the developing unit included in the printer 100 is similar to the developing unit 3 of the first embodiment. By using the downsized developing device 3, it is possible to reduce the size of the printer 100 main body.

また、本実施形態のプリンタ100は、少なくとも現像手段と潜像担持体とを一体的に支持してプリンタ100本体から着脱可能に構成されたプロセスカートリッジを備える画像形成装置であり、プロセスカートリッジとして、小型化したプロセスカートリッジである作像装置17を用いることにより、プリンタ100本体の小型化を図ることができる。   The printer 100 of the present embodiment is an image forming apparatus including a process cartridge that integrally supports at least the developing unit and the latent image carrier and is configured to be detachable from the printer 100 main body. By using the image forming device 17 which is a downsized process cartridge, the printer 100 main body can be downsized.

また、本実施形態のプリンタ100は、小型化したプロセスカートリッジである作像装置17を複数備えるカラープリンタであり、複数備えるプロセスカートリッジが小型のものであるので、プリンタ100本体の小型化を図ることができる。   Further, the printer 100 according to the present embodiment is a color printer including a plurality of image forming devices 17 that are miniaturized process cartridges. Since the plurality of process cartridges are small, the printer 100 main body can be downsized. Can do.

1 感光体
2 帯電装置
3 現像装置
5 転写バイアスローラ
6 クリーニング装置
15 転写搬送ベルト
16 露光装置
17 作像装置
18 下流側張架ローラ
19 上流側張架ローラ
20、21、22 給紙カセット
23 レジストローラ
24 定着装置
25 排紙トレイ
26 給紙搬送装置
32 現像剤
32f 剤面
33 現像容器
33b 底部
34 現像ローラ
34a 現像スリーブ
34b マグネットローラ
34c 現像ローラ軸
34g 現像ギヤ
34h 水平軸
34p 回転中心
34r 汲み上げ磁極
34s 現像磁極
34t スリーブ上端部
34u 剤離れ磁極
35 剤規制部材
36 仕切り板
37 供給搬送路
37a 供給搬送路上流側端部
37b 供給搬送路下流側端部
38 循環搬送路
38a 循環搬送路上流側端部
38b 循環搬送路下流側端部
39 供給スクリュ
40 循環スクリュ
40a 循環スクリュ軸部
40b 循環スクリュ羽部
40d 切り欠き
41 持ち上げ口
41a 持ち上げ部
41b 持ち上げ手前部
42 落下口
43 障壁
45 トナー補給口
46 剤離れ部
47 汲み上げ部
49 分離板
50 バッファ部
51 パドル部材
51a パドル回転軸
51b パドル羽部
52 ローラ部材
52a ローラ回転軸
52b ローラ部
53 ワイヤ部材
53a ワイヤ回転軸
60 シール部材
60a 第1シール部材
60b 第2シール部材
65 供給仕切り壁
80 スクリュ部材
80a スクリュ軸部
80b スクリュ羽部
80c 仮想平面
81 供給位置調整部材
82 埋め部材
100 プリンタ
401 パドル
411 第一持ち上げ口
412 第二持ち上げ口
A 現像領域
L1 現像前磁極中心線
L2 現像磁極中心線
L3 現像後磁極中心線
M1 現像前磁極中心
M2 現像磁極中心
M3 現像後磁極中心
P 記録紙
DESCRIPTION OF SYMBOLS 1 Photoconductor 2 Charging device 3 Developing device 5 Transfer bias roller 6 Cleaning device 15 Transfer conveyance belt 16 Exposure device 17 Image forming device 18 Downstream tension roller 19 Upstream tension rollers 20, 21, 22 Paper feed cassette 23 Registration roller 24 Fixing device 25 Paper discharge tray 26 Paper feed device 32 Developer 32f Agent surface 33 Developer container 33b Bottom 34 Developer roller 34a Developer sleeve 34b Magnet roller 34c Developer roller shaft 34g Development gear 34h Horizontal shaft 34p Rotation center 34r Pumping magnetic pole 34s Development Magnetic pole 34t Sleeve upper end 34u Agent separating magnetic pole 35 Agent regulating member 36 Partition plate 37 Supply conveyance path 37a Supply conveyance path upstream end 37b Supply conveyance path downstream end 38 Circulation conveyance path 38a Circulation conveyance path upstream end 38b Circulation Conveyance path downstream end 39 Supply screw 40 Circulation Screw 40a Circulating screw shaft portion 40b Circulating screw blade portion 40d Notch 41 Lifting port 41a Lifting portion 41b Lifting front portion 42 Dropping port 43 Barrier 45 Toner supply port 46 Agent separating portion 47 Pumping portion 49 Separating plate 50 Buffer portion 51 Paddle member 51a Paddle rotation shaft 51b Paddle blade 52 Roller member 52a Roller rotation shaft 52b Roller portion 53 Wire member 53a Wire rotation shaft 60 Seal member 60a First seal member 60b Second seal member 65 Supply partition wall 80 Screw member 80a Screw shaft portion 80b Screw Wing 80c Virtual plane 81 Supply position adjusting member 82 Filling member 100 Printer 401 Paddle 411 First lifting port 412 Second lifting port A Development area L1 Pre-development magnetic pole center line L2 Development magnetic pole center line L3 After development magnetic pole center line M1 Before development Magnetism Polar center M2 Developing magnetic pole center M3 Developing magnetic pole center P Recording paper

特開平11−184249号公報JP-A-11-184249

Claims (16)

複数の磁極を有する磁界発生手段を内包し、トナー及び磁性キャリアからなる二成分現像剤を表面に担持して、表面を回転駆動することによって表面上の二成分現像剤を搬送する円筒状の現像剤担持体と、
該現像剤担持体の表面に供給する現像剤を収納する現像剤収納部とを有する現像装置において、
上記磁界発生手段が有する磁極のうち上記現像剤担持体の表面上での法線方向の磁束密度の最大値が10[mT]以上となる現像剤担持極は、
該現像剤担持体と潜像担持体とが対向する現像領域に磁界を発生させるための現像磁極と、
上記現像剤収納部から供給された現像剤を該現像領域へ搬送する磁界を発生させる現像前磁極と、
該現像領域を通過した後の現像剤を該現像剤担持体表面から離脱させるために該現像前磁極との間で現像剤を離脱させる磁界を発生させる現像後磁極との3つの磁極のみであり、
該現像前磁極が発生させる磁界によって該現像剤担持体の表面上への現像剤の汲み上げを行い、
該現像前磁極及び該現像磁極が発生させる磁界によって該現像剤収納部から現像剤が供給される位置から現像領域までの該現像剤担持体上の現像剤の保持を行い、
該現像磁極及び該現像後磁極が発生させる磁界によって該現像領域から該現像剤担持体の表面の現像剤を離脱させる位置までの該現像剤担持体上の現像剤の保持を行うように構成したことを特徴とする現像装置
Cylindrical development that includes a magnetic field generating means having a plurality of magnetic poles, carries a two-component developer composed of toner and a magnetic carrier on the surface, and conveys the two-component developer on the surface by rotationally driving the surface. An agent carrier;
In a developing device having a developer accommodating portion for accommodating a developer to be supplied to the surface of the developer carrying member,
Among the magnetic poles possessed by the magnetic field generating means, the developer carrying pole whose maximum value of the magnetic flux density in the normal direction on the surface of the developer carrying body is 10 [mT] or more ,
A developing magnetic pole for generating a magnetic field in a developing region where the developer carrying member and the latent image carrying member are opposed to each other;
A pre-development magnetic pole for generating a magnetic field for transporting the developer supplied from the developer container to the development area;
There are only three magnetic poles: a post-development magnetic pole that generates a magnetic field for releasing the developer from the pre-development magnetic pole in order to release the developer after passing through the development region from the surface of the developer carrier. ,
The developer is pumped onto the surface of the developer carrier by the magnetic field generated by the pre-development magnetic pole,
Holding the developer on the developer carrying member from the position where the developer is supplied from the developer accommodating portion to the development area by the magnetic field generated by the pre-development magnetic pole and the development magnetic pole;
The developer is held on the developer carrier from the development area to a position where the developer on the surface of the developer carrier is released by the magnetic field generated by the development magnetic pole and the post-development magnetic pole. A developing device .
求項1に記載の現像装置において、
上記現像剤担持体の回転軸に直交する仮想平面で、
3つの該現像剤担持極のそれぞれによって発生される磁界での該現像剤担持体の表面上の法線方向の磁束密度が最大となる3つの法線方向磁束密度ピーク位置のうち、
上記現像磁極と上記現像前磁極との2つの法線磁束密度ピーク位置と該現像剤担持体の回転中心とを直線で結んで形成される中心角の開き角度をθ1、
該現像磁極と上記現像後磁極との2つの法線磁束密度ピーク位置と該回転中心とを直線で結んで形成される中心角の開き角度をθ2、
該現像後磁極と該現像前磁極との2つの法線磁束密度ピーク位置と該回転中心とを直線で結んで形成される中心角の開き角度をθ3としたときに、
θ3≧180°
の関係を満たすように構成したことを特徴とする現像装置。
The developing device according to Motomeko 1,
In a virtual plane orthogonal to the rotation axis of the developer carrier,
Of the three normal direction magnetic flux density peak positions where the normal direction magnetic flux density on the surface of the developer carrying member is maximized in the magnetic field generated by each of the three developer carrying poles,
The opening angle of the central angle formed by connecting the two normal magnetic flux density peak positions of the developing magnetic pole and the pre-developing magnetic pole and the rotation center of the developer carrier with a straight line is θ1,
An opening angle of a central angle formed by connecting two normal magnetic flux density peak positions of the developing magnetic pole and the post-developing magnetic pole and the rotation center with a straight line is θ2,
When the opening angle of the central angle formed by connecting the two normal flux density peak positions of the post-development magnetic pole and the pre-development magnetic pole and the rotation center with a straight line is θ3,
θ3 ≧ 180 °
A developing device configured to satisfy the above relationship.
請求項1乃至のいずれか1項に記載の現像装置において、
上記現像剤収納部から上記現像剤担持体への現像剤の供給に重力が作用するように該現像剤収納部及び該現像剤担持体を配置したことを特徴とする現像装置
The developing device according to any one of claims 1 to 2 ,
A developing device, wherein the developer accommodating portion and the developer bearing member are arranged so that gravity acts on the supply of the developer from the developer accommodating portion to the developer bearing member .
求項1乃至のいずれか1項に記載の現像装置において、
上記現像剤担持極のうち上記現像剤収納部から上記現像剤担持体に向けて供給された現像剤を該現像剤担持体の表面上に汲み上げて担持する工程に寄与する汲み上げ磁極としての機能を有する上記現像前磁極よって発生される磁界で該現像剤担持体の表面上での法線方向の磁束密度の最大値を40[mT]以下としたことを特徴とする現像装置。
The developing device according to any one of Motomeko 1 to 3,
A function as a pumping magnetic pole that contributes to the step of pumping and supporting the developer supplied from the developer storage portion toward the developer carrier among the developer carrying poles onto the surface of the developer carrier. A developing device characterized in that the maximum value of the magnetic flux density in the normal direction on the surface of the developer carrying member is 40 [mT] or less by the magnetic field generated by the pre-development magnetic pole.
請求項1乃至のいずれか1項に記載の現像装置において、
上記現像磁極によって発生される磁界での該現像剤担持体の表面上の法線方向の磁束密度が最大となる現像法線磁束密度ピーク位置における上記現像剤担持体の表面に対する法線方向の磁束密度である現像磁極磁束密度ピーク値をBr
上記現像後磁極によって発生される磁界での該現像剤担持体の表面上の法線方向の磁束密度が最大となる現像後法線磁束密度ピーク位置における該現像剤担持体の表面に対する法線方向の磁束密度である現像後磁極磁束密度ピーク値をBrとしたときに、
Br>Brの関係を満たすことを特徴とする現像装置。
The developing device according to any one of claims 1 to 4 ,
Magnetic flux in the normal direction relative to the surface of the developer carrying member at the development normal magnetic flux density peak position where the magnetic flux density in the normal direction on the surface of the developer carrying member is maximized in the magnetic field generated by the developing magnetic pole. The development magnetic pole magnetic flux density peak value which is the density is Br 1 ,
Normal direction with respect to the surface of the developer carrier at the post-development normal flux density peak position where the magnetic flux density in the normal direction on the surface of the developer carrier is maximized in the magnetic field generated by the post-development magnetic pole When the post-development magnetic pole magnetic flux density peak value, which is the magnetic flux density, is Br 2 ,
A developing device satisfying a relationship of Br 1 > Br 2 .
請求項1乃至のいずれか1項に記載の現像装置において、
上記現像後磁極によって発生される磁界での該現像剤担持体の表面上の法線方向の磁束密度が最大となる現像後法線磁束密度ピーク位置に対して上記現像剤担持体の表面移動方向下流側、且つ、上記現像前磁極によって発生される磁界での該現像剤担持体の表面上の法線方向の磁束密度が最大となる現像前法線磁束密度ピーク位置に対して該現像剤担持体の表面移動方向上流側の範囲の該現像剤担持体の表面上に該現像剤担持体の表面に対する接線方向の磁束密度が実質的に0[mT]となる接線方向磁力無し領域が存在し、
該接線方向磁力無し領域内の任意の点と上記現像剤担持体の中心とを結ぶ直線と、水平線とが成す角度が、50[°]以下であることを特徴とする現像装置。
The developing device according to any one of claims 1 to 5 ,
Surface movement direction of the developer carrier relative to the post-development normal flux density peak position where the magnetic flux density in the normal direction on the surface of the developer carrier is maximized in the magnetic field generated by the post-development magnetic pole. The developer carrying with respect to the pre-development normal flux density peak position where the magnetic flux density in the normal direction on the surface of the developer carrying body at the magnetic field generated by the pre-development magnetic pole is maximized downstream. On the surface of the developer carrier in the upstream side of the surface movement direction of the body, there is a region without a tangential magnetic force where the magnetic flux density in the tangential direction to the surface of the developer carrier is substantially 0 [mT]. ,
A developing device, wherein an angle formed by a horizontal line and a straight line connecting an arbitrary point in the tangential magnetic force-free region and the center of the developer carrying member is 50 [°] or less.
請求項1乃至のいずれか1項に記載の現像装置において、
上記現像前磁極によって発生される磁界での該現像剤担持体の表面上の法線方向の磁束密度が最大となる現像前法線方向磁束密度ピーク位置における上記現像剤担持体の表面上の法線方向の磁束密度が10[mT]以上であることを特徴とした現像装置。
The developing device according to any one of claims 1 to 6 ,
A method on the surface of the developer carrying member at a pre-development normal magnetic flux density peak position at which the magnetic flux density in the normal direction on the surface of the developer carrying member is maximized in a magnetic field generated by the pre-development magnetic pole. A developing device having a linear magnetic flux density of 10 [mT] or more.
請求項1乃至のいずれか1項に記載の現像装置において、
上記現像剤収納部材内の現像剤を上記現像剤担持体に供給する現像剤供給搬送部材を備え、
該現像剤供給搬送部材を設けた供給現像剤収納空間と、その下方であって上記現像剤担持体の表面上から回収される現像剤を収納する回収現像剤収納空間とを仕切る仕切り板と、
該現像剤供給搬送部材の下方に配置され該現像剤収納部の該回収現像剤収納空間に収納された現像剤を該現像剤担持体の回転軸方向に沿う方向に搬送する現像剤回収搬送部材とを有することを特徴とする現像装置
In the developing device according to any one of claims 1 to 7 ,
A developer supply transport member for supplying the developer in the developer storage member to the developer carrier;
A partition plate for partitioning a supplied developer storage space provided with the developer supply transport member and a recovered developer storage space below which stores the developer recovered from the surface of the developer carrier;
A developer collecting / conveying member that is disposed below the developer supply / conveying member and conveys the developer accommodated in the collected developer accommodating space of the developer accommodating portion in a direction along the rotation axis direction of the developer carrying member. And a developing device .
請求項1乃至のいずれか1項に記載の現像装置において、
上記現像剤担持体が上記潜像担持体に対向する現像領域での該現像剤担持体の表面移動方向が、該潜像担持体の表面移動方向に対して逆方向であることを特徴とする現像装置。
The developing device according to any one of claims 1 to 8 ,
A surface movement direction of the developer carrier in a developing region where the developer carrier faces the latent image carrier is opposite to a surface movement direction of the latent image carrier. Development device.
請求項1乃至のいずれか1項に記載の現像装置において、
該現像剤担持体と回転軸が同軸で該現像剤担持体に回転駆動を伝達する現像剤担持体駆動ギヤの外径を現像剤担持体の外径よりも小さくしたことを特徴とする現像装置。
The developing device according to any one of claims 1 to 9 ,
A developing device having a rotating shaft coaxial with the developer carrier and having an outer diameter of a developer carrier driving gear for transmitting rotational driving to the developer carrier smaller than an outer diameter of the developer carrier. .
請求項10の現像装置において、
上記現像剤担持体駆動ギヤのモジュールを0.5[mm]以下としたことを特徴とする現像装置。
The developing device according to claim 10 .
A developing device characterized in that the developer carrying member drive gear module is set to 0.5 [mm] or less.
請求項1乃至11のいずれか1項に記載の現像装置において、
上記現像磁極によって発生される磁界での該現像剤担持体の表面上の法線方向の磁束密度が最大となる現像法線磁束密度ピーク位置における上記現像剤担持体の表面に対する法線方向の磁束密度である現像磁極磁束密度ピーク値をBr
該現像磁極の半値幅をθh
上記現像後磁極によって発生される磁界での該現像剤担持体の表面上の法線方向の磁束密度が最大となる現像後法線磁束密度ピーク位置における該現像剤担持体の表面に対する法線方向の磁束密度である現像後磁極磁束密度ピーク値をBr
該現像後磁極の半値幅をθh
上記現像前磁極によって発生される磁界での該現像剤担持体の表面上の法線方向の磁束密度が最大となる現像前法線磁束密度ピーク位置における該現像剤担持体の表面に対する法線方向の磁束密度である現像前磁極磁束密度ピーク値をBr
該現像後磁極の半値幅をθh、としたときに、
Br>Br、Br>Br、及び、Br・θh>Br・θh+Br・θhの関係を満たすことを特徴とする現像装置。
半値幅とは、各磁極によって発生される磁界での現像剤担持体の表面上の法線方向の磁束密度が各磁極の磁束密度ピーク値の半分となる現像剤担持体表面上の2つの位置と現像剤担持体の回転中心とを直線で結んで形成される中心角の開き角度である。
The developing device according to any one of claims 1 to 11 ,
Magnetic flux in the normal direction relative to the surface of the developer carrying member at the development normal magnetic flux density peak position where the magnetic flux density in the normal direction on the surface of the developer carrying member is maximized in the magnetic field generated by the developing magnetic pole. The development magnetic pole magnetic flux density peak value which is the density is Br 1 ,
The half width of the developing magnetic pole is θh 1 ,
Normal direction with respect to the surface of the developer carrier at the post-development normal flux density peak position where the magnetic flux density in the normal direction on the surface of the developer carrier is maximized in the magnetic field generated by the post-development magnetic pole The magnetic pole magnetic flux density peak value after development which is the magnetic flux density of Br 2 ,
The half width of the developed magnetic pole is θh 2 ,
Normal direction with respect to the surface of the developer carrying member at the pre-development normal flux density peak position where the magnetic flux density in the normal direction on the surface of the developer carrying member is maximized in the magnetic field generated by the pre-development magnetic pole. The pre-development magnetic pole magnetic flux density peak value that is the magnetic flux density of Br 3 ,
When the half width of the developed magnetic pole is θh 3 ,
A developing device satisfying the following relationships: Br 1 > Br 2 , Br 1 > Br 3 , and Br 1 · θh 1 > Br 2 · θh 2 + Br 3 · θh 3 .
The half width is two positions on the surface of the developer carrier where the magnetic flux density in the normal direction on the surface of the developer carrier in the magnetic field generated by each magnetic pole is half of the magnetic flux density peak value of each magnetic pole. And an opening angle of a central angle formed by connecting the rotation center of the developer carrying member with a straight line.
潜像を担持する潜像担持体と、
該潜像担持体を帯電する帯電手段と、
該潜像担持体に残留する転写残トナーをクリーニングするクリーニング手段との中より選ばれる少なくともひとつと、
該潜像担持体上の潜像を現像する現像手段とが一体的に形成され、画像形成装置本体に対して着脱可能に構成されたプロセスカートリッジにおいて、
上記現像手段として、請求項1乃至12のいずれか1項に記載の現像装置を用いたことを特徴とするプロセスカートリッジ。
A latent image carrier for carrying a latent image;
Charging means for charging the latent image carrier;
At least one selected from cleaning means for cleaning residual toner remaining on the latent image carrier,
In a process cartridge formed integrally with a developing means for developing a latent image on the latent image carrier and configured to be detachable from the image forming apparatus main body,
As the developing means, the process cartridge characterized by using a developing apparatus according to any one of claims 1 to 12.
潜像を担持する潜像担持体と、
該潜像担持体を帯電する帯電手段と、
該潜像担持体上の潜像を現像する現像手段と、
該潜像担持体に残留する転写残トナーをクリーニングするクリーニング手段とを備える画像形成装置において、
上記現像手段として、請求項1乃至12のいずれか1項に記載の現像装置を用いたことを特徴とする画像形成装置。
A latent image carrier for carrying a latent image;
Charging means for charging the latent image carrier;
Developing means for developing a latent image on the latent image carrier;
In an image forming apparatus comprising: cleaning means for cleaning transfer residual toner remaining on the latent image carrier;
As the developing means, the image forming apparatus characterized by using the developing apparatus according to any one of claims 1 to 12.
潜像を担持する潜像担持体と、
該潜像担持体を帯電する帯電手段と、
該潜像担持体上の潜像を現像する現像手段と、
該潜像担持体に残留する転写残トナーをクリーニングするクリーニング手段とを備え、
少なくとも現像手段と潜像担持体とを一体的に支持して装置本体から着脱可能に構成されたプロセスカートリッジを備える画像形成装置において、
上記プロセスカートリッジとして、請求項13のプロセスカートリッジを用いたことを特徴とする画像形成装置。
A latent image carrier for carrying a latent image;
Charging means for charging the latent image carrier;
Developing means for developing a latent image on the latent image carrier;
Cleaning means for cleaning transfer residual toner remaining on the latent image carrier,
In an image forming apparatus including a process cartridge configured to be detachable from the apparatus main body by integrally supporting at least the developing unit and the latent image carrier,
An image forming apparatus using the process cartridge according to claim 13 as the process cartridge.
請求項15の画像形成装置において、
上記プロセスカートリッジを複数備えることを特徴とする画像形成装置。
The image forming apparatus according to claim 15 .
An image forming apparatus comprising a plurality of the process cartridges.
JP2013152702A 2009-02-06 2013-07-23 Developing device, process cartridge, and image forming apparatus Active JP5517092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013152702A JP5517092B2 (en) 2009-02-06 2013-07-23 Developing device, process cartridge, and image forming apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009025834 2009-02-06
JP2009025834 2009-02-06
JP2013152702A JP5517092B2 (en) 2009-02-06 2013-07-23 Developing device, process cartridge, and image forming apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009298609A Division JP5387980B2 (en) 2009-02-06 2009-12-28 Developing device, process cartridge, and image forming apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014078581A Division JP5700315B2 (en) 2009-02-06 2014-04-07 Developing device, process cartridge, and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2013235290A JP2013235290A (en) 2013-11-21
JP5517092B2 true JP5517092B2 (en) 2014-06-11

Family

ID=49761394

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013152702A Active JP5517092B2 (en) 2009-02-06 2013-07-23 Developing device, process cartridge, and image forming apparatus
JP2014078581A Expired - Fee Related JP5700315B2 (en) 2009-02-06 2014-04-07 Developing device, process cartridge, and image forming apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014078581A Expired - Fee Related JP5700315B2 (en) 2009-02-06 2014-04-07 Developing device, process cartridge, and image forming apparatus

Country Status (1)

Country Link
JP (2) JP5517092B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3347589B2 (en) * 1996-07-12 2002-11-20 キヤノン株式会社 Developing device
JPH11231625A (en) * 1998-02-12 1999-08-27 Minolta Co Ltd Developing device
JP4817828B2 (en) * 2005-12-13 2011-11-16 キヤノン株式会社 Development device
JP5136003B2 (en) * 2007-03-02 2013-02-06 富士ゼロックス株式会社 Developing device, image carrier unit, and image forming apparatus
JP4217750B2 (en) * 2008-01-28 2009-02-04 株式会社リコー Developing device and image forming apparatus

Also Published As

Publication number Publication date
JP2014130380A (en) 2014-07-10
JP5700315B2 (en) 2015-04-15
JP2013235290A (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP5387980B2 (en) Developing device, process cartridge, and image forming apparatus
US8326184B2 (en) Development device and image forming apparatus
JP4913492B2 (en) Developing device, image forming apparatus, toner and carrier
JP4926484B2 (en) Toner replenishing device, toner conveying device, and image forming apparatus
JP4634833B2 (en) Developing device, image forming apparatus, and image forming method
JP2007310340A (en) Developing apparatus and image forming apparatus
JP4731959B2 (en) Development device
JP2006047886A (en) Developing device, cartridge, and image forming apparatus
US8989634B2 (en) Developer case that suppresses clogging due to developer, developer replenishment unit having the same, and image forming apparatus having the same
JP5549919B2 (en) Developing device and image forming apparatus
JP2011197046A (en) Toner dispersing mechanism, and developing device and image forming apparatus provided therewith
JP5775860B2 (en) Image forming apparatus
JP5517092B2 (en) Developing device, process cartridge, and image forming apparatus
JP2009168954A (en) Development apparatus and image forming apparatus
JP5309166B2 (en) Toner dispersion mechanism, developing device including the same, and image forming apparatus
JP5534422B2 (en) Developing device, process cartridge having the developing device, and image forming apparatus having the developing device or the process cartridge
JP5403413B2 (en) Developing device and image forming apparatus
JP2012042738A (en) Development apparatus
JP4784187B2 (en) Development device
JP4976775B2 (en) Development device
JP5590738B2 (en) Toner dispersion mechanism, developing device including the same, and image forming apparatus
JP5712154B2 (en) Developing device and image forming apparatus having the same
JP2019139186A (en) Developing device and image forming apparatus including the same
JPH06242671A (en) Developing device
JP2006221086A (en) Developing device, process cartridge, and image forming apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140320

R151 Written notification of patent or utility model registration

Ref document number: 5517092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151