JP5510167B2 - ビデオ検索システムおよびそのためのコンピュータプログラム - Google Patents
ビデオ検索システムおよびそのためのコンピュータプログラム Download PDFInfo
- Publication number
- JP5510167B2 JP5510167B2 JP2010176991A JP2010176991A JP5510167B2 JP 5510167 B2 JP5510167 B2 JP 5510167B2 JP 2010176991 A JP2010176991 A JP 2010176991A JP 2010176991 A JP2010176991 A JP 2010176991A JP 5510167 B2 JP5510167 B2 JP 5510167B2
- Authority
- JP
- Japan
- Prior art keywords
- frame
- frames
- video
- information content
- static
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/46—Extracting features or characteristics from the video content, e.g. video fingerprints, representative shots or key frames
- G06V20/47—Detecting features for summarising video content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/58—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/583—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
- G06F16/5846—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content using extracted text
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Television Signal Processing For Recording (AREA)
- User Interface Of Digital Computer (AREA)
Description
前記連続する前後のフレーム間の前記ピクセル値の差が所定の閾値以上である前後のフレームを識別する前後フレーム識別工程と、識別された前記前後のフレーム中に含まれる文字領域に対応する境界ボックスを識別する境界ボックス識別工程と、エッジ検出技術に基づいて、前記前後のフレームの前のフレームでは空欄であった前記境界ボックス中の領域があるかを判別する判別工程と、前記判別工程により前記前後のフレームの前のフレームで空欄であった前記境界ボックス中の領域があると判別される場合には、前記前後のフレーム間の前記ピクセル値の差が前記所定の閾値を超える前記前後のフレームの前のフレーム中での領域が空欄でなくなるまで、前記前後フレーム識別工程、前記境界ボックス識別工程及び前記判別工程を繰り返す繰り返し工程と、を行い、前記静止状態と判断される一連の複数のフレームのセットに含まれるフレームとして、前記繰り返し工程の間に用いられた連続するフレームシーケンスの少なくとも一部を含むように識別することを特徴とする。
図1は、いくつかの実施形態に関わるプレゼンテーションビデオをインデックス化するためのシステム100を説明するためのブロック図である。システム100にはプレゼンテーションビデオを保持する一以上のコンテントサーバーが備えられている。なお、コンテントサーバー102にはプレゼンテーションビデオ以外のビデオが保存されていてもよい。システム100にはさらに一以上のサーバー110上に、プレゼンテーションビデオ104を処理してキーフレームを抽出する抽出手段と、インデックス化するインデックス化手段(112)が備えられている。いくつかの実施形態では、プレゼンテーションビデオ114のキーフレームとして、静的な情報コンテントのキーフレームだけを含んでいる(例えば、テキスト、図、写真、線画等)。システム100は、一以上のクライアントコンピュータシステム120を含んでいる。一以上のクライアントコンピュータシステム120は、一以上のコンテントサーバー102、110に保持されているコンテントにアクセスするためのブラウザ122(例えば、ウェブブラウザ)とアプリケーション124を含んでいる。いくつかの実施形態では、アプリケーション124は、クライアントコンピュータシステム用のビデオプレーヤーである。いくつかの実施形態では、アプリケーション124は、ブラウザ122用のビデオプラグインである。一以上のコンテントサーバー102、一以上のサーバー110と一以上のクライアントコンピュータシステム120はネットワーク150を介して互いに接続されている。ネットワーク150としては、一般的な、コンピュータノード間を接続する有線あるいは無線の通信チャネルのあらゆるタイプのものが利用できる。これには、LAN、WANやこれらの組み合わせも含まれるが、これに限定されるものでもない。いくつかの実施形態ではネットワーク150としてインターネットを含む。
・ オペレーティングシステム212 様々な基本システムサービスの処理、ハードウェア依存処理を行う。
・ 通信モジュール214 サーバー110を他のコンピュータに一以上の通信インターフェース204(有線あるいは無線、インターネット、WAN,LAN、都市間通信ネットワークなど)を介して接続する。
・ ユーザインターフェースモジュール216 入力デバイス208を通じてユーザからのコマンドを受信し、表示デバイス206にユーザインタフェースオブジェクトを生成する。
・ キーフレーム抽出およびインデックス化モジュール112 プレゼンテーションビデオ114についてインデックスとキーフレームを生成するためにプレゼンテーションビデオを処理する。
・ タイムインデックス228 キーフレーム228のタイムインデックスを保持する。
・ ウェブサーバーモジュール220 クライアントコンピュータシステム120からのコンテント要求(例えば、ビデオ、プレゼンテーションビデオのインデックスやキーフレーム、ウェブページなど)する。プレゼンテーションビデオ114のインデックスとキーフレームについてキーワード検索を行うための検索モジュール222を含む。
・ 一以上の外観モデル224 (後述)
・ 一以上の部屋モデル226 (後述)
・ オペレーティングシステム312 様々な基本システムサービスの処理、ハードウェア依存処理を行う。
・ 通信モジュール314 コンテントサーバー102を他のコンピュータに一以上の通信インターフェース304(有線あるいは無線、インターネット、WAN,LAN、都市間通信ネットワークなど)を介して接続する
・ ユーザインターフェースモジュール316 入力デバイス308を通じてユーザからのコマンドを受信し、表示デバイス306にユーザインタフェースオブジェクトを生成する。
・ ウェブサーバーモジュール318 クライアントコンピュータシステム120からのコンテント(例えば、ビデオ、ウェブページなど)に関する要求の受信と処理を行う。
・ プレゼンテーションビデオ104
・ オペレーティングシステム412 様々な基本システムサービスの処理、ハードウェア依存処理を行う。
・ コミュニケーションモジュール414 クライアントコンピュータシステム120を他のコンピュータに一以上の通信インターフェース404(有線あるいは無線、インターネット、WAN,LAN、都市間通信ネットワークなど)を介して接続する
・ ユーザインターフェースモジュール416 入力デバイス408を通じてユーザからのコマンドを受信し、表示デバイス406にユーザインタフェースオブジェクトを生成する。
・ ブラウザ122(例えばウェブブラウザ) ネットワークを介してコンテントにアクセスするためのユーザインタフェースを提供する。
・ アプリケーション124 ビデオを再生するための独立したあるいはブラウザ122用のプラグイン
ここで、典型的にプレゼンテーションビデオ内で発生するフレームのタイプについて説明する。
静的な情報コンテントを含んだキーフレーム(例えば、テキスト、図、シンボルなどを含んだプレゼンテーションスライド)は、インデックス化して、ユーザに提示するのに、いくつかの理由で好ましい対象である。第1に、静的な情報コンテントは、ユーザにプレゼンテーションビデオの音声またはビデオストリームを提供することなしに、プレゼンテーションビデオの内容についての情報を与えるから、プレゼンテーションビデオコンテントに関するコンテキスト(概要)を提供することができる。第2に、静的な情報コンテントは、光学的文字読取技術(OCR)等の情報コンテント検出技術で抽出することができるテキストを含んでおり、プレゼンテーションビデオ内をテキストベースで検索するためのインデックスを生成するのに使用することができる。最後に、静的な情報コンテントは、講演者によりプレゼンテーションを整理するために使われる場合が多く、このため、プレゼンテーションで一貫するトピックスの範囲を定めている。このため、いくつかの実施形態では、プレゼンテーションビデオのフレーム内の静的な情報コンテントの識別と、インデックス用とユーザ案内用としてキーフレーム抽出を行う。
いくつかの実施形態では、フレームシーケンス中の少なくとも一つのフレームに静的な情報コンテントではない人間の顔を含んでいる。いくつかの実施形態として、全てあるいは一部のプレゼンテーションビデオのフレームに講演者が現れている場合を考慮し、サーバー110では講演者と背景の視覚的な特徴を表す、プレゼンテーションビデオ用の外観モデル(Visual Appearance Model)224が生成される。外観モデルはプレゼンテーションビデオから得られたフレームシーケンスから生成される(例えば、図6の工程602)。いくつかの実施形態では、外観モデルは弁別(discriminative)外観モデルである。いくつかの実施形態では、外観モデルは、生成(generative)外観モデルである。生成外観モデルはそのモデルが、どの程度検証されているフレームで発生しているかを見積もるモデルである(例えば、どの程度、所定のカラーヒストグラムを備えているフレームが生成されているか)。弁別外観モデルは、各フレームを2つのクラスのうちの一つに分類する分類器を教育するために、正と負の例を用いて生成されるモデルである(例えば、2つのクラスの弁別)。
先に図5Bについて説明したように、ビデオのフレームの中にはピクチャーインピクチャー(ビデオインビデオ)の領域を含む場合がある。これらのフレームは、静的な連続フレームを識別するときに誤認を生じる可能性がある。いくつかの実施形態では、静的な情報コンテント上に重なったピクチャーインピクチャー(ビデオインビデオ)領域を含むフレームを外観モデルを用いて識別する。これらの実施形態では、この候補となる領域は、動きが局所化されているフレーム中の領域および/またはピクチャーインピクチャー(ビデオインビデオ)領域として共通に使用されることが知られているフレーム中の領域を見つけることで識別される。いくつかの実施形態では、所定の大きさを有する候補領域の探索がフレームに対して行われる。例えば、所定の大きさの範囲(例えば、10ピクセル×20ピクセル、10ピクセル×25ピクセル等)を有するフレーム中に矩形領域を繰り返し探索することで実行することができる。いくつかの実施形態では、ヒストグラムバックプロジェクション法(例えば、CAMShift法)を用いて、外観モデルを候補領域に整合させる。
図5Dで説明したように、プレゼンテーションビデオのフレームの中には、講演が行われている部屋の画像が含まれている場合がある(例えば、部屋の後方から撮影したときの会場全体の様子を伝える画像)。これら部屋後方フレームの中には、静的な情報コンテントと少なくとも部屋の一部をフレーム中に見ることができる。こうした部屋後方フレームに共通なのは、同じビデオ中には静的な情報コンテントのフルスクリーンのショットが、スライドの中身はよく見えない他のカメラショットとともに混ざっている点である。上述のように、こうしたフレームは、もし連続フレーム間のピクセル値の差が所定の閾値を超えてしまうと、非連続フレームとして誤認してしまう可能性がある。このとき、いくつかの実施形態では、サーバ110は、静的な情報コンテントが含まれるフレーム中のユーザによって識別された領域に基づいて部屋モデルを生成する。ユーザによって識別された領域は、部屋の後方から撮影された他のフレームにも適用される。
プレゼンテーションの間、講演者はその直前に表示されていた静的な情報コンテントに、静的な情報コンテントを徐々に追加する場合がある。例えば、全体のスライドうち、一部が時間経過とともに連続して徐々に表示されていくタイプの積み上げスライド(Built‐up Slide)を使用する場合がある。あるいは、前のスライドに新しい要素が加えられた一連の複数枚のスライドを使ってこれを行う場合もある。同様に、講演者は話している時に、例えば手書き等によって、黒板やホワイトボードにコンテントを追加する場合もある。以下では積み上げスライドを例に説明をするが、それ以外の前に表示した情報コンテントに追加、あるいは積み上げるコンテントにも適用できる。積み上げスライドの例を、図22A〜22Dに示す。図22Aは、いくつかの実施形態に関わる、時間経過とともに積み上げられるプレゼンテーションスライド2202を説明するブロック図2200である。プレゼンテーションスライド2202は時間t1でのテキスト2204を含む。図22Bは、いくつかの実施形態に関わる、プレゼンテーションスライド中に新しい要素を示すブロック図2210である。プレゼンテーションスライド2202は、時間t1より後の時間t2での、テキスト2206を含んでいる。図22Cは、いくつかの実施形態に関わる、プレゼンテーションスライド中の新しい要素を説明するブロック図2220である。プレゼンテーションスライド2202は、時間t2より後の時間t3において、テキスト2208を含んでいる。図22Dは、いくつかの実施形態に関わる、プレゼンテーションスライド中の新しい要素を説明するブロック図2230である。プレゼンテーションスライド2202には時間t3より後のt4でテキスト2210を含んでいる。図22A〜22Dに示すように、完全なコンテントを含むキーフレームを、キーフレームとして抽出することが望ましい(例えば、図22Dのコンテント)。言い換えると、望まれるキーフレームはユーザにとって最も多く視覚的な情報を提供するキーフレームである。
いくつかの実施形態では、外観モデル、空間キュー(spatial cue)、情報コンテント検出技術、および顔検出技術が、静的な情報コンテントを含むキーフレームを識別するために、組み合わせて利用される。これらの実施形態では、サーバー110がフレームに空間ブラー(spatial blur)を施す以外は既述の工程とその工程は類似している。フレーム間のピクセル値の差の計算後、サーバー110は、所定の閾値を超えたピクセル値の差を有する領域を含む境界ボックスを計算する。もし、これらの境界ボックスが所定の閾値よりも面積が大きくなり、元々はフレームの中心付近に存在していた場合には、サーバー110は、そのフレームをキーフレーム抽出対象として考慮すべき候補セグメントとみなす。サーバー110は、次いで、情報コンテント検出技術(例えばOCR)を、静的な情報コンテント(例えば、所定時間静止している情報コンテント)を含んだセグメントの最終フレームに適用する。もし、静的な情報コンテントがフレーム中で検出されない場合には、フレームは外観モデル(例えばSVM)に渡され、フレームが講演者が含まれているかを決定する外観モデルにマッチするかどうかを決定する。もしフレームが外観モデルにマッチする場合には、サーバー110はフレームをキーフレームのリストから除外する。
104 プレゼンテーションビデオ
110 サーバー
120 クライアントコンピュータ
501、511、521、531、2101 フレーム
502、512、524、532、2102 プレゼンテーションスライド
522、2105 講演者
2107 出席者
2108 部屋
Claims (16)
- 静的な情報コンテントを含んだビデオのフレームシーケンスを取得する取得手段と、
前記フレームシーケンスに含まれる連続する前後のフレーム間毎にピクセル値の差を計算する計算手段と、
前記計算手段により計算された前記連続する前後のフレーム間毎のピクセル値の差と所定の閾値との比較結果に基づいて、前記フレームシーケンスの中で静止状態と判断される一連の複数のフレームのセットを識別する識別手段と、
前記一連の複数のフレームのセットの中からキーフレームを抽出する抽出手段と、
抽出された前記キーフレームの中から前記静的な情報コンテントを含んだ静的キーフレームを選択し、選択された前記静的キーフレームを前記静的キーフレームに関連する情報と関連付けて保存する保存手段と、
検索要求に基づいて前記保存手段に保存された前記静的キーフレームを提供する提供手段と、
を備えるビデオ検索システム。 - 前記ビデオが講演者によるプレゼンテーションを撮影したビデオであって、前記静的な情報コンテントが、前記プレゼンテーションで用いられたスライド画像を含むことを特徴とする請求項1記載のビデオ検索システム。
- 前記識別手段は、
前記連続する前後のフレーム間の前記ピクセル値の差が所定の閾値以上である前後のフレームを識別する前後フレーム識別工程と、
識別された前記前後のフレーム中に含まれる文字領域に対応する境界ボックスを識別する境界ボックス識別工程と、
エッジ検出技術に基づいて、前記前後のフレームの前のフレームでは空欄であった前記境界ボックス中の領域があるかを判別する判別工程と、
前記判別工程により前記前後のフレームの前のフレームで空欄であった前記境界ボックス中の領域があると判別される場合には、前記前後のフレーム間の前記ピクセル値の差が前記所定の閾値を超える前記前後のフレームの前のフレーム中での領域が空欄でなくなるまで、前記前後フレーム識別工程、前記境界ボックス識別工程及び前記判別工程を繰り返す繰り返し工程と、を行い、
前記静止状態と判断される一連の複数のフレームのセットに含まれるフレームとして、前記繰り返し工程の間に用いられた連続するフレームシーケンスの少なくとも一部を含むように識別することを特徴とする請求項1記載のビデオ検索システム。 - 前記抽出手段が、前記繰り返し工程の間に用いられた前記連続するフレームシーケンスのうち最後のフレームを、前記キーフレームとして選択することを特徴とする請求項3記載のビデオ検索システム。
- 前記静的な情報コンテントには積み上げスライドを含むビデオのフレームシーケンスが含まれており、前記識別手段は、前記繰り返し工程によって、時間経過とともに情報が積み上げられる前記積み上げスライドのセットを前記静止状態と判断される一連の複数のフレームのセットとして識別することを特徴とする請求項3又は4記載のビデオ検索システム。
- 前記保存手段は、前記キーフレームのセット中から、静的な情報コンテントを含むフレームの視覚的特徴をモデル化した視覚モデルを用いて静的な情報コンテントを含む前記静的キーフレームを識別し、静的な情報コンテントを含まないキーフレームを除外することで、前記静的キーフレームを選択することを特徴とする請求項1記載のビデオ検索システム。
- 前記ビデオが講演者によるプレゼンテーションを撮影したビデオであって、前記静的な情報コンテントが該プレゼンテーションで用いられたスライド画像を含み、
前記視覚モデルが、前記静的な情報コンテントを含むフレームとして、前記プレゼンテーションが行われた場所で撮影されたビデオのフレーム内に前記スライド画像が含まれるフレームに基づいてモデル化されてなることを特徴とする請求項6記載のビデオ検索システム。 - 前記視覚モデルは、前記フレームシーケンスを、静的な情報コンテントを含む第1のフレームのセットと、静的な情報コンテントを含まない第2のフレームのセットとに分別し、前記第1および第2のフレームのセットを用いて、静的な情報コンテントが含まれるフレームであるか否かを判断する教師付き分類器を訓練することにより生成されることを特徴とする請求項6記載のビデオ検索システム。
- 前記第1及び第2のフレームのセットのカラーヒストグラムが計算され、前記カラーヒストグラムを用いて前記分類器を訓練することを特徴とする請求項8記載のビデオ検索システム。
- 前記保存手段は、前記キーフレームの中から人間の顔を検出する顔検出手段を備え、前記キーフレームのセットから、前記静的な情報コンテントを含まず人間の顔を含むフレームを判別し、判別結果に応じて前記キーフレームのセットのサブセットを生成することを特徴とする請求項6記載のビデオ検索システム。
- 前記キーフレームのセット中に少なくとも一つのフレーム内の所定の第1の領域に人間の顔と所定の第2の領域に静的な情報コンテントとを含むフレームがあり、前記視覚モデルは、前記フレーム内の前記所定の第1および第2の領域各々に人間の顔と前記静的な情報コンテントとを各々含むフレームを判別するためのモデルであることを特徴とする請求項10記載のビデオ検索システム。
- 前記保存手段に保存される、前記静的キーフレームに関連する情報には、前記静的キーフレームの前記ビデオにおける出現時点を表す時間情報が含まれ、
前記提供手段で提供されたキーフレームの選択に応じて前記ビデオを前記時間情報に基づいて再生するビデオ再生手段を更に備えることを特徴とする請求項1〜11のいずれかに記載のビデオ検索システム。 - 前記保存手段に保存される、前記静的キーフレームに関連する情報には、前記静的キーフレームに含まれる前記静的な情報コンテントが前記ビデオにおいて前記静的キーフレーム内に出現するより早い時点の時間に関する時間情報が含まれ、
前記提供手段で提供されたキーフレームの選択に応じて前記ビデオを前記時間情報に基づいて再生するビデオ再生手段を更に備えることを特徴とする請求項1〜11のいずれかに記載のビデオ検索システム。 - コンピュータを、
静的な情報コンテントを含んだビデオのフレームシーケンスを取得する取得手段と、
前記フレームシーケンスに含まれる連続する前後のフレーム間毎にピクセル値の差を計算する計算手段と、
前記計算手段により計算された前記連続する前後のフレーム間毎のピクセル値の差と所定の閾値との比較結果に基づいて、前記フレームシーケンスの中で静止状態と判断される一連の複数のフレームのセットを識別する識別手段と、
前記一連の複数のフレームのセットの中からキーフレームを抽出する抽出手段と、
抽出された前記キーフレームの中から前記静的な情報コンテントを含んだ静的キーフレームを選択し、選択された前記静的キーフレームを前記静的キーフレームに関連する情報と関連付けて保存する保存手段と、
検索要求に基づいて前記保存手段に保存された前記静的キーフレームを提供する提供手段と、
として動作させるためのビデオ検索用コンピュータプログラム。 - 前記識別手段は、
前記連続する前後のフレーム間の前記ピクセル値の差が所定の閾値以上である前後のフレームを識別する前後フレーム識別工程と、
識別された前記前後のフレーム中に含まれる文字領域に対応する境界ボックスを識別する境界ボックス識別工程と、
エッジ検出技術に基づいて、前記前後のフレームの前のフレームでは空欄であった前記境界ボックス中の領域があるかを判別する判別工程と、
前記判別工程により前記前後のフレームの前のフレームで空欄であった前記境界ボックス中の領域があると判別される場合には、前記前後のフレーム間の前記ピクセル値の差が前記所定の閾値を超える前記前後のフレームの前のフレーム中での領域が空欄でなくなるまで、前記前後フレーム識別工程、前記境界ボックス識別工程及び前記判別工程を繰り返す繰り返し工程と、を行い、
前記静止状態と判断される一連の複数のフレームのセットに含まれるフレームとして、前記繰り返し工程の間に用いられた連続するフレームシーケンスの少なくとも一部を含むように識別することを特徴とする請求項14記載のビデオ検索用コンピュータプログラム。 - 前記保存手段は、前記キーフレームのセット中から、静的な情報コンテントを含むフレームの視覚的特徴をモデル化した視覚モデルを用いて静的な情報コンテントを含む前記静的キーフレームを識別し、静的な情報コンテントを含まないキーフレームを除外することで、前記静的キーフレームを選択することを特徴とする請求項14記載のビデオ検索用コンピュータプログラム。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24880709P | 2009-10-05 | 2009-10-05 | |
US61/248,807 | 2009-10-05 | ||
US12/687,790 | 2010-01-14 | ||
US12/687,790 US8280158B2 (en) | 2009-10-05 | 2010-01-14 | Systems and methods for indexing presentation videos |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011082958A JP2011082958A (ja) | 2011-04-21 |
JP5510167B2 true JP5510167B2 (ja) | 2014-06-04 |
Family
ID=43823211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010176991A Active JP5510167B2 (ja) | 2009-10-05 | 2010-08-06 | ビデオ検索システムおよびそのためのコンピュータプログラム |
Country Status (2)
Country | Link |
---|---|
US (1) | US8280158B2 (ja) |
JP (1) | JP5510167B2 (ja) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103004228A (zh) * | 2010-07-26 | 2013-03-27 | 皇家飞利浦电子股份有限公司 | 获取关键词用于搜索 |
US9171578B2 (en) * | 2010-08-06 | 2015-10-27 | Futurewei Technologies, Inc. | Video skimming methods and systems |
US9582239B2 (en) | 2011-01-21 | 2017-02-28 | Qualcomm Incorporated | User input back channel for wireless displays |
US9787725B2 (en) * | 2011-01-21 | 2017-10-10 | Qualcomm Incorporated | User input back channel for wireless displays |
US9413803B2 (en) | 2011-01-21 | 2016-08-09 | Qualcomm Incorporated | User input back channel for wireless displays |
US10135900B2 (en) | 2011-01-21 | 2018-11-20 | Qualcomm Incorporated | User input back channel for wireless displays |
US8554832B1 (en) * | 2011-03-01 | 2013-10-08 | Asana, Inc. | Server side user interface simulation |
US9020244B2 (en) * | 2011-12-06 | 2015-04-28 | Yahoo! Inc. | Ranking and selecting representative video images |
JP5306500B2 (ja) * | 2012-02-29 | 2013-10-02 | 株式会社東芝 | 画像処理装置、画像処理方法及びプログラム |
US20130265423A1 (en) * | 2012-04-06 | 2013-10-10 | Xerox Corporation | Video-based detector and notifier for short-term parking violation enforcement |
ITMI20121210A1 (it) | 2012-07-11 | 2014-01-12 | Rai Radiotelevisione Italiana | A method and an apparatus for the extraction of descriptors from video content, preferably for search and retrieval purpose |
US9244923B2 (en) | 2012-08-03 | 2016-01-26 | Fuji Xerox Co., Ltd. | Hypervideo browsing using links generated based on user-specified content features |
TWI520609B (zh) * | 2012-10-05 | 2016-02-01 | 緯創資通股份有限公司 | 顯示系統以及通訊方法 |
US9471676B1 (en) * | 2012-10-11 | 2016-10-18 | Google Inc. | System and method for suggesting keywords based on image contents |
US9892761B2 (en) * | 2013-02-22 | 2018-02-13 | Fuji Xerox Co., Ltd. | Systems and methods for creating and using navigable spatial overviews for video |
US10482777B2 (en) | 2013-02-22 | 2019-11-19 | Fuji Xerox Co., Ltd. | Systems and methods for content analysis to support navigation and annotation in expository videos |
US9626567B2 (en) * | 2013-03-13 | 2017-04-18 | Visible Measures Corp. | Automated video campaign building |
US9773341B2 (en) * | 2013-03-14 | 2017-09-26 | Nvidia Corporation | Rendering cover geometry without internal edges |
US9179096B2 (en) * | 2013-10-11 | 2015-11-03 | Fuji Xerox Co., Ltd. | Systems and methods for real-time efficient navigation of video streams |
US10108617B2 (en) * | 2013-10-30 | 2018-10-23 | Texas Instruments Incorporated | Using audio cues to improve object retrieval in video |
US9495609B2 (en) | 2014-04-30 | 2016-11-15 | Bendix Commercial Vehicle Systems Llc | System and method for evaluating data |
US9564172B2 (en) * | 2014-07-14 | 2017-02-07 | NFL Enterprises LLC | Video replay systems and methods |
US9652675B2 (en) * | 2014-07-23 | 2017-05-16 | Microsoft Technology Licensing, Llc | Identifying presentation styles of educational videos |
US9349054B1 (en) | 2014-10-29 | 2016-05-24 | Behavioral Recognition Systems, Inc. | Foreground detector for video analytics system |
US10318575B2 (en) * | 2014-11-14 | 2019-06-11 | Zorroa Corporation | Systems and methods of building and using an image catalog |
CN105589974B (zh) * | 2016-02-04 | 2019-05-17 | 通号通信信息集团有限公司 | 基于Hadoop平台的监控视频检索方法和系统 |
US10127824B2 (en) * | 2016-04-01 | 2018-11-13 | Yen4Ken, Inc. | System and methods to create multi-faceted index instructional videos |
CN107920280A (zh) * | 2017-03-23 | 2018-04-17 | 广州思涵信息科技有限公司 | 视频、讲义ppt和语音内容精准匹配的方法和系统 |
US10346715B2 (en) * | 2017-04-07 | 2019-07-09 | GM Global Technology Operations LLC | Camera misalignment determination methods and systems |
CN107527370B (zh) * | 2017-07-26 | 2021-02-23 | 南京理工大学 | 一种基于camshift的目标跟踪方法 |
KR102595790B1 (ko) * | 2018-01-26 | 2023-10-30 | 삼성전자주식회사 | 전자 장치 및 그의 제어방법 |
US10956746B1 (en) | 2018-12-27 | 2021-03-23 | Facebook, Inc. | Systems and methods for automated video classification |
US11138440B1 (en) | 2018-12-27 | 2021-10-05 | Facebook, Inc. | Systems and methods for automated video classification |
US10922548B1 (en) | 2018-12-27 | 2021-02-16 | Facebook, Inc. | Systems and methods for automated video classification |
US11017237B1 (en) | 2018-12-27 | 2021-05-25 | Facebook, Inc. | Systems and methods for automated video classification |
US11836181B2 (en) | 2019-05-22 | 2023-12-05 | SalesTing, Inc. | Content summarization leveraging systems and processes for key moment identification and extraction |
WO2021060966A1 (en) * | 2019-09-27 | 2021-04-01 | Mimos Berhad | A system and method for retrieving a presentation content |
US10990828B2 (en) * | 2019-09-30 | 2021-04-27 | LogMeln, Inc. | Key frame extraction, recording, and navigation in collaborative video presentations |
CN111753762B (zh) * | 2020-06-28 | 2024-03-15 | 北京百度网讯科技有限公司 | 视频中关键标识的识别方法、装置、设备以及存储介质 |
CN111914760B (zh) * | 2020-08-04 | 2021-03-30 | 华中师范大学 | 一种在线课程视频资源构成的解析方法及系统 |
CN115967823A (zh) * | 2021-10-09 | 2023-04-14 | 北京字节跳动网络技术有限公司 | 视频封面生成方法、装置、电子设备及可读介质 |
US20230394851A1 (en) * | 2022-06-04 | 2023-12-07 | Zoom Video Communications, Inc. | Video frame type classification for a communication session |
US20230394860A1 (en) * | 2022-06-04 | 2023-12-07 | Zoom Video Communications, Inc. | Video-based search results within a communication session |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4864629A (en) * | 1985-12-31 | 1989-09-05 | Schlumberger Technologies, Inc. | Image correlation system |
JP2914170B2 (ja) * | 1994-04-18 | 1999-06-28 | 松下電器産業株式会社 | 映像変化点検出方法 |
US6137544A (en) * | 1997-06-02 | 2000-10-24 | Philips Electronics North America Corporation | Significant scene detection and frame filtering for a visual indexing system |
US6751354B2 (en) * | 1999-03-11 | 2004-06-15 | Fuji Xerox Co., Ltd | Methods and apparatuses for video segmentation, classification, and retrieval using image class statistical models |
US6807306B1 (en) * | 1999-05-28 | 2004-10-19 | Xerox Corporation | Time-constrained keyframe selection method |
US6677961B1 (en) * | 1999-09-24 | 2004-01-13 | Lg Electronics, Inc. | Method and apparatus for identifying a predetermined number of representative data pieces from within a selected data segment |
KR100579890B1 (ko) * | 2004-12-30 | 2006-05-15 | 삼성전자주식회사 | 움직임 적응적 영상처리 장치 및 그 방법 |
US7466858B2 (en) * | 2005-04-28 | 2008-12-16 | Fuji Xerox Co., Ltd. | Methods for slide image classification |
US7986842B2 (en) * | 2006-11-10 | 2011-07-26 | Fuji Xerox Co., Ltd. | Collective media annotation using undirected random field models |
US8261200B2 (en) * | 2007-04-26 | 2012-09-04 | Fuji Xerox Co., Ltd. | Increasing retrieval performance of images by providing relevance feedback on word images contained in the images |
US8041077B2 (en) * | 2007-12-18 | 2011-10-18 | Robert Bosch Gmbh | Method of motion detection and autonomous motion tracking using dynamic sensitivity masks in a pan-tilt camera |
-
2010
- 2010-01-14 US US12/687,790 patent/US8280158B2/en active Active
- 2010-08-06 JP JP2010176991A patent/JP5510167B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011082958A (ja) | 2011-04-21 |
US8280158B2 (en) | 2012-10-02 |
US20110081075A1 (en) | 2011-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5510167B2 (ja) | ビデオ検索システムおよびそのためのコンピュータプログラム | |
US11849196B2 (en) | Automatic data extraction and conversion of video/images/sound information from a slide presentation into an editable notetaking resource with optional overlay of the presenter | |
US20210056251A1 (en) | Automatic Data Extraction and Conversion of Video/Images/Sound Information from a Board-Presented Lecture into an Editable Notetaking Resource | |
CN107633241B (zh) | 一种全景视频自动标注和追踪物体的方法和装置 | |
JP4833573B2 (ja) | 複合的な電子表現物を作成する方法、装置及びデータ処理システム | |
KR102148392B1 (ko) | 동영상 메타데이터 태깅 시스템 및 그 방법 | |
US20140164927A1 (en) | Talk Tags | |
US20160004911A1 (en) | Recognizing salient video events through learning-based multimodal analysis of visual features and audio-based analytics | |
WO2017124116A1 (en) | Searching, supplementing and navigating media | |
Rusiñol et al. | Augmented songbook: an augmented reality educational application for raising music awareness | |
CN111160134A (zh) | 一种以人为主体的视频景别分析方法和装置 | |
CN111209897A (zh) | 视频处理的方法、装置和存储介质 | |
Zhao et al. | A new visual interface for searching and navigating slide-based lecture videos | |
US10007848B2 (en) | Keyframe annotation | |
Fan et al. | Robust spatiotemporal matching of electronic slides to presentation videos | |
Ma et al. | Lecture video segmentation and indexing | |
Eberts et al. | Amigo-automatic indexing of lecture footage | |
US20180189602A1 (en) | Method of and system for determining and selecting media representing event diversity | |
US20140297678A1 (en) | Method for searching and sorting digital data | |
Christel | Automated metadata in multimedia information systems | |
TWI684964B (zh) | 知識點標記生成系統及其方法 | |
Gandhi et al. | Topic Transition in Educational Videos Using Visually Salient Words. | |
CN111144256B (zh) | 基于视频动态分析的电子表格公式合成与错误检测方法 | |
Xu et al. | Skeleton-based methods for speaker action classification on lecture videos | |
Angrave et al. | Creating TikToks, Memes, Accessible Content, and Books from Engineering Videos? First Solve the Scene Detection Problem. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121023 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131217 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140117 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140225 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140310 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5510167 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |