JP5512471B2 - Resistance spot welding electrode - Google Patents

Resistance spot welding electrode Download PDF

Info

Publication number
JP5512471B2
JP5512471B2 JP2010200647A JP2010200647A JP5512471B2 JP 5512471 B2 JP5512471 B2 JP 5512471B2 JP 2010200647 A JP2010200647 A JP 2010200647A JP 2010200647 A JP2010200647 A JP 2010200647A JP 5512471 B2 JP5512471 B2 JP 5512471B2
Authority
JP
Japan
Prior art keywords
plate member
shaft
cooling
resistance spot
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010200647A
Other languages
Japanese (ja)
Other versions
JP2012055925A (en
Inventor
健輔 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2010200647A priority Critical patent/JP5512471B2/en
Publication of JP2012055925A publication Critical patent/JP2012055925A/en
Application granted granted Critical
Publication of JP5512471B2 publication Critical patent/JP5512471B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Description

本発明は、板部材が重ね合わされたワークに当接して加圧力を付与すると共に通電して板部材をスポット溶接する抵抗スポット溶接用電極に関する。   The present invention relates to an electrode for resistance spot welding that abuts against a workpiece on which plate members are superimposed to apply pressure and is energized to spot weld a plate member.

従来から、重ね合わされた板部材からなるワークの接合には、ワークを一対の溶接用電極で挟み加圧力を与えながら、両電極間に大電流を一定時間流し、これにより接合部における発熱によりナゲットを形成することによって板部材を接合するダイレクトスポット溶接やシリーズ溶接が行われる。   Conventionally, for joining workpieces composed of stacked plate members, a large current is passed between the electrodes for a certain period of time while the workpiece is sandwiched between a pair of welding electrodes while applying pressure. The direct spot welding and series welding which join a plate member by forming are performed.

一方、自動車車体等の構造体における板部材のスポット溶接においては、ダイレクトスポット溶接では、一方の溶接用電極を配置するスペースがなく、また、シリーズ溶接ではバック電極の配置スペースがない場合がある。   On the other hand, in spot welding of a plate member in a structure such as an automobile body, direct spot welding may not have a space for arranging one welding electrode, and series welding may not have a space for arranging a back electrode.

この対策として、板部材が重ね合わされたワークの一方の側からのみ溶接することが可能な、片側抵抗スポット溶接が行われる。   As a countermeasure against this, one-side resistance spot welding is performed in which welding can be performed only from one side of a workpiece on which plate members are superimposed.

この片側抵抗スポット溶接の一例を、図4を参照して説明する。第1板部材101と第2板部材102が重ね合わされたワーク100を片側抵抗スポット溶接するにあたり、第2板部材102にアース電極106を通電可能に接触させる一方、第1板部材101の表面に溶接用電極105を当接して加圧力を付与すると、その加圧力により第1板部材101と第2板部材102が接合点aで通電可能に接触して、溶接用電極105から第1板部材101、接合点a、第2板部材102を介してアース電極106に至る溶接通電経路Xが形成される。   An example of this one-side resistance spot welding will be described with reference to FIG. In the one-side resistance spot welding of the workpiece 100 in which the first plate member 101 and the second plate member 102 are overlapped, the ground electrode 106 is brought into contact with the second plate member 102 so as to be energized, while the surface of the first plate member 101 is contacted. When the welding electrode 105 is brought into contact and a pressing force is applied, the pressing force causes the first plate member 101 and the second plate member 102 to come into contact with each other at the joining point a so that the first plate member can be connected from the welding electrode 105. 101, a welding energization path X reaching the ground electrode 106 through the junction point a and the second plate member 102 is formed.

この第1板部材101と第2板部材102が接合点aにおいて通電可能に接触した状態で、溶接電流iを溶接用電極105からアース電極106に流す。これにより溶接電流iの一部iaが溶接通電経路Xを流れることにより、第1板部材101と第2板部材102との接合点aが加熱されて溶融し、接合点aにナゲットNが形成される。   In a state where the first plate member 101 and the second plate member 102 are in contact with each other so as to be energized at the junction point a, a welding current i is passed from the welding electrode 105 to the ground electrode 106. As a result, when a part ia of the welding current i flows through the welding energization path X, the joining point a between the first plate member 101 and the second plate member 102 is heated and melted, and a nugget N is formed at the joining point a. Is done.

また、溶接用電極105からアース電極106に流れる溶接電流iの一部ibは、接合点aを通らず、例えば第1板部材101から既に溶接した接合点bに分流する通電経路X1を経由して第2板部材102側に流れる。この分流電流ibは接合点aの発熱には殆ど寄与しない無効分流である。この無効分流ibにより溶接電流経路Xを流れる電流の減少が起きて接合点aに形成されるナゲットNの径が不足して必要強度が得られないことが懸念される。また、無効分流ibにより溶接通電経路Xを流れる電流が減少してナゲットNの形成が遅くなり、ナゲットNの形成よりも電流密度の高い溶接用電極105近傍で第1板部材101が加熱されて溶融する破損、いわゆる板切れの発生が懸念される。   Further, a part ib of the welding current i flowing from the welding electrode 105 to the ground electrode 106 does not pass through the joint point a, for example, via an energization path X1 that diverts from the first plate member 101 to the joint point b that has already been welded. Flow to the second plate member 102 side. This shunt current ib is an invalid shunt that hardly contributes to the heat generation at the junction point a. There is a concern that the current flowing through the welding current path X is reduced by the ineffective diversion ib, and the diameter of the nugget N formed at the joint point a is insufficient to obtain the required strength. Further, the current flowing through the welding energization path X is reduced by the ineffective shunt ib, so that the formation of the nugget N is delayed, and the first plate member 101 is heated in the vicinity of the welding electrode 105 having a higher current density than the formation of the nugget N. There is concern about the occurrence of melting breakage, so-called plate breakage.

一方、特許文献1によってクラック等の欠損の発生を防止する溶接用電極が提案されている。この溶接用電極111は、図5に示すように、略円錐状の先端形状を備え、円錐の先端角度aが120度〜165度である円錐面112と、円錐の先端中心部に直径bが1.5〜3mmの平坦部113が形成される。   On the other hand, Patent Document 1 proposes a welding electrode that prevents the occurrence of defects such as cracks. As shown in FIG. 5, the welding electrode 111 has a substantially conical tip shape, a cone surface 112 having a cone tip angle a of 120 to 165 degrees, and a diameter b at the center of the tip of the cone. A flat portion 113 having a thickness of 1.5 to 3 mm is formed.

この溶接用電極111によると、円錐状の先端中心部に形成した平坦部113の直径bを1.5〜3mmと小さくすることで、通電初期にワークに当接する接触面積が小さく通電初期の電流密度が大きくなり、ワークの表面が早期に加熱されて軟化し、かつ円錐の先端角度が120度から165度の円錐面112を備えることで溶接用電極111を押し当てた部位の近傍にクラック等が生じた場合でも、すぐに円錐面112がクラックに押し当たりクラックを、その発生後すぐに埋めることでクラックの成長による欠損を防止する。   According to this welding electrode 111, by reducing the diameter b of the flat portion 113 formed at the center of the conical tip to 1.5 to 3 mm, the contact area that contacts the workpiece at the initial energization is small, and the current at the initial energization The density is increased, the surface of the workpiece is heated and softened early, and the conical surface 112 with a cone tip angle of 120 to 165 degrees is provided so that cracks or the like are formed in the vicinity of the portion where the welding electrode 111 is pressed. Even when this occurs, the conical surface 112 immediately hits the crack and fills the crack immediately after the occurrence of the crack, thereby preventing defects due to the growth of the crack.

特開2006−198676号公報JP 2006-198676 A

しかし、特許文献1の溶接用電極111によると、円錐面112の押し当てによりワークに発生するクラックの発生による欠損を抑制することができるものの、無効電流による溶接電流密度の低下やワークの溶損による溶接品質の低下が懸念される。   However, according to the welding electrode 111 of Patent Document 1, it is possible to suppress defects due to the generation of cracks generated in the workpiece by the pressing of the conical surface 112, but the welding current density is reduced due to the reactive current or the workpiece is damaged. There is concern about the deterioration of the welding quality due to.

例えば、図6に示すように第1板部材101と第2板部材102が重ね合わされたワーク100を片側抵抗スポット溶接するにあたり、第2板部材102にアース電極106を通電可能に接触させる一方、第1板部材101の表面に溶接用電極111を当接して加圧力を付与すると、第1板部材101と第2板部材102が接合点aで通電可能に接触して、溶接用電極111から第1板部材101、接合点a、第2板部材102を介してアース電極106に至る溶接通電経路Xが形成される。この第1板部材101と第2板部材102が接合点aにおいて通電可能に接触した状態で、溶接電流iを溶接用電極111からアース電極106に流す。これにより溶接電流iの一部iaが溶接通電経路Xを流れることにより、第1板部材101と第2板部材102との接合点aが加熱されて溶融し、ナゲットNが形成される。   For example, as shown in FIG. 6, when one-side resistance spot welding is performed on the workpiece 100 in which the first plate member 101 and the second plate member 102 are overlapped, the ground electrode 106 is brought into contact with the second plate member 102 so as to be energized, When the welding electrode 111 is brought into contact with the surface of the first plate member 101 to apply a pressing force, the first plate member 101 and the second plate member 102 come into contact with each other at the junction point a so that energization is possible. A welding energization path X reaching the ground electrode 106 through the first plate member 101, the joint point a, and the second plate member 102 is formed. In a state where the first plate member 101 and the second plate member 102 are in contact with each other at the junction point a so as to be energized, a welding current i is passed from the welding electrode 111 to the ground electrode 106. As a result, a part ia of the welding current i flows through the welding energization path X, whereby the junction point a between the first plate member 101 and the second plate member 102 is heated and melted, and a nugget N is formed.

一方、溶接用電極111からアース電極106に流れる溶接電流iの一部ibは第1板部材101に広い範囲で接触する溶接用電極111の円錐面112から第1板部材101に流れ、第1板部材101から既に溶接した接合点bに分流する通電経路X1を経由して第2板部材102側に流れる。この無効分流ibにより溶接電流経路Xを流れる電流の不足が起きて接合点aに形成されるナゲットNの径が不足して必要強度が得られないことが懸念される。また、無効分流ibにより溶接通電経路Xを流れる電流が減少してナゲットNの形成が遅くなり、溶接電極111の円錐面112近傍で第1板部材101が加熱されて溶融し、該部が破損することが懸念される。また、溶接用電極111と第1板部材101の溶着によるワーク100や溶接用電極111の破損を誘発することが懸念される。   On the other hand, a part ib of the welding current i flowing from the welding electrode 111 to the ground electrode 106 flows from the conical surface 112 of the welding electrode 111 that contacts the first plate member 101 in a wide range to the first plate member 101. The current flows from the plate member 101 to the second plate member 102 via the energization path X1 that diverts to the welded joint b. There is a concern that the current flowing through the welding current path X may be insufficient due to the invalid shunt ib, and the diameter of the nugget N formed at the joint a may be insufficient to obtain the required strength. Further, the current flowing through the welding energization path X is reduced by the ineffective diversion ib, and the formation of the nugget N is delayed, and the first plate member 101 is heated and melted in the vicinity of the conical surface 112 of the welding electrode 111, and the portion is damaged. There is a concern to do. In addition, there is a concern that the work 100 and the welding electrode 111 may be damaged due to welding of the welding electrode 111 and the first plate member 101.

従って、かかる点に鑑みなされた本発明の目的は、ワーク等の溶損等が回避でき高品質の溶接品質が確保できる抵抗スポット溶接用電極を提供することにある。   Accordingly, an object of the present invention made in view of such a point is to provide a resistance spot welding electrode which can avoid melting damage of a workpiece and the like and can ensure high quality welding quality.

上記目的を達成する請求項1に記載の抵抗スポット溶接用電極の発明は、板部材が重ね合わされたワークに当接して加圧力を付与すると共に通電して上記板部材を抵抗スポット溶接するシャンクの先端に装着される抵抗スポット溶接用電極において、上記シャンクの先端に装着される基部及び該基部から突出する柱状でワークに当接する頂端を有する軸部が一体形成された通電部と、上記軸部が貫通する軸孔を有する筒状で上記軸部の頂端が突出する先端側にワーク当接面を有する冷却部とを備え、上記軸部が上記軸孔を貫通して上記頂端を上記ワーク当接面から突出せしめると共に上記通電部と冷却部が電気絶縁体を介在して結合したことを特徴とする。   The electrode for resistance spot welding according to claim 1, which achieves the above object, is a shank for abutting a workpiece on which plate members are overlapped to apply pressure and energizing the plate member for resistance spot welding. In the resistance spot welding electrode attached to the tip, an energizing portion in which a base portion attached to the tip of the shank and a shaft portion having a columnar shape protruding from the base portion and contacting the workpiece is integrally formed; and the shaft portion And a cooling part having a work contact surface on the tip side from which the top end of the shaft part protrudes, and the shaft part penetrates the shaft hole and attaches the top end to the work contact. The current-carrying part and the cooling part are coupled with each other through an electrical insulator while projecting from the contact surface.

これによると、シャンクの先端に装着される抵抗スポット溶接用電極が、通電部の基部から突出する柱状の軸部を有し、軸部が貫通する軸孔を有する筒状で軸部の頂端が突出する先端側にワーク当接面を有する冷却部を備え、通電部と冷却部を電気絶縁体を介在して結合することから、スポット溶接の際の溶接電流が、通電部の軸部の頂端からワークの溶接通電経路を流れる一方、軸部から冷却部を介してワークに分流する無効電流が極めて抑制されて効率的にナゲットを形成することができ、かつワークが過剰に加熱されることに起因する過熱による溶損等のワークの板切れ等の破損が回避される。   According to this, the resistance spot welding electrode attached to the tip of the shank has a columnar shaft portion protruding from the base portion of the current-carrying portion, a cylindrical shape having a shaft hole through which the shaft portion passes, and the top end of the shaft portion is A cooling part having a workpiece contact surface is provided on the protruding tip side, and the current-carrying part and the cooling part are joined via an electrical insulator, so that the welding current during spot welding is the top end of the shaft part of the current-carrying part. The reactive current diverted from the shaft part to the work through the cooling part is extremely suppressed, so that the nugget can be formed efficiently and the work is excessively heated. Damage such as cutting of the workpiece such as melting due to overheating caused by the heating can be avoided.

また、軸部の頂端からワークに放射状に外側に流れる無効電流による発熱は、ワークに当接する冷却部によって抑制され、より確実に過熱によるワークの板切れ等の破損を防止することができる。   In addition, heat generation due to the reactive current that flows radially outward from the top end of the shaft portion to the work is suppressed by the cooling unit that contacts the work, and damage to the work such as a plate breakage due to overheating can be more reliably prevented.

更に、軸部からワークに分流する無効電流が極めて抑制されることから、隣接する打点位置を接近させることが可能になり、溶接強度を向上させると共に打点位置の設定が容易になり設計の自由度が向上する。   In addition, the reactive current diverted from the shaft to the workpiece is extremely suppressed, making it possible to bring adjacent spot positions closer, improving welding strength and facilitating the setting of spot positions and increasing design freedom. Will improve.

請求項2に記載の発明は、請求項1の抵抗スポット溶接用電極において、上記通電部は、基端が開口部を有する環状で上記シャンクの先端に嵌挿する内周面を備えた円筒状の周壁の先端側を隔壁によって閉じた有底円筒状の基部と、該隔壁の中央部から上記基部と同軸上で延設された円柱状でワークに当接する頂端を有する軸部とが一体形成され、上記冷却部は、上記隔壁の周縁部分に対向する環状の基端面を有する筒部と、該筒部の先端側に縮径して連続形成されて上記ワーク当接面を有すると共に上記軸部が挿通可能な軸孔が穿孔された頂面部とが一体形成され、対向する上記冷却部の基端面と隔壁の周縁部分が電気絶縁体を介在して結合し、上記軸部の先端外周と軸孔の内周面が電気絶縁体を介在して結合されたことを特徴とする。   According to a second aspect of the present invention, in the electrode for resistance spot welding according to the first aspect, the energizing portion is an annular shape having a base end having an opening and a cylindrical shape having an inner peripheral surface to be fitted into the tip of the shank. A cylindrical base with a bottom with the front end side of the peripheral wall closed by a partition, and a shaft having a columnar shape extending coaxially with the base from the center of the partition and having a top end contacting the workpiece The cooling portion includes a cylindrical portion having an annular base end surface facing a peripheral portion of the partition wall, a continuous diameter-reduced diameter at the distal end side of the cylindrical portion, the workpiece contact surface, and the shaft. And a top surface portion in which a shaft hole through which the portion can be inserted is formed integrally, and a base end surface of the cooling portion and a peripheral portion of the partition wall which are opposed to each other are joined via an electric insulator, The inner peripheral surface of the shaft hole is connected through an electric insulator.

これは、通電部及び冷却部の具体的構成であって、通電部を基端が開口部を有する環状でシャンクの先端に嵌挿する内周面を備えた円筒状の周壁の先端側を隔壁によって閉じた有底円筒状の基部及び隔壁に延設された軸部とが一体形成され、冷却部は隔壁の周縁部分に対向する環状の基端面を有する筒部及び筒部の先端側に縮径して連続形成されてワーク当接面を有すると共に軸部が挿通可能な軸孔が穿孔された頂面部とが一体形成され、冷却部の基端面と隔壁の周縁部分が電気絶縁体を介在して結合し、軸部の先端外周と軸孔の内周面が電気絶縁体を介在して結合することで溶接用電極が構成され、スポット溶接の際の溶接電流が通電部の軸部の頂端からワークの溶接通電経路を流れる一方、軸部から冷却部を介してワークに分流する無効電流が極めて抑制されて効率的にナゲットを形成することができ、かつワークが過剰に加熱されることに起因する過熱による溶損等のワークの板切れ等の破損が回避される請求項1の作用が達成できる。   This is a specific configuration of the energization unit and the cooling unit, and the front end side of a cylindrical peripheral wall having an inner peripheral surface in which the energization unit has an opening with an opening at the base end and is fitted to the front end of the shank is a partition wall The closed bottomed cylindrical base and the shaft extending to the partition are integrally formed, and the cooling part is contracted to the cylindrical part having an annular base end face facing the peripheral part of the partition and the distal end side of the cylindrical part. Consisting of a diameter, a workpiece contact surface, and a top surface portion with a shaft hole through which a shaft portion can be inserted, are integrally formed, and the base end surface of the cooling portion and the peripheral portion of the partition wall interpose an electrical insulator. As a result, a welding electrode is formed by joining the outer periphery of the tip of the shaft portion and the inner peripheral surface of the shaft hole with an electrical insulator interposed therebetween. Ineffective while flowing through the welding current path of the workpiece from the top end, but diverting from the shaft to the workpiece via the cooling section 2. The nugget can be efficiently formed with extremely low flow, and damage such as chipping of the workpiece due to overheating caused by excessive heating of the workpiece is avoided. The action can be achieved.

請求項3に記載の発明は、請求項2の抵抗スポット溶接用電極において、上記隔壁と上記冷却部の筒部及び頂面部と上記軸部との協働により形成され冷却水ジャケットと、上記通電部の基部内に供給された冷却水を上記冷却水ジャケットに循環供給する隔壁に穿設された冷却水路を備えたことを特徴とする。   According to a third aspect of the present invention, in the resistance spot welding electrode according to the second aspect, the cooling water jacket formed by the cooperation of the partition wall, the cylindrical portion and the top surface portion of the cooling portion, and the shaft portion, and the energization A cooling water passage is provided in a partition wall that circulates and supplies the cooling water supplied into the base of the unit to the cooling water jacket.

これによると、冷却水ジャケットに循環供給される冷却水によって冷却部が積極的に冷却されて、より確実にワークが過剰に加熱されることに起因する過熱による溶損等のワークの板切れ等の破損が回避される。   According to this, the cooling part is positively cooled by the cooling water circulated and supplied to the cooling water jacket, and the work piece is cut due to overheating caused by the work being heated excessively more reliably. Damage is avoided.

請求項4に記載の発明は、請求項請求項1〜3のいずれか1項の抵抗スポット溶接用電極において、上記電気絶縁体は、電気絶縁性を有する接着剤であることを特徴とする。   The invention according to claim 4 is the resistance spot welding electrode according to any one of claims 1 to 3, wherein the electrical insulator is an adhesive having electrical insulation.

これによると、電気絶縁性を有する接着剤で通電部と冷却部を容易に電気絶縁状態で結合できる。   According to this, the current-carrying part and the cooling part can be easily coupled in an electrically insulated state with an adhesive having electrical insulation.

請求項5に記載の発明は、請求項1〜4のいずれか1項の抵抗スポット溶接用電極において、上記ワーク当接面は、先端側から離反するに従って拡径する円錐面状であることを特徴とする。   According to a fifth aspect of the present invention, in the resistance spot welding electrode according to any one of the first to fourth aspects, the workpiece contact surface has a conical surface shape whose diameter increases as the distance from the tip side increases. Features.

これによると、加圧力によりワーク当接面が容易にワークに接触し、より確実に過熱によるワークの板切れ等の破損を防止することができる。更に、軸部の頂端を囲むようにワークにワーク当接面が当接する冷却部によって、圧痕等のワークの局部的な変形の発生が抑制できる。   According to this, the workpiece contact surface easily contacts the workpiece by the applied pressure, and it is possible to more reliably prevent the workpiece from being damaged due to overheating. Furthermore, local deformation of the workpiece such as indentation can be suppressed by the cooling portion in which the workpiece contact surface contacts the workpiece so as to surround the top end of the shaft portion.

請求項6に記載の発明は、請求項1〜5のいずれか1項の抵抗スポット溶接用電極において、上記通電部及び冷却部が銅合金製であることを特徴とする。   The invention according to claim 6 is the resistance spot welding electrode according to any one of claims 1 to 5, wherein the energization part and the cooling part are made of a copper alloy.

これによると、通電性及び電熱性に優れた銅合金によって通電部及び冷却部を構成することで、請求項1〜5の作用効果が効率的に達成できる。   According to this, the effect of Claims 1-5 can be achieved efficiently by comprising an energization part and a cooling part with the copper alloy excellent in electroconductivity and electrothermal property.

本発明によると、溶接用電極がシャンクの先端に装着され通電部が基部及び該基部から突出する柱状でワークに当接する頂端を有する軸部を有し、軸部が貫通する軸孔を有する筒状で軸部の着端が突出する先端側にワーク当接面を有する冷却部を備え、通電部と冷却部が電気絶縁体を介在にて結合して構成され、スポット溶接の際の溶接電流が、通電部の軸部の頂端からワークの溶接通電経路を流れる一方、軸部から冷却部を介してワークに分流する無効電流が極めて抑制されて効率的にナゲットを形成することができ、かつワークが過剰に加熱されることに起因する過熱による溶損等のワークの板切れ等の破損が回避される。   According to the present invention, the welding electrode is attached to the tip of the shank, the energizing portion has a base portion and a shaft portion having a columnar shape protruding from the base portion and having a top end contacting the workpiece, and the shaft portion has a shaft hole through which the shaft portion passes. A cooling portion having a workpiece contact surface on the tip side from which the end of the shaft portion protrudes, and the current-carrying portion and the cooling portion are coupled with an electrical insulator interposed therebetween, so that the welding current during spot welding is However, while flowing through the welding energization path of the workpiece from the top end of the shaft portion of the current-carrying portion, the reactive current diverted from the shaft portion to the workpiece via the cooling portion can be extremely suppressed, and a nugget can be efficiently formed, and Damage such as cutting of the workpiece such as melting due to overheating caused by excessive heating of the workpiece is avoided.

本発明の一実施の形態における抵抗スポット溶接用電極を備えた片側抵抗スポット溶接の説明図である。It is explanatory drawing of the one side resistance spot welding provided with the electrode for resistance spot welding in one embodiment of this invention. 抵抗スポット溶接用電極の断面図である。It is sectional drawing of the electrode for resistance spot welding. 抵抗スポット溶接用電極の分解断面図である。It is an exploded sectional view of an electrode for resistance spot welding. 従来の抵抗スポット溶接用電極の説明図である。It is explanatory drawing of the conventional electrode for resistance spot welding. 従来の抵抗スポット溶接用電極の説明図である。It is explanatory drawing of the conventional electrode for resistance spot welding. 従来の抵抗スポット溶接用電極の説明図である。It is explanatory drawing of the conventional electrode for resistance spot welding.

以下、本発明の抵抗スポット溶接用電極の一実施の形態を図1乃至図3を参照して説明する。   Hereinafter, an embodiment of an electrode for resistance spot welding of the present invention will be described with reference to FIGS.

図1は、本実施の形態の抵抗スポット溶接用電極10を適用した片側抵抗スポット溶接の概要説明図である。   FIG. 1 is a schematic explanatory diagram of one-side resistance spot welding to which the resistance spot welding electrode 10 of the present embodiment is applied.

第1板部材101と第2板部材102が重ね合わされたワーク100を片側抵抗スポット溶接するにあたり、第2板部材102にアース電極1を通電可能に接続する一方、図示しない加圧アクチュエータによってワーク100に接離する方向に往復動するシャンク2の先端に装着された溶接用電極10を第1板部材101の表面に当接して加圧力を付与し、この加圧力により第1板部材101と第2板部材102を接合点aで通電可能に接触させ、溶接用電極10とアース電極1との間に溶接電流iを流して第1板部材101と第2板部材102の接合点aにナゲットNを形成して第1板部材101と第2板部材102をスポット溶接する。   When one-side resistance spot welding is performed on the workpiece 100 on which the first plate member 101 and the second plate member 102 are overlapped, the ground electrode 1 is connected to the second plate member 102 so as to be energized. The welding electrode 10 attached to the tip of the shank 2 reciprocating in the direction of contact with and separating from the first plate member 101 is brought into contact with the surface of the first plate member 101 to apply a pressing force. The two plate members 102 are brought into contact with each other at the junction point a so that energization is possible, and a welding current i is passed between the welding electrode 10 and the ground electrode 1 to nugget the junction point a between the first plate member 101 and the second plate member 102. N is formed, and the first plate member 101 and the second plate member 102 are spot-welded.

図2及び図3を参照して溶接用電極10を説明する。図2は溶接用電極10の断面図、図3は溶接用電極10の分解断面図である。   The welding electrode 10 will be described with reference to FIGS. FIG. 2 is a cross-sectional view of the welding electrode 10, and FIG. 3 is an exploded cross-sectional view of the welding electrode 10.

溶接用電極10は、シャンク2の先端に装着される通電部11と通電部11に電気絶縁状態で取り付けられる冷却部21を主要部として構成される。   The welding electrode 10 is mainly composed of a current-carrying part 11 attached to the tip of the shank 2 and a cooling part 21 attached to the current-carrying part 11 in an electrically insulated state.

溶接用電極10が装着されるシャンク2は、図3に示すように先端外周に基端側から先端3側に移行するに従って次第に縮径する円錐テーパ状の電極取付部4が形成され、その軸方向に沿って先端3に開口する冷却水供給孔5が形成される。   As shown in FIG. 3, the shank 2 to which the welding electrode 10 is attached is formed with a conical taper-shaped electrode mounting portion 4 that gradually decreases in diameter as it moves from the proximal end side to the distal end 3 side on the outer periphery of the distal end. A cooling water supply hole 5 opening at the tip 3 along the direction is formed.

一方、溶接用電極10の通電部11及び冷却部21は導電性及び伝熱性に優れた銅合金等の通常の溶接電極材料によって構成される。通電部11は、基端14が開口部を有する環状でかつ、基端14の外縁及び内縁に連続する外周面15及び内周面16を有して中心軸11Lに沿って延在する円筒状の周壁13を有し、先端側が内側面17aと平坦な先端面17bを有する円板状の隔壁17によって閉じた有底円筒状に形成される基部12と、隔壁17の先端面17bの中央部から基部12と同軸上で中心軸11Lに沿って延設する円柱状の軸部18とが一体形成される。周壁13の内周面16と隔壁17の内側面17aによって基部12内に冷却水保持部16Aが形成される。   On the other hand, the current-carrying portion 11 and the cooling portion 21 of the welding electrode 10 are made of a normal welding electrode material such as a copper alloy having excellent conductivity and heat conductivity. The energizing portion 11 has an annular shape in which the base end 14 has an opening, and has an outer peripheral surface 15 and an inner peripheral surface 16 continuous to the outer edge and the inner edge of the base end 14 and extends along the central axis 11L. A base 12 formed in a bottomed cylindrical shape closed by a disc-shaped partition wall 17 having an inner surface 17a and a flat tip surface 17b on the front end side, and a central portion of the front end surface 17b of the partition wall 17 A columnar shaft portion 18 that is coaxial with the base portion 12 and extends along the central axis 11L is integrally formed. A cooling water holding portion 16 </ b> A is formed in the base portion 12 by the inner peripheral surface 16 of the peripheral wall 13 and the inner side surface 17 a of the partition wall 17.

基部12の内周面16は、シャンク2に形成された円錐テーパ状の電極取付部4に嵌合可能な基端14側から先端側に移行するに従って次第に縮径するテーパ孔16aを有する。隔壁17の内側面17a側、即ち冷却水保持部16A側と軸部18に隣接する先端面17b側の部分とを連通する複数の冷却水路17cが穿孔される。また、隔壁17の先端面17bに外周に沿って環状の接着部17dが形成される。   The inner peripheral surface 16 of the base portion 12 has a tapered hole 16a that gradually decreases in diameter as it moves from the base end 14 side that can be fitted into the conical taper-shaped electrode mounting portion 4 formed in the shank 2 to the front end side. A plurality of cooling water passages 17c that communicate the inner surface 17a side of the partition wall 17, that is, the cooling water holding portion 16A side and the tip surface 17b side adjacent to the shaft portion 18, are perforated. An annular adhesive portion 17d is formed on the distal end surface 17b of the partition wall 17 along the outer periphery.

基部12の先端面17bから突出する軸部18は、周面19及び平坦な直径1.5〜3mmの頂端20を有する円柱状で、周面19の先端外周に環状の接着部19aが形成される。   The shaft portion 18 protruding from the distal end surface 17b of the base portion 12 has a cylindrical shape having a peripheral surface 19 and a flat top end 20 having a diameter of 1.5 to 3 mm. An annular adhesive portion 19a is formed on the outer periphery of the distal end of the peripheral surface 19. The

冷却部21は、隔壁17の先端面17bに形成された接着部17dに対向する接着部23dを有して先端面17bの周縁部分に対向する環状の基端面23及び基端面23の外周縁及び内周縁に連続する外周面24と内周面25とを有して中芯軸11Lに沿って延在する円筒状の筒部22を有し、先端側に円錐テーパ状の内側面27とワーク当接面28を有すると共に軸部18が挿通可能な軸孔29が形成され筒部22を縮径する頂面部26が形成される。ワーク当接面28は、中心軸11Lを中心として先端側から基端面23側に移行するに従って拡径する円錐面状でワーク100に接触可能な例えば先端角度αが120度から170度に設定される。   The cooling unit 21 includes an annular base end surface 23 facing the peripheral portion of the front end surface 17b and an outer peripheral edge of the base end surface 23 having an adhesive portion 23d facing the adhesive portion 17d formed on the front end surface 17b of the partition wall 17. It has an outer peripheral surface 24 and an inner peripheral surface 25 that are continuous with the inner peripheral edge, and has a cylindrical tube portion 22 that extends along the core shaft 11L. A shaft hole 29 that has the contact surface 28 and through which the shaft portion 18 can be inserted is formed, and a top surface portion 26 that reduces the diameter of the cylindrical portion 22 is formed. The workpiece contact surface 28 has a conical surface shape whose diameter increases as it moves from the distal end side to the proximal end surface 23 side around the central axis 11L. For example, the distal end angle α that can contact the workpiece 100 is set from 120 degrees to 170 degrees. The

この通電部11と冷却部21は、通電部11に形成した隔壁17の先端面17bと冷却部21の基端面23を対向させ、かつ軸部18の先端外周を頂面部26の軸孔29に貫通して頂端20をワーク当接面28から僅かに突出させるように位置決めすると共に、対向する隔壁17の接着面17dと基端面23の接着部23dとの間を耐熱性及び電気絶縁性に優れた電気絶縁体となる接着剤31、例えばセラミック系耐熱用接着剤を介在して環状に結合する。同様に軸孔29の内周面29aと軸部18の接着部19aの間を耐熱性及び電気絶縁性に優れた電気絶縁体となる接着剤32、例えばセラミック系耐熱用接着剤を介在して結合する。この電気絶縁性を有する接着剤31、32を介在させることで通電部11と冷却部20が容易に電気絶縁状態で結合できる。   The energizing part 11 and the cooling part 21 are such that the tip end face 17b of the partition wall 17 formed in the energizing part 11 and the base end face 23 of the cooling part 21 face each other, and the outer periphery of the tip end of the shaft part 18 is formed in the shaft hole 29 of the top face part 26. The top end 20 is positioned so as to protrude slightly from the workpiece contact surface 28 and has excellent heat resistance and electrical insulation between the adhesive surface 17d of the opposing partition wall 17 and the adhesive portion 23d of the base end surface 23. In addition, an adhesive 31 serving as an electrical insulator, for example, a ceramic heat-resistant adhesive, is interposed in a ring shape. Similarly, an adhesive 32 that becomes an electrical insulator having excellent heat resistance and electrical insulation, for example, a ceramic heat-resistant adhesive is interposed between the inner peripheral surface 29a of the shaft hole 29 and the adhesive portion 19a of the shaft portion 18. Join. The current-carrying part 11 and the cooling part 20 can be easily coupled in an electrically insulated state by interposing the adhesives 31 and 32 having electrical insulation properties.

この接着剤31によって隔壁17と基端面23との間が水密的にシールされ、接着剤32によって軸孔29の内周面29aと軸部18の接着部19aの間が水密的にシールされる。   The partition wall 17 and the base end surface 23 are sealed in a watertight manner by the adhesive 31, and the space between the inner peripheral surface 29 a of the shaft hole 29 and the bonding portion 19 a of the shaft portion 18 is sealed in a watertight manner by the adhesive 32. .

これにより通電部11と冷却部21が、隔壁17と基端面23との間に介在する接着剤31及び軸孔29の内周面29aと軸部18の間に介在する接着剤32により電気的に絶縁し、かつ断熱状態で一体的に構成され、通電部11の隔壁17及び軸部18と冷却部21の筒部22及び頂面部26によって冷却部21内に冷却水ジャケット30が形成された溶接用電極10が構成される。   As a result, the energizing portion 11 and the cooling portion 21 are electrically connected by the adhesive 31 interposed between the partition wall 17 and the base end surface 23 and the adhesive 32 interposed between the inner peripheral surface 29 a of the shaft hole 29 and the shaft portion 18. The cooling water jacket 30 is formed in the cooling portion 21 by the partition wall 17 and the shaft portion 18 of the energizing portion 11 and the cylindrical portion 22 and the top surface portion 26 of the cooling portion 21. A welding electrode 10 is configured.

このように構成された溶接用電極10は、図2に示すように、その通電部11に形成されたテーパ孔16aがシャンク2の電極取付部4に嵌合してシャンク2の先端に装着される。この装着により通電部11がシャンク2と通電可能に連結される一方、冷却水供給手段から圧送される冷却水がシャンク2の冷却水供給孔5を介して冷却水保持部16Aに供給及び貯留されると共に冷却水路17cから冷却水ジャケット30内に、と冷却水ジャケット30が通電部11の冷却水保持部16A、冷却水路17cを介して連通し、通電部11に断熱的に接合され冷却部21が冷却される。   As shown in FIG. 2, the welding electrode 10 configured in this way is attached to the tip of the shank 2 with the tapered hole 16 a formed in the current-carrying portion 11 fitting into the electrode mounting portion 4 of the shank 2. The By this attachment, the energization part 11 is connected to the shank 2 so as to be energized, while the cooling water pumped from the cooling water supply means is supplied and stored in the cooling water holding part 16A through the cooling water supply hole 5 of the shank 2. In addition, the cooling water jacket 30 communicates from the cooling water passage 17c into the cooling water jacket 30 via the cooling water holding portion 16A and the cooling water passage 17c of the energizing portion 11, and is adiabatically joined to the energizing portion 11 to be cooled by the cooling portion 21. Is cooled.

次に、図1を参照して溶接用電極10の作用を説明する。   Next, the operation of the welding electrode 10 will be described with reference to FIG.

例えば、図1に示す第1板部材101と第2板部材102が重ね合わされたワーク100を片側抵抗スポット溶接するにあたり、第2板部材102にアース電極1を通電可能に接触させる一方、冷却水供給手段からの冷却水をシャンク2の冷却水供給孔5を介して溶接用電極10の通電部11に形成された冷却水保持部16Aに供給し、隔壁17に穿孔された冷却水路17cより冷却水ジャケット30内に循環供給して冷却部21を冷却する。   For example, when one-side resistance spot welding is performed on the workpiece 100 in which the first plate member 101 and the second plate member 102 shown in FIG. 1 are overlapped, the ground electrode 1 is brought into contact with the second plate member 102 so as to be energized, while cooling water Cooling water from the supply means is supplied to the cooling water holding part 16A formed in the energizing part 11 of the welding electrode 10 through the cooling water supply hole 5 of the shank 2, and cooled from the cooling water channel 17c drilled in the partition wall 17. The cooling unit 21 is cooled by circulatingly supplying the water jacket 30.

冷却水ジャケット30に冷却水を循環供給しつつ、第1板部材101の予め設定された打点位置に溶接用電極10の通電部11に突出形成された軸部18の頂端20を当接して、第1板部材101に加圧力を付与する。この溶接電極10の軸部18の頂端20によって加圧力が付与された第1板部材101と第2板部材102が接合部aで通電可能に接触して、溶接用電極10の軸部18の頂端20から第1板部材101、第1板部材101と第2板部材102との接触点a、第2板部材102、第2板部材102からアース電極1に至る溶接通電経路Xが形成される。一方、溶接用電極10による第1板部材101への加圧力付与に伴って冷却部21のワーク当接面28が軸部18の頂端20と第1板部材101との接触部分の周囲を覆うように第1板部材101に接触し、第1板部材101を冷却する。   While circulating and supplying the cooling water to the cooling water jacket 30, the top end 20 of the shaft portion 18 protruding from the energizing portion 11 of the welding electrode 10 is brought into contact with the preset spot position of the first plate member 101, A pressing force is applied to the first plate member 101. The first plate member 101 and the second plate member 102 applied with pressure by the top end 20 of the shaft portion 18 of the welding electrode 10 come into contact with each other so as to be energized at the joint portion a, and the shaft portion 18 of the welding electrode 10 A welding energization path X from the top end 20 to the first plate member 101, the contact point a between the first plate member 101 and the second plate member 102, the second plate member 102, and the second plate member 102 to the ground electrode 1 is formed. The On the other hand, the workpiece contact surface 28 of the cooling unit 21 covers the periphery of the contact portion between the top end 20 of the shaft portion 18 and the first plate member 101 as the welding electrode 10 applies pressure to the first plate member 101. Thus, the first plate member 101 is contacted to cool the first plate member 101.

この第1板部材101と第2板部材102が接合点aにおいて通電可能に接触し、冷却部21のワーク当接面28が第1板部材101に接触して第1板部材101を冷却した状態で、溶接電源からの溶接電流iをシャンク2を介して溶接用電極10の通電部11からアース電極1に流す。そうすると、溶接電流iの一部iaは、軸部18の頂端20と第1板部材101の接触点、第1板部材101、第1板部材101と第2板部材102の接合部a、第2板部材102、第2板部材102とアース電極1の接触部を通る溶接通電経路Xを流れることにより、第1板部材101と第2板部材102の接合点aが加熱されて溶融し、ナゲットNが形成される。   The first plate member 101 and the second plate member 102 come into contact with each other so that energization is possible at the joining point a, and the workpiece contact surface 28 of the cooling unit 21 comes into contact with the first plate member 101 to cool the first plate member 101. In this state, a welding current i from the welding power source is caused to flow from the energizing portion 11 of the welding electrode 10 to the ground electrode 1 through the shank 2. Then, a part ia of the welding current i includes a contact point between the top end 20 of the shaft portion 18 and the first plate member 101, the first plate member 101, the joint portion a between the first plate member 101 and the second plate member 102, and the first plate member 101. By flowing through the welding energization path X passing through the contact portion between the two plate member 102, the second plate member 102 and the ground electrode 1, the junction point a between the first plate member 101 and the second plate member 102 is heated and melted, A nugget N is formed.

ここで、溶接電流iは溶接用電極10の軸中心における軸部18の頂端20から溶接通電経路Xを流れ、軸部18の外周に形成される冷却部21が電気的絶縁状態で結合されることから、軸部18から冷却部21を介して第1板部材101に分流する無効電流が極めて抑制されて溶接電流iが溶接通電経路Xに集中して流れ効率的にナゲットNを形成することができる一方、スポット溶接の際ワーク100が過剰に加熱されることに起因する、いわゆる過熱による溶損等のワーク100の板切れ等の破損が回避される。   Here, the welding current i flows through the welding energization path X from the top end 20 of the shaft portion 18 at the axial center of the welding electrode 10, and the cooling portion 21 formed on the outer periphery of the shaft portion 18 is coupled in an electrically insulated state. Therefore, the reactive current diverted from the shaft portion 18 to the first plate member 101 via the cooling portion 21 is extremely suppressed, and the welding current i is concentrated in the welding energization path X to efficiently form the nugget N. On the other hand, breakage such as cutting of the workpiece 100 such as melting due to overheating caused by excessive heating of the workpiece 100 during spot welding is avoided.

また、軸部18の頂端20から第1板部材101に放射状に外側に流れる無効電流ibによる第1板部材101の発熱は、軸部18を囲むように第1板部材101にワーク当接面28が当接する冷却部21によって抑制され、より確実に過熱によるワーク100の板切れ等の破損を防止することができる。   Further, the heat generation of the first plate member 101 due to the reactive current ib that flows radially outward from the top end 20 of the shaft portion 18 to the first plate member 101 causes the work contact surface of the first plate member 101 to surround the shaft portion 18. It is suppressed by the cooling part 21 with which 28 abuts, and it is possible to prevent the workpiece 100 from being broken due to overheating more reliably.

また、周囲が接着剤31及び32により電気的絶縁状態に保持されることから、溶接のための貫通電流の割合が大きく接合点aのナゲットNの形成効率が向上し、溶接品質が向上する。更に、軸部18の頂端20を囲むように第1板部材101にワーク当接面28が当接する冷却部21によって、圧痕等のワーク100の局部的な変形の発生が抑制できる。   Further, since the periphery is held in an electrically insulating state by the adhesives 31 and 32, the ratio of the through current for welding is large, the formation efficiency of the nugget N at the joint point a is improved, and the welding quality is improved. Furthermore, local deformation of the workpiece 100 such as indentation can be suppressed by the cooling unit 21 in which the workpiece contact surface 28 contacts the first plate member 101 so as to surround the top end 20 of the shaft portion 18.

更に、軸部18から冷却部21を介して第1板部材101に分流する無効電流が極めて抑制されることから、隣接する打点位置を接近させることが可能になり、更に第1板部材101と第1板部材102の溶接強度を向上させると共に、打点位置の設定が容易になり設計の自由度が向上する。   Furthermore, since the reactive current that diverts from the shaft portion 18 to the first plate member 101 via the cooling portion 21 is extremely suppressed, it is possible to bring adjacent striking positions closer to each other. While improving the welding strength of the 1st board member 102, the setting of a hit point position becomes easy and the freedom degree of design improves.

なお、上記説明では、軸孔29の内周面29aと軸部18の間を耐熱性及び電気絶縁性に優れた電気絶縁体となる接着剤32で結合したが、接着剤32に換えて軸孔29の内周面29aと軸部18との間に耐熱性及び電気絶縁性に優れたスリーブ等の電気絶縁体を介在することもできる。   In the above description, the inner peripheral surface 29a of the shaft hole 29 and the shaft portion 18 are coupled with the adhesive 32 that is an electrical insulator excellent in heat resistance and electrical insulation. An electrical insulator such as a sleeve having excellent heat resistance and electrical insulation can be interposed between the inner peripheral surface 29 a of the hole 29 and the shaft portion 18.

また、上記実施の形態では、溶接用電極を片側抵抗スポット溶接の場合を例に説明したが、ダイレクトスポット溶接やシリーズ溶接の溶接用電極に適用することにより、無効電流が極めて抑制されることから隣接する打点位置を接近させることが可能になり、打点位置の設定が容易になり設計の自由度が向上する。   In the above embodiment, the welding electrode is described as an example of one-side resistance spot welding, but the reactive current is extremely suppressed by applying it to the welding electrode for direct spot welding or series welding. Adjacent hitting point positions can be brought close to each other, the setting of the hitting point positions becomes easy, and the degree of design freedom is improved.

また、上記実施の形態では、冷却水を供給して冷却部21を冷却する例を説明したが、冷却水による積極的な冷却を省略することもできる。この場合冷却水ジャケット30は空間部となる。なお、上記実施の形態ではワーク当接面28の先端角度αを120度から170度に設定したが、このワーク当接面28の先端角度αは予めシミュレーションや実験等により設定することが好ましい。   Moreover, although the example which supplies cooling water and cools the cooling part 21 was demonstrated in the said embodiment, active cooling with cooling water can also be abbreviate | omitted. In this case, the cooling water jacket 30 becomes a space. In the above embodiment, the tip angle α of the workpiece contact surface 28 is set from 120 degrees to 170 degrees. However, the tip angle α of the workpiece contact surface 28 is preferably set in advance by simulation or experiment.

2 シャンク
5 冷却水供給孔
10 溶接用電極
11 通電部
12 基部
13 周壁
14 基端
15 外周面
16 内周面
16a テーパ孔
17 隔壁
17a 内側面
17b 先端面
17c 冷却水路
18 軸部
20 頂端
21 冷却部
22 筒部
23 基端面
24 外周面
25 内周面
26 頂面部
27 内側面
28 ワーク当接面
29 軸孔
30 冷却水ジャケット
31、32 接着剤(電気絶縁体)
100 ワーク
101 第1板部材
102 第2板部材
2 Shank 5 Cooling water supply hole 10 Welding electrode 11 Current-carrying part 12 Base part 13 Perimeter wall 14 Base end 15 Outer peripheral face 16 Inner peripheral face 16a Tapered hole 17 Partition wall 17a Inner side face 17b Front end face 17c Cooling water channel 18 Shaft part 20 Top end 21 Cooling part 22 cylindrical portion 23 base end surface 24 outer peripheral surface 25 inner peripheral surface 26 top surface portion 27 inner side surface 28 work contact surface 29 shaft hole 30 cooling water jackets 31 and 32 adhesive (electrical insulator)
100 Work 101 First plate member 102 Second plate member

Claims (6)

板部材が重ね合わされたワークに当接して加圧力を付与すると共に通電して上記板部材を抵抗スポット溶接するシャンクの先端に装着される抵抗スポット溶接用電極において、
上記シャンクの先端に装着される基部及び該基部から突出する柱状でワークに当接する頂端を有する軸部が一体形成された通電部と、
上記軸部が貫通する軸孔を有する筒状で上記軸部の頂端が突出する先端側にワーク当接面を有する冷却部とを備え、
上記軸部が上記軸孔を貫通して上記頂端を上記ワーク当接面から突出せしめると共に上記通電部と冷却部が電気絶縁体を介在して結合したことを特徴とする抵抗スポット溶接用電極。
In the resistance spot welding electrode attached to the tip of the shank that abuts the workpiece on which the plate member is overlapped to apply pressure and energizes and the plate member is resistance spot welded,
An energizing portion integrally formed with a base portion attached to the tip of the shank and a shaft portion that protrudes from the base portion and has a top end that contacts the workpiece;
A cylindrical part having a shaft hole through which the shaft part passes, and a cooling part having a workpiece contact surface on the tip side from which the top end of the shaft part protrudes,
An electrode for resistance spot welding characterized in that the shaft portion penetrates the shaft hole and causes the top end to protrude from the work contact surface, and the energizing portion and the cooling portion are coupled with an electrical insulator interposed therebetween.
上記通電部は、
基端が開口部を有する環状で上記シャンクの先端に嵌挿する内周面を備えた円筒状の周壁の先端側を隔壁によって閉じた有底円筒状の基部と、
該隔壁の中央部から上記基部と同軸上で延設された円柱状でワークに当接する頂端を有する軸部とが一体形成され、
上記冷却部は、
上記隔壁の周縁部分に対向する環状の基端面を有する筒部と、
該筒部の先端側に縮径して連続形成されて上記ワーク当接面を有すると共に上記軸部が挿通可能な軸孔が穿孔された頂面部とが一体形成され、
対向する上記冷却部の基端面と隔壁の周縁部分が電気絶縁体を介在して結合し、上記軸部の先端外周と軸孔の内周面が電気絶縁体を介在して接着結合されたことを特徴とする請求項1に記載の抵抗スポット溶接用電極。
The current-carrying part
A bottomed cylindrical base part in which the base end is closed with a partition wall at the front end side of a cylindrical peripheral wall provided with an inner peripheral surface fitted into the tip of the shank in an annular shape having an opening;
A shaft portion having a top end in contact with the workpiece in a columnar shape extending coaxially with the base portion from the central portion of the partition wall is integrally formed,
The cooling part is
A cylindrical portion having an annular base end surface facing the peripheral portion of the partition;
The top portion of the cylindrical portion is formed integrally with the top surface portion that is continuously formed with a reduced diameter and has the work contact surface and the shaft hole into which the shaft portion can be inserted.
The opposing base end face of the cooling part and the peripheral part of the partition wall are joined via an electric insulator, and the outer periphery of the tip end of the shaft part and the inner peripheral face of the shaft hole are bonded and joined via an electric insulator. The electrode for resistance spot welding according to claim 1.
上記隔壁と上記冷却部の筒部及び頂面部と上記軸部との協働により形成された冷却水ジャケットと、
上記通電部の基部内に供給された冷却水を上記冷却水ジャケットに循環供給する隔壁に穿設された冷却水路を備えたことを特徴とする請求項2に記載の抵抗スポット溶接用電極。
A cooling water jacket formed by the cooperation of the partition wall, the cylindrical portion and the top surface portion of the cooling portion, and the shaft portion;
The resistance spot welding electrode according to claim 2, further comprising a cooling water channel formed in a partition wall that circulates and supplies the cooling water supplied into the base of the energization unit to the cooling water jacket.
上記電気絶縁体は、電気絶縁性を有する接着剤であることを特徴とする請求項1〜3のいずれか1項に記載の抵抗スポット溶接用電極。   The resistance spot welding electrode according to claim 1, wherein the electrical insulator is an adhesive having electrical insulation. 上記ワーク当接面は、先端側から離反するに従って拡径する円錐面状であることを特徴とする請求項1〜4のいずれか1項に記載の抵抗スポット溶接用電極。   5. The resistance spot welding electrode according to claim 1, wherein the workpiece contact surface has a conical surface shape whose diameter increases as the distance from the tip side increases. 上記通電部及び冷却部が銅合金製であることを特徴とする請求項1〜5のいずれか1項に記載の抵抗スポット溶接用電極。   The resistance spot welding electrode according to any one of claims 1 to 5, wherein the energization part and the cooling part are made of a copper alloy.
JP2010200647A 2010-09-08 2010-09-08 Resistance spot welding electrode Expired - Fee Related JP5512471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010200647A JP5512471B2 (en) 2010-09-08 2010-09-08 Resistance spot welding electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010200647A JP5512471B2 (en) 2010-09-08 2010-09-08 Resistance spot welding electrode

Publications (2)

Publication Number Publication Date
JP2012055925A JP2012055925A (en) 2012-03-22
JP5512471B2 true JP5512471B2 (en) 2014-06-04

Family

ID=46053665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010200647A Expired - Fee Related JP5512471B2 (en) 2010-09-08 2010-09-08 Resistance spot welding electrode

Country Status (1)

Country Link
JP (1) JP5512471B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140231396A1 (en) * 2013-02-18 2014-08-21 GM Global Technology Operations LLC Method for resistance welding with pre-chilling

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210179A (en) * 1988-02-16 1989-08-23 Nippon Steel Corp Composite type electrode for spot welding
JPH0524177U (en) * 1991-09-06 1993-03-30 タマチ電機株式会社 Welding electrode chip
JPH05318140A (en) * 1992-05-12 1993-12-03 Furukawa Alum Co Ltd Electrode for resistance spot welding
JPH073880U (en) * 1993-06-22 1995-01-20 本田技研工業株式会社 Aluminum alloy gun arm for welding gun
JPH11314166A (en) * 1998-04-30 1999-11-16 Kanto Auto Works Ltd Electrode for spot welding
EP1541273B1 (en) * 2002-07-20 2014-10-29 Yoshitaka Aoyama Electrode for projection welding

Also Published As

Publication number Publication date
JP2012055925A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP5427074B2 (en) Resistance welding method and apparatus
CN104625411B (en) A kind of Ti2The method of AlNb base intermetallic compound and xenogenesis titanium alloy welding
WO1996033597A1 (en) Electrode for plasma arc torch
CN107199394B (en) A kind of stirring-head power supply assisted recombination formula Double shaft stirring friction welding method
US9463522B2 (en) Drawn arc welding
TW201231201A (en) Electrode head of the plasma cutting machine
JP5512471B2 (en) Resistance spot welding electrode
JP7353329B2 (en) Welding device and method for friction stir welding and resistance welding
CN112077424A (en) Welding method of cutter
JP2023013802A (en) Joining device for friction stir joining and resistance welding
CN103121143A (en) Plasma cutting welding torch electrode and manufacturing method thereof
JP6873777B2 (en) How to join metal members
JP5491093B2 (en) Resistance welding equipment
CN110449716A (en) A kind of electric resistance welding structure
JP4224050B2 (en) Heater chip thermocouple mounting structure and thermocouple mounting method
JP5519450B2 (en) Resistance welding system and resistance welding method
JP5519451B2 (en) Resistance welding method and system
CN107206538B (en) Method and device for resistance welding sandwich panels
KR101923667B1 (en) Electric resistance spot welding machine with double composite electrode tips
JP7075296B2 (en) Joining device and joining method
JP5873403B2 (en) Spot welding electrode tips
KR101608716B1 (en) A cap tip for spot welding
JP5873402B2 (en) Spot welding electrode tips
JP7377153B2 (en) Metal member joining method and metal member joining apparatus
JP7374836B2 (en) How to join metal parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140326

R150 Certificate of patent or registration of utility model

Ref document number: 5512471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees