JP5515164B2 - Method for recovering ammonium nitrate from wastewater - Google Patents

Method for recovering ammonium nitrate from wastewater Download PDF

Info

Publication number
JP5515164B2
JP5515164B2 JP2008296327A JP2008296327A JP5515164B2 JP 5515164 B2 JP5515164 B2 JP 5515164B2 JP 2008296327 A JP2008296327 A JP 2008296327A JP 2008296327 A JP2008296327 A JP 2008296327A JP 5515164 B2 JP5515164 B2 JP 5515164B2
Authority
JP
Japan
Prior art keywords
ammonium nitrate
concentration
ammonia
solution
nitrate solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008296327A
Other languages
Japanese (ja)
Other versions
JP2010120815A (en
Inventor
琢也 田口
善之 宗野
達夫 宮崎
Original Assignee
カヤク・ジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カヤク・ジャパン株式会社 filed Critical カヤク・ジャパン株式会社
Priority to JP2008296327A priority Critical patent/JP5515164B2/en
Publication of JP2010120815A publication Critical patent/JP2010120815A/en
Application granted granted Critical
Publication of JP5515164B2 publication Critical patent/JP5515164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、排水からの硝酸アンモニウムの回収方法に関する。詳しくは本発明は、化学関連産業分野において発生する硝酸、アンモニア又は硝酸アンモニウムを低濃度で含む排水から、高濃度の硝酸アンモニウム水溶液又は常温で固形の硝酸アンモニウムとして硝酸アンモニウムを回収する方法に関する。   The present invention relates to a method for recovering ammonium nitrate from waste water. More specifically, the present invention relates to a method for recovering ammonium nitrate from wastewater containing low concentrations of nitric acid, ammonia or ammonium nitrate generated in the chemical industry, as a high concentration aqueous ammonium nitrate solution or as solid ammonium nitrate at room temperature.

化学関連産業分野において硝酸、アンモニア又は硝酸アンモニウムを低濃度で含む廃液が発生する。これらは、通常、硝酸アンモニウムを主体とし、場合により硝酸分が過剰な廃液として、或いはアンモニア分が過剰な廃液として発生する。その他に、硝酸を単独で含む廃液、及びアンモニアを単独で含む廃液も発生する。これらの廃液をそのまま外部に排出することは、関連水域の富栄養化につながり、また、資源の損失ともなる。従ってこれらの廃液から資源的に価値ある成分を回収しようと試みることは当然であるが、工業的に見て有効な方法は見出されていないのが現状である。従って通常、これらの廃液は、廃液のpHにもよるが、アンモニア分が過剰である場合は硫酸などで中和処理し、また、硝酸分が過剰な場合はアルカリで中和処理したのちに、焼却処分されるなどの方法で、産業廃棄物として処分されている。   In the chemical industry, waste liquid containing nitric acid, ammonia or ammonium nitrate at a low concentration is generated. These are usually composed mainly of ammonium nitrate, and in some cases, it is generated as a waste liquid containing an excessive amount of nitric acid or as a waste liquid containing an excessive amount of ammonia. In addition, a waste liquid containing nitric acid alone and a waste liquid containing ammonia alone are also generated. Discharging these waste liquids directly to the outside leads to eutrophication of related water areas and also causes resource loss. Accordingly, it is natural to try to recover components that are valuable in terms of resources from these waste liquids, but at present, no effective method has been found industrially. Therefore, these waste liquids usually depend on the pH of the waste liquid, but when the ammonia content is excessive, neutralize with sulfuric acid, and when the nitric acid content is excessive, neutralize with alkali. It is disposed of as industrial waste, such as by incineration.

上記の資源的に価値ある成分の回収方法として、硝酸アンモニウムを含む廃水に酸化鉛を加えてアンモニアを遊離するとともに、硝酸イオンを塩基性硝酸鉛として回収する方法が提案されている。(特許文献1)この方法は、アンモニアと硝酸イオンを同時に回収する方法ではあるが、酸化鉛を使用する点で環境上、問題がないとは言えず、また、廃液中の資源的に価値ある成分の全てを有効利用し得る方法であるとも言えない。
特開平8−259222号
As a method for recovering the above-mentioned valuable components, a method has been proposed in which lead oxide is added to waste water containing ammonium nitrate to release ammonia and nitrate ions are recovered as basic lead nitrate. (Patent Document 1) Although this method is a method of simultaneously recovering ammonia and nitrate ions, it cannot be said that there is an environmental problem in terms of using lead oxide, and it is valuable as a resource in the waste liquid. It cannot be said that it is a method that can effectively use all of the components.
JP-A-8-259222

本発明者らは、産業廃棄物についてのリサイクル促進の情勢および環境への貢献という観点から、従来、単に産業廃棄物として処理されていた硝酸、アンモニア又は硝酸アンモニウムを低濃度で含む廃液から資源的に価値ある成分を有効に回収する方法を見出すべく鋭意検討を重ねた結果、特定の2段階濃縮処理を行なうことによって、上記低濃度の硝酸、アンモニア又は硝酸アンモニウムを、高濃度の硝酸アンモニウム水溶液又は固形の硝酸アンモニウムとして回収し、再生利用することができることを見出して本発明に到達した。   From the viewpoint of the situation of promoting recycling of industrial waste and contribution to the environment, the present inventors have developed resources from waste liquids containing nitric acid, ammonia or ammonium nitrate that have been treated simply as industrial waste at low concentrations. As a result of intensive studies to find a method for effectively recovering valuable components, the above-mentioned low concentration nitric acid, ammonia or ammonium nitrate is converted into a high concentration aqueous ammonium nitrate solution or solid ammonium nitrate by performing a specific two-stage concentration treatment. As a result, the present invention has been found.

即ち、本発明の要旨は、
(1)硝酸、アンモニア及び硝酸アンモニウムからなる群から選ばれた含窒素成分を低濃度で含有する排水を、必要によりアンモニア又は硝酸で中和するとともに、濃縮して濃度40〜65重量%の硝酸アンモニウム水溶液(以下「中濃度硝安液」という)とし、中濃度硝安液のpHが5〜8の範囲内でないときはこれに硝酸またはアンモニアを添加してpHを5〜8の範囲内に調整したのち、さらに濃縮を行って濃度70〜90重量%の硝酸アンモニウム水溶液(以下「高濃度硝安液」という)とすることを特徴とする排水からの硝酸アンモニウムの回収方法、
(2)高濃度硝安液のpHを90℃において3〜6となるように調整する、上記(1)に記載の硝酸アンモニウムの回収方法、並びに、
(3)高濃度硝安液をさらに脱水処理して常温で固形である硝酸アンモニウムとする、上記(1)又は(2)に記載の硝酸アンモニウムの回収方法、
に存する。
That is, the gist of the present invention is as follows.
(1) A wastewater containing a low concentration of a nitrogen-containing component selected from the group consisting of nitric acid, ammonia and ammonium nitrate is neutralized with ammonia or nitric acid, if necessary, and concentrated to give an aqueous ammonium nitrate solution having a concentration of 40 to 65% by weight. (Hereinafter referred to as “medium concentration ammonium nitrate solution”), and when the pH of the intermediate concentration ammonium nitrate solution is not within the range of 5-8, nitric acid or ammonia is added thereto to adjust the pH within the range of 5-8, A method of recovering ammonium nitrate from waste water, characterized in that it is further concentrated to an aqueous ammonium nitrate solution (hereinafter referred to as “high-concentration ammonium nitrate solution”) having a concentration of 70 to 90% by weight,
(2) The method for recovering ammonium nitrate according to (1) above, wherein the pH of the high-concentration ammonium nitrate solution is adjusted to 3 to 6 at 90 ° C., and
(3) The method for recovering ammonium nitrate according to (1) or (2) above, further dehydrating the high-concentration ammonium nitrate solution to form ammonium nitrate that is solid at room temperature.
Exist.

本発明の方法により、従来、単に産業廃棄物として処分されていた、硝酸、アンモニア又は硝酸アンモニウムを低濃度で含む廃液から、高濃度の硝酸アンモニウム水溶液又は固形の硝酸アンモニウムを回収することができ、これらを各種産業原料として有効に再生利用することができる。   By the method of the present invention, it is possible to recover a high concentration ammonium nitrate aqueous solution or solid ammonium nitrate from a waste liquid containing low concentrations of nitric acid, ammonia or ammonium nitrate, which has been disposed of as industrial waste conventionally, It can be effectively recycled as industrial raw material.

以下、本発明の方法を詳細に説明する。
本発明は、硝酸、アンモニア及び硝酸アンモニウムからなる群から選ばれた含窒素成分を低濃度で含有する排水から、硝酸アンモニウムを各種産業原料として有効に再生利用することができる形で回収する方法である。
上記の硝酸、アンモニア及び硝酸アンモニウムからなる群から選ばれた含窒素成分を低濃度で含有する排水は、化学関連産業分野、特に触媒製造工程、金属酸化物製造工程などから排水として排出されるものである。かかる排水は、通常、硝酸アンモニウムを主体とし、場合により硝酸分が過剰な廃液として、或いはアンモニア分が過剰な廃液として発生する。その他に、硝酸を単独で含む廃液、及びアンモニアを単独で含む廃液も発生する。これら各種の廃液に硝酸分又はアンモニア分が過剰に含まれているときには、これらの廃液を、硝酸またはアンモニアで硝酸アンモニウムが生成するように中和して、実質的に硝酸アンモニウムの水溶液とする。硝酸アンモニウム水溶液となった場合、硝酸アンモニウムの濃度にもよるが、pHが3〜8であることが好ましい。
Hereinafter, the method of the present invention will be described in detail.
The present invention is a method for recovering ammonium nitrate from waste water containing a low concentration of a nitrogen-containing component selected from the group consisting of nitric acid, ammonia and ammonium nitrate in a form that can be effectively recycled as various industrial raw materials.
Wastewater containing a low concentration of nitrogen-containing components selected from the group consisting of nitric acid, ammonia and ammonium nitrate is discharged as wastewater from the chemical-related industrial fields, particularly from the catalyst production process and the metal oxide production process. is there. Such waste water is usually composed mainly of ammonium nitrate, and in some cases, it is generated as a waste liquid containing an excessive amount of nitric acid or as a waste liquid containing an excessive amount of ammonia. In addition, a waste liquid containing nitric acid alone and a waste liquid containing ammonia alone are also generated. When these various waste liquids contain an excessive amount of nitric acid or ammonia, these waste liquids are neutralized with nitric acid or ammonia so that ammonium nitrate is produced, and are substantially made into an aqueous solution of ammonium nitrate. When the aqueous ammonium nitrate solution is obtained, the pH is preferably 3 to 8, although it depends on the concentration of ammonium nitrate.

化学関連産業分野の各種製造工程から排出され、上記の中和反応によって生成された硝酸アンモニウム水溶液は、通常、低濃度であり、硝酸アンモニウムの濃度は通常、1〜20重量%、多くの場合、10重量%以下である。これら低濃度の硝酸アンモニウム水溶液は、そのままでは産業原料として再生利用することが困難である。   The ammonium nitrate aqueous solution discharged from various manufacturing processes in the chemical-related industrial field and produced by the above neutralization reaction is usually at a low concentration, and the concentration of ammonium nitrate is usually 1 to 20% by weight, often 10% by weight. % Or less. These low-concentration ammonium nitrate aqueous solutions are difficult to recycle as industrial raw materials as they are.

従って、これらの低濃度の硝酸アンモニウム水溶液を再生利用するためには、これらを何らかの方法で濃縮して高濃度の硝酸アンモニウム水溶液とする必要がある。濃縮には、通常、加熱蒸発による濃縮器が使用されるが、この濃縮段階には技術的な問題点がある。即ち、硝酸アンモニウム水溶液を加熱蒸発によって濃縮する場合、アンモニア分の揮散により、一般に原液のpHよりも濃縮液のpHは低くなる。例えば、硝酸アンモニウム濃度が10重量%、pHが7の低濃度の硝酸アンモニウム水溶液を1段階で70重量%以上にまで濃縮した場合、最終的なpHは3未満に低下する。高温で高濃度の硝酸アンモニウム水溶液を取り扱う場合、設備にステンレス製の配管を使用するが、pHが3未満の高温で高濃度の硝酸アンモニウム水溶液はステンレスをも腐食するという問題がある。これを避けるためには、原液のpHをより高く設定する必要があるが、このpH調整を揮発性のアンモニアのみで行うためには、多量のアンモニアを使用する必要があるのでアンモニア分の損失となり、他方で、非揮発性のアルカリで行う場合には、事実上、硝酸分の損失となる。従って、工業的に見た場合、単に加熱蒸発で濃縮することによっては、硝酸アンモニウムの有効な再生利用を達成することはできない。   Accordingly, in order to recycle these low-concentration ammonium nitrate aqueous solutions, it is necessary to concentrate them by some method to obtain high-concentration ammonium nitrate aqueous solutions. For concentration, a concentrator by heating and evaporation is usually used, but this concentration step has technical problems. That is, when the aqueous ammonium nitrate solution is concentrated by heating and evaporation, the pH of the concentrated solution is generally lower than the pH of the stock solution due to volatilization of the ammonia content. For example, when a low concentration ammonium nitrate aqueous solution having an ammonium nitrate concentration of 10% by weight and a pH of 7 is concentrated to 70% by weight or more in one step, the final pH is lowered to less than 3. When handling a high concentration ammonium nitrate aqueous solution at a high temperature, stainless steel piping is used for the equipment, but there is a problem that a high concentration ammonium nitrate aqueous solution at a high temperature of less than 3 also corrodes stainless steel. In order to avoid this, it is necessary to set the pH of the stock solution higher. However, in order to adjust this pH with only volatile ammonia, it is necessary to use a large amount of ammonia, resulting in loss of ammonia. On the other hand, when it is carried out with a non-volatile alkali, the nitric acid content is effectively lost. Therefore, from an industrial point of view, effective recycling of ammonium nitrate cannot be achieved by simply concentrating by heating and evaporation.

本発明方法においては、これらの低濃度の硝酸アンモニウム水溶液を特定の2段階工程で濃縮することによって、硝酸アンモニウム水溶液の高濃度化を達成する。濃縮を行うための装置としては、通常、加熱蒸発による濃縮器を使用する。
即ち本発明方法においては、上記低濃度の硝酸アンモニウム水溶液を、第1段階の濃縮によって濃度40〜65重量%の硝酸アンモニウム水溶液(「中濃度硝安液」)とし、上記中濃度硝安液のpHが5〜8の範囲内でないときはこれに硝酸またはアンモニアを添加してpHを5〜8の範囲内に調整したのち、さらに第2段階の濃縮を行って濃度70〜90重量%の硝酸アンモニウム水溶液(「高濃度硝安液」)とする。
上記中濃度硝安液のpHの調整は、通常、上記第1段階の濃縮の後で、常温でアンモニアを添加し、pHを5〜8に調整することによって行う。このpHの調整後の中濃度硝安液について第2段階の濃縮を行って濃度70〜90重量%の硝酸アンモニウム水溶液、即ち高濃度硝安液とするのであるが、上記中濃度硝安液のpHの調整は、第2段階の濃縮後の高濃度硝安液のpHが3以上になるように設定する。
上記の通り、第2段階の濃縮前の中濃度硝安液は、硝酸アンモニウム濃度が40〜65重量%、pHが5〜8に調整されている。上記pHを8より大きくした場合は、第2段階の濃縮中にアンモニアの分離量が大きくなって、蒸発させた後の凝縮水のpHが高くなる傾向があり、凝縮水の処分のためのpH調整がさらに必要となる。また、硝酸アンモニウムの濃度が40重量%より低い場合には、第2段階の濃縮前のpHを高めに設定しても、第2段階の濃縮後の高濃度硝安液のpHが3未満になり、他方、硝酸アンモニウムの濃度が65重量%より高い場合には、常温で硝酸アンモニウムが結晶化するので、上記のpH調整自体が困難となる。
In the method of the present invention, the concentration of the aqueous ammonium nitrate solution is increased by concentrating these low-concentration aqueous ammonium nitrate solutions in a specific two-step process. As a device for performing the concentration, a concentrator by heating and evaporation is usually used.
That is, in the method of the present invention, the low-concentration ammonium nitrate aqueous solution is converted to a 40-65 wt% aqueous ammonium nitrate solution (“medium concentration ammonium nitrate solution”) by concentration in the first stage, and the pH of the medium concentration ammonium nitrate solution is 5 to 5%. If it is not within the range of 8, add nitric acid or ammonia to this to adjust the pH within the range of 5 to 8, and then perform concentration in the second stage to obtain an aqueous ammonium nitrate solution having a concentration of 70 to 90 wt. Concentrated ammonium nitrate solution)).
Adjustment of the pH of the medium-concentrated ammonium nitrate solution is usually performed by adding ammonia at room temperature and adjusting the pH to 5 to 8 after the concentration in the first stage. The medium concentration ammonium nitrate solution after the pH adjustment is concentrated in the second stage to obtain an aqueous ammonium nitrate solution having a concentration of 70 to 90% by weight, that is, a high concentration ammonium nitrate solution. The pH of the high-concentration ammonium nitrate solution after concentration in the second stage is set to 3 or higher.
As described above, the intermediate concentration ammonium nitrate solution before concentration in the second stage is adjusted to have an ammonium nitrate concentration of 40 to 65% by weight and a pH of 5 to 8. When the pH is greater than 8, the amount of ammonia separated during the second stage of concentration tends to increase, and the pH of condensed water after evaporation tends to increase. Further adjustment is required. In addition, when the concentration of ammonium nitrate is lower than 40% by weight, even if the pH before concentration in the second stage is set higher, the pH of the high-concentration ammonium nitrate solution after concentration in the second stage is less than 3, On the other hand, when the concentration of ammonium nitrate is higher than 65% by weight, ammonium nitrate is crystallized at room temperature, making the pH adjustment itself difficult.

上記の通り、第2段階の濃縮後の高濃度硝安液のpHは3以上とするが、好ましくは90℃におけるpHが3〜6となるようにする。これらの高濃度硝安液のpHの調整は、第2段階の濃縮前の中濃度硝安液のpHの設定によって、或いは第2段階の濃縮後の高濃度硝安液への硝酸またはアンモニアの添加によって、行うことができる。pHを3〜6に調整することによって、通常、硝酸アンモニウムの設備に使用されるステンレスの配管についての腐食その他のトラブルを防止することができる。   As described above, the pH of the high-concentration ammonium nitrate solution after the concentration in the second stage is set to 3 or more, but the pH at 90 ° C. is preferably 3 to 6. The pH of these high-concentration ammonium nitrate solutions can be adjusted by setting the pH of the medium-concentration ammonium nitrate solution before concentration in the second stage or by adding nitric acid or ammonia to the high-concentration ammonium nitrate solution after concentration in the second stage It can be carried out. By adjusting the pH to 3 to 6, it is possible to prevent corrosion and other troubles in stainless steel pipes usually used in ammonium nitrate equipment.

上記のようにして回収された高濃度硝安液は、各種産業原料として有効に再生利用することができるが、用途によってさらに固体の硝酸アンモニウムが必要な場合には、上記高濃度硝安液をさらに脱水処理して常温で固形である硝酸アンモニウムとする。脱水処理には、通常、晶析器、乾燥器等の装置を使用する。   The high-concentration ammonium nitrate solution recovered as described above can be effectively recycled as various industrial raw materials. However, if more solid ammonium nitrate is required depending on the application, the high-concentration ammonium nitrate solution is further dehydrated. The ammonium nitrate is solid at room temperature. For the dehydration treatment, an apparatus such as a crystallizer or a dryer is usually used.

なお、本発明方法の出発材料である、上記の化学関連産業分野、例えば触媒製造工程、金属酸化物製造工程などから排水として排出される硝酸、アンモニア及び硝酸アンモニウムからなる群から選ばれた含窒素成分を低濃度で含有する排水は、金属等の不純物を含有していることがある。金属の種類にもよるが、回収された硝酸アンモニウムの最終的な使用目的に不必要なものであれば、これを除去して使用することもでき、通常、除去するのが好ましい。金属等の不純物の除去は、濾過、吸着、イオン交換等の通常の除去手段により行うことができる。具体的には除去する対象物によって使い分けるが、カートリッジフィルター、イオン交換膜、キレート樹脂などを使用する方法が挙げられる。   In addition, the nitrogen-containing component selected from the group consisting of nitric acid, ammonia and ammonium nitrate discharged as waste water from the above chemical-related industrial fields, for example, the catalyst production process, the metal oxide production process, etc., which is the starting material of the method of the present invention Wastewater containing a low concentration may contain impurities such as metals. Depending on the type of metal, if it is unnecessary for the final purpose of use of the recovered ammonium nitrate, it can be removed and used, and it is usually preferable to remove it. The removal of impurities such as metals can be performed by ordinary removing means such as filtration, adsorption, and ion exchange. Specifically, depending on the object to be removed, a method using a cartridge filter, an ion exchange membrane, a chelate resin or the like can be mentioned.

本発明方法によって、高濃度の硝酸アンモニウム水溶液又は常温で固形の硝酸アンモニウムとして回収された硝酸アンモニウムは、各種産業原料、例えば爆薬の原料、肥料の原料として有効に再生利用することができる。上記爆薬としては、含水爆薬やアンホ爆薬などが挙げられる。   According to the method of the present invention, ammonium nitrate recovered as a high concentration aqueous ammonium nitrate solution or solid ammonium nitrate at room temperature can be effectively recycled as various industrial raw materials, for example, explosive raw materials and fertilizer raw materials. Examples of the explosive include a hydrous explosive and an anho explosive.

以下に本発明の具体的態様を実施例によりさらに詳細に説明するが、本発明はこれらによって限定されるものではない。   Specific embodiments of the present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples.

[実施例1]
硝酸アンモニウム濃度7重量%、pH8の、硝酸アンモニウムを主体とし、アンモニア分を過剰に含有する排水に硝酸を加えてpHを6に調整したのち、加熱蒸発により第1段階の濃縮を行って、硝酸アンモニウム濃度55重量%の硝酸アンモニウム水溶液(「中濃度硝安液」)を得た。pHは2.5であった。この硝酸アンモニウム水溶液にアンモニアを添加してpHを6に調整したのち、加熱蒸発により第2段階の濃縮を行って、硝酸アンモニウム濃度86重量%の硝酸アンモニウム水溶液(「高濃度硝安液」)を得た。pHは4.5であった。
本実施例で得られた硝酸アンモニウム濃度86重量%の硝酸アンモニウム水溶液のpHは4.5であり、高温時でもステンレスの腐食がない高濃度の硝酸アンモニウム水溶液が得られた。
[Example 1]
After adjusting the pH to 6 by adding nitric acid to wastewater mainly containing ammonium nitrate having an ammonium nitrate concentration of 7% by weight and a pH of 8 and containing an excessive amount of ammonia, concentration in the first stage was performed by heating and evaporation to obtain an ammonium nitrate concentration of 55 A weight percent aqueous ammonium nitrate solution (“medium ammonium nitrate solution”) was obtained. The pH was 2.5. After adjusting the pH to 6 by adding ammonia to this ammonium nitrate aqueous solution, concentration in the second stage was performed by heating and evaporation to obtain an ammonium nitrate aqueous solution (“high concentration ammonium nitrate solution”) having an ammonium nitrate concentration of 86 wt%. The pH was 4.5.
The pH of the ammonium nitrate aqueous solution having an ammonium nitrate concentration of 86% by weight obtained in this example was 4.5, and a high concentration aqueous ammonium nitrate solution without corrosion of stainless steel even at high temperatures was obtained.

[比較例1]
実施例1で出発材料として使用した硝酸アンモニウム濃度7重量%、pH8の、硝酸アンモニウムを主体とし、アンモニア分を過剰に含有する排水につき、加熱蒸発により1段階の濃縮を行って、硝酸アンモニウム濃度86重量%の硝酸アンモニウム水溶液を得た。pHは1.8であった。
本比較例で得られた硝酸アンモニウム濃度86重量%の硝酸アンモニウム水溶液のpHは1.8であり、高温時にはステンレスの腐食が発生するものであって、再生利用することができないものであった。
[Comparative Example 1]
The wastewater mainly composed of ammonium nitrate having an ammonium nitrate concentration of 7% by weight and pH 8 used as a starting material in Example 1 and containing an excessive amount of ammonia was subjected to one-stage concentration by heating and evaporation to obtain an ammonium nitrate concentration of 86% by weight. An aqueous ammonium nitrate solution was obtained. The pH was 1.8.
The pH of the ammonium nitrate aqueous solution having an ammonium nitrate concentration of 86% by weight obtained in this comparative example was 1.8. Corrosion of the stainless steel occurred at a high temperature and could not be recycled.

[使用例1]
実施例1で得られた硝酸アンモニウム濃度86重量%の硝酸アンモニウム水溶液86重量部を90℃に加温し、これに硝酸ナトリウム5重量部を加えて酸化剤水溶液とした。この酸化剤水溶液を、予め90℃で溶解混合されたマイクロクリスタリンワックス4重量部、ソルビタンモノオレート1重量部の混合物に加え、十分撹拌混合して油中水滴型エマルションを得た。これに微小中空粒子としてガラスマイクロバルーン4重量部を加えて撹拌混合し、油中水滴型エマルション爆薬を得た。
[Usage example 1]
86 parts by weight of an aqueous ammonium nitrate solution having an ammonium nitrate concentration of 86% by weight obtained in Example 1 was heated to 90 ° C., and 5 parts by weight of sodium nitrate was added thereto to obtain an aqueous oxidizing agent solution. This aqueous oxidizer solution was added to a mixture of 4 parts by weight of microcrystalline wax and 1 part by weight of sorbitan monooleate previously dissolved and mixed at 90 ° C., and sufficiently stirred and mixed to obtain a water-in-oil emulsion. To this, 4 parts by weight of glass microballoon as fine hollow particles were added and mixed by stirring to obtain a water-in-oil type emulsion explosive.

[試験例1]
使用例1で製造された油中水滴型エマルション爆薬について、その性能の指標として爆速を、また貯蔵安定性の指標として最小起爆薬量をそれぞれ測定した。爆速は、工業火薬協会規格ES−41(3)に基づき、直径30mmの薬包で測定した。また、最小起爆薬量は、工業火薬協会規格ES−32に基づき、起爆できる弱雷管の号数を求めた。それらの結果を表1(表中最小起爆感度の欄の数値は工業用雷管の号数を示す)に示す。
[Test Example 1]
For the water-in-oil emulsion explosive produced in Use Example 1, the explosion speed was measured as an index of its performance, and the minimum amount of explosive was measured as an index of storage stability. The explosion speed was measured with a medicine package having a diameter of 30 mm based on the Industrial Explosives Association Standard ES-41 (3). Moreover, the minimum amount of explosives determined the number of weak detonators that could be detonated based on the Industrial Explosives Association standard ES-32. The results are shown in Table 1 (the numerical value in the column of minimum initiation sensitivity in the table indicates the number of industrial detonator).

Figure 0005515164
Figure 0005515164

表1の結果から明らかなように、回収した硝酸アンモニウムを使用した爆薬の性能は、爆薬としての品質を保証し得るものであり、回収した硝酸アンモニウムが問題なく再生利用できることを示している。   As is apparent from the results in Table 1, the performance of the explosive using the recovered ammonium nitrate can guarantee the quality as an explosive, and shows that the recovered ammonium nitrate can be recycled without problems.

Claims (1)

硝酸、アンモニア及び硝酸アンモニウムからなる群から選ばれた含窒素成分を低濃度で含有する排水を、当該排水に硝酸分又はアンモニア分が過剰に含まれているときには、硝酸アンモニウムが生成するようにアンモニア又は硝酸で中和するとともに、濃縮して濃度40〜65重量%の硝酸アンモニウム水溶液(以下「中濃度硝安液」という)とし、中濃度硝安液のpHが5〜8の範囲内でないときはこれに硝酸またはアンモニアを添加してpHを5〜8の範囲内に調整したのち、さらに濃縮を行って濃度70〜90重量%の硝酸アンモニウム水溶液(以下「高濃度硝安液」という)とし、高濃度硝安液のpHが90℃において3〜6となるように調整することを特徴とする排水からの爆薬原料の製造方法Nitric, waste water containing a low concentration of the nitrogen-containing component selected from the group consisting of ammonia and ammonium nitrate, when the nitrate content or ammonia partial to the waste water is contained in excess, ammonia or nitric acid as ammonium nitrate to produce And concentrated to an aqueous ammonium nitrate solution having a concentration of 40 to 65% by weight (hereinafter referred to as “medium ammonium nitrate solution”). When the pH of the intermediate ammonium nitrate solution is not within the range of 5 to 8, it is added with nitric acid or After adjusting the pH within the range of 5 to 8 by adding ammonia, concentration is further performed to obtain an aqueous ammonium nitrate solution (hereinafter referred to as “high concentration ammonium nitrate solution”) having a concentration of 70 to 90% by weight . A method for producing an explosive raw material from waste water, wherein the pH is adjusted to 3 to 6 at 90 ° C.
JP2008296327A 2008-11-20 2008-11-20 Method for recovering ammonium nitrate from wastewater Active JP5515164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008296327A JP5515164B2 (en) 2008-11-20 2008-11-20 Method for recovering ammonium nitrate from wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008296327A JP5515164B2 (en) 2008-11-20 2008-11-20 Method for recovering ammonium nitrate from wastewater

Publications (2)

Publication Number Publication Date
JP2010120815A JP2010120815A (en) 2010-06-03
JP5515164B2 true JP5515164B2 (en) 2014-06-11

Family

ID=42322490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008296327A Active JP5515164B2 (en) 2008-11-20 2008-11-20 Method for recovering ammonium nitrate from wastewater

Country Status (1)

Country Link
JP (1) JP5515164B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101786007B1 (en) * 2015-11-25 2017-10-16 (주)성은 Recycling method of ammonium nitrate waste

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583291A (en) * 2011-01-06 2012-07-18 南通宝聚颜料有限公司 Preparation process of ferric phosphate capable of simultaneously obtaining nitric acid and ammonium nitrate
CN102139983A (en) * 2011-02-16 2011-08-03 神华集团有限责任公司 Waste water treatment method and system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140716A (en) * 1979-04-16 1980-11-04 Sumitomo Chem Co Ltd Caking preventing method for granular ammonium nitrate
JPH1034165A (en) * 1996-07-25 1998-02-10 Nittetsu Kakoki Kk Method for treating wastewater containing nitrate ion and ammonium ion
KR100298055B1 (en) * 1997-09-26 2001-11-30 최동환 Preparation of phase stabilized ammonium nitrate by salting out method
JP2000178023A (en) * 1998-12-11 2000-06-27 Dowa Mining Co Ltd Nitrogen-containing mixed salt from nitric acid-and ammonia-containing liquid and recovery of the salt
JP2004097963A (en) * 2002-09-10 2004-04-02 Nissan Chem Ind Ltd Method for treating waste water containing ammonium nitrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101786007B1 (en) * 2015-11-25 2017-10-16 (주)성은 Recycling method of ammonium nitrate waste

Also Published As

Publication number Publication date
JP2010120815A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
WO2012033077A1 (en) Method of treating copper etching waste liquor
JP5515164B2 (en) Method for recovering ammonium nitrate from wastewater
CN105645634B (en) A kind of processing method of epoxy resin synthetic wastewater
KR101233776B1 (en) Treating method of waste water
JP4674168B2 (en) Wastewater treatment method
CN103318918A (en) Method for purification and recovery of ammonia gas
JP4954131B2 (en) Treatment method of water containing borofluoride
JP6260332B2 (en) Method and apparatus for treating waste-based combustion ash used in cement production
CN107207254B (en) The recovery acid from rich acid solution
CN110776182B (en) Method for comprehensively treating rare earth ammonia nitrogen wastewater in rare earth alkaline leaching process
CN106186486B (en) A kind of recovery and treatment method of hydrazine hydrate high-salt wastewater
EA038223B1 (en) Process for the purification of caprolactam from a solution of crude caprolactam without organic solvent extraction
JPH09504472A (en) How to remove perchlorate
JP7115123B2 (en) Lithium purification method
JP2013245159A (en) Method for comprehensively treating claus tail gas and producing manganese sulfate
JPH03265514A (en) Method for treatment of etching waste liquid containing fluorine compd.
WO2014158629A1 (en) Methods and systems for producing demn eutectic, and related methods of producing energetic compositions
JP4633272B2 (en) Treatment method for boron-containing wastewater
JP6844600B2 (en) Method and device for removing selenium from slag, reuse method for slag, and manufacturing method for recycled slag
JP2014505592A (en) Cellulose phosphate powder product, process for producing the same, and use for removing contaminants from aqueous solutions
JP6579317B2 (en) Desalination method of incineration ash
JP6660812B2 (en) Waste liquid treatment method and waste liquid treatment device
KR102628785B1 (en) Method for manufacturing regenerated gypsum using waste citric acid and regenerated gypsum manufactured by the method
US10464908B2 (en) Purification of flow sodium 5-nitrotetrazolate solutions with copper modified cation exchange resin
SU201352A1 (en) METHOD OF OBTAINING METAL NITRATES

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110929

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140314

R150 Certificate of patent or registration of utility model

Ref document number: 5515164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250