JP5509686B2 - Molded body of thermoplastic resin composition containing deformed crosslinked dispersed phase - Google Patents

Molded body of thermoplastic resin composition containing deformed crosslinked dispersed phase Download PDF

Info

Publication number
JP5509686B2
JP5509686B2 JP2009139833A JP2009139833A JP5509686B2 JP 5509686 B2 JP5509686 B2 JP 5509686B2 JP 2009139833 A JP2009139833 A JP 2009139833A JP 2009139833 A JP2009139833 A JP 2009139833A JP 5509686 B2 JP5509686 B2 JP 5509686B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin composition
crosslinked
dispersed phase
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009139833A
Other languages
Japanese (ja)
Other versions
JP2010284856A (en
Inventor
知英 中川
真志 岩嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2009139833A priority Critical patent/JP5509686B2/en
Publication of JP2010284856A publication Critical patent/JP2010284856A/en
Application granted granted Critical
Publication of JP5509686B2 publication Critical patent/JP5509686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

本発明は変形した架橋分散相を含有する熱可塑性樹脂組成物成形体に関するものであり、予め一定の架橋度に架橋処理された架橋熱可塑性樹脂を熱可塑性樹脂に溶融混練過程においてミクロンオーダーまで微細分散し構造化した架橋分散相含有熱可塑性樹脂組成物を延伸成形した成形体に関するものである。   The present invention relates to a molded thermoplastic resin composition containing a deformed crosslinked dispersed phase, and the crosslinked thermoplastic resin that has been previously crosslinked to a certain degree of crosslinking is made into a thermoplastic resin finely down to the micron order in the melt kneading process. The present invention relates to a molded article obtained by stretching and molding a dispersed and structured crosslinked dispersed phase-containing thermoplastic resin composition.

変形した分散相を含む成形体の有用性は、フィルム成形品における面状分散ゴムによる面衝撃性改良、延伸フィルムやブロー成形品における面状分散バリア成分によるバリア性向上などで知られている。しかしながら、分散構造の均一性や安定性が大きな課題であることに加え、分散相を含む樹脂組成物を溶融加工に有利なレオロジー特性にコントロールすることや分散相にマトリックスの変形に対する分散相の変形追随性を付与することは非常に難しい。このため成形性に優れ、安定で均一な分散相構造をもち、なお且つ成形時の変形に追随して変形度の高い分散相を含有する熱可塑性樹脂成形体を調整することは高度の技術が必要である。架橋樹脂や架橋ゴム成分を動的加硫法によって架橋分散相として含有させた熱可塑性エラストマーがモンサント社によって広く研究開発が行われ、「サントプレン」という商標で市販されている。   The usefulness of a molded product containing a deformed dispersed phase is known for improving the surface impact by a surface-dispersed rubber in a film molded product and improving the barrier property by a surface-dispersed barrier component in a stretched film or blow-molded product. However, in addition to the uniformity and stability of the dispersed structure being a major issue, the resin composition containing the dispersed phase is controlled to have rheological properties advantageous for melt processing, and the deformation of the dispersed phase relative to the deformation of the matrix in the dispersed phase It is very difficult to give following ability. For this reason, it is an advanced technology to adjust a thermoplastic resin molded body having excellent moldability, a stable and uniform dispersed phase structure, and containing a dispersed phase having a high degree of deformation following deformation during molding. is necessary. A thermoplastic elastomer containing a crosslinked resin or a crosslinked rubber component as a crosslinked dispersed phase by a dynamic vulcanization method has been extensively researched and developed by Monsanto, and is marketed under the trademark “Santoprene”.

特許文献1、非特許文献1には、動的加硫法による熱可塑性エラストマーは、ポリプロピレン(PP)にEPDM等のゴム成分とゴムの架橋剤等を配合し高剪断で溶融混錬することによってEPDMゴムの加硫(架橋)を起こすと同時にPPの樹脂中にEPDMゴムを分散する動的架橋に関して開示されている。この場合、PP成分よりEPDMゴム成分が多い組成で溶融混錬を行い、混錬工程でEPDMゴムの架橋を起こすと同時にPPをマトリックスにするためにPPとEPDMゴム成分の相反転を行うという高度な製造技術が必要となる。ここで得られた熱可塑性エラストマーの分散架橋粒子は架橋度の高い粒子状分散体であり、その架橋度の高さゆえ溶融伸長粘度における非線形領域でひずみ硬化性は発現せず、成形性を向上させるためには更なる改良が必要である。   In Patent Document 1 and Non-Patent Document 1, a thermoplastic elastomer obtained by a dynamic vulcanization method is prepared by blending a rubber component such as EPDM and a rubber cross-linking agent into polypropylene (PP) and melt-kneading with high shear. It discloses a dynamic cross-linking in which the EPDM rubber is dispersed in the PP resin while causing the vulcanization (cross-linking) of the EPDM rubber. In this case, melt kneading is carried out with a composition having more EPDM rubber components than PP components, and at the same time, crosslinking of EPDM rubber is caused in the kneading process and at the same time phase inversion of PP and EPDM rubber components is performed in order to use PP as a matrix. Manufacturing technology is required. The dispersed dispersion particles of the thermoplastic elastomer obtained here are particulate dispersions with a high degree of cross-linking, and because of the high degree of cross-linking, strain hardening is not manifested in the non-linear region in the melt elongational viscosity, improving moldability. Further improvement is necessary to achieve this.

特許文献2には架橋されたエラストマー成分が円盤状にフィルム面方向に配向している熱可塑性エラストマーフィルムについて開示されている。この場合、実質的に動的架橋法による架橋分散粒子を含有するが、分散粒子の架橋度が高い領域でしか架橋をコントロールできないため、溶融伸長粘度における非線形領域でひずみ硬化性の発現がなく成形性改良の必要があり、延伸による架橋粒子の変形追随性は低い。
特許文献3には、放射線照射架橋したポリカプロラクトンと脂肪族ポリエステルとを溶融混練した樹脂組成物を用いてフィルムを成形することが開示されている。しかしながら、具体的に開示された架橋ポリカプロラクトンは、照射放射線量が高く分子劣化も生じて生分解性を促進する程度のものであるとともに、架橋ポリカプロラクトンの分散性や分散構造に関する記述はなく、架橋ポリカプロラクトンの分散による樹脂組成物の具体的レオロジー特性の改良についての記載はない。
特許文献4には、成形後に除去が容易なマトリックス成分と熱可塑性樹脂の分散成分とからなる予備分散体を溶融圧縮又は延伸成形して熱可塑性樹脂分散粒子を変形させた成形体とすることが記載されている。しかしながら、成形体のマトリックス成分を溶解除去して変形樹脂分散粒子を製造することが目的であり、予備分散体の延伸成形体をそのまま使用して延伸成形体に変形樹脂分散粒子の特性を発現させるものではない。
Patent Document 2 discloses a thermoplastic elastomer film in which a crosslinked elastomer component is oriented in a disk shape in a film surface direction. In this case, it contains cross-linked dispersed particles by the dynamic cross-linking method, but since the cross-linking can be controlled only in the region where the cross-linking degree of the dispersed particles is high, there is no expression of strain hardening in the nonlinear region in the melt elongation viscosity. It is necessary to improve the property, and the deformation followability of the crosslinked particles by stretching is low.
Patent Document 3 discloses that a film is formed using a resin composition obtained by melt-kneading a radiation-crosslinked polycaprolactone and an aliphatic polyester. However, the specifically disclosed crosslinked polycaprolactone has a high radiation dose and molecular degradation and promotes biodegradability, and there is no description regarding the dispersibility and dispersion structure of the crosslinked polycaprolactone. There is no description about the improvement of the specific rheological properties of the resin composition by the dispersion of the crosslinked polycaprolactone.
In Patent Document 4, a pre-dispersion composed of a matrix component that can be easily removed after molding and a dispersion component of a thermoplastic resin is melt-compressed or stretch-molded to form a molded product obtained by deforming thermoplastic resin-dispersed particles. Have been described. However, the objective is to produce deformed resin-dispersed particles by dissolving and removing the matrix components of the molded product, and using the stretched molded product of the preliminary dispersion as it is, the stretched molded product exhibits the characteristics of the deformed resin-dispersed particles. It is not a thing.

特開昭59−58043号公報JP 59-58043 A 特開2006−315339号公報JP 2006-315339 A 特開平2000−256471号公報JP 2000-256471 A 特開平2007−262334号公報JP 2007-262334 A

ラバーケミストリー・アンド・テクノロジー(Rubber chemistry and Technology)1996年発行 第 69巻 p.476Rubber chemistry and Technology, 1996, Volume 69, p.476

本発明は上記の問題点を解決しようとするものであり、幅広い熱可塑性樹脂の組み合わせにおいて機能性付与に有利な状態に変形した架橋分散相を含有する熱可塑性樹脂系の成形体を提供することである。   The present invention is intended to solve the above-mentioned problems, and provides a thermoplastic resin-based molded article containing a crosslinked dispersed phase deformed into a state advantageous for imparting functionality in a wide range of combinations of thermoplastic resins. It is.

本発明者らは、鋭利研究を重ねた結果、予め特定の架橋度に架橋処理された架橋熱可塑性樹脂を熱可塑性樹脂に溶融混練でミクロンオーダーまで微細化し分散化構造化した熱可塑性樹脂組成物を延伸する方法が、高度に延伸方向に変形した架橋分散相を含む熱可塑性樹脂組成物成形体を得ることができることを見出し本発明に到達した。 As a result of extensive research, the present inventors have obtained a thermoplastic resin composition in which a cross-linked thermoplastic resin that has been previously cross-linked to a specific degree of cross-linking is refined to a micron order by melt-kneading into a thermoplastic resin and has a dispersed structure. The present inventors have found that a method for stretching a thermoplastic resin composition molded body containing a crosslinked dispersed phase highly deformed in the stretching direction can be obtained.

すなわち本発明は、
(1) 非架橋熱可塑性樹脂(A)を架橋して得られた下記(イ)の特性を有する架橋熱可塑性樹脂組成物(A’)と非架橋熱可塑性樹脂(B)とを溶融混練して得られた熱可塑性樹脂組成物が、前記(A’)が前記(B)中に大きくとも20μmの粒子径に分散する分散相を形成するか又は前記(A’)と前記(B)が互いに入り組みあった共連続構造化した架橋相を形成し(以下、前記分散相と前記架橋相を合わせて架橋分散相と称する)、かつ溶融一軸伸長粘度における非線形領域で、下記(ロ)のひずみ硬化性を持つ熱可塑性樹脂組成物であり、該熱可塑性樹脂組成物を溶融延伸成形して得られた成形体であって、該成形体中の前記架橋分散相が、成形時の延伸に追随して延伸方向に変形してなることを特徴とする変形した架橋分散相を含有する熱可塑性樹脂組成物成形体。
(イ)非架橋熱可塑性樹脂(A)の溶媒に溶解せずに該溶媒と溶媒ゲルを形成する。
(ロ)非架橋熱可塑性樹脂(B)の融点より少なくとも10℃以上高い温度における前記熱可塑性樹脂の溶融一軸伸張粘度測定で得られる時間‐一軸伸張粘度の両対数プロット曲線において下記のひずみ硬化係数が2以上である。
ひずみ硬化係数 = a2/a1
a1: 時間‐一軸伸張粘度の両対数プロット曲線における線形領域の傾き
a2: 時間‐一軸伸張粘度の両対数プロット曲線における非線形領域の傾き
That is, the present invention
(1) A cross-linked thermoplastic resin composition (A ′) having the following characteristics (a) obtained by cross-linking the non-crosslinked thermoplastic resin (A) and a non-crosslinked thermoplastic resin (B) are melt-kneaded. The thermoplastic resin composition obtained above forms a dispersed phase in which (A ′) is dispersed in a particle size of at most 20 μm in (B) or (A ′) and (B) Forming a cross-linked structure having a co-continuous structure interlaced with each other (hereinafter, the dispersed phase and the crosslinked phase are collectively referred to as a crosslinked dispersed phase) , and in a non-linear region in the melt uniaxial elongation viscosity, It is a thermoplastic resin composition having strain-hardening properties, and is a molded body obtained by melt-stretching the thermoplastic resin composition, and the crosslinked dispersed phase in the molded body is used for stretching during molding. Including a deformed crosslinked dispersed phase characterized by being deformed in the stretching direction. A molded thermoplastic resin composition.
(A) A solvent gel is formed with the solvent without dissolving in the solvent of the non-crosslinked thermoplastic resin (A).
(B) The following strain hardening coefficient in a log-log plot curve of time-uniaxial extension viscosity obtained by measuring the melt uniaxial extension viscosity of the thermoplastic resin at a temperature of at least 10 ° C. higher than the melting point of the non-crosslinked thermoplastic resin (B) Is 2 or more.
Strain hardening coefficient = a2 / a1
a1: slope of linear region in log-log plot curve of time-uniaxial extensional viscosity
a2: Slope of nonlinear region in log-log plot curve of time-uniaxial extensional viscosity

(2) 架橋熱可塑性樹脂組成物(A’)が、その線形領域における溶融粘弾性測定で得られる周波数‐貯蔵弾性率の両対数プロット曲線において、周波数0.1〜10rad/sの範囲で周波数に対する貯蔵弾性率の傾きが0.2〜1.0となる架橋状態である前記(1)記載の変形した架橋分散相を含有する熱可塑性樹脂組成物成形体。
(3) 架橋熱可塑性樹脂組成物(A’)が、その線形領域における溶融粘弾性測定での周波数0.1〜10rad/s範囲において、周波数-貯蔵弾性率両対数プロット曲線における貯蔵弾性率の傾きをα、周波数-損失弾性率両対数プロット曲線における損失弾性率の傾きをβとしたとき、αとβとの差の絶対値が0.15以下である前記(1)又は(2)記載の変形した架橋分散相を含有する熱可塑性樹脂組成物成形体。
(4) 架橋熱可塑性樹脂組成物(A’)が、放射線照射されてなるものである前記(1)〜(3)のいずれかに記載の変形した架橋分散相を含有する熱可塑性樹脂組成物成形体。
(5) 架橋熱可塑性樹脂組成物(A’)が、非架橋熱可塑性樹脂と架橋助剤を溶融混練して得たペレットを放射線照射することで架橋されてなるものである前記(1)〜(4)のいずれかに記載の変形した架橋分散相を含有する熱可塑性樹脂組成物成形体成形体。
(6) 架橋熱可塑性樹脂組成物(A’)が、非架橋熱可塑性樹脂(A)に架橋助剤及び/又は有機過酸化物を配合して、溶融混錬によって架橋されてなるものである前記(1)〜(5)のいずれかに記載の変形した架橋分散相を含有する熱可塑性樹脂組成物成形体。
(7) 架橋熱可塑性樹脂組成物(A’)中の少なくとも50重量%がポリアミド系樹脂、ポリエステル系樹脂およびポリオレフィン系樹脂のいずれかである前記(1)〜(6)のいずれかに記載の変形した架橋分散相を含有する熱可塑性樹脂組成物成形体。
(8) 架橋熱可塑性樹脂組成物(A’)が、ポリカプロラクトン50〜99.9重量部と架橋助剤0.1〜3重量部とを含む樹脂組成物を溶融混練して得たペレットを吸収線量0.5〜25kGyに放射線照射されてなる(1)〜(7)のいずれかに記載の変形した架橋分散相を含有する熱可塑性樹脂組成物成形体。
(9) 架橋熱可塑性樹脂組成物(A’)が、ポリエステルエラストマー50〜99.9重量部と架橋助剤0.1〜3重量部を含む樹脂組成物を溶融混練して得たペレットを吸収線量0.5〜60kGyに放射線照射されてなる前記(1)〜()のいずれかに記載の変形した架橋分散相を含有する熱可塑性樹脂組成物成形体。
(10) 架橋熱可塑性樹脂組成物(A’)が、ポリアミド50〜99.9重量部と架橋助剤0.1〜3重量部を含む樹脂組成物を溶融混練して得たペレットを吸収線量0.5〜20kGyに放射線照射されてなる前記(1)〜()のいずれかに記載の変形した架橋分散相を含有する熱可塑性樹脂組成物成形体。
(2) The cross-linked thermoplastic resin composition (A ′) has a frequency in the frequency range of 0.1 to 10 rad / s in a logarithmic plot curve of frequency-storage elastic modulus obtained by melt viscoelasticity measurement in the linear region. The thermoplastic resin composition molded article containing the deformed crosslinked dispersed phase according to the above (1), which is in a crosslinked state in which the slope of the storage elastic modulus with respect to is 0.2 to 1.0.
(3) The cross-linked thermoplastic resin composition (A ′) has a storage elastic modulus in a frequency-storage elastic log-log plot curve in a frequency range of 0.1 to 10 rad / s in melt viscoelasticity measurement in the linear region. (1) or (2), wherein the absolute value of the difference between α and β is 0.15 or less, where α is the slope and β is the slope of the loss modulus in the logarithmic plot curve of the frequency-loss modulus. A molded product of a thermoplastic resin composition containing a deformed crosslinked dispersed phase.
(4) The thermoplastic resin composition containing the deformed crosslinked dispersed phase according to any one of (1) to (3), wherein the crosslinked thermoplastic resin composition (A ′) is irradiated with radiation. Molded body.
(5) The crosslinked thermoplastic resin composition (A ′) is crosslinked by irradiating a pellet obtained by melt-kneading a non-crosslinked thermoplastic resin and a crosslinking aid (1) to (1) to (4) A thermoplastic resin composition molded article containing the deformed crosslinked dispersed phase according to any one of (4).
(6) The crosslinked thermoplastic resin composition (A ′) is obtained by blending a crosslinking aid and / or an organic peroxide with the non-crosslinked thermoplastic resin (A) and crosslinking by melt kneading. A thermoplastic resin composition molded article containing the deformed crosslinked dispersed phase according to any one of (1) to (5).
(7) The crosslinked thermoplastic resin composition (A ′) according to any one of (1) to (6), wherein at least 50% by weight is any one of a polyamide resin, a polyester resin, and a polyolefin resin. A molded thermoplastic resin composition containing a deformed crosslinked dispersed phase.
(8) crosslinked thermoplastic resin composition (A ') is obtained by melt kneading a resin composition containing a port re-caprolactone 50 to 99.9 parts by weight and the crosslinking aid 0.1-3 parts by weight pellets A thermoplastic resin composition molded article containing the deformed crosslinked dispersed phase according to any one of (1) to (7), wherein the composition is irradiated with an absorbed dose of 0.5 to 25 kGy.
(9) crosslinked thermoplastic resin composition (A ') is, pellets of the resin composition obtained by melt kneading including port re ester elastomer 50 to 99.9 parts by weight and the crosslinking aid 0.1-3 parts by weight The thermoplastic resin composition molded article containing the deformed crosslinked dispersed phase according to any one of (1) to ( 7 ), which is irradiated with an absorbed dose of 0.5 to 60 kGy.
(10) crosslinked thermoplastic resin composition (A ') is the absorption pellets of the resin composition obtained by melt kneading including polyamides 50 to 99.9 parts by weight and the crosslinking aid 0.1-3 parts by weight The thermoplastic resin composition molded article containing the deformed crosslinked dispersed phase according to any one of (1) to ( 7 ), which is irradiated with a dose of 0.5 to 20 kGy.

本発明で使用される架橋分散相含有熱可塑性樹脂組成物は、高度なひずみ硬化性をもつため、押出成形、ブロー成形、発泡成形、フィルム成形などの成形性に非常に優れているばかりか、その架橋分散相が特定の架橋状態に調整されていることから、溶融時の変形において延伸方向に追随して変形する度合いが非常に高く、成形時の延伸で容易に変形した架橋分散相を含む熱可塑性樹脂成形体となる。このため、本発明の成形体は、様々な樹脂や樹脂組成物の組み合わせにおいて、複雑な成形機や成形工程を経ずに高度に変形した分散相を含有することができ、この分散相の作用によってバリア性、光学特性、耐衝撃性、耐熱性などの機能性を発現することができる。 The crosslinked dispersed phase-containing thermoplastic resin composition used in the present invention has a high degree of strain-hardening property, so that it is not only excellent in moldability such as extrusion molding, blow molding, foam molding, film molding, Since the cross-linked dispersed phase is adjusted to a specific cross-linked state, the degree of deformation following the stretching direction in deformation during melting is very high, and includes a cross-linked dispersed phase that is easily deformed by stretching during molding. It becomes a thermoplastic resin molding. For this reason, the molded article of the present invention can contain a highly deformed dispersed phase without passing through a complicated molding machine or molding process in a combination of various resins and resin compositions. Therefore, it is possible to develop functionalities such as barrier properties, optical properties, impact resistance, and heat resistance.

図1は、実施例1、比較例1の熱可塑性樹脂組成物の延伸前のSEM画像を示す図(写真)である。FIG. 1 is a diagram (photograph) showing an SEM image of the thermoplastic resin compositions of Example 1 and Comparative Example 1 before stretching. 図2は、実施例5で得た延伸ストランド状サンプルについての延伸方向断面(イ)と延伸方向に対する垂直方向断面(ロ)の位相差顕微鏡画像を示す図(写真)である。FIG. 2 is a diagram (photograph) showing a phase contrast microscopic image of a stretched cross-section sample (b) obtained in Example 5 and a cross-section perpendicular to the stretch direction (b). 図3は、比較例7の熱可塑性樹脂組成物の延伸前のSPM画像を示す図(写真)である。FIG. 3 is a view (photograph) showing an SPM image of the thermoplastic resin composition of Comparative Example 7 before stretching. 図4は、実施例2の熱可塑性樹脂組成物の延伸前の微分干渉顕微鏡画像を示す図(写真)と延伸後の微分干渉顕微鏡画像とTEM画像を示す図(写真)である。FIG. 4 is a diagram (photograph) showing a differential interference microscope image before stretching of the thermoplastic resin composition of Example 2, and a diagram (photograph) showing a differential interference microscope image and a TEM image after stretching. 図5は、実施例1および実施例6の熱可塑性樹脂組成物について、一軸方向に溶融延伸し調整されたフィルム状成形品のTEM観察画像を示す図(写真)である。FIG. 5: is a figure (photograph) which shows the TEM observation image of the film-form molded article which melt-stretched and adjusted to the uniaxial direction about the thermoplastic resin composition of Example 1 and Example 6. FIG. 図6は、本発明における架橋熱可塑性樹脂組成物(A’)として調整された架橋熱可塑性樹脂B−1と架橋処理をされる前のPCLについての190℃における周波数‐貯蔵弾性率、損失弾性率、溶融粘度についての両対数プロット曲線を示す図である。FIG. 6 shows the frequency-storage elastic modulus and loss elasticity at 190 ° C. of the crosslinked thermoplastic resin B-1 prepared as the crosslinked thermoplastic resin composition (A ′) in the present invention and PCL before being crosslinked. It is a figure which shows the log-log plot curve about a rate and melt viscosity.

以下に本発明を具体的に説明する。本発明の熱可塑性樹脂組成物は架橋熱可塑性樹脂組成物(A’)と非架橋熱可塑性樹脂(B)又は(A)とを溶融混練によって微細分散構造化することで得られる。架橋熱可塑性樹脂組成物(A’)は、非架橋熱可塑性樹脂(A)の分子鎖に橋架け構造が導入されて架橋された変性熱可塑性樹脂(組成物)であり、非架橋熱可塑性樹脂(A)の溶媒に不溶化する特定の架橋度を有することとなったものである。
この非架橋熱可塑性樹脂(A)、(B)に該当する具体的な樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(TPX)、エチレン−プロピレン共重合体(EPM)、エチレン−プロピレン−ジエン共重合体(EPDM)、エチレン−アクリル酸メチル共重合体(EEA)、エチレン−メタクリル酸共重合体(EMAA)、エチレン−アクリル酸共重合体(EAA)、エチレン−酢酸ビニル共重合体(EVA)等のオレフィン系樹脂。ポリカプロラクトン(PCL)、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネート/アジペート(PBSA)などの生分解性かつ橋かけ型ポリエステル樹脂。ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリカーボネート(PC)、ポリアクリレート(PAR)、ポリブチレンテレフタレート/ポリテトラメチレングリコールブロック共重合体、およびポリブチレンテレフタレート/ポリラクトンブロック共重合体、ポリブチレンナフタレート/ポリラクトンブロック共重合体、ポリブチレンテレフタレート/ポリマプロラクトン共重合体等のポリエステル系樹脂。 ナイロン6(NY6)、ナイロン66(NY66)、ナイロン46(NY46)、ナイロン11(NY11)、ナイロン12(NY12)、ナイロン610(NY610)、ナイロン612(NY612)、メタキシリレンアジパミド(MXD6)、ヘキサメチレンジアミン−テレフタル酸重合体(6T)、ヘキサメチレンジアミン−テレフタル酸およびアジピン酸重合体(66T)、ヘキサメチレンジアミン−テレフタル酸およびε−カプロラクタム共重合体(6T/6)、トリメチルヘキサメチレンジアミン−テレフタル酸(TMD−T)、メタキシリレンジアミンとアジピン酸およびイソフタル酸重合体(MXD−6/I)、トリヘキサメチレンジアミンとテレフタル酸およびε−カプロラクタム共重合体(TMD−T/6)、ジアミノジシクロヘキシレンメタン(CA)とイソフタル酸およびラウリルラクタム重合体等のポリアミド系樹脂等を挙げることが出来るが、これらに限定されるものではなく、前述以外の熱可塑性樹脂を含めた複数樹脂の共重合体およびポリマーアロイコンパウンドもこれに含まれる。
The present invention will be specifically described below. The thermoplastic resin composition of the present invention can be obtained by forming a finely dispersed structure of the crosslinked thermoplastic resin composition (A ′) and the non-crosslinked thermoplastic resin (B) or (A) by melt-kneading. The crosslinked thermoplastic resin composition (A ′) is a modified thermoplastic resin (composition) crosslinked by introducing a bridge structure into the molecular chain of the non-crosslinked thermoplastic resin (A). It has a specific degree of cross-linking that makes it insoluble in the solvent of (A).
Specific resins corresponding to the non-crosslinked thermoplastic resins (A) and (B) include polyethylene (PE), polypropylene (PP), polymethylpentene (TPX), ethylene-propylene copolymer (EPM), Ethylene-propylene-diene copolymer (EPDM), ethylene-methyl acrylate copolymer (EEA), ethylene-methacrylic acid copolymer (EMAA), ethylene-acrylic acid copolymer (EAA), ethylene-vinyl acetate Olefin resins such as copolymer (EVA). Biodegradable and cross-linked polyester resins such as polycaprolactone (PCL), polybutylene succinate (PBS), polybutylene succinate / adipate (PBSA). Polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polycarbonate (PC), polyacrylate (PAR), polybutylene terephthalate / polytetramethylene glycol block copolymer And polyester resins such as polybutylene terephthalate / polylactone block copolymers, polybutylene naphthalate / polylactone block copolymers, and polybutylene terephthalate / polymer prolactone copolymers. Nylon 6 (NY6), nylon 66 (NY66), nylon 46 (NY46), nylon 11 (NY11), nylon 12 (NY12), nylon 610 (NY610), nylon 612 (NY612), metaxylylene adipamide (MXD6) ), Hexamethylenediamine-terephthalic acid polymer (6T), hexamethylenediamine-terephthalic acid and adipic acid polymer (66T), hexamethylenediamine-terephthalic acid and ε-caprolactam copolymer (6T / 6), trimethylhexa Methylenediamine-terephthalic acid (TMD-T), metaxylylenediamine and adipic acid and isophthalic acid polymer (MXD-6 / I), trihexamethylenediamine, terephthalic acid and ε-caprolactam copolymer (TMD-T / 6) Diamino Examples include dicyclohexylenemethane (CA) and polyamide resins such as isophthalic acid and lauryl lactam polymers, but are not limited to these, and are not limited to the above. This includes polymers and polymer alloy compounds.

本発明にける熱可塑性樹脂組成物を得るためには、架橋熱可塑性樹脂組成物(A’)の架橋度を適切にコントロールすることが重要であり、この特有の架橋程度に調整可能としたことが、本発明の実現と様々な樹脂への容易な適用を可能にしている。以下に本発明における架橋熱可塑性樹脂組成物(A’)に関してその好ましい形態を記載する。   In order to obtain the thermoplastic resin composition in the present invention, it is important to appropriately control the degree of cross-linking of the cross-linked thermoplastic resin composition (A ′), and this specific cross-linking degree can be adjusted. However, it enables the realization of the present invention and easy application to various resins. Hereinafter, preferred forms of the crosslinked thermoplastic resin composition (A ′) in the present invention will be described.

本発明における架橋熱可塑性樹脂組成物(A’)は少なくとも非架橋熱可塑性樹脂(A)の溶媒に不溶化するまで架橋している必要があり、その架橋方法は放射線照射による架橋や有機過酸化物使いの溶融混錬での架橋などであらかじめ調整されていることが好ましいが、これらに限定されるものではない。橋架け構造を分子鎖内に導入する架橋方法の中では、特に放射線照射による架橋は架橋熱可塑性樹脂組成物(A’)の架橋度を均一かつ架橋密度が上がり過ぎない状態でコントロールすることが容易にできるので特に好ましい。 The crosslinked thermoplastic resin composition (A ′) in the present invention must be crosslinked at least until it is insolubilized in the solvent of the non-crosslinked thermoplastic resin (A). Although it is preferable to adjust beforehand by the bridge | crosslinking in the melt kneading of use, etc., it is not limited to these. Among cross-linking methods that introduce a cross-linked structure into the molecular chain, cross-linking by radiation irradiation in particular can control the cross-linking degree of the cross-linked thermoplastic resin composition (A ′) in a state where the cross-linking density is uniform and the cross-linking density is not excessively increased. This is particularly preferable because it can be easily performed.

非架橋熱可塑性樹脂の溶媒とは、架橋前の熱可塑性樹脂を溶解可能な溶媒のことであり、各熱可塑性樹脂に適した溶媒を選択すれば良い。例えば、ナイロンではギ酸、硫酸などが挙げられるが、ギ酸が好ましい。ポリエステルに対してはフェノールとテトラクロロエタンの混合溶媒やジクロルベンゼンなどが挙げられるが、フェノールとテトラクロロエタンの混合溶媒が好ましい。 The solvent for the non-crosslinked thermoplastic resin is a solvent capable of dissolving the thermoplastic resin before crosslinking, and a solvent suitable for each thermoplastic resin may be selected. For example, nylon includes formic acid, sulfuric acid, etc., but formic acid is preferred. For polyester, a mixed solvent of phenol and tetrachloroethane, dichlorobenzene and the like can be mentioned, and a mixed solvent of phenol and tetrachloroethane is preferable.

放射線照射による架橋とは電子線やガンマ線(γ線)を照射することにより、そのエンルギーで分子間架橋を起こすことが出来る。放射線の種類によって波長が異なり、電子線より波長が短いガンマ線は厚みのある熱可塑性樹脂の内部まで架橋することが可能である。吸収したエンルギーの総量(吸収線量)はグレイ(Gy)で表される。放射線照射は吸収線量を自由にコトロールすることが出来るため、熱可塑性樹脂の架橋度もコントロール出来るので、本発明の架橋熱可塑性樹脂組成物(A’)の架橋には特に好ましい。ペレット等への放射線照射による架橋は照射される上部下部とで透過線量を均一にしなければ均一な架橋度が得られない場合があるため、特にペレットの架橋を放射線で行う場合は、波長の短いガンマ線での架橋が均一な架橋度を得られるので本発明では最適な架橋法である。本発明における放射線照射の吸収線量は0.5〜50kGyが好ましい。0.5kGy未満であると、吸収線量のコントロールが難しくなり、50kGyを超えると架橋が進みすぎる上、ポリマー種によっては分子切断の進行が進みすぎて架橋部分と非架橋部分が極端に不均一なものしか得られない。架橋部と非架橋部が不均一な架橋熱可塑性樹脂は見かけ上のゲル化率は高くても、非架橋熱可塑性樹脂への分散性が悪くなる場合や、非架橋熱可塑性樹脂へ分散させても充分なひずみ硬化性を持つ含架橋分散相熱可塑性樹脂が得られない場合がある。   Crosslinking by radiation irradiation can cause intermolecular crosslinking by irradiating with electron beam or gamma ray (γ ray). The wavelength differs depending on the type of radiation, and gamma rays having a wavelength shorter than that of the electron beam can be cross-linked to the inside of the thick thermoplastic resin. The total amount of absorbed energy (absorbed dose) is expressed in gray (Gy). Radiation irradiation is particularly preferable for crosslinking of the crosslinked thermoplastic resin composition (A ′) of the present invention because the absorbed dose can be freely controlled and the degree of crosslinking of the thermoplastic resin can be controlled. Since the cross-linking by radiation irradiation to pellets and the like may not provide a uniform degree of cross-linking unless the transmitted dose is made uniform between the upper and lower portions to be irradiated, especially when pellets are cross-linked with radiation, the wavelength is short. Since a uniform degree of crosslinking can be obtained by crosslinking with gamma rays, the present invention is the optimum crosslinking method. The absorbed dose of radiation irradiation in the present invention is preferably 0.5 to 50 kGy. If it is less than 0.5 kGy, it becomes difficult to control the absorbed dose, and if it exceeds 50 kGy, the crosslinking proceeds too much, and depending on the type of polymer, the progress of molecular cutting proceeds so much that the crosslinked part and the non-crosslinked part are extremely uneven. You can only get things. Crosslinked thermoplastic resins with non-uniform cross-linked parts and non-crosslinked parts have a high apparent gelling ratio, but dispersibility in non-crosslinked thermoplastic resins may deteriorate, or may be dispersed in non-crosslinked thermoplastic resins. However, there may be a case where a crosslinked dispersed phase thermoplastic resin having sufficient strain hardening property cannot be obtained.

放射線照射による架橋熱可塑性樹脂組成物(A’)の架橋度調整では、架橋処理を行いたい熱可塑性樹脂(A)にあらかじめ架橋助剤を練り込むことにより架橋熱可塑性樹脂(A’)の架橋処理効率を促進させることが出来る。具体的な架橋助剤としてはトリアリルシアヌレート(TAC)、トリアリルイソシアヌレート(TAIC)、トリメチルアリルイソシアヌレート(TMPTA)、トリメチロールプロパントリメタクリレート(TMPTA)、トリスハイドロオキシエチルイソシアヌリックアクリレート(THEICA)およびN,N’−m−フェニレンビスマレイミド(MPBM)等の多官能性化合物を例示することが出来るが、これらに限定されるものではない。取り扱いやすさの点でトリアリルシアヌレート(TAC)、トリアリルイソシアヌレート(TAIC)が好ましい。これらの架橋助剤は一種類または二種類以上を併用することもできる。架橋助剤の配合量は架橋処理を行いたい熱可塑性樹脂100重量部に対して0.01〜10重量部、好ましくは0.03〜5重量部である。0.01重量部以下では架橋効率促進の効果が少なくなる。また10重量部以上では架橋助剤自体の分散に均一性がなくなり、架橋密度の均一な架橋熱可塑性樹脂が得られない。さらに多量の架橋助剤の添加は架橋助剤としての効率が悪くなるばかりか、架橋熱可塑性樹脂組成物(A)や本発明によって調整された成形体の物性を低下させるので好ましくない。 In adjusting the degree of crosslinking of the crosslinked thermoplastic resin composition (A ′) by irradiation, the crosslinking thermoplastic resin (A ′) is crosslinked by kneading a crosslinking aid in advance into the thermoplastic resin (A) to be crosslinked. Processing efficiency can be promoted. Specific crosslinking aids include triallyl cyanurate (TAC), triallyl isocyanurate (TAIC), trimethylallyl isocyanurate (TMPTA), trimethylolpropane trimethacrylate (TMPTA), trishydroxyethyl isocyanuric acrylate ( THEICA) and N, N′-m-phenylenebismaleimide (MPBM) can be exemplified, but not limited thereto. Triallyl cyanurate (TAC) and triallyl isocyanurate (TAIC) are preferable in terms of ease of handling. These crosslinking aids can be used alone or in combination of two or more. The amount of the crosslinking aid is 0.01 to 10 parts by weight, preferably 0.03 to 5 parts by weight, based on 100 parts by weight of the thermoplastic resin to be crosslinked. If it is 0.01 parts by weight or less, the effect of promoting the crosslinking efficiency is reduced. On the other hand, when the amount is 10 parts by weight or more, the dispersion of the crosslinking aid itself is not uniform, and a crosslinked thermoplastic resin having a uniform crosslinking density cannot be obtained. Furthermore, the addition of a large amount of crosslinking aid is not preferable because not only the efficiency as the crosslinking aid is deteriorated but also the physical properties of the crosslinked thermoplastic resin composition (A) and the molded article prepared by the present invention are lowered.

架橋したい熱可塑性樹脂に架橋助剤を配合して、良く混合した後、溶融混錬して得たペレットに放射線を照射することによって架橋熱可塑性樹脂組成物(A’)を製造することが出来る。架橋助剤を溶融混錬する装置は特に限定しないが、二軸押出機を使うのが好ましい。二軸押出機のシリンダー温度は架橋熱可塑性樹脂組成物(A’)が結晶性樹脂の場合は融点、架橋熱可塑性樹脂が非結晶性樹脂である場合はガラス転移点温度より10〜50℃、もしくはそれ以上高い温度で設定するのが好ましい。溶融混錬工程の滞留時間は一般的に30秒〜15分程度である。架橋熱可塑性樹脂組成物(A’)の架橋度は使用する架橋助剤の配合量と照射される放射線の吸収線量によってコントロールすることが出来る。   A cross-linking thermoplastic resin composition (A ′) can be produced by blending a cross-linking aid into a thermoplastic resin to be cross-linked, mixing well, and then irradiating the pellets obtained by melt kneading with radiation. . The apparatus for melting and kneading the crosslinking aid is not particularly limited, but it is preferable to use a twin screw extruder. The cylinder temperature of the twin-screw extruder is 10 to 50 ° C. from the glass transition temperature when the crosslinked thermoplastic resin composition (A ′) is a crystalline resin, and when the crosslinked thermoplastic resin is an amorphous resin, Alternatively, it is preferable to set at a higher temperature. The residence time in the melt kneading process is generally about 30 seconds to 15 minutes. The degree of crosslinking of the crosslinked thermoplastic resin composition (A ′) can be controlled by the blending amount of the crosslinking aid used and the absorbed dose of the irradiated radiation.

本発明における架橋熱可塑性樹脂組成物(A’)の架橋を有機過酸化物によって架橋処理する場合は、架橋したい熱可塑性樹脂(A)に有機過酸化物と架橋助剤を配合し、混合と溶融混錬をすることによって製造できる。架橋度は有機過酸化物および架橋助剤の種類と量および溶融混錬の温度と溶融混錬している滞留時間によって決定される。架橋剤としては一般に有機過酸化物が用いられる。有機過酸化物の具体例としては、ベンゾイルパーオキサイド、1,1−ビス−t−ブチルパーオキシ−3,3,5−トリメチルシクロヘキサン、ジクミールパーオキサイド、ジ−(t−ブチルパーオキシ)m−ジイソプロピルベンゼン、2,5−ジメチル−2−5−ジt−ブチルパーオキシヘキサン、2,5−ジメチル−2−5−t−ブチルパーオキシヘキサン−3等を例示することが出来るが、これらに限定されるものではない。有機過酸化物の添加量は架橋処理したい熱可塑性樹脂100重量部に対して0.02〜5重量部である。好ましくは0.05〜3重量部である。 架橋助剤としては放射線照射による架橋の時に用いた架橋助剤と同じものを使用することができる。また架橋助剤の配合量も同様である。   When the crosslinking of the crosslinked thermoplastic resin composition (A ′) in the present invention is crosslinked with an organic peroxide, an organic peroxide and a crosslinking aid are blended with the thermoplastic resin (A) to be crosslinked, It can be manufactured by melt kneading. The degree of cross-linking is determined by the type and amount of organic peroxide and cross-linking aid, the temperature of melt kneading and the residence time during melt kneading. As the crosslinking agent, an organic peroxide is generally used. Specific examples of the organic peroxide include benzoyl peroxide, 1,1-bis-t-butylperoxy-3,3,5-trimethylcyclohexane, dicumyl peroxide, di- (t-butylperoxy) m. -Diisopropylbenzene, 2,5-dimethyl-2-5-di-t-butylperoxyhexane, 2,5-dimethyl-2-5-t-butylperoxyhexane-3, etc. It is not limited to. The addition amount of the organic peroxide is 0.02 to 5 parts by weight with respect to 100 parts by weight of the thermoplastic resin to be crosslinked. Preferably it is 0.05-3 weight part. As the crosslinking aid, the same crosslinking aid used at the time of crosslinking by radiation irradiation can be used. The blending amount of the crosslinking aid is also the same.

本発明における架橋熱可塑性樹脂組成物(A’)の架橋処理段階で、架橋助剤を添加する場合や、有機過酸化物との混練する場合の溶融、混練装置としては単軸押出機、二軸押出機、加圧ニーダー、バンバリー等があるが、特に好ましいのは二軸押出機である。   In the crosslinking treatment stage of the crosslinked thermoplastic resin composition (A ′) in the present invention, a melting or kneading apparatus for adding a crosslinking aid or kneading with an organic peroxide is a single-screw extruder, two There are a screw extruder, a pressure kneader, a Banbury and the like, and a twin screw extruder is particularly preferable.

本発明における架橋熱可塑性樹脂組成物(A’)の架橋度は、例えば前述した方法によって任意の熱可塑性樹脂を架橋し、溶媒に不溶化するまで架橋度を上げることが必要である。溶媒に溶解してしまう場合は橋架け構造を導入されていてもその架橋の度合いが充分でなければ、本発明に用いられるひずみ硬化性を持つ架橋分散相含有熱可塑性樹脂組成物を調整できない。   The degree of crosslinking of the crosslinked thermoplastic resin composition (A ′) in the present invention needs to be increased, for example, by crosslinking any thermoplastic resin by the method described above until it is insolubilized in a solvent. In the case where it is dissolved in a solvent, the crosslinked dispersed phase-containing thermoplastic resin composition having a strain-hardening property used in the present invention cannot be prepared unless the degree of crosslinking is sufficient even if a crosslinked structure is introduced.

本発明における架橋熱可塑性樹脂組成物(A’)は溶媒に不溶となる一定以上の架橋度を持つと同時に架橋していない熱可塑性樹脂と相溶性があり、かつ、架橋していない熱可塑性樹脂との300sec-1以上のせん断速度における溶融混練で、100μm以上のゲルを生成することなく均一に溶融分散する程度の架橋程度に抑えられていることが好ましい。さらに好ましくは二軸押出機を用いて架橋していない熱可塑性樹脂との300sec-1以上のせん断速度における溶融混練で得たペレットを用いて200μm以下のフィルム成形品を溶融成形し場合、そのフィルムが良好な表面性をもち、100μm以上のゲルによる凹凸がないことである。ここで表面にゲルによる凹凸ができるような状態である場合は、分散させようとした架橋熱可塑性樹脂組成物の架橋が進みすぎているということであり、20μm以下の分散スケールの架橋分散相を含有する熱可塑性樹脂組成物を調整しにくくなる。 The crosslinked thermoplastic resin composition (A ′) in the present invention has a certain degree of crosslinking that is insoluble in a solvent and is compatible with an uncrosslinked thermoplastic resin and is not crosslinked. It is preferable that the cross-linking is suppressed to such a degree as to melt and disperse uniformly without forming a gel of 100 μm or more by melt kneading at a shear rate of 300 sec −1 or more. More preferably, when a film molded product of 200 μm or less is melt-molded using pellets obtained by melt-kneading with a thermoplastic resin that has not been crosslinked using a twin-screw extruder at a shear rate of 300 sec −1 or more, the film Has good surface properties and no irregularities due to gels of 100 μm or more. Here, when the surface is in a state where irregularities due to gel are formed, it means that the crosslinked thermoplastic resin composition to be dispersed has been excessively crosslinked, and a crosslinked dispersed phase having a dispersion scale of 20 μm or less is present. It becomes difficult to adjust the thermoplastic resin composition to be contained.

本発明における架橋熱可塑性樹脂(A’)の好ましい架橋状態の調整は、放射線を用いて架橋を行なう場合、架橋助剤の配合量と照射される放射線の吸収線量によってコントロールすることができる。また架橋助剤と有機過酸化物との溶融混錬で行なう場合、その架橋度は有機過酸化物および架橋助剤の種類と量および溶融混錬の温度と溶融混錬している滞留時間によって決定される。架橋を行いたい任意の熱可塑性樹脂および樹脂組成物に対して、それぞれ最適な架橋状態と架橋条件がありかつ、目的の架橋度が融点以上の一定せん断下で非架橋樹脂に分散する程度の比較的ソフトで均一なゲル状態である。一般的に架橋度の指標として用いられる溶媒膨潤率や、ゲル化度ではゲルの均一性を評価しきれないためふさわしくない。ソフトかつ均一なゲル状態を評価するには本特許に示されている良溶媒に対する形状保持を含めた不溶性評価、相溶樹脂に対する分散性、および溶融粘弾性測定における損失弾性率、貯蔵弾性率より得られるパラメーターを指標として、目的の架橋状態を得ることが最も効率的かつ精度が高い。   Adjustment of the preferable crosslinking state of the crosslinked thermoplastic resin (A ′) in the present invention can be controlled by the amount of the crosslinking aid and the absorbed dose of the irradiated radiation when crosslinking is performed using radiation. When the crosslinking aid and organic peroxide are melt kneaded, the degree of crosslinking depends on the type and amount of the organic peroxide and crosslinking aid, the temperature of the melt kneading, and the residence time of the melt kneading. It is determined. Comparison of the degree to which an arbitrary thermoplastic resin and resin composition to be cross-linked have optimum cross-linking conditions and cross-linking conditions, and the desired degree of cross-linking is dispersed in the non-cross-linked resin under a constant shear level above the melting point Soft and uniform gel state. Generally, the degree of swelling of the solvent used as an index of the degree of crosslinking and the degree of gelation are not suitable because the gel uniformity cannot be evaluated. To evaluate the soft and uniform gel state, the insolubility evaluation including shape retention in good solvents, dispersibility to compatible resins, and loss elastic modulus and storage elastic modulus in melt viscoelasticity measurement shown in this patent are used. Using the obtained parameter as an index, obtaining the desired crosslinked state is the most efficient and accurate.

本発明における架橋熱可塑性樹脂組成物(A’)は、その架橋度が調整される過程で、架橋度が上がっていくと、溶融粘弾性測定において、溶融時の貯蔵弾性率は架橋処理を行う前よりも増大することになる。これは溶融時の周波数‐貯蔵弾性率の関係において、架橋処理後、任意の周波数に対して貯蔵弾性率が増大していることで確認できる。この貯蔵弾性率の増大は、系の架橋が均一に進行していく場合は周波数‐貯蔵弾性率両対数プロット曲線における周波数に対する貯蔵弾性率の傾きの減少で見ることができる。   The cross-linked thermoplastic resin composition (A ′) in the present invention undergoes a cross-linking treatment when the degree of cross-linking is increased in the process of adjusting the cross-linking degree, and the storage elastic modulus at the time of melting in the melt viscoelasticity measurement. Will increase more than before. This can be confirmed by the fact that the storage elastic modulus increases with respect to an arbitrary frequency after the crosslinking treatment in the relationship between the frequency and the storage elastic modulus at the time of melting. This increase in storage modulus can be seen in the decrease of the slope of storage modulus with respect to frequency in the frequency-storage modulus log-log plot curve when the system crosslinks uniformly.

架橋熱可塑性樹脂組成物(A’)は、橋架け構造の分子鎖内導入によってこの傾きが減少したものであることが好ましい。さらに好ましくは、少なくとも0.1〜10rad/sの範囲でその傾きが大きな変化点がなく均一で、一般的にアロイされていない単一の非架橋熱可塑性樹脂の周波数‐貯蔵弾性率両対数プロット曲線において周波数に対する貯蔵弾性率の傾きが2に近い値であるのに対して、0.2〜1.0の範囲まで増大していることが好ましく、より好ましくは0.2〜0.6である。この傾きの最適な値は架橋処理される熱可塑性樹脂によって異なるが、この値が1.0より大きいと、架橋が不充分であることを示し、非架橋熱可塑性樹脂(B)と溶融混練してもレオロジー改良効果はない。また橋架け構造の導入が充分でないと、溶融分散状態での緩和挙動が早く分散構造が安定しないため、非架橋熱可塑性樹脂(B)と安定した微細分散構造をとりにくい。逆に周波数‐貯蔵弾性率両対数プロット曲線における貯蔵弾性率の傾きが0.2よりも小さくなるまで架橋している場合は、もはや硬いゲルとなって固体に近い粘弾特性であることを意味しあらかじめ粒子を分散粒子スケールまで調整しない限り、非架橋熱可塑性樹脂(B)との溶融混練によって20μm以下に微分散構造化することは困難である。   The crosslinked thermoplastic resin composition (A ′) preferably has a reduced slope due to the introduction of a crosslinked structure into the molecular chain. More preferably, a frequency-storage modulus log-log plot of a single non-crosslinked thermoplastic resin that is uniform and generally non-alloyed with a large slope in the range of at least 0.1 to 10 rad / s. While the slope of the storage elastic modulus with respect to the frequency is close to 2 in the curve, it is preferably increased to a range of 0.2 to 1.0, more preferably 0.2 to 0.6. is there. The optimum value of this slope differs depending on the thermoplastic resin to be crosslinked, but if this value is greater than 1.0, it indicates that crosslinking is insufficient, and it is melt-kneaded with the non-crosslinked thermoplastic resin (B). But there is no rheology improvement effect. Further, if the introduction of the bridge structure is not sufficient, the relaxation behavior in the melt-dispersed state is rapid and the dispersion structure is not stable, so that it is difficult to form a stable fine dispersion structure with the non-crosslinked thermoplastic resin (B). Conversely, when the storage modulus in the logarithmic plot curve of the frequency-storage modulus is cross-linked until the slope of the storage modulus becomes smaller than 0.2, it means that it is already a hard gel and viscoelastic properties close to a solid. However, unless the particles are adjusted to the dispersed particle scale in advance, it is difficult to form a finely dispersed structure to 20 μm or less by melt kneading with the non-crosslinked thermoplastic resin (B).

本発明における架橋熱可塑性樹脂組成物(A’)は融点以上での粘弾性測定における貯蔵弾性率が少なくとも0.1〜10rad/sの範囲で1E+5Pa以下であることが好ましい。1E+5Pa以上であると、溶融温度以上でも見かけ上、固体として形状を保持しえる領域であり二軸押出機による混練においても熱可塑性樹脂組成物中に20μmを超える分散不良なゲル塊状物となってしまうため1E+5Pa以下であることが好ましい。   The cross-linked thermoplastic resin composition (A ′) in the present invention preferably has a storage elastic modulus of 1E + 5 Pa or less in the range of 0.1 to 10 rad / s in the viscoelasticity measurement above the melting point. When it is 1E + 5 Pa or higher, it is a region where the shape can be maintained as a solid even at a melting temperature or higher, and even in kneading with a twin-screw extruder, a gel lump with poor dispersion exceeding 20 μm is formed in the thermoplastic resin composition. Therefore, 1E + 5 Pa or less is preferable.

本発明における架橋熱可塑性樹脂組成物(A’)は、上記の特性を有するため、非架橋熱可塑性樹脂(B)と溶融混練することで、架橋熱可塑性樹脂組成物(A’)が非架橋熱可塑性樹脂(B)中に平均粒子径が20μm以下に分散するか又は前記(A’)と前記(B)が互いに入り組みあった共連続構造化することができる。   Since the crosslinked thermoplastic resin composition (A ′) in the present invention has the above-mentioned characteristics, the crosslinked thermoplastic resin composition (A ′) is non-crosslinked by melt-kneading with the non-crosslinked thermoplastic resin (B). In the thermoplastic resin (B), an average particle diameter can be dispersed to 20 μm or less, or a co-continuous structure in which the (A ′) and the (B) are intricate can be formed.

溶融時の延伸に追随して変形しやすい分散相を得るためには、本発明における架橋熱可塑性樹脂(A’)が溶融延伸に相当する低いせん断速度領域において適度に弾性的な挙動の分散相として構造化されていることが好ましい。一般的に溶融時の熱可塑性樹脂では貯蔵弾性率のせん断速度依存性のほうが損失弾性率のせん断速度依存性より大きく、溶融粘弾測定で得られた少なくとも周波数0.1〜10rad/s範囲の周波数‐貯蔵弾性率の両対数プロット曲線における貯蔵弾性率の傾きをαとすると、αは貯蔵弾性率の周波数依存性パラメーターとして扱うことができる。周波数‐貯蔵弾性率の両対数プロット曲線における損失弾性率の傾きをβとすると、βは損失弾性率の周波数依存性パラメーターとして扱うことができる。さらに、α−βはtanδの周波数依存性パラメーターとして扱うことができ、一般的な熱可塑性樹脂の場合α>βでかつα−βの絶対値は1.0に近い値となる。   In order to obtain a disperse phase that is easily deformed following the stretching at the time of melting, the cross-linked thermoplastic resin (A ′) in the present invention has a moderately elastic behavior in a low shear rate region corresponding to the melt stretching. Is preferably structured as In general, in a thermoplastic resin at the time of melting, the shear rate dependency of the storage elastic modulus is larger than the shear rate dependency of the loss elastic modulus, and at least in the frequency range of 0.1 to 10 rad / s obtained by melt viscoelasticity measurement. If the slope of the storage elastic modulus in the logarithmic plot curve of frequency-storage elastic modulus is α, α can be treated as a frequency-dependent parameter of the storage elastic modulus. If the slope of the loss modulus in the log-log plot curve of the frequency-storage modulus is β, β can be treated as a frequency dependence parameter of the loss modulus. Furthermore, α-β can be treated as a frequency-dependent parameter of tan δ. In the case of a general thermoplastic resin, α> β and the absolute value of α-β is close to 1.0.

本発明における架橋熱可塑性樹脂組成物(A’)のα−βについて、この値が大きければ大きいほど低せん断での損失弾性率に対する貯蔵弾性率が小さくなる傾向を表しており、延伸されにくくなることを示す。溶融時に容易に延伸しうる分散体として、本発明における架橋熱可塑性樹脂組成物(A’)のα−βはα、βの大小に関わらず、その絶対値が0.15以下であることが好ましい。さらに好ましいのはα−βの絶対値が0.10以下である。本発明に用いられる架橋分散相含有熱可塑性樹脂組成物の架橋分散相についてαとβがα>βでかつα−βの絶対値が0.15以上を超える場合は、低せん断領域での損失弾性率に対して貯蔵弾性率が低すぎて系の延伸に追随しない。本発明に用いられる架橋分散相含有熱可塑性樹脂組成物の架橋分散相についてαとβが、α<βでかつα−βの絶対値が0.15を超える場合は、もはや固体に近い粘弾特性であり硬すぎて分散相は延伸されない。   Regarding α-β of the crosslinked thermoplastic resin composition (A ′) in the present invention, the larger this value, the smaller the storage elastic modulus relative to the loss elastic modulus at low shear, and the more difficult it is to stretch. It shows that. As a dispersion that can be easily stretched at the time of melting, the absolute value of α-β of the crosslinked thermoplastic resin composition (A ′) in the present invention is 0.15 or less regardless of the size of α and β. preferable. More preferably, the absolute value of α-β is 0.10 or less. When α and β are α> β and the absolute value of α-β exceeds 0.15 or more with respect to the crosslinked dispersed phase of the crosslinked dispersed phase-containing thermoplastic resin composition used in the present invention, the loss in the low shear region The storage elastic modulus is too low for the elastic modulus and does not follow the stretching of the system. When α and β are α <β and the absolute value of α-β exceeds 0.15 for the cross-linked dispersed phase of the cross-linked dispersed phase-containing thermoplastic resin composition used in the present invention, viscoelasticity that is almost solid. It is characteristic and is too hard to disperse the dispersed phase.

本発明における架橋熱可塑性樹脂組成物(A’)の架橋度調整過程においては、最終的に延伸される分散相に付与したい機能に応じて、また、架橋を阻害したりあるいは促進しすぎたりしないで架橋度の調整が容易である範囲において、他の樹脂や機能性充填材や添加剤等を配合することが出来る。充填材および配合剤として、例えば ガラス繊維、炭素繊維、各種の無機フィラー等の強化材、熱安定剤、紫外線安定剤、耐候性改良剤、酸化防止剤、難燃剤、導電性フィラー、熱伝導性フィラー、帯電防止剤、顔料、染料等の配合剤および添加剤であるが、これらに限定されるものではない。非架橋の熱可塑性樹脂(A)に架橋処理をする前にこれらの機能性配合剤を配合し架橋処理を行えば、本発明の熱可塑性樹脂成形体において、楕円状もしくは繊維状もしくは扁平形状もしくはその他の異形延伸形状に変形した架橋熱可塑性樹脂(A’)の分散相内に選択的に配合剤を拘束することができ、高次の分散構造制御と機能設計が可能となる。   In the process of adjusting the degree of crosslinking of the crosslinked thermoplastic resin composition (A ′) in the present invention, depending on the function desired to be imparted to the finally-dispersed dispersed phase, the crosslinking is not inhibited or promoted excessively. As long as the degree of crosslinking can be easily adjusted, other resins, functional fillers, additives and the like can be blended. As fillers and compounding agents, for example, reinforcing materials such as glass fibers, carbon fibers, various inorganic fillers, heat stabilizers, UV stabilizers, weather resistance improvers, antioxidants, flame retardants, conductive fillers, thermal conductivity The compounding agents and additives such as fillers, antistatic agents, pigments and dyes are not limited to these. If these functional compounding agents are blended and crosslinked before crosslinking with the non-crosslinked thermoplastic resin (A), in the thermoplastic resin molded article of the present invention, an oval, fibrous, flat or The compounding agent can be selectively restrained in the dispersed phase of the cross-linked thermoplastic resin (A ′) deformed into another irregularly stretched shape, and higher-order dispersion structure control and functional design are possible.

架橋熱可塑性樹脂組成物(A’)中の少なくとも50重量%がポリアミド系樹脂、ポリエステル系樹脂およびポリオレフィン系樹脂のいずれかであることが好ましい。
架橋熱可塑性樹脂組成物(A’)中の少なくとも50重量%がポリエステル系樹脂の場合、架橋熱可塑性樹脂組成物(A’)100重量部に対してポリカプロラクトン50〜99.9重量部と架橋助剤0.1〜3重量部とを含む樹脂組成物を溶融混練りして得たペレットを吸収線量0.5〜25kGyに放射線照射されてなることが好ましい。
また、架橋熱可塑性樹脂組成物(A’)中の少なくとも50重量%がポリエステル系樹脂の場合、架橋熱可塑性樹脂組成物(A’)100重量部に対してポリエステルエラストマー50〜99.9重量部と架橋助剤0.1〜3重量部を含む樹脂組成物を溶融混練りして得たペレットを吸収線量0.5〜60kGyに放射線照射されてなることが好ましい。
架橋熱可塑性樹脂組成物(A’)中の少なくとも50重量%がポリアミド系樹脂の場合、架橋熱可塑性樹脂組成物(A’)100重量部に対してポリアミド50〜99.9重量部と架橋助剤0.1〜3重量部を含む樹脂組成物を溶融混練りして得たペレットを吸収線量0.5〜20kGyに放射線照射されてなることが好ましい。
上記の範囲をはずれた場合、所望の特性の架橋熱可塑性樹脂組成物(A’)が得られにくくなることがある。
It is preferable that at least 50% by weight in the crosslinked thermoplastic resin composition (A ′) is any one of a polyamide resin, a polyester resin, and a polyolefin resin.
When at least 50% by weight of the crosslinked thermoplastic resin composition (A ′) is a polyester resin, 50 to 99.9 parts by weight of polycaprolactone is crosslinked with 100 parts by weight of the crosslinked thermoplastic resin composition (A ′). Pellets obtained by melt-kneading a resin composition containing 0.1 to 3 parts by weight of an auxiliary agent are preferably irradiated with an absorbed dose of 0.5 to 25 kGy.
Further, when at least 50% by weight in the crosslinked thermoplastic resin composition (A ′) is a polyester resin, 50 to 99.9 parts by weight of the polyester elastomer with respect to 100 parts by weight of the crosslinked thermoplastic resin composition (A ′). And pellets obtained by melt-kneading a resin composition containing 0.1 to 3 parts by weight of a crosslinking aid are preferably irradiated with an absorbed dose of 0.5 to 60 kGy.
When at least 50% by weight in the crosslinked thermoplastic resin composition (A ′) is a polyamide-based resin, 50 to 99.9 parts by weight of polyamide and crosslinking aid are added to 100 parts by weight of the crosslinked thermoplastic resin composition (A ′). The pellet obtained by melt-kneading the resin composition containing 0.1 to 3 parts by weight of the agent is preferably irradiated with an absorbed dose of 0.5 to 20 kGy.
When the above range is not satisfied, it may be difficult to obtain a crosslinked thermoplastic resin composition (A ′) having desired characteristics.

本発明における熱可塑性樹脂組成物は、架橋熱可塑性樹脂組成物(A’)と非架橋熱可塑性樹脂(B)とを溶融混練して得られる。架橋熱可塑性樹脂組成物(A’)と非架橋熱可塑性樹脂(B)の配合割合は、(A’):(B)=1:99〜95:5が好ましい。(A’)が1未満で(B)が99を超えると、非架橋熱可塑性樹脂(B)のレオロジー改良効果が乏しくなり、(A’)が95を超えて(B)が5未満であると、(B)の特性が発現されにくくなり、コスト的にも不利である。   The thermoplastic resin composition in the present invention can be obtained by melt-kneading the crosslinked thermoplastic resin composition (A ′) and the non-crosslinked thermoplastic resin (B). The blending ratio of the crosslinked thermoplastic resin composition (A ′) and the non-crosslinked thermoplastic resin (B) is preferably (A ′) :( B) = 1: 99 to 95: 5. When (A ′) is less than 1 and (B) exceeds 99, the rheology improving effect of the non-crosslinked thermoplastic resin (B) becomes poor, (A ′) exceeds 95 and (B) is less than 5. And the characteristic of (B) becomes difficult to express and it is disadvantageous also in cost.

架橋熱可塑性樹脂組成物(A’)と非架橋熱可塑性樹脂(B)とを溶融混練して得られた本発明の熱可塑性樹脂組成物は、非架橋熱可塑性樹脂(B)の融点より少なくとも10℃以上高い温度における溶融一軸伸張粘度測定で得られる時間‐一軸伸張粘度の両対数プロット曲線において下記のひずみ硬化係数が2以上であることが必要である。
ひずみ硬化係数 = a2/a1
a1: 時間‐一軸伸張粘度の両対数プロット曲線における線形領域の傾き
a2: 時間‐一軸伸張粘度の両対数プロット曲線における非線形領域の傾き
ひずみ硬化係数が2未満であると、非架橋熱可塑性樹脂(B)のレオロジー改良効果が乏しい。ひずみ硬化係数は、組成物の製造のしやすさ、成形安定性の点で、4〜50程度が好ましい。
The thermoplastic resin composition of the present invention obtained by melt-kneading the crosslinked thermoplastic resin composition (A ′) and the non-crosslinked thermoplastic resin (B) is at least from the melting point of the non-crosslinked thermoplastic resin (B). In the logarithmic plot curve of time-uniaxial extensional viscosity obtained by melt uniaxial extensional viscosity measurement at a temperature higher than 10 ° C., the following strain hardening coefficient must be 2 or more.
Strain hardening coefficient = a2 / a1
a1: slope of linear region in log-log plot curve of time-uniaxial extensional viscosity
a2: The slope of the nonlinear region in the logarithmic plot curve of time-uniaxial extensional viscosity When the strain hardening coefficient is less than 2, the rheology improving effect of the non-crosslinked thermoplastic resin (B) is poor. The strain hardening coefficient is preferably about 4 to 50 in terms of ease of production of the composition and molding stability.

架橋処理される前の熱可塑性樹脂である非架橋熱可塑性樹脂(A)と非架橋熱可塑性樹脂(B)との組み合わせは、両者が相溶性であることが好ましく、同じ系統の樹脂であることが好ましい。例えば、ポリエステル系樹脂同士、ポリアミド系樹脂同士、ポリオレフィン系樹脂同士などの組み合わせが好ましい。   The combination of the non-crosslinked thermoplastic resin (A) and the non-crosslinked thermoplastic resin (B), which are thermoplastic resins before being subjected to the crosslinking treatment, is preferably compatible, and is a resin of the same system Is preferred. For example, combinations of polyester resins, polyamide resins, polyolefin resins, and the like are preferable.

また、本発明における、架橋熱可塑性樹脂組成物(A’)と非架橋熱可塑性樹脂(B)との溶融混練時においても、成形体に発現させたい機能に応じて、機能性充填材や添加材等を配合することができる。例えば、ガラス繊維、炭素繊維、各種の無機フィラー等の強化材、熱安定剤、紫外線安定剤、耐候性改良剤、酸化防止剤、難燃剤、導電性フィラー、熱伝導性フィラー、帯電防止剤、顔料、染料等の配合剤および添加剤であるが、これらに限定されるものではない。すでに架橋処理を行った架橋熱可塑性樹脂組成物(A’)と非架橋熱可塑性樹脂(B)の溶融混練の際には、配合された充填材や添加剤は、溶融弾性率の非常に高い架橋熱可塑性樹脂組成物(A’)の中には溶融せん断下においても進入し難いため、選択的に非架橋熱可塑性樹脂(B)のマトリックス相に分散することとなる。これによりさらに高次の分散構造制御と機能設計が可能となる。   Further, in the present invention, a functional filler or additive may be added depending on the function desired to be expressed in the molded body even during the melt kneading of the crosslinked thermoplastic resin composition (A ′) and the non-crosslinked thermoplastic resin (B). A material etc. can be mix | blended. For example, reinforcing materials such as glass fibers, carbon fibers, various inorganic fillers, heat stabilizers, UV stabilizers, weather resistance improvers, antioxidants, flame retardants, conductive fillers, heat conductive fillers, antistatic agents, These are compounding agents and additives such as pigments and dyes, but are not limited thereto. In the melt-kneading of the crosslinked thermoplastic resin composition (A ′) and the non-crosslinked thermoplastic resin (B) that have already undergone crosslinking treatment, the blended fillers and additives have a very high melt elastic modulus. Since it does not easily enter the crosslinked thermoplastic resin composition (A ′) even under melt shearing, it is selectively dispersed in the matrix phase of the non-crosslinked thermoplastic resin (B). This enables higher-order distributed structure control and functional design.

さらに、本発明における熱可塑性樹脂組成物は、架橋熱可塑性樹脂組成物(A’)と非架橋熱可塑性樹脂(B)、さらに必要に応じて配合剤を混合した混合物を、射出成形機、押出機、押出延伸機等にダイレクトに投入して、溶融混錬するとともに成形体をダイレクトに成形することもできる。このような場合でも、溶融混錬時の剪断速度は架橋熱可塑性樹脂組成物(A’)を非架橋熱可塑性樹脂(B)と構造化するために重要である。溶融混錬時の剪断速度は300 sec-1以上が必要である。好ましくは剪断速度500 sec-1以上、更に好ましくは剪断速度1000 sec-1以上である。 Furthermore, the thermoplastic resin composition in the present invention is a mixture obtained by mixing a cross-linked thermoplastic resin composition (A ′) and a non-cross-linked thermoplastic resin (B), and, if necessary, a compounding agent, an injection molding machine, an extrusion It is possible to directly put into a machine, an extrusion stretching machine, etc., melt and knead, and to directly form a molded body. Even in such a case, the shear rate during melt-kneading is important for structuring the crosslinked thermoplastic resin composition (A ′) with the non-crosslinked thermoplastic resin (B). The shear rate during melt kneading needs to be 300 sec -1 or more. The shear rate is preferably 500 sec −1 or more, more preferably 1000 sec −1 or more.

射出成形機または押出機等では混合物を投入するホッパーから金型やダイスまでの間でも溶融混錬が可能であり、この間での剪断速度によって架橋熱可塑性樹脂組成物(A’)と非架橋熱可塑性樹脂(B)および、他の配合剤が微細構造化され、さらに成形装置の先端にある金型で成形されたものを溶融もしくは非溶融状態で延伸する方法や、ダイスで成形されたものを溶融状態もしくは非溶融状態で延伸することもできる。   In an injection molding machine, an extruder, etc., melt kneading is possible even from a hopper into which a mixture is introduced to a mold or a die, and the cross-linked thermoplastic resin composition (A ′) and non-cross-linking heat are changed depending on the shear rate between them. A method in which a plastic resin (B) and other compounding agents are microstructured and further molded in a mold at the tip of a molding apparatus is stretched in a molten or non-molten state, or molded with a die. It can also extend | stretch in a molten state or a non-molten state.

本発明における熱可塑性樹脂組成物を上記のように成形して得られた成形体は、架橋熱可塑性樹脂組成物(A’)の架橋状態が上記のように特定の粘弾性を有する状態であるので、架橋分散相が成形時の延伸に追随して延伸方向に変形しやすく、楕円状もしくは繊維状もしくは扁平形状もしくはその他の異形延伸形状などに変形することができる。   The molded product obtained by molding the thermoplastic resin composition in the present invention as described above is in a state in which the crosslinked state of the crosslinked thermoplastic resin composition (A ′) has a specific viscoelasticity as described above. Therefore, the crosslinked dispersed phase is easily deformed in the stretching direction following the stretching at the time of molding, and can be deformed into an elliptical shape, a fibrous shape, a flat shape, or other irregularly stretched shapes.

以下本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。以下に実施例、比較例で採用した測定法、評価法、実験方法を示す。
(1) 架橋熱可塑性樹脂の溶融時貯蔵弾性率、損失弾性率測定法:
TA Instruments社製ARESと測定治具として25mmのパラレルプレートを用いて動的粘弾性測定を以下の条件で行い、周波数‐貯蔵弾性率、周波数‐損失弾性率及び周波数‐せん断粘度の両対数プロットを得た。
・Strain=10%
・Temperature=DSCの結晶融点の少なくとも10℃以上
・Initial Frequency=100rad/s
・Final Frequency=0.1rad/s
・Gap=0.7〜1.5mm
・Geometry Type=Parallel Plate(Diameter=25mm)
架橋熱可塑性樹脂調整例において架橋が進行しすぎた架橋熱可塑性樹脂組成物についてはTA Instruments社製ARESで貯蔵弾性率測定ができないため「測定不能」とした。
また、架橋熱可塑性樹脂組成物の周波数0.1〜10rad/s範囲の周波数-貯蔵弾性率両対数プロット曲線における貯蔵弾性率の傾きαと周波数-損失弾性率両対数プロット曲線における損失弾性率の傾きβとを求め、tanδの周波数依存性パラメーターとなるα−βを求めた。
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded. The measurement methods, evaluation methods, and experimental methods employed in the examples and comparative examples are shown below.
(1) Method for measuring storage elastic modulus and loss elastic modulus of crosslinked thermoplastic resin when melted:
Using TA Instruments ARES and a 25 mm parallel plate as a measurement jig, dynamic viscoelasticity measurement is performed under the following conditions, and frequency-storage elastic modulus, frequency-loss elastic modulus and frequency-shear viscosity log-log plots Obtained.
・ Strain = 10%
・ Temperature = at least 10 ° C. of the crystalline melting point of DSC ・ Initial Frequency = 100 rad / s
・ Final Frequency = 0.1 rad / s
・ Gap = 0.7-1.5mm
・ Geometry Type = Parallel Plate (Diameter = 25mm)
The crosslinked thermoplastic resin composition in which the crosslinking proceeded too much in the crosslinked thermoplastic resin preparation example was determined to be “impossible to measure” because the storage elastic modulus could not be measured with ARES manufactured by TA Instruments.
Further, the slope α of the storage elastic modulus in the frequency-storage elastic modulus logarithmic plot curve in the frequency range of 0.1 to 10 rad / s of the crosslinked thermoplastic resin composition and the loss elastic modulus in the frequency-loss elastic modulus logarithmic plot curve. The slope β was obtained, and α-β that was a frequency dependent parameter of tan δ was obtained.

(2) 架橋処理物の溶媒溶解試験法:
径Φ約3mm×長さ約3mmカットペレット形状の架橋処理物を、ポリエステル系樹脂はフェノールとテトラクロロエタンとの混合溶媒へ常温×40hr以上浸漬、ポリアミド系は蟻酸へ常温×40hr以上浸漬し、溶媒除去した後の残存物の有無を目視で確認した。透明性のある溶媒ゲルが浸漬前ペレットの膨潤形状で残存しており、浸漬したペレット個数と同数の溶媒膨潤ゲルが確認できた場合を「不溶」と表現して○とした。溶媒に溶解し溶媒除去の際に溶媒と一緒に除去されるか、もしくは浸漬したペレット形状より溶媒膨潤ゲルの形状が大きく崩れ、分割されて形状を保持していない状態の場合「溶解」と表現して×とした。
(2) Solvent dissolution test method for crosslinked products:
Diameter Φ approx. 3mm x Length approx. 3mm Cut pellet shaped cross-linked product, polyester resin is immersed in a mixed solvent of phenol and tetrachloroethane for normal temperature x 40 hr or more, polyamide type is immersed in formic acid at normal temperature x 40 hr or more, solvent The presence or absence of the residue after removal was confirmed visually. A transparent solvent gel remained in the swollen shape of the pellet before immersion, and when the same number of solvent swollen gels as the number of immersed pellets could be confirmed, it was expressed as “insoluble”. It is dissolved in the solvent and removed together with the solvent when removing the solvent, or the shape of the solvent swollen gel is greatly collapsed from the soaked pellet shape, and it is expressed as “dissolved” when it is divided and does not retain the shape X.

(3) 架橋処理物の非架橋熱可塑性樹脂への分散試験法:
任意の熱可塑性樹脂X(A)に架橋処理を行った架橋熱可塑性樹脂組成物X(A’)に関して、非架橋である熱可塑性樹脂X(A)への分散性は次のように評価した。
架橋処理を行った架橋熱可塑性樹脂X(A’)と非架橋熱可塑性樹脂X(A)とを二軸押出機(池貝鉄工株式会社製、PCM30)用で両樹脂の融点より少なくとも10℃以上高いシリンダー温度設定、スクリュー回転数120rpmにて、X(A’)とX(A)の合計が100重量部としてX(A)/X(A’)=70重量部/30重量部の比率で混合および溶融混練し、水浴にストランド状に押出して冷却後、カットして樹脂組成物のペレットを得た。得られた樹脂組成物ペレットを真空乾燥で水分率0.05質量%以下になるまで乾燥後、厚み200μmのシート状成型品を押出成形で作成した。
得られたシート表面状態を目視観察でゲル生成物による凹凸がないか、最大長さ(直径)が100μm以上のゲル生成物がないか確認した。厚み200μmのシートの場合、100μm以上のゲル生成物が存在する場合、必ず凹凸が認められることが確認できているので、シート表面が平滑となるものは「分散する」と判定した。200μmのシートに凹凸が目立つもの、シートを成形するまでもなく平滑なストランドの引けないものは「分散不良」とした。目視とゲル生成物の関係が分かりに難い場合は透過型電子顕微鏡(TEM)もしくは、走査型電子顕微鏡(SEM)で架橋熱可塑性樹脂組成物X(A’)が非架橋熱可塑性樹脂X(A)中に分散している構造を確認した。また、放射線による分解傾向の強いポリ乳酸などの樹脂に関しては電子顕微鏡における観察中に分解傾向を示すため走査型プローブ顕微鏡(SPM)で構造観察を行った。
(3) Dispersion test method for non-crosslinked thermoplastic resin of crosslinked product:
With respect to the crosslinked thermoplastic resin composition X (A ′) obtained by subjecting any thermoplastic resin X (A) to a crosslinking treatment, dispersibility in the non-crosslinked thermoplastic resin X (A) was evaluated as follows. .
Cross-linked thermoplastic resin X (A ′) and non-crosslinked thermoplastic resin X (A) subjected to cross-linking treatment are used for a twin screw extruder (Ikegai Iron Works Co., Ltd., PCM30) at least 10 ° C. or more than the melting point of both resins. At a high cylinder temperature setting and a screw rotation speed of 120 rpm, the sum of X (A ′) and X (A) is 100 parts by weight, and the ratio of X (A) / X (A ′) = 70 parts by weight / 30 parts by weight. The mixture was melted and kneaded, extruded into a strand form in a water bath, cooled, and then cut to obtain pellets of a resin composition. The obtained resin composition pellets were dried by vacuum drying until the moisture content was 0.05% by mass or less, and then a sheet-like molded product having a thickness of 200 μm was formed by extrusion molding.
It was confirmed by visual observation that the obtained sheet surface state was free of irregularities due to the gel product, or whether there was a gel product having a maximum length (diameter) of 100 μm or more. In the case of a sheet having a thickness of 200 μm, it was confirmed that unevenness was always observed when a gel product having a thickness of 100 μm or more was present. Therefore, a sheet having a smooth sheet surface was determined to be “dispersed”. A 200 μm sheet with conspicuous irregularities, or a sheet with no smooth strands without forming a sheet, was designated as “dispersion failure”. When the relationship between visual observation and the gel product is difficult to understand, the cross-linked thermoplastic resin composition X (A ′) is converted into the non-cross-linked thermoplastic resin X (A) by a transmission electron microscope (TEM) or a scanning electron microscope (SEM). ) To confirm the structure dispersed inside. In addition, regarding a resin such as polylactic acid, which has a strong tendency to decompose by radiation, the structure was observed with a scanning probe microscope (SPM) in order to show a decomposition tendency during observation with an electron microscope.

(4)時間‐一軸伸張粘度の両対数プロット曲線におけるひずみ硬化係数の測定法:
TA Instruments社製ARESを用いて、測定治具はTA Instruments社製のEVF(Extensional Viscosity Fixture)を用いた。測定条件は測定樹脂のDSC融点より少なくとも10〜50℃高い温度までの温度でひずみ速度は少なくとも1.0(s-1)で行い、得られた時間−一軸伸張粘度の両対数プロット曲線において下記式で表されるひずみ硬化係数を得た。
ひずみ硬化係数 = a2/a1
a1: 時間‐一軸伸張粘度の両対数プロット曲線における線形領域の傾き
a2: 時間‐一軸伸張粘度の両対数プロット曲線における非線形領域の傾き
なお、ここでは、a1は、簡易法によらず以下のようにして求めた。
すなわち、TA Instruments社製ARESと測定治具として25mmのパラレルプレートを用いて、ひずみ=10%、温度=一軸伸張粘度測定と同温度、GAP=0.7〜1.5mmの測定条件で周波数0.1〜100rad/s範囲のせん断粘度の周波数依存性データを求め、これより求めたせん断粘度の3倍値:3ηsを、時間-せん断粘度の両対数プロット上にプロットし、そのプロット線の傾きを時間‐伸張粘度の両対数プロット曲線における線形領域の傾きa1とした。
(4) Measuring method of strain hardening coefficient in log-log plot curve of time-uniaxial extensional viscosity:
Using TA Instruments ARES, EVF (Extensional Visibility Fixture) manufactured by TA Instruments was used as a measurement jig. The measurement conditions were a temperature up to at least 10 to 50 ° C. higher than the DSC melting point of the measurement resin at a strain rate of at least 1.0 (s −1 ), and the obtained time-uniaxial extensional viscosity double logarithmic plot curve was as follows. The strain hardening coefficient represented by the formula was obtained.
Strain hardening coefficient = a2 / a1
a1: slope of linear region in log-log plot curve of time-uniaxial extensional viscosity
a2: The slope of the nonlinear region in the logarithmic plot curve of time-uniaxial extensional viscosity Here, a1 was determined as follows without using a simple method.
That is, using TA Instruments ARES and a 25 mm parallel plate as a measuring jig, strain = 10%, temperature = same temperature as uniaxial extensional viscosity measurement, and GAP = 0.7 to 1.5 mm under frequency 0. The frequency dependence data of the shear viscosity in the range of 1 to 100 rad / s was obtained, and the triple value of the shear viscosity obtained from this: 3ηs was plotted on the log-log plot of time-shear viscosity, and the slope of the plot line Was the slope a1 of the linear region in the logarithmic plot curve of time-extension viscosity.

(5)分散構造観察法:
架橋熱可塑性樹脂組成物(A’)と非架橋熱可塑性樹脂(B)の構造観察には、試料の特性によって、(イ)TEM(透過型電子顕微鏡)、(ロ)SEM(走査型電子顕微鏡)、(ハ)SPM(走査型プローブ顕微鏡)、(ニ)位相顕微鏡、(ホ)微分干渉顕微鏡 などを用いた。
実施例、比較例において具体的には電子顕微鏡観察は架橋熱可塑性樹脂組成物(A’)と非架橋熱可塑性樹脂(B)を溶融混練りして得たペレットを、光硬化型樹脂に包埋後研磨し、5〜10%リンタングステン酸水溶液で染色したものをSEMで観察するか、クライオミクロトームで得た凍結切片をRuOで染色したものをTEMで観察したが、これは構造観察の手法を限定するものではない。SPM、位相顕微鏡、および微分干渉顕微鏡に関してもクライオトームで得た凍結切片を用いて観察した。
(5) Dispersion structure observation method:
Depending on the characteristics of the sample, (a) TEM (transmission electron microscope), (b) SEM (scanning electron microscope) can be used to observe the structure of the crosslinked thermoplastic resin composition (A ′) and non-crosslinked thermoplastic resin (B). ), (C) SPM (scanning probe microscope), (d) phase microscope, (e) differential interference microscope, and the like.
In the examples and comparative examples, specifically, observation with an electron microscope is performed by wrapping pellets obtained by melt-kneading a crosslinked thermoplastic resin composition (A ′) and a non-crosslinked thermoplastic resin (B) in a photocurable resin. Polishing after embedding and staining with 5-10% phosphotungstic acid aqueous solution was observed with SEM, or frozen sections obtained with cryomicrotome were stained with RuO 4 with TEM. The method is not limited. The SPM, phase microscope, and differential interference microscope were also observed using frozen sections obtained with a cryotome.

観察されたサンプルのモルフォロジー構造に関しては以下のように判定し表記した。
分散構造、分散オーダーが均一かつ分散形状が一定のものを分散構造の均一性において「均一」とし、分散構造、分散オーダーが不均一でかつ分散形状も一定でないものを分散構造の均一性において「不均一」とした。
分散形態に関して、溶融混錬した複数種の樹脂のうち少なくとも一種がマトリックス化し、そのマトリックス中に他樹脂が粒子状に分散している場合は「独立分散」とし、溶融混錬した複数種の樹脂が相互に入り組みあった共連続構造化している場合は「共連続」とした。「独立分散」である場合は観察された分散粒子の粒子径を分散オーダーとして記載し、共連続構造である場合はその観察された画像において見かけ上比率の少ない連続相における相の幅を分散オーダーとした。また明確なミクロンオーダーの構造が観察されない場合を「構造なし」とした。なお、分散粒子の粒子径は、観察画像の各粒子の最大直径を粒子径として観察画像から測定した。連続相における相の幅の分散オーダー及び分散粒子径は、10箇所の観察画像で確認した。
構造の有用性に関して、分散オーダーが10μm以下でかつ均一分散しており「独立分散」もしくは「共連続」であるものを機能設計に有用な構造として○とし、分散オーダー、構造の均一性、分散形態においてこれらを満足しないものを機能設計に充分に有用でない構造として×とした。
The observed morphology of the sample was determined and described as follows.
A dispersion structure with a uniform dispersion order and a uniform dispersion shape is defined as “uniform” in the uniformity of the dispersion structure, and a dispersion structure with a dispersion order non-uniform and a dispersion shape is not uniform in the uniformity of the dispersion structure. Non-uniform ”.
Regarding the dispersion form, if at least one of a plurality of types of melt-kneaded resins is made into a matrix and other resins are dispersed in the form of particles in the matrix, it is referred to as “independent dispersion” and the plurality of types of resins that are melt-kneaded. In the case where the two have a co-continuous structure intermingled with each other, it is regarded as “co-continuous”. In the case of “independent dispersion”, the particle size of the observed dispersed particles is described as the dispersion order, and in the case of a co-continuous structure, the width of the phase in the continuous phase having an apparently small ratio in the observed image is represented by the dispersion order. It was. In addition, the case where no clear micron-order structure was observed was defined as “no structure”. The particle diameter of the dispersed particles was measured from the observation image using the maximum diameter of each particle in the observation image as the particle diameter. The dispersion order of the width of the phase and the dispersed particle size in the continuous phase were confirmed by 10 observation images.
Concerning the usefulness of the structure, the dispersion order is 10 μm or less and uniformly dispersed and “independent dispersion” or “co-continuous” is designated as ○ as a useful structure for functional design, and the dispersion order, structure uniformity, dispersion Those which do not satisfy these in the form were marked as “x” as a structure not sufficiently useful for functional design.

(6)分散相の延伸追随性測定法:
分散相を含む熱可塑性樹脂を二軸押出機(池貝PCM30ダイス直径5mm×1孔)で溶融して直径5mmの円形ダイから3kg/hrの吐出で押出されたストランドを溶融状態でストランド径が1.6mmとなるまで延伸後固化させて100mm長さでカットしてサンプルを得た。得られた径1.6mm、長さ100mmの溶融延伸されたストランド状サンプルは円形ダイから押出された時のスウェル現象を考慮しなければ計算上9.76倍に延伸されおり、スウェル現象の有無に関わらず少なくとも9.76倍延伸されていると判断した。
分散相の延伸追随性については、延伸方向の断面について構造観察を行い分散相の形状を確認し評価した。構造観察は試料の特性によって(イ)TEM(透過型電子顕微鏡)、(ロ)SEM(走査型電子顕微鏡)、(ハ)SPM(走査型プローブ顕微鏡)、(ニ)位相顕微鏡、(ホ)微分干渉顕微鏡 などを用いた。具体的には、電子顕微鏡観察はサンプルを光硬化型樹脂に包埋後研磨し、5〜10%リンタングステン酸水溶液で染色したものをSEMで観察するか、クライオミクロトームで得た凍結切片をRuO4で染色したものをTEMで観察したが、これは構造観察の手法を限定するものではない。SPM、位相顕微鏡、および微分干渉顕微鏡に関してもクライオトームで得た凍結切片を用いて観察した。
観察された延伸方向の断面における分散相の形状が延伸方向に大きく追随して繊維状に変形しており、かつ観察された分散相のL(延伸方向の長さ)/D(延伸方向に対して垂直方向の分散径)が4以上であれば分散相の延伸追随性ありとした。
(6) Method for measuring stretch followability of dispersed phase:
A thermoplastic resin containing a dispersed phase is melted by a twin-screw extruder (Ikegai PCM30 die diameter 5 mm × 1 hole), and a strand extruded from a circular die having a diameter of 5 mm by discharge of 3 kg / hr is melted to have a strand diameter of 1 A sample was obtained by solidifying after stretching to 6 mm and cutting it to a length of 100 mm. The obtained melt-stretched strand-shaped sample having a diameter of 1.6 mm and a length of 100 mm is calculated to be 9.76 times as long as the swell phenomenon when extruded from a circular die is not taken into consideration. Regardless, it was judged that the film was stretched at least 9.76 times.
The stretching followability of the dispersed phase was evaluated by confirming the shape of the dispersed phase by observing the structure of the cross section in the stretching direction. Structure observation depends on the characteristics of the sample: (b) TEM (transmission electron microscope), (b) SEM (scanning electron microscope), (c) SPM (scanning probe microscope), (d) phase microscope, (e) differentiation An interference microscope was used. Specifically, the electron microscopic observation is performed by embedding the sample in a photocurable resin and then polishing and staining with a 5 to 10% phosphotungstic acid aqueous solution with an SEM, or a frozen section obtained with a cryomicrotome. Although what was dye | stained by 4 was observed by TEM, this does not limit the method of structure observation. The SPM, phase microscope, and differential interference microscope were also observed using frozen sections obtained with a cryotome.
The shape of the dispersed phase in the cross-section in the observed stretching direction largely follows the stretching direction and is deformed into a fiber, and the observed dispersed phase L (length in the stretching direction) / D (relative to the stretching direction) If the dispersion diameter in the vertical direction) is 4 or more, it is considered that the dispersion phase has stretchability.

<実施例、比較例で使用した原材料>
PA6: 相対粘度RV=2.5の6ナイロンである東洋紡社製「東洋紡ナイロンT−800」
MXD6: 相対粘度RV=2.1のMXD6ナイロン、「東洋紡ナイロンT−600」
PA66: 相対粘度RV=2.78の66ナイロン、「東レアミランCN3001N」
PCL: 分子量70000のポリカプロラクトンであるダイセル化学工業社製「PCL−H7」
PLA: 融点164℃のポリ乳酸である三井化学社製「レイシアH100」
ポリエステルエラストマー(イ): 融点約210℃、溶液粘度1.45dl/gのポリブチレンテレフタレート/ポリカプロラクトン=57/43(重量%)共重合体である東洋紡社製「GS430」
ポリエステルエラストマー(ロ): 融点約203℃、溶液粘度1.95dl/gのポリブチレンテレフタレート/PTMG=53/47(重量%)共重合体である東洋紡社製「GP84D」
PBT: 相対粘度IV=0.8のポリブチレンテレフタレートであると東レ社製「1200S」
PET: 相対粘度IV=0.63のポリエチレンテレフタレートである東洋紡社製「RE530」
架橋助剤A: 日本化成株式会社製トリメタリルイソシアヌレートである「TMAIC」
架橋助剤B: 日本化成株式会社製トリアリルイソシアヌレートである「TAIC」
離型剤: クラリアント社製 モンタン酸エステルワックス「WE40」
安定剤: チバスペシャリティケミカルズ社製 「イルガノックスB1171」
<Raw materials used in Examples and Comparative Examples>
PA6: “Toyobo Nylon T-800” manufactured by Toyobo Co., Ltd., which is 6 nylon with relative viscosity RV = 2.5
MXD6: MXD6 nylon with relative viscosity RV = 2.1, “Toyobo Nylon T-600”
PA66: 66 nylon with relative viscosity RV = 2.78, “Torea Milan CN3001N”
PCL: “PCL-H7” manufactured by Daicel Chemical Industries, which is a polycaprolactone having a molecular weight of 70000
PLA: “Lacia H100” manufactured by Mitsui Chemicals, which is polylactic acid having a melting point of 164 ° C.
Polyester elastomer (A): “GS430” manufactured by Toyobo Co., Ltd., which is a polybutylene terephthalate / polycaprolactone = 57/43 (% by weight) copolymer having a melting point of about 210 ° C. and a solution viscosity of 1.45 dl / g.
Polyester elastomer (b): “GP84D” manufactured by Toyobo Co., Ltd., which is a polybutylene terephthalate / PTMG = 53/47 (wt%) copolymer having a melting point of about 203 ° C. and a solution viscosity of 1.95 dl / g.
PBT: Polyethylene terephthalate having a relative viscosity of IV = 0.8 “1200S” manufactured by Toray Industries, Inc.
PET: “RE530” manufactured by Toyobo Co., Ltd., which is a polyethylene terephthalate having a relative viscosity of IV = 0.63.
Crosslinking aid A: “TMAIC” which is trimethallyl isocyanurate manufactured by Nippon Kasei Co., Ltd.
Crosslinking aid B: “TAIC” which is triallyl isocyanurate manufactured by Nippon Kasei Co., Ltd.
Mold release agent: Montanate ester wax "WE40" manufactured by Clariant
Stabilizer: “Irganox B1171” manufactured by Ciba Specialty Chemicals

<架橋熱可塑性樹脂組成物の製造及び評価>
架橋処理を行う熱可塑性樹脂と架橋助剤を表1〜4に記載した比率で混合し、2軸押出機(池貝PCM30ダイス直径5mm×1孔)を用いて表1〜4に記載の温度、スクリュウ回転混練で溶融混練しストランドを冷却後カットすることでペレット状の熱可塑性樹脂組成物を得た。得られたペレットを乾燥後アルミ防湿袋に入れ、Co−60を線源とするγ線照射装置(MDS Nordion社製、型式JS10000HD)で表1、2中記載の線量に達するまでγ線を照射することによって架橋処理を行い、架橋状態を特定にコントロールされた架橋熱可塑性樹脂組成物を得た。得られた架橋熱可塑性樹脂組成物の溶媒溶解性、非架橋熱可塑性樹脂への分散性について評価した。さらに、架橋熱可塑性樹脂組成物について周波数‐貯蔵弾性率および損失弾性率、せん断粘度の両対数プロットを得て、周波数に対する貯蔵弾性率の傾きを求めた。得られた評価結果を表1〜4に示す。
<Production and Evaluation of Crosslinked Thermoplastic Resin Composition>
The thermoplastic resin to be crosslinked and the crosslinking aid are mixed in the ratios described in Tables 1 to 4, and the temperatures described in Tables 1 to 4 using a twin-screw extruder (Ikegai PCM30 die diameter 5 mm × 1 hole), A pellet-shaped thermoplastic resin composition was obtained by melt-kneading by screw rotation kneading and cutting the strand after cooling. The obtained pellets are dried and placed in an aluminum moisture-proof bag, and irradiated with γ-rays until the dose shown in Tables 1 and 2 is reached with a γ-ray irradiation device (MDS Nordion, model JS10000HD) using Co-60 as a radiation source. Thus, a crosslinking treatment was performed to obtain a crosslinked thermoplastic resin composition in which the crosslinking state was specifically controlled. The obtained crosslinked thermoplastic resin composition was evaluated for solvent solubility and dispersibility in a non-crosslinked thermoplastic resin. Further, a logarithmic plot of frequency-storage elastic modulus, loss elastic modulus, and shear viscosity was obtained for the crosslinked thermoplastic resin composition, and the slope of the storage elastic modulus with respect to the frequency was obtained. The obtained evaluation results are shown in Tables 1 to 4.

表1〜4で示された架橋条件で架橋された架橋熱可塑性樹脂組成物A−1〜D−3の内、良溶媒への不溶性で○と記載されたものは、表中に記載された良溶媒に不溶となるまで架橋が進行していることが確認された。架橋熱可塑性樹脂組成物A−1〜D−3の内、非架橋熱可塑性樹脂に対する分散性は表中記載の温度で混錬評価し、「分散する」と記載されたものは、非架橋熱可塑性樹脂に対する分散性が良好であることが確認された。さらに、良溶媒へ不溶でありかつ、非架橋熱可塑性樹脂に対して分散性のある状態に調整された架橋熱可塑性樹脂組成物A−1、B−1、C−1、D−1は、溶融時の粘弾特性が周波数‐貯蔵弾性率の両対数プロットの少なくとも0.1〜10rad/s範囲で周波数に対する貯蔵弾性率の傾きが0.2〜1.0でかつ、tanδの周波数依存性パラメーターであるα−βの絶対値は0.15以下であり、本発明における架橋樹脂組成物(A’)として適切であることが確認され、さらに、融点以上の粘弾性測定における貯蔵弾性率が少なくとも0.1〜10rad/sの範囲で1E+5Pa以下であることが確認された。表1〜4に記載された架橋熱可塑性樹脂A−1〜D−3で、架橋が進みすぎたものに関しては溶融粘弾測定用試験片の調整ができないため、測定不可と記載した。 Among the cross-linked thermoplastic resin compositions A-1 to D-3 cross-linked under the cross-linking conditions shown in Tables 1 to 4, those that are insoluble in a good solvent and described as ◯ are described in the table. It was confirmed that the crosslinking proceeded until it became insoluble in the good solvent. Among the crosslinked thermoplastic resin compositions A-1 to D-3, the dispersibility with respect to the non-crosslinked thermoplastic resin was kneaded and evaluated at the temperatures shown in the table, and “dispersed” It was confirmed that the dispersibility with respect to the plastic resin was good. Furthermore, the crosslinked thermoplastic resin compositions A-1, B-1, C-1, and D-1 that are insoluble in a good solvent and adjusted to be dispersible with respect to the non-crosslinked thermoplastic resin are: Viscoelastic properties at the time of melting are in the range of at least 0.1 to 10 rad / s in the logarithmic plot of frequency-storage modulus, and the slope of storage modulus with respect to frequency is 0.2 to 1.0, and the frequency dependence of tan δ The absolute value of α-β which is a parameter is 0.15 or less, which is confirmed to be suitable as the crosslinked resin composition (A ′) in the present invention. Further, the storage elastic modulus in the viscoelasticity measurement above the melting point is It was confirmed that it was 1E + 5 Pa or less in the range of at least 0.1 to 10 rad / s. Regarding the cross-linked thermoplastic resins A-1 to D-3 described in Tables 1 to 4, those for which cross-linking has progressed excessively were described as being incapable of measurement because the test piece for melt viscoelasticity measurement could not be adjusted.

実施例1〜6、比較例1〜8
表5、6に記載の架橋熱可塑性樹脂組成物と非架橋熱可塑性樹脂との組み合わせと比率とで、2軸押出機(池貝PCM30ダイス直径5mm×1孔)を用いて表5、6に記載の溶融混練条件で溶融混練しストランドを冷却およびカットして実施例1〜6、比較例1〜6の熱可塑性樹脂組成物ペレットを得た。得られた組成物について、(1)時間‐伸張粘度両対数曲線におけるひずみ硬化係数、(2)分散構造観察を行い、その結果を表5、6に記載した。
実施例1、比較例1〜2の熱可塑性樹脂組成物の構造観察はクライオミクロトームで得た凍結切片をリンタングステン酸水溶液で染色後SEM観察し、その結果を記載した。実施例2、実施例3、実施例6、および比較例4に示された熱可塑性樹脂組成物の構造観察はクライオミクロトームで得た凍結切片をRuO4で染色したものをTEM観察し、その結果を記載した。実施例4、実施例5、比較例6、比較例7に示された熱可塑性樹脂組成物の構造観察はクライオミクロトームで得た凍結切片を位相差顕微鏡観察とSPM観察で行った。比較例2、5、8は本発明における架橋度よりさらに架橋の進んだ架橋熱可塑性樹脂組成物であるため、微細に構造化された架橋分散相が得られず、架橋熱可塑性樹脂は300μm以上の粗大なゲル状のブツが目視でも確認できる状態であった。
次いで、上記の実施例、比較例の熱可塑性樹脂組成物を、さらに2軸押出機(池貝PCM30ダイス直径5mm×1孔)で溶融、延伸して分散相の延伸追随性を評価した。その結果を表5、6に記載した。
Examples 1-6, Comparative Examples 1-8
The combinations and ratios of the crosslinked thermoplastic resin composition and the non-crosslinked thermoplastic resin described in Tables 5 and 6 are described in Tables 5 and 6 using a twin-screw extruder (Ikegai PCM30 die diameter 5 mm × 1 hole). The thermoplastic resin composition pellets of Examples 1 to 6 and Comparative Examples 1 to 6 were obtained by melt-kneading under the melt-kneading conditions and cooling and cutting the strands. About the obtained composition, (1) Strain hardening coefficient in a time-extension viscosity logarithmic curve, (2) Dispersion structure observation was performed, and the result was described in Table 5,6.
In the structural observation of the thermoplastic resin compositions of Example 1 and Comparative Examples 1 and 2, the frozen sections obtained with a cryomicrotome were stained with a phosphotungstic acid aqueous solution, followed by SEM observation, and the results were described. The structure of the thermoplastic resin compositions shown in Example 2, Example 3, Example 6, and Comparative Example 4 was observed by TEM observation of a frozen section obtained by a cryomicrotome and stained with RuO 4. Was described. Structural observation of the thermoplastic resin compositions shown in Example 4, Example 5, Comparative Example 6, and Comparative Example 7 was performed by phase contrast microscopy and SPM observation of frozen sections obtained with a cryomicrotome. Since Comparative Examples 2, 5, and 8 are crosslinked thermoplastic resin compositions that are more crosslinked than the degree of crosslinking in the present invention, a finely structured crosslinked dispersed phase cannot be obtained, and the crosslinked thermoplastic resin is 300 μm or more. It was a state which can confirm visually coarse gel-like stuff.
Next, the thermoplastic resin compositions of the above Examples and Comparative Examples were further melted and stretched by a twin screw extruder (Ikegai PCM30 die diameter 5 mm × 1 hole) to evaluate the stretch followability of the dispersed phase. The results are shown in Tables 5 and 6.

実施例1〜6で示されたように均一かつ微細に構造化した架橋分散相を持ち、かつひずみ硬化性を発現している熱可塑性樹脂を溶融状態で延伸することによって大きく変形した分散相を容易に得ることができた。
比較例3、4、6、7は構造において比較的微細な分散相を含むが、その分散相は架橋しておらず適切な溶融時のレオロジー特性を付与されていないため、このような分散相の熱可塑性樹脂組成物を使用すると、分散相は溶融延伸に追随して変形しないため目的の成形体を得るための有効な調整方法とはなりえない。
比較例2、5、8は架橋熱可塑性樹脂の架橋度が高すぎるため架橋熱可塑性樹脂が微細構造化しないため、このような不適切な架橋状態の架橋熱可塑性樹脂を使用すると、目的の成形体を得るための有効な調整方法とはなりえない。
比較例1において高い相溶性を示すため、ミクロンオーダーのSEM観察では見かけ上均一化してしまうPA6とMXD6においても、本発明が示す調整方法でPA6を適切な架橋状態に調整して成形体を得ることよってMXD6のマトリックス中にPA6を独立で分散することができ、かつ延伸方向に変形した成形体を得ることができる。
A dispersed phase greatly deformed by stretching a thermoplastic resin having a uniform and finely structured crosslinked dispersed phase and exhibiting strain-hardening properties as shown in Examples 1 to 6 in a molten state. I could get it easily.
Comparative Examples 3, 4, 6, and 7 include a relatively fine dispersed phase in the structure, but the dispersed phase is not crosslinked and has not been imparted with appropriate melting rheological properties. When the thermoplastic resin composition is used, the dispersed phase does not deform following the melt stretching, so that it cannot be an effective adjustment method for obtaining the desired molded article.
In Comparative Examples 2, 5, and 8, since the crosslinked thermoplastic resin does not have a fine structure because the degree of crosslinking of the crosslinked thermoplastic resin is too high, if the crosslinked thermoplastic resin in such an inappropriate crosslinked state is used, the desired molding is performed. It cannot be an effective adjustment method to obtain the body.
Even in PA6 and MXD6, which show high compatibility in Comparative Example 1 and apparently uniform in micron order SEM observation, a molded product is obtained by adjusting PA6 to an appropriate cross-linked state by the adjustment method shown by the present invention. Accordingly, PA6 can be dispersed independently in the matrix of MXD6, and a molded body deformed in the stretching direction can be obtained.

次いで、図について補足説明する。
図1には実施例1、比較例1に示された組成物の延伸前のSEM観察結果が示されている。実施例1の組成物は架橋したPA6(白部分)がMXD6(黒部分)に対して均一化することなく、独立分散構造をとっていることが示されている。比較例1の組成物は架橋していなPA6をMXD6に混練していることから、高度に相溶化しておりPA6の独立な分散形態は見られない。
図2は実施例5で得た延伸ストランド状サンプルの延伸方向断面と延伸方向に対して垂直方向断面の構造観察結果を示す。分散相(白部分)は連続構造をもっているが延伸方向に変形した状態が明確に示されている。
図3には比較例7に示された組成物の延伸前のSPM観察結果が示されている。同じサンプルペレット内で観察された2箇所の画像で分散径、分散状態は大きく異なっており、一定形状以下の分散径で独立分散しているものの、その構造は不均一な状態であることが示されている。
Next, a supplementary explanation will be given with respect to the drawings.
FIG. 1 shows SEM observation results before stretching of the compositions shown in Example 1 and Comparative Example 1. The composition of Example 1 shows that the crosslinked PA6 (white part) has an independent dispersion structure without being homogenized with respect to MXD6 (black part). Since the composition of Comparative Example 1 kneaded uncrosslinked PA6 with MXD6, it was highly compatible and no independent dispersion form of PA6 was observed.
FIG. 2 shows the cross-sectional direction of the stretched strand sample obtained in Example 5 and the structural observation results of the cross-section perpendicular to the stretch direction. The disperse phase (white portion) has a continuous structure, but the state of deformation in the stretching direction is clearly shown.
FIG. 3 shows the SPM observation result before stretching of the composition shown in Comparative Example 7. Dispersion diameter and dispersion state are greatly different in the two images observed in the same sample pellet, indicating that the structure is inhomogeneous although it is dispersed independently with a dispersion diameter of a certain shape or less. Has been.

図4には実施例2で示された組成物の延伸前の微分干渉顕微鏡画像と延伸後の微分干渉顕微鏡画像とTEM画像が示されている。微分干渉顕微鏡像においては図中濃いコントラストで示されているのが架橋した分散相であり、TEM画像においては図中薄いコントラストで示されたものが架橋した分散相である。本発明の調整方法で得られた延伸後の成形体は、延伸方向に大きく変形した分散相の状態が明確に示されている。
図5には実施例1および実施例6で示された方法で樹脂組成物を調整し、実施例とは異なる延伸率で一軸方向に溶融延伸し調整されたフィルム状成型品のTEM観察画像が示されている。実施例1に示された調整方法で調整されたフィルムは延伸倍率が約20倍で延伸されたものであり、実施例6で示された調整方法で調整されたフィルムは延伸倍率約4で延伸されたフィルムである。両サンプルとも架橋分散相がよく延伸に対して追随変形していることを明確に示している。
FIG. 4 shows a differential interference microscope image before stretching, a differential interference microscope image after stretching, and a TEM image of the composition shown in Example 2. In the differential interference microscope image, a cross-linked dispersed phase is shown in a dark contrast in the figure, and in the TEM image, a cross-linked dispersed phase is shown in a thin contrast in the figure. The stretched molded body obtained by the adjusting method of the present invention clearly shows the state of the dispersed phase greatly deformed in the stretching direction.
FIG. 5 shows a TEM observation image of a film-like molded article prepared by adjusting the resin composition by the method shown in Example 1 and Example 6, and adjusting the resin composition by melt stretching in a uniaxial direction at a different stretching ratio from that of Example. It is shown. The film prepared by the adjustment method shown in Example 1 was drawn at a draw ratio of about 20 times, and the film prepared by the adjustment method shown in Example 6 was drawn at a draw ratio of about 4. Film. Both samples clearly show that the crosslinked dispersed phase is well deformed following stretching.

本発明の成形体は、特定の条件を満たす架橋分散相含有熱可塑性樹脂組成物を成形時に延伸するだけで容易に高度に変形した架橋分散相を含有する。また、様々な架橋分散相と非架橋樹脂の組み合わせが可能であるので、分散相の機能性を選択することによって、バリア性、光学特性、耐衝撃性、耐熱性などの非常に有用な機能性の効率よく発現させることが可能であり、産業界に寄与することが大である。 The molded article of the present invention contains a crosslinked dispersed phase that is easily deformed to a high degree by simply stretching a thermoplastic resin composition containing a crosslinked dispersed phase satisfying specific conditions at the time of molding. In addition, various cross-linked dispersed phases and non-cross-linked resins can be combined, so by selecting the functionality of the dispersed phase, very useful functionalities such as barrier properties, optical properties, impact resistance, heat resistance, etc. Can be expressed efficiently, and contribute greatly to the industry.

Claims (10)

非架橋熱可塑性樹脂(A)を架橋して得られた下記(イ)の特性を有する架橋熱可塑性樹脂組成物(A’)と非架橋熱可塑性樹脂(B)とを溶融混練して得られた熱可塑性樹脂組成物が、前記(A’)が前記(B)中に大きくとも20μmの粒子径に分散する分散相を形成するか又は前記(A’)と前記(B)が互いに入り組みあった共連続構造化した架橋相を形成し(以下、前記分散相と前記架橋相を合わせて架橋分散相と称する)、かつ溶融一軸伸長粘度における非線形領域で、下記(ロ)のひずみ硬化性を持つ熱可塑性樹脂組成物であり、該熱可塑性樹脂組成物を溶融延伸成形して得られた成形体であって、該成形体中の前記架橋分散相が、成形時の延伸に追随して延伸方向に変形してなることを特徴とする変形した架橋分散相を含有する熱可塑性樹脂組成物成形体。
(イ)非架橋熱可塑性樹脂(A)の溶媒に溶解せずに該溶媒と溶媒ゲルを形成する。
(ロ)非架橋熱可塑性樹脂(B)の融点より少なくとも10℃以上高い温度における前記熱可塑性樹脂の溶融一軸伸張粘度測定で得られる時間‐一軸伸張粘度の両対数プロット曲線において下記のひずみ硬化係数が2以上である。
ひずみ硬化係数 = a2/a1
a1: 時間‐一軸伸張粘度の両対数プロット曲線における線形領域の傾き
a2: 時間‐一軸伸張粘度の両対数プロット曲線における非線形領域の傾き
Obtained by melt-kneading a crosslinked thermoplastic resin composition (A ′) having the following characteristics (a) obtained by crosslinking the non-crosslinked thermoplastic resin (A) and the non-crosslinked thermoplastic resin (B): The thermoplastic resin composition forms a dispersed phase in which (A ′) is dispersed in a particle size of at most 20 μm in (B), or (A ′) and (B) are involved in each other. The co-continuous structured cross-linked phase is formed (hereinafter, the dispersed phase and the cross-linked phase are collectively referred to as a cross-linked dispersed phase) , and in the nonlinear region in the melt uniaxial elongation viscosity, A molded body obtained by melt-stretching the thermoplastic resin composition, wherein the crosslinked dispersed phase in the molded body follows the stretching at the time of molding. Contains a deformed crosslinked dispersed phase characterized by being deformed in the stretching direction Thermoplastic resin composition molded article.
(A) A solvent gel is formed with the solvent without dissolving in the solvent of the non-crosslinked thermoplastic resin (A).
(B) The following strain hardening coefficient in a log-log plot curve of time-uniaxial extension viscosity obtained by measuring the melt uniaxial extension viscosity of the thermoplastic resin at a temperature of at least 10 ° C. higher than the melting point of the non-crosslinked thermoplastic resin (B) Is 2 or more.
Strain hardening coefficient = a2 / a1
a1: slope of linear region in log-log plot curve of time-uniaxial extensional viscosity
a2: Slope of nonlinear region in log-log plot curve of time-uniaxial extensional viscosity
架橋熱可塑性樹脂組成物(A’)が、その線形領域における溶融粘弾性測定で得られる周波数‐貯蔵弾性率の両対数プロット曲線において、周波数0.1〜10rad/sの範囲で周波数に対する貯蔵弾性率の傾きが0.2〜1.0となる架橋状態である請求項1記載の変形した架橋分散相を含有する熱可塑性樹脂組成物成形体。 The cross-linked thermoplastic resin composition (A ′) has a storage elasticity with respect to frequency within a frequency range of 0.1 to 10 rad / s in a logarithmic plot curve of frequency-storage elastic modulus obtained by melt viscoelasticity measurement in the linear region. The thermoplastic resin composition molded article containing a deformed crosslinked dispersed phase according to claim 1, wherein the molded article is in a crosslinked state where the gradient of the rate is 0.2 to 1.0. 架橋熱可塑性樹脂組成物(A’)が、その線形領域における溶融粘弾性測定での周波数0.1〜10rad/s範囲において、周波数-貯蔵弾性率両対数プロット曲線における貯蔵弾性率の傾きをα、周波数-損失弾性率両対数プロット曲線における損失弾性率の傾きをβとしたとき、αとβとの差の絶対値が0.15以下である請求項1又は2に記載の変形した架橋分散相を含有する熱可塑性樹脂組成物成形体。 When the crosslinked thermoplastic resin composition (A ′) has a frequency-storage elastic modulus logarithmic plot curve, the slope of the storage elastic modulus is α in the frequency range of 0.1 to 10 rad / s in melt viscoelasticity measurement in the linear region. The modified cross-linked dispersion according to claim 1 or 2, wherein the absolute value of the difference between α and β is 0.15 or less, where β is the slope of the loss modulus in the logarithmic plot curve of the frequency-loss modulus logarithm. A thermoplastic resin composition molded body containing a phase. 架橋熱可塑性樹脂組成物(A’)が、放射線照射されてなるものである請求項1〜3のいずれかに記載の変形した架橋分散相を含有する熱可塑性樹脂組成物成形体。 The thermoplastic resin composition molded article containing a deformed crosslinked dispersed phase according to any one of claims 1 to 3, wherein the crosslinked thermoplastic resin composition (A ') is irradiated with radiation. 架橋熱可塑性樹脂組成物(A’)が、非架橋熱可塑性樹脂(A)と架橋助剤を溶融混練して得たペレットを放射線照射されてなるものである請求項1〜4のいずれかに記載の変形した架橋分散相を含有する熱可塑性樹脂組成物成形体。 The crosslinked thermoplastic resin composition (A ') is formed by irradiating a pellet obtained by melt-kneading the non-crosslinked thermoplastic resin (A) and a crosslinking aid. A molded thermoplastic resin composition containing the deformed crosslinked dispersed phase. 架橋熱可塑性樹脂組成物(A’)が、非架橋熱可塑性樹脂(A)に架橋助剤及び/又は有機過酸化物を配合して、溶融混錬によって架橋されてなるものである請求項1〜5のいずれかに記載の変形した架橋分散相を含有する熱可塑性樹脂組成物成形体。 The crosslinked thermoplastic resin composition (A ′) is obtained by blending a non-crosslinked thermoplastic resin (A) with a crosslinking aid and / or an organic peroxide and crosslinking by melt kneading. A thermoplastic resin composition molded article containing the deformed crosslinked dispersed phase according to any one of -5. 架橋熱可塑性樹脂組成物(A’)中の少なくとも50重量%がポリアミド系樹脂、ポリエステル系樹脂およびポリオレフィン系樹脂のいずれかである請求項1〜6のいずれかに記載の変形した架橋分散相を含有する熱可塑性樹脂組成物成形体。 The deformed crosslinked dispersed phase according to any one of claims 1 to 6, wherein at least 50% by weight in the crosslinked thermoplastic resin composition (A ') is any one of a polyamide resin, a polyester resin and a polyolefin resin. A molded thermoplastic resin composition. 架橋熱可塑性樹脂組成物(A’)が、ポリカプロラクトン50〜99.9重量部と架橋助剤0.1〜3重量部とを含む樹脂組成物を溶融混練りして得たペレットを吸収線量0.5〜25kGyに放射線照射されてなる請求項1〜7のいずれかに記載の変形した架橋分散相を含有する熱可塑性樹脂組成物成形体。 Absorbent crosslinked thermoplastic resin composition (A ') is, pellets of the resin composition obtained by melt kneading which includes a port re-caprolactone 50 to 99.9 parts by weight and the crosslinking aid 0.1-3 parts by weight The thermoplastic resin composition molded article containing a deformed crosslinked dispersed phase according to any one of claims 1 to 7, which is irradiated with a dose of 0.5 to 25 kGy. 架橋熱可塑性樹脂組成物(A’)が、ポリエステルエラストマー50〜99.9重量部と架橋助剤0.1〜3重量部を含む樹脂組成物を溶融混練りして得たペレットを吸収線量0.5〜60kGyに放射線照射されてなる請求項1〜のいずれかに記載の変形した架橋分散相を含有する熱可塑性樹脂組成物成形体。 Crosslinked thermoplastic resin composition (A ') is absorbed dose pellets of the resin composition obtained by melt kneading including port re ester elastomer 50 to 99.9 parts by weight and the crosslinking aid 0.1-3 parts by weight The thermoplastic resin composition molded article containing a deformed crosslinked dispersed phase according to any one of claims 1 to 7 , which is irradiated with radiation of 0.5 to 60 kGy. 架橋熱可塑性樹脂組成物(A’)が、ポリアミド50〜99.9重量部と架橋助剤0.1〜3重量部を含む樹脂組成物を溶融混練りして得たペレットを吸収線量0.5〜20kGyに放射線照射されてなる請求項1〜のいずれかに記載の変形した架橋分散相を含有する熱可塑性樹脂組成物成形体。 Crosslinked thermoplastic resin composition (A ') is, Polyamide 99.9 parts by weight and absorb the resin composition containing a crosslinking assistant 0.1-3 parts by weight obtained by melt kneading the pellets dose 0 The thermoplastic resin composition molded article containing the deformed crosslinked dispersed phase according to any one of claims 1 to 7 , which is irradiated with radiation of 5 to 20 kGy.
JP2009139833A 2009-06-11 2009-06-11 Molded body of thermoplastic resin composition containing deformed crosslinked dispersed phase Active JP5509686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009139833A JP5509686B2 (en) 2009-06-11 2009-06-11 Molded body of thermoplastic resin composition containing deformed crosslinked dispersed phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009139833A JP5509686B2 (en) 2009-06-11 2009-06-11 Molded body of thermoplastic resin composition containing deformed crosslinked dispersed phase

Publications (2)

Publication Number Publication Date
JP2010284856A JP2010284856A (en) 2010-12-24
JP5509686B2 true JP5509686B2 (en) 2014-06-04

Family

ID=43540942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009139833A Active JP5509686B2 (en) 2009-06-11 2009-06-11 Molded body of thermoplastic resin composition containing deformed crosslinked dispersed phase

Country Status (1)

Country Link
JP (1) JP5509686B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140332A (en) * 1997-11-10 1999-05-25 Tosoh Corp Thermoplastic resin composition
JPH11181175A (en) * 1997-12-25 1999-07-06 Tosoh Corp Polyethylene based resin composition
JP2002003663A (en) * 2000-06-16 2002-01-09 Tosoh Corp Polyethylene resin composition and container using it
JP3824547B2 (en) * 2001-08-10 2006-09-20 ユニチカ株式会社 Biodegradable polyester resin composition, method for producing the same, and foam and molded product obtained therefrom
JP4787475B2 (en) * 2004-07-13 2011-10-05 積水化学工業株式会社 Polyolefin resin, expandable polyolefin resin composition, and polyolefin resin foam
JP4684660B2 (en) * 2005-01-12 2011-05-18 日本ポリエチレン株式会社 Porous film and method for producing the same

Also Published As

Publication number Publication date
JP2010284856A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
Correlo et al. Properties of melt processed chitosan and aliphatic polyester blends
ES2218644T3 (en) MODIFIED POLYETHYLENE COMPOSITION AND SAME PREPARATION METHOD.
US8841362B2 (en) Thermoplastic starch and synthetic polymer blends and method of making
KR20150048103A (en) Microporous member, method for producing same, battery separator, and resin composition for nonaqueous electrolyte secondary battery separator
Abbott et al. Thermoplastic starch–polyethylene blends homogenised using deep eutectic solvents
Nanthananon et al. Enhanced crystallization of poly (lactic acid) through reactive aliphatic bisamide
Liang et al. Morphology and mechanical properties of PP/POE/nano‐CaCO3 composites
BR112019010212A2 (en) peroxide master batch, process for preparing a peroxide master batch, process for crosslinking an elastomer, and use of the peroxide master batch
Zhou et al. Influence of processing conditions on the morphological structure and ductility of water-foamed injection molded PP/LDPE blended parts
Elhady et al. Synthesis and impact of polyethylene terephthalate nanoparticles on the stability of polypropylene exposed to electron beam irradiation
JP5577631B2 (en) Thermoplastic resin composition and method for producing the same
JP2009040948A (en) Polylactic acid resin composition for injection molding, and production method therefor
CN109021583B (en) Three-component anti-tear silicone rubber and preparation method thereof
JP5509686B2 (en) Molded body of thermoplastic resin composition containing deformed crosslinked dispersed phase
Barczewski et al. Influence of accelerated weathering on mechanical and thermomechanical properties of poly (lactic acid) composites with natural waste filler
Jung et al. Facile preparation of thermoplastic elastomer with high service temperature from dry selective curing of compatibilized EPDM/polyamide-12 blends
JP5577630B2 (en) Crosslinked thermoplastic resin composition
DE102006017346A1 (en) Migration-stable masterbatch for production of duroplastics, comprises a homogeneous mixture of bi- and-or poly-functional crosslinking monomer and masterbatch polymer
JP2021138965A (en) Low void pellet, and method for producing molded body
BR112019010218A2 (en) peroxide masterbatch, process for preparing a peroxide masterbatch, process for crosslinking an elastomer, and use of the peroxide masterbatch
KR20160078501A (en) Eyewear containing a porous polymeric material
EP3436525A1 (en) Production processing aid
Chow Polypropylene blends: Properties control by design
CN111647259A (en) Biodegradable composite cable and preparation method thereof
JPH11255987A (en) Polyolefin resin composition, molding material, molding method for molding, and molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R151 Written notification of patent or utility model registration

Ref document number: 5509686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250