JP5510237B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP5510237B2
JP5510237B2 JP2010211064A JP2010211064A JP5510237B2 JP 5510237 B2 JP5510237 B2 JP 5510237B2 JP 2010211064 A JP2010211064 A JP 2010211064A JP 2010211064 A JP2010211064 A JP 2010211064A JP 5510237 B2 JP5510237 B2 JP 5510237B2
Authority
JP
Japan
Prior art keywords
egr
region
internal combustion
equivalence ratio
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010211064A
Other languages
Japanese (ja)
Other versions
JP2012067623A (en
Inventor
守洋 長嶺
博文 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010211064A priority Critical patent/JP5510237B2/en
Publication of JP2012067623A publication Critical patent/JP2012067623A/en
Application granted granted Critical
Publication of JP5510237B2 publication Critical patent/JP5510237B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、EGRシステムを備えた内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine equipped with an EGR system.

特許文献1では、排気ガスの一部を吸気通路へ還流させるEGRシステムを改良したものとして、還流する排気ガス(EGRガス)に燃料の一部を加えた混合ガスを、排気ガスの熱を利用して加熱するとともに、改質触媒を通すことで吸熱改質反応を行わせて、水素を含む改質ガスに改質し、この改質ガスを吸気通路に還流するものが記載されている。このものでは、ノッキング発生時には、点火時期の遅角度合いにあわせて改質ガスの還流量を増大して、燃費の悪化を防いでいる。   In Patent Document 1, an EGR system that recirculates part of exhaust gas to an intake passage is improved, and a mixed gas obtained by adding a part of fuel to recirculated exhaust gas (EGR gas) is used for the heat of the exhaust gas. In addition, there is described a method in which an endothermic reforming reaction is performed by passing a reforming catalyst to reform the reformed gas containing hydrogen, and the reformed gas is recirculated to the intake passage. In this case, when knocking occurs, the recirculation amount of the reformed gas is increased in accordance with the retarded timing of the ignition timing to prevent deterioration of fuel consumption.

特開2004−92520号公報JP 2004-92520 A

しかしながら、上記特許文献1のものでは、排気ガスに燃料を供給する噴射弁や、改質ガスを生成するための改質触媒などを設ける必要があるために、部品点数が多くなってシステムが複雑化し、重量増加や大型化を招いてしまう。また、排気ガスに供給する燃料の分、燃費が悪化する。   However, in the above-mentioned Patent Document 1, since it is necessary to provide an injection valve for supplying fuel to exhaust gas, a reforming catalyst for generating reformed gas, etc., the number of parts is increased and the system is complicated. This leads to an increase in weight and an increase in size. In addition, fuel consumption is deteriorated by the amount of fuel supplied to the exhaust gas.

そこで本発明では、三元触媒等の排気浄化用の触媒を利用して水素を生成し、この水素をEGRシステムを利用して排気ガスとともに吸気通路へ供給できるように構成し、かつ、シリンダ内へ供給する混合気の当量比を制御することによって、水素供給量を調整可能なものとした。   Therefore, in the present invention, hydrogen is generated using an exhaust purification catalyst such as a three-way catalyst, and this hydrogen is configured to be supplied to the intake passage along with the exhaust gas using the EGR system. The hydrogen supply amount can be adjusted by controlling the equivalent ratio of the air-fuel mixture supplied to.

すなわち本発明は、内燃機関の排気通路に設けられ、所定条件下で水性ガスシフト反応により水素が生成される触媒と、この触媒よりも下流側の排気通路からEGR通路を通して排気ガスの一部を吸気通路へ還流し、かつ、そのEGR率を機関運転状態に応じて制御するEGRシステムと、を有する内燃機関の制御装置において、上記排気ガスの一部を吸気通路へ還流するEGR領域では、上記EGR通路を通して吸気通路側へ供給される水素供給量を適正化するように、上記EGR率に応じて燃焼室内の混合気の当量比を制御する当量比制御手段を有することを特徴としている。   That is, the present invention is provided in an exhaust passage of an internal combustion engine, in which hydrogen is generated by a water gas shift reaction under a predetermined condition, and a part of the exhaust gas is sucked from an exhaust passage downstream of the catalyst through an EGR passage. An EGR system having an EGR system that recirculates to a passage and controls the EGR rate in accordance with an engine operating state. In an EGR region in which a part of the exhaust gas is recirculated to an intake passage, the EGR An equivalence ratio control means for controlling the equivalence ratio of the air-fuel mixture in the combustion chamber according to the EGR rate so as to optimize the amount of hydrogen supplied to the intake passage through the passage is characterized.

本発明によれば、EGR領域においては、触媒で生成された水素の一部が、EGRシステムにおけるEGR通路を通して排気ガスの一部とともに吸気通路側へ供給されるように構成されており、この水素によって、燃料の自着火を抑制することでノッキングの発生を抑制することができ、また、水素の添加により燃焼が速くなるために、燃焼を緩慢とするEGR率(EGR量)を増大して、燃費向上を図ることができる。   According to the present invention, in the EGR region, a part of the hydrogen generated by the catalyst is supplied to the intake passage side together with a part of the exhaust gas through the EGR passage in the EGR system. By suppressing the self-ignition of the fuel, it is possible to suppress the occurrence of knocking, and since the combustion becomes faster due to the addition of hydrogen, the EGR rate (EGR amount) for slowing the combustion is increased, Fuel consumption can be improved.

特に、排気通路に設けられた触媒が生成する水素の一部を、EGR通路を通して吸気通路側へ供給する構成であるため、吸気通路側への水素供給量は、EGR率によって変動する。つまり、EGR率が高くなるほど、EGR通路を通して吸気通路側へ供給される水素の供給量も多くなり、逆に、EGR率が低くなるほど水素供給量が少なくなるのだが、本発明では、EGR率に応じて混合気の当量比を制御することによって、吸気通路側への水素供給量を適正化できる。   Particularly, since a part of hydrogen generated by the catalyst provided in the exhaust passage is supplied to the intake passage side through the EGR passage, the hydrogen supply amount to the intake passage side varies depending on the EGR rate. That is, the higher the EGR rate, the greater the amount of hydrogen supplied to the intake passage side through the EGR passage. Conversely, the lower the EGR rate, the smaller the hydrogen supply amount. However, in the present invention, the EGR rate is reduced. Accordingly, the amount of hydrogen supplied to the intake passage can be optimized by controlling the equivalence ratio of the air-fuel mixture.

本発明に係る内燃機関の制御装置の一例を示すシステム構成図。The system block diagram which shows an example of the control apparatus of the internal combustion engine which concerns on this invention. 本発明の一実施例に係る制御の流れを示すフローチャート。The flowchart which shows the flow of control which concerns on one Example of this invention. EGR率の設定マップを示す特性図。The characteristic view which shows the setting map of an EGR rate. 第1運転領域における当量比の設定マップを示す特性図。The characteristic view which shows the setting map of the equivalence ratio in a 1st driving | operation area | region. 第2運転領域における当量比の設定マップを示す特性図。The characteristic view which shows the setting map of the equivalence ratio in a 2nd driving | operation area | region. 要求トルクに応じたEGR率と当量比の2つの設定例(A),(B)を示す説明図。Explanatory drawing which shows two setting examples (A) and (B) of the EGR rate and equivalence ratio according to a request torque. 同じく要求トルクに応じたEGR率と当量比の2つの設定例(A),(B)を示す説明図。Explanatory drawing which similarly shows two setting examples (A) and (B) of the EGR rate and the equivalence ratio corresponding to the required torque. 同じく要求トルクに応じたEGR率と当量比の設定例を示す説明図。Explanatory drawing which similarly shows the example of a setting of the EGR rate and equivalence ratio according to a request torque. 同じく要求トルクに応じたEGR率と当量比の設定例を示す説明図。Explanatory drawing which similarly shows the example of a setting of the EGR rate and equivalence ratio according to a request torque. 同じく要求トルクに応じたEGR率と当量比の設定例を示す説明図。Explanatory drawing which similarly shows the example of a setting of the EGR rate and equivalence ratio according to a request torque.

図1は、本発明の一実施例に係る制御装置が適用される内燃機関のシステム構成を簡略的に示している。この内燃機関10は、燃料噴射弁31により吸気通路11もしくはシリンダ内に噴射供給した燃料と空気の混合気を点火プラグ32により点火する、ガソリン内燃機関に代表される火花点火式内燃機関である。   FIG. 1 schematically shows a system configuration of an internal combustion engine to which a control device according to an embodiment of the present invention is applied. The internal combustion engine 10 is a spark ignition internal combustion engine typified by a gasoline internal combustion engine in which a fuel / air mixture injected and supplied into the intake passage 11 or the cylinder by a fuel injection valve 31 is ignited by an ignition plug 32.

この内燃機関10の排気通路12には三元触媒13が設けられている。この三元触媒13は、周知のように白金、パラジウム、ロジウム等の貴金属を用い、理論空燃比の近傍で排気ガス中に含まれる炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)等の有害成分を還元・酸化作用によって同時に除去するものである。   A three-way catalyst 13 is provided in the exhaust passage 12 of the internal combustion engine 10. As is well known, this three-way catalyst 13 uses a noble metal such as platinum, palladium, rhodium, etc., and contains hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides contained in the exhaust gas near the theoretical air-fuel ratio. It removes harmful components such as (NOx) simultaneously by reduction and oxidation.

この内燃機関10には、排気エネルギーにより吸気を過給するターボ過給機14が設けられている。このターボ過給機14は、排気通路12に設けられて排気ガスのエネルギーによりロータ15を回転駆動する排気タービン16と、排気タービン16と背中合わせにロータ15に固定されて、ロータ15の回転に伴って吸気通路11内の吸気を過給するコンプレッサ17と、を有している。   The internal combustion engine 10 is provided with a turbocharger 14 that supercharges intake air by exhaust energy. The turbocharger 14 is provided in the exhaust passage 12 and rotationally drives the rotor 15 by the energy of the exhaust gas. The turbocharger 14 is fixed to the rotor 15 back to back with the exhaust turbine 16, and the rotor 15 rotates as the rotor 15 rotates. And a compressor 17 for supercharging the intake air in the intake passage 11.

また、三元触媒13よりも下流側の排気通路12より排気の一部を取り出して吸気通路11へ還流するEGRシステム18が設けられている。すなわち、三元触媒13の下流側の排気通路12とコンプレッサ17の上流側の吸気通路11とを結ぶEGR通路19には、機関運転状態に応じて排気ガスのEGR率(筒内に流入する排気ガス量を筒内に流入する空気量と排気ガス量の合計で割った値)を調整するEGR弁20と、高温の排気ガス(EGRガス)を冷却するEGRクーラ21と、が設けれている。また、後述する補助触媒22をEGR通路19に設けるようにしても良い。   Further, an EGR system 18 is provided that extracts a part of the exhaust gas from the exhaust passage 12 downstream of the three-way catalyst 13 and recirculates it to the intake passage 11. That is, in the EGR passage 19 connecting the exhaust passage 12 on the downstream side of the three-way catalyst 13 and the intake passage 11 on the upstream side of the compressor 17, the EGR rate of exhaust gas (exhaust gas flowing into the cylinder) depends on the engine operating state. An EGR valve 20 that adjusts the gas amount divided by the sum of the amount of air flowing into the cylinder and the amount of exhaust gas) and an EGR cooler 21 that cools high-temperature exhaust gas (EGR gas) are provided. . Further, an auxiliary catalyst 22 described later may be provided in the EGR passage 19.

吸気通路11には、吸入空気量を調整するスロットル弁23が設けられるとともに、このスロットル弁23の下流側に、吸気を冷却するエアクーラ25と吸気コレクタ26とを一体化した吸気モジュール24が内燃機関10の吸気側に取り付けられている。   The intake passage 11 is provided with a throttle valve 23 for adjusting the amount of intake air, and an intake module 24 in which an air cooler 25 for cooling intake air and an intake collector 26 are integrated on the downstream side of the throttle valve 23 is an internal combustion engine. 10 is attached to the intake side.

制御部30は、各種制御を記憶及び実行するものであり、各種センサにより検出される機関運転状態を表す信号、つまりアクセル開度、機関回転速度、機関温度等に基づいて、上記のスロットル弁23やEGR弁20の他、吸気通路11もしくはシリンダ内に燃料を噴射供給する燃料噴射弁31や、燃焼室に設けられた点火プラグ32等へ制御信号を出力し、スロットル開度、EGR率、燃料噴射時期、燃料噴射量及び点火時期等を制御する。   The control unit 30 stores and executes various controls, and the throttle valve 23 is based on signals representing the engine operating state detected by various sensors, that is, the accelerator opening, the engine speed, the engine temperature, and the like. In addition to the EGR valve 20, a control signal is output to the fuel injection valve 31 that injects and supplies fuel into the intake passage 11 or the cylinder, the spark plug 32 provided in the combustion chamber, etc., and the throttle opening, EGR rate, fuel The injection timing, fuel injection amount, ignition timing, etc. are controlled.

ここで、上記の三元触媒13においては、その触媒温度が規定温度よりも低い低温側の温度レンジ(例えば、250〜700℃)で、この三元触媒13に供給される排気ガスの空燃比を理論空燃比よりもリッチ側にすることで、三元触媒13に一酸化炭素(CO)を供給して、触媒上に残る水分(H2O)との間に水素生成側への水性ガスシフト反応(CO+H2O → CO2+H2)が生じ、水素(H2)が生成される。なお、700℃を超えるような高温側の温度レンジでは、上記の水素生成側とは逆の反応(CO+H2O ← CO2+H2)となるものの、一般的な内燃機関に使用状況ではこのような高温域となることはない。   Here, in the above-described three-way catalyst 13, the air-fuel ratio of the exhaust gas supplied to the three-way catalyst 13 in a low temperature range (for example, 250 to 700 ° C.) where the catalyst temperature is lower than the specified temperature. Is made richer than the stoichiometric air-fuel ratio, so that carbon monoxide (CO) is supplied to the three-way catalyst 13 and the water gas shift reaction (to the hydrogen generation side) with the water (H 2 O) remaining on the catalyst ( CO + H2O → CO2 + H2) is generated, and hydrogen (H2) is generated. In the temperature range on the high temperature side exceeding 700 ° C., the reaction (CO + H 2 O ← CO 2 + H 2) is opposite to that on the hydrogen generation side, but in a general internal combustion engine, this temperature is in the high temperature range. There is nothing.

そして本実施例においては、EGR弁20を開いて排気ガスの一部を吸気通路11へ還流するEGR領域において、水性ガスシフト反応により三元触媒13で水素を生成させて、この水素の一部をEGR通路19を通して排気ガスとともに吸気通路11側へ供給するように構成している。そして、この吸気通路11側への水素供給量が機関運転状態に応じて適正なものとなるように、EGR率に基づいて混合気の当量比(理論空燃比を混合気の空燃比で割った値)、具体的には燃料噴射量を制御することによって、三元触媒13が生成する水素の量を調節している(当量比制御手段)。   In this embodiment, in the EGR region in which the EGR valve 20 is opened and a part of the exhaust gas is recirculated to the intake passage 11, hydrogen is generated by the three-way catalyst 13 by the water gas shift reaction. The exhaust gas is supplied to the intake passage 11 side through the EGR passage 19. Then, the equivalence ratio of the air-fuel mixture (the stoichiometric air-fuel ratio is divided by the air-fuel ratio of the air-fuel mixture) based on the EGR rate so that the hydrogen supply amount to the intake passage 11 side is appropriate according to the engine operating state. Value), specifically, the amount of hydrogen produced by the three-way catalyst 13 is adjusted by controlling the fuel injection amount (equivalent ratio control means).

このように、吸気通路11側へ排気ガスとともに適切な量の水素を供給することで、自着火を抑制し、ノッキングの発生を抑制することができる。このため、例えばノッキングの発生を回避するための点火時期の遅角を抑え、燃費を向上することができる。また、EGR率を増大していくと燃焼が緩慢となって燃焼安定性が低下するものの、水素を添加することによって、燃焼が速くなり、その分、燃焼安定性を確保しつつEGR率(EGR量)を増大することができる。   In this way, by supplying an appropriate amount of hydrogen together with the exhaust gas to the intake passage 11 side, self-ignition can be suppressed and occurrence of knocking can be suppressed. For this reason, for example, the retard of the ignition timing for avoiding the occurrence of knocking can be suppressed, and the fuel consumption can be improved. In addition, as the EGR rate increases, combustion slows down and the combustion stability decreases. However, by adding hydrogen, the combustion becomes faster, and the EGR rate (EGR) while ensuring the combustion stability. Amount) can be increased.

図2は、本実施例に係る制御の流れを示すフローチャートであり、本ルーチンは上記の制御部30により記憶及び実行される。ステップS11では、各種センサにより検出される機関運転状態、つまり運転者により操作されるアクセルペダルのアクセル開度、機関回転速度、三元触媒13の触媒温度等を読み込む。触媒温度は、センサを設けて直接的に検出してもよく、あるいは機関水温や機関運転状態から推定するようにしても良い。   FIG. 2 is a flowchart showing the flow of control according to the present embodiment, and this routine is stored and executed by the control unit 30 described above. In step S11, the engine operating state detected by various sensors, that is, the accelerator opening degree of the accelerator pedal operated by the driver, the engine speed, the catalyst temperature of the three-way catalyst 13, and the like are read. The catalyst temperature may be detected directly by providing a sensor, or may be estimated from the engine water temperature or the engine operating state.

ステップS12では、機関回転速度Neと機関要求トルク(負荷)Teとに基づいて、例えば図3に示すような予め設定されたEGR率設定マップを参照して、EGR率を設定する。図3に示すように、この実施例においては、過給領域に対応する高負荷側の領域を、EGR率を0より大きくしてEGRガスを吸気通路へ還流するEGR領域R0としている。このように高負荷側の過給域でEGRを行うことで、NOxの排出を抑制するとともに、過給による排気温度の上昇を抑制し、三元触媒13等の劣化を防止し、また排気温度抑制のための燃料増量を抑えることで燃費向上を図ることができる。なお、低中負荷域においては、例えば公知の可変動弁装置を用いて吸気弁や排気弁の開閉時期を制御することで、シリンダから排出した排気ガスをシリンダ内に戻す、いわゆる内部EGRを付与するようにしている。   In step S12, the EGR rate is set based on the engine speed Ne and the engine required torque (load) Te with reference to a preset EGR rate setting map as shown in FIG. 3, for example. As shown in FIG. 3, in this embodiment, the region on the high load side corresponding to the supercharging region is an EGR region R0 in which the EGR rate is made larger than 0 and EGR gas is recirculated to the intake passage. Thus, by performing EGR in the supercharging region on the high load side, NOx emission is suppressed, an increase in exhaust temperature due to supercharging is suppressed, deterioration of the three-way catalyst 13 etc. is prevented, and exhaust temperature Fuel consumption can be improved by suppressing fuel increase for suppression. In the low to medium load range, for example, a known variable valve device is used to control the opening and closing timing of the intake valve and exhaust valve, thereby providing so-called internal EGR that returns exhaust gas discharged from the cylinder into the cylinder. Like to do.

ステップS13では、上述したように、三元触媒13で生成した水素を、EGR通路19を経由して吸気通路11へ供給する運転領域であるか否かを判定する。具体的には、過給域におけるEGR領域R0であるかを判定する。   In step S <b> 13, as described above, it is determined whether or not it is an operation region in which hydrogen generated by the three-way catalyst 13 is supplied to the intake passage 11 via the EGR passage 19. Specifically, it is determined whether it is the EGR region R0 in the supercharging region.

水素供給領域でない、つまりEGR領域R0ではない低・中負荷領域であれば、ステップS14へ進み、水素添加を考慮することなくシリンダ内へ供給する混合気の当量比(理論空燃比を供給された混合気の空燃比で割った値)を設定する。この実施例では、三元触媒13による所期の排気浄化性能を得るために、低・中負荷域における当量比は理論空燃比に相当する「1」に設定されている。しかしながら、機関回転速度や機関要求トルク等に応じて当量比を変化・調整するようにしても良い。   If it is not a hydrogen supply region, that is, a low / medium load region that is not the EGR region R0, the process proceeds to step S14, and the equivalence ratio of the air-fuel mixture supplied into the cylinder without considering hydrogen addition (the stoichiometric air-fuel ratio is supplied). Set the value divided by the air-fuel ratio of the mixture. In this embodiment, in order to obtain the desired exhaust purification performance by the three-way catalyst 13, the equivalent ratio in the low / medium load range is set to “1” corresponding to the stoichiometric air-fuel ratio. However, the equivalence ratio may be changed / adjusted according to the engine rotation speed, the engine required torque, and the like.

ステップS13において、水素供給領域つまりEGR領域R0と判定されると、ステップS15へ進み、EGR領域R0のうちで、ノッキングの発生を生じる懸念のある高負荷側の第1運転領域R1であるか、あるいはこの第1運転領域R1よりも低負荷側の第2運転領域R2であるかを判定する。   If it is determined in step S13 that the region is a hydrogen supply region, that is, the EGR region R0, the process proceeds to step S15, and in the EGR region R0, the first operation region R1 on the high load side where the occurrence of knocking may occur. Alternatively, it is determined whether the second operating region R2 is on the lower load side than the first operating region R1.

高負荷側の第1運転領域R1であると判定された場合、ステップS16へ進み、予め設定された図4に示す第1運転領域R1用の設定マップを参照して、EGR率(EGR ratio)と触媒温度(Temperatuer)とに基づいて、当量比(Equivalence ratio)を設定する。この高負荷側の第1運転領域R1においては、ノッキングの発生を抑制するように、燃焼にとって適切な一定量の水素をシリンダ内に供給することが望ましい。ここで、EGR率が高くなると、三元触媒13で生成される水素の生成量に対し、EGR通路19を通って吸気通路11へ供給される水素の供給量も多くなり、逆に、EGR率が低くなると、三元触媒13で生成される水素の生成量に対し、EGR通路19を通って吸気通路11へ供給される水素の供給量も少なくなる。このため、EGR率にかかわらず一定量の水素を供給するように、図4に示すように、EGR率が高くなるほど当量比を大きくし、つまり空燃比をリッチ側に大きくし、EGR率が低くなるほど当量比を小さくし、つまり空燃比のリッチ度合いを小さくしている。   When it determines with it being 1st driving | running area | region R1 of the high load side, it progresses to step S16, and with reference to the setting map for 1st driving | running area R1 shown in FIG. 4 preset, an EGR rate (EGR ratio) Equivalence ratio is set based on the catalyst temperature (Temperature). In the first operating region R1 on the high load side, it is desirable to supply a certain amount of hydrogen suitable for combustion into the cylinder so as to suppress the occurrence of knocking. Here, when the EGR rate increases, the amount of hydrogen supplied to the intake passage 11 through the EGR passage 19 increases with respect to the amount of hydrogen produced by the three-way catalyst 13, and conversely, the EGR rate When the engine speed becomes lower, the amount of hydrogen supplied to the intake passage 11 through the EGR passage 19 also decreases with respect to the amount of hydrogen produced by the three-way catalyst 13. Therefore, as shown in FIG. 4, the equivalence ratio is increased as the EGR rate is increased so that a constant amount of hydrogen is supplied regardless of the EGR rate, that is, the air-fuel ratio is increased to the rich side, and the EGR rate is decreased. The equivalent ratio is made smaller, that is, the richness of the air-fuel ratio is made smaller.

また、上述した水性ガスシフト反応により三元触媒13で生成される水素の生成量は、触媒温度が低くなるほど多くなり、触媒温度が高くなるほど少なくなる傾向にある。従って、水素供給量を一定とするように、触媒温度が高くなるに従って、当量比をリッチ側に大きくし、触媒温度が低くなるに従って、当量比を小さくしている。   Further, the amount of hydrogen produced by the three-way catalyst 13 by the water gas shift reaction described above tends to increase as the catalyst temperature decreases and decrease as the catalyst temperature increases. Therefore, the equivalence ratio is increased to the rich side as the catalyst temperature is increased so that the hydrogen supply amount is constant, and the equivalence ratio is decreased as the catalyst temperature is decreased.

一方、ステップS15において、第1運転領域R1ではなく、EGR領域R0のうちで第1運転領域R1よりも低負荷側の第2運転領域R2であると判定されると、ステップS17へ進み、図5に示す第2運転領域R2用の設定マップを参照して、EGR率(EGR ratio)と触媒温度(Temperatuer)とに基づいて、当量比(Equivalence ratio)を設定する。上述した第1運転領域R1においては、ノッキングの発生を抑制するために、主として水素添加による自着火の抑制を狙いとして一定量の水素を供給するようにしていたが、この第2運転領域R2においては、ノッキングを生じるおそれが低いことから、水素添加による燃焼速度を向上して、EGR率の増大を狙いとしている。つまり図5に示すように、水素供給量を増加させることでEGR率を増加させており、結果として、EGR率が高くなるほど当量比を大きくし、EGR率が低くなるほど当量比が小さくなるように設定している。また、触媒温度による水素供給量の増減を抑制するように、上記の第1運転領域R1の場合と同様、触媒温度が高くなるほど当量比を大きくし、触媒温度が低くなるほど当量比を小さくしている。   On the other hand, if it is determined in step S15 that the second operating region R2 is on the lower load side than the first operating region R1 in the EGR region R0 instead of the first operating region R1, the process proceeds to step S17. The equivalence ratio (Equivalence ratio) is set based on the EGR rate (EGR ratio) and the catalyst temperature (Temperature) with reference to the setting map for the second operation region R2 shown in FIG. In the first operation region R1 described above, in order to suppress the occurrence of knocking, a fixed amount of hydrogen is supplied mainly for the purpose of suppressing self-ignition by hydrogen addition. However, in this second operation region R2, Is less likely to cause knocking, and therefore aims to increase the EGR rate by improving the combustion rate by hydrogenation. That is, as shown in FIG. 5, the EGR rate is increased by increasing the hydrogen supply amount. As a result, the higher the EGR rate, the larger the equivalent ratio, and the lower the EGR rate, the smaller the equivalent ratio. It is set. Further, as in the case of the first operation region R1, the equivalence ratio is increased as the catalyst temperature is increased, and the equivalence ratio is decreased as the catalyst temperature is decreased so as to suppress the increase and decrease of the hydrogen supply amount due to the catalyst temperature. Yes.

そして、ステップS18においては、上記のステップS14,S16あるいはS17で設定された当量比や、ステップS12で設定されたEGR率等に基づいて、スロットル開度、EGR弁20の開度、点火時期及び燃料噴射量等を設定している。具体的には、EGR率に応じてEGR開度を設定し、当量比に応じて燃料噴射量を設定しており、当量比が大きくなるほど燃料噴射量を増加し、当量比が小さくなるほど燃料噴射量を減少している。   In step S18, the throttle opening, the opening of the EGR valve 20, the ignition timing, and the like, based on the equivalence ratio set in step S14, S16 or S17, the EGR rate set in step S12, and the like. The fuel injection amount is set. Specifically, the EGR opening is set according to the EGR rate, and the fuel injection amount is set according to the equivalence ratio. The fuel injection amount increases as the equivalence ratio increases, and the fuel injection increases as the equivalence ratio decreases. The amount is decreasing.

次に、図6〜図10は、機関要求トルク(負荷)Teに応じたEGR率(EGRratio)と当量比(Φ)との設定例を示している。図6(A)の設定例では、要求トルクTeが第1所定値Te1以上のEGR領域で、所定のEGR率に設定しており、このEGR率に応じて当量比を1よりもリッチ側に大きく設定している。   Next, FIGS. 6 to 10 show setting examples of the EGR rate (EGR ratio) and the equivalence ratio (Φ) according to the engine required torque (load) Te. In the setting example of FIG. 6A, the required torque Te is set to a predetermined EGR rate in the EGR region where the required torque Te is equal to or greater than the first predetermined value Te1, and the equivalence ratio is set to a richer side than 1 according to the EGR rate. It is set large.

一方、図6(B)の設定例では、要求トルクTeが第1所定値Te1以上のEGR領域となると、図6(A)の設定例と同様に、所定のEGR率に設定している。但し、当量比については、EGR領域の中でも、要求トルクが第1所定値Te1よりも高い第2所定値Te2以上の高負荷側の領域でのみ、ノッキングの発生を抑制するために、当量比Φをリッチ側に大きくして水素添加を行うようにしている。つまり、EGR領域の中でも比較的要求トルクが低い低負荷側の領域(Te1〜Te2)では、燃費や排気を悪化させることのないように、当量比Φを理論空燃比に応じた「1」に保持している。   On the other hand, in the setting example of FIG. 6B, when the required torque Te is in the EGR region equal to or greater than the first predetermined value Te1, the predetermined EGR rate is set as in the setting example of FIG. However, with regard to the equivalence ratio, in order to suppress the occurrence of knocking only in the high load side region where the required torque is higher than the first predetermined value Te1 and higher than the second predetermined value Te2 in the EGR region, the equivalent ratio Φ Is increased to the rich side to perform hydrogenation. That is, in the low load side region (Te1 to Te2) where the required torque is relatively low in the EGR region, the equivalence ratio Φ is set to “1” corresponding to the stoichiometric air-fuel ratio so as not to deteriorate fuel consumption and exhaust. keeping.

図7は、要求トルクTeに応じてEGR率を変更する例を示している。図7(A)の設定例では、要求トルクが第2所定値Te2以上の高負荷側の領域では、要求トルクが第2所定値Te2未満の低負荷側の領域に比して、トルクを確保するためにEGR率を小さくしており、かつ、ノッキングの発生を抑制するように、当量比Φを大きくしている。   FIG. 7 shows an example in which the EGR rate is changed according to the required torque Te. In the setting example of FIG. 7A, the torque is secured in the high load side region where the required torque is equal to or greater than the second predetermined value Te2, as compared to the low load side region where the required torque is less than the second predetermined value Te2. Therefore, the EGR rate is reduced and the equivalent ratio Φ is increased so as to suppress the occurrence of knocking.

図7(B)の設定例は図7(A)の設定例に対して当量比Φの設定を変更している。つまり、要求トルクが第2所定値Te2よりも更に高い第3所定値Te3となるまで、当量比Φを「1」に保持して燃費や排気の悪化を抑制し、要求トルクが第3所定値Te3を超える、更に高負荷側の領域でのみ、ノッキングの発生を抑制するように、当量比を1よりも大きくして水素供給を行うようにしている。   In the setting example in FIG. 7B, the setting of the equivalence ratio Φ is changed with respect to the setting example in FIG. That is, until the required torque reaches a third predetermined value Te3 that is higher than the second predetermined value Te2, the equivalence ratio Φ is maintained at “1” to suppress deterioration of fuel consumption and exhaust, and the required torque is the third predetermined value. Only in the region on the higher load side that exceeds Te3, hydrogen supply is performed with an equivalent ratio larger than 1 so as to suppress the occurrence of knocking.

図8の設定例では、要求トルクTeが第1所定値Te1以上のEGR領域のうちで、要求トルクが第2所定値Te2以上の高負荷側の領域においては、所定のEGR率を与えるとともに、ノッキングの発生を抑制するように、当量比Φを1より大きくして、一定量の水素供給量が得られるように設定している。一方、EGR領域の中でも要求トルクが第2所定値Te2未満の低負荷側の領域では、高負荷側の領域に比して、ノッキングを生じるおそれが低く燃焼が安定していることから、EGR率を増大するように、当量比Φを大きくして、水素添加量を増加している。これにより低負荷側の領域でのEGR率を増大し、燃費向上を図ることができる。   In the setting example of FIG. 8, among the EGR regions where the required torque Te is equal to or greater than the first predetermined value Te1, in the high load side region where the required torque is equal to or greater than the second predetermined value Te2, a predetermined EGR rate is given. In order to suppress the occurrence of knocking, the equivalence ratio Φ is set to be larger than 1 so as to obtain a constant amount of hydrogen supply. On the other hand, in the EGR region, the low load side region where the required torque is less than the second predetermined value Te2 is less likely to cause knocking and the combustion is stable compared to the high load side region. In order to increase the equivalent ratio Φ, the hydrogen addition amount is increased. As a result, the EGR rate in the low load region can be increased, and fuel consumption can be improved.

図9は、加速時のように非EGR領域からEGR領域へ移行する過渡期の設定例を示している。このような過渡期には、EGR領域への切換時t1にEGRガスが急激に増大することによって燃焼安定性が低下したりトルクが急変して運転性を阻害することのないように、切換時t1からEGR率を徐々に増加させている。一方、当量比については、EGR領域への切換時t1の直後からノッキングを生じることのないように、EGR領域への切換時点t1でステップ的に当量比をリッチ側へ大きくして、吸気通路側へ水素を速やかに供給するようにしている。   FIG. 9 shows an example of setting in a transition period in which a transition is made from the non-EGR region to the EGR region as in acceleration. In such a transition period, at the time of switching so that the EGR gas rapidly increases at the time t1 when switching to the EGR region, the combustion stability does not deteriorate or the torque changes suddenly and does not impair the operability. The EGR rate is gradually increased from t1. On the other hand, with respect to the equivalence ratio, the equivalence ratio is increased to the rich side stepwise at the switching time t1 to the EGR region so that knocking does not occur immediately after the switching to the EGR region, and the intake passage side Hydrogen is supplied promptly.

図10は、EGR領域のうちで、EGR率の高い低負荷側の領域からEGR率の低い高負荷側の領域へ移行する過渡期の設定例を示している。この場合にも、トルクの急変による運転性の低下を招くことのないように、切換時t2からEGR率を徐々に低下させており、当量比については、切換時t2の直後からノッキングを生じることのないように、当量比をステップ的にリッチ側へ大きくして、吸気通路側へ水素を速やかに供給するようにしている。   FIG. 10 shows an example of setting in a transition period in which a transition is made from a low load side region with a high EGR rate to a high load side region with a low EGR rate in the EGR region. Also in this case, the EGR rate is gradually decreased from the switching time t2 so as not to cause a decrease in drivability due to a sudden change in torque, and the equivalent ratio is knocked immediately after the switching time t2. The equivalence ratio is increased stepwise to the rich side so that hydrogen is quickly supplied to the intake passage side.

以上のように本発明を図示実施例に基づいて説明したが、本発明は上記実施例に限定されるものではなく、種々の変形、変更を含むものである。例えば、上記実施例ではターボ過給機を備えた内燃機関に本発明を適用しているが、ターボ過給機を備えていない自然吸気式の内燃機関にも本発明を適用することができる。   Although the present invention has been described based on the illustrated embodiments as described above, the present invention is not limited to the above-described embodiments, and includes various modifications and changes. For example, in the above embodiment, the present invention is applied to an internal combustion engine provided with a turbocharger. However, the present invention can also be applied to a naturally aspirated internal combustion engine not provided with a turbocharger.

また、図1に示すように、排気浄化用の三元触媒13とは別個の補助触媒22を、EGR通路19もしくは三元触媒13よりも下流側の排気通路12に設けるようにしても良い。この補助触媒22は、上記の三元触媒13と同様、所定条件下で水性ガスシフト反応により水素が生成されるものである。補助触媒22は、三元触媒13よりもシリンダから離れた下流側に設けられているために、三元触媒13に比して、触媒温度が低くなり、このため、水性ガスシフト反応により水素が生成され易く、水素供給量を確保するための当量比の増加を抑制することができ、燃費や排気の悪化を抑制することができる。また、図1に示すようにEGR通路19に補助触媒22を設けた場合には、生成した水素の全量が吸気通路11側へ供給されるために、水素供給量の確保が更に容易なものとなる。   Further, as shown in FIG. 1, an auxiliary catalyst 22 that is separate from the exhaust purification three-way catalyst 13 may be provided in the EGR passage 19 or the exhaust passage 12 downstream of the three-way catalyst 13. Similar to the above three-way catalyst 13, the auxiliary catalyst 22 generates hydrogen by a water gas shift reaction under a predetermined condition. Since the auxiliary catalyst 22 is provided on the downstream side farther from the cylinder than the three-way catalyst 13, the catalyst temperature is lower than that of the three-way catalyst 13, so that hydrogen is generated by the water gas shift reaction. It is easy to be done, the increase of the equivalent ratio for ensuring the hydrogen supply amount can be suppressed, and the deterioration of fuel consumption and exhaust can be suppressed. In addition, when the auxiliary catalyst 22 is provided in the EGR passage 19 as shown in FIG. 1, since the entire amount of generated hydrogen is supplied to the intake passage 11 side, it is easier to secure the hydrogen supply amount. Become.

10…内燃機関
11…吸気通路
12…排気通路
13…三元触媒
14…ターボ過給機
18…EGRシステム
20…EGR弁
22…補助触媒
30…制御部
DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine 11 ... Intake passage 12 ... Exhaust passage 13 ... Three-way catalyst 14 ... Turbocharger 18 ... EGR system 20 ... EGR valve 22 ... Auxiliary catalyst 30 ... Control part

Claims (6)

内燃機関の排気通路に設けられ、所定条件下で水性ガスシフト反応により水素が生成される触媒と、
この触媒よりも下流側の排気通路からEGR通路を通して排気ガスの一部を吸気通路へ還流し、かつ、そのEGR率を機関運転状態に応じて制御するEGRシステムと、
を有する内燃機関の制御装置において、
上記排気ガスの一部を吸気通路へ還流するEGR領域では、上記EGR通路を通して吸気通路側へ供給される水素供給量を適正化するように、上記EGR率に応じて燃焼室内の混合気の当量比を制御する当量比制御手段を有することを特徴とする内燃機関の制御装置。
A catalyst that is provided in an exhaust passage of an internal combustion engine and generates hydrogen by a water gas shift reaction under a predetermined condition;
An EGR system that recirculates part of the exhaust gas from the exhaust passage downstream of the catalyst to the intake passage through the EGR passage, and controls the EGR rate according to the engine operating state;
In a control device for an internal combustion engine having
In the EGR region where a part of the exhaust gas is recirculated to the intake passage, the equivalent amount of the air-fuel mixture in the combustion chamber according to the EGR rate so as to optimize the amount of hydrogen supplied to the intake passage through the EGR passage. A control apparatus for an internal combustion engine, comprising equivalence ratio control means for controlling the ratio.
上記当量比制御手段は、上記触媒温度が高くなるほど上記当量比を大きくすることを特徴とする請求項1に記載の内燃機関の制御装置。   The control apparatus for an internal combustion engine according to claim 1, wherein the equivalence ratio control means increases the equivalence ratio as the catalyst temperature increases. 上記当量比制御手段は、上記EGR領域における所定の第1の機関運転領域では、上記水素供給量を一定に保つように、上記EGR率が小さくなるほど上記当量比を大きくすることを特徴とする請求項1又は2に記載の内燃機関の制御装置。   The equivalence ratio control means increases the equivalence ratio as the EGR rate decreases so as to keep the hydrogen supply amount constant in a predetermined first engine operation region in the EGR region. Item 3. The control device for an internal combustion engine according to Item 1 or 2. 上記当量比制御手段は、上記EGR領域における所定の第2の機関運転領域では、上記EGR率を増大するように、上記当量比を大きくすることを特徴とする請求項1〜3のいずれかに記載の内燃機関の制御装置。   The equivalence ratio control means increases the equivalence ratio so as to increase the EGR rate in a predetermined second engine operation region in the EGR region. The internal combustion engine control device described. 上記触媒とは別個の補助触媒が、上記触媒よりも下流側の排気通路もしくは上記EGR通路に設けられ、この補助触媒は、所定条件下で水性ガスシフト反応により水素が生成されるものであることを特徴とする請求項1〜4のいずれかに記載の内燃機関の制御装置。   An auxiliary catalyst separate from the catalyst is provided in the exhaust passage or the EGR passage downstream of the catalyst, and the auxiliary catalyst is such that hydrogen is generated by a water gas shift reaction under a predetermined condition. The control device for an internal combustion engine according to claim 1, wherein the control device is an internal combustion engine. 排気エネルギーにより吸気を過給するターボ過給機を備え、
高負荷側の過給領域をEGR領域とし、このEGR領域では、上記当量比制御手段により当量比をリッチ側に制御して、上記EGR通路を通して吸気通路へ水素を供給することを特徴とする請求項1〜5のいずれかに記載の内燃機関の制御装置。
It has a turbocharger that supercharges intake air by exhaust energy,
The supercharging region on the high load side is an EGR region, and in this EGR region, the equivalence ratio is controlled to the rich side by the equivalence ratio control means, and hydrogen is supplied to the intake passage through the EGR passage. Item 6. The control device for an internal combustion engine according to any one of Items 1 to 5.
JP2010211064A 2010-09-21 2010-09-21 Control device for internal combustion engine Expired - Fee Related JP5510237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010211064A JP5510237B2 (en) 2010-09-21 2010-09-21 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010211064A JP5510237B2 (en) 2010-09-21 2010-09-21 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012067623A JP2012067623A (en) 2012-04-05
JP5510237B2 true JP5510237B2 (en) 2014-06-04

Family

ID=46165184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010211064A Expired - Fee Related JP5510237B2 (en) 2010-09-21 2010-09-21 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5510237B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4013704B2 (en) * 2002-08-30 2007-11-28 トヨタ自動車株式会社 Exhaust reformer system for internal combustion engine
JP2005023850A (en) * 2003-07-02 2005-01-27 Toyota Motor Corp Air-fuel ratio proportional control system of internal combustion engine
JP2005105909A (en) * 2003-09-30 2005-04-21 Toyota Central Res & Dev Lab Inc Engine system
JP4178517B2 (en) * 2003-10-21 2008-11-12 トヨタ自動車株式会社 Internal combustion engine
JP2006132355A (en) * 2004-11-02 2006-05-25 Toyota Motor Corp Internal combustion engine and operation control device for internal combustion engine
JP5567850B2 (en) * 2010-02-05 2014-08-06 本田技研工業株式会社 Hydrogen production system

Also Published As

Publication number Publication date
JP2012067623A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP5382213B2 (en) Internal combustion engine and control device for internal combustion engine
JP5081635B2 (en) Exhaust gas purification device for internal combustion engine
JP5982203B2 (en) Control device for internal combustion engine
JP2006233898A (en) Egr device
JP2005248748A (en) Diesel engine
JP2007332867A (en) Control device of internal combustion engine
JP2013231360A (en) Fuel reformer of internal combustion engine
JP2008138638A (en) Exhaust recirculating device of internal combustion engine
EP3256704B1 (en) Reducing unburned hydrocarbon emissions in gaseous fuelled lean-burn engines
JP2007239493A (en) Internal combustion engine with supercharger
JP5094539B2 (en) Exhaust gas purification device for internal combustion engine
JP5006805B2 (en) Exhaust gas purification device for internal combustion engine
JP2018009493A (en) Warming-up method of exhaust emission control catalyst for internal combustion engine
JP3356075B2 (en) Internal combustion engine
JP5510237B2 (en) Control device for internal combustion engine
JP6005543B2 (en) Control device for supercharged engine
JP2000130270A (en) Internal combustion engine
JP4506335B2 (en) Internal combustion engine and operation control device for internal combustion engine
JP2007162481A (en) Internal combustion engine with supercharger
JP5263249B2 (en) Variable valve timing control device for an internal combustion engine with a supercharger
JP2009197730A (en) Internal combustion engine with fuel reforming device
JP2001140703A (en) Internal combustion engine
JP2000110601A (en) Internal combustion engine incorporating with automatic transmission
JP3063744B2 (en) Internal combustion engine
JP2005076502A (en) Internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R151 Written notification of patent or utility model registration

Ref document number: 5510237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees