JP5507372B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP5507372B2
JP5507372B2 JP2010165154A JP2010165154A JP5507372B2 JP 5507372 B2 JP5507372 B2 JP 5507372B2 JP 2010165154 A JP2010165154 A JP 2010165154A JP 2010165154 A JP2010165154 A JP 2010165154A JP 5507372 B2 JP5507372 B2 JP 5507372B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting device
conical
sealing resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010165154A
Other languages
Japanese (ja)
Other versions
JP2012028523A (en
Inventor
巌 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2010165154A priority Critical patent/JP5507372B2/en
Publication of JP2012028523A publication Critical patent/JP2012028523A/en
Application granted granted Critical
Publication of JP5507372B2 publication Critical patent/JP5507372B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Description

本発明は、基板に搭載した発光素子(LED)を樹脂で封止した半導体発光装置に関する。   The present invention relates to a semiconductor light emitting device in which a light emitting element (LED) mounted on a substrate is sealed with a resin.

LEDパッケージの代表的なものに、パッケージ基板上にLEDを実装し、LEDを取り囲むようにホーン形状のリフレクタを配置し、LEDとリフレクタとの間の空間を樹脂で封止した構造が広く知られている。封止樹脂は、LEDの発する光に対して透明なものが用いられる。また、必要に応じて封止樹脂に、LEDの発する光を波長変換する蛍光体粒子を分散させることもある。   As a typical LED package, a structure in which an LED is mounted on a package substrate, a horn-shaped reflector is arranged so as to surround the LED, and the space between the LED and the reflector is sealed with a resin is widely known. ing. A sealing resin that is transparent to the light emitted from the LED is used. Moreover, the fluorescent substance particle | grains which carry out wavelength conversion of the light which LED emits may be disperse | distributed to sealing resin as needed.

封止樹脂の形状としては、上面を平坦な面にしたPLCC(Plastic leaded chip carrier)タイプのものや、封止樹脂の上面を所定の曲面形状にし、封止樹脂をレンズとして作用させる構造等が種々提案されている。例えば、封止樹脂をドーム形状に盛り上げた場合、LEDの発する光の取り出し効率を向上させ、同時に指向性の制御を行うことができる。ドーム形状の封止樹脂の形成方法としては、金型を用いたインジェクションモールド法等が用いられる。   As the shape of the sealing resin, there is a PLCC (Plastic leaded chip carrier) type having a flat upper surface, a structure in which the upper surface of the sealing resin has a predetermined curved surface shape, and the sealing resin acts as a lens. Various proposals have been made. For example, when the sealing resin is raised in a dome shape, the extraction efficiency of light emitted from the LED can be improved and the directivity can be controlled at the same time. As a method for forming the dome-shaped sealing resin, an injection molding method using a mold or the like is used.

また、特許文献1には、出射光の波長が異なる複数のLEDを並べて配置し、これを一体に覆う封止樹脂の外形を円錐形にした照明装置が開示されている。この照明装置は、複数のLEDからの出射光を封止樹脂の円錐面で反射して、円錐の先端に集めるように円錐の頂角が設計されている。円錐形の封止樹脂の先端部において、集められた光を混合して先端から出射する。これにより色ムラを低減する。   Patent Document 1 discloses a lighting device in which a plurality of LEDs having different wavelengths of emitted light are arranged side by side and the outer shape of a sealing resin that integrally covers the LEDs is conical. In this illuminating device, the apex angle of the cone is designed so that light emitted from the plurality of LEDs is reflected by the conical surface of the sealing resin and collected at the tip of the cone. At the tip of the conical sealing resin, the collected light is mixed and emitted from the tip. This reduces color unevenness.

特開2003−16808号公報JP 2003-16808 A

封止樹脂をドーム状にしてレンズ作用を生じさせるLEDパッケージの例を図1に示す。LEDチップ1は、ホーン形状のリフレクタ4が搭載された基板3にダイボンディングされ、ボンディングワイヤ5により基板3上の電極2と接続される。封止樹脂6はドーム状である。封止樹脂6にレンズ機能を持たせたLEDパッケージは、封止樹脂6に集光性を持たせてLEDチップ1からの光の取り出し効率を上げているため、LEDチップ1とドーム状の封止樹脂6の中心位置7とのズレが大きく指向特性に影響する。図2(a)に示すように、LEDチップ1がドーム状の封止樹脂6の中心位置7にある場合、出射光は法線方向を中心とした指向性を示すが、LEDチップ1が中心位置7からずれた位置8にある場合には、図2(b)に示すように法線方向に対して傾いた指向性を示す。このため、LEDチップ1の位置ずれ量の許容幅が狭くなり、製造歩留まりが低下するという問題がある。   FIG. 1 shows an example of an LED package in which a sealing resin is formed in a dome shape to cause a lens action. The LED chip 1 is die-bonded to a substrate 3 on which a horn-shaped reflector 4 is mounted, and is connected to an electrode 2 on the substrate 3 by a bonding wire 5. The sealing resin 6 has a dome shape. The LED package in which the sealing resin 6 has a lens function increases the light extraction efficiency from the LED chip 1 by providing the sealing resin 6 with a light condensing property. The deviation of the stop resin 6 from the center position 7 greatly affects the directivity. As shown in FIG. 2A, when the LED chip 1 is at the center position 7 of the dome-shaped sealing resin 6, the emitted light exhibits directivity centered on the normal direction, but the LED chip 1 is centered. In the case of the position 8 deviated from the position 7, the directivity tilted with respect to the normal direction is shown as shown in FIG. For this reason, the tolerance | permissible_range of the positional offset amount of LED chip 1 becomes narrow, and there exists a problem that a manufacturing yield falls.

一方、特許文献1に記載の円錐形の封止樹脂を用いる構成は、複数のLEDチップからの光のうち直上方向に進む光を円錐形の封止樹脂の先端に集めるように設計されている。しかしながら、LEDチップの出射光は、実際には一定の広がり角をもって出射されるため、直上ではない方向に出射される光を円錐形の封止樹脂で制御することは難しい。また、LEDチップが位置ずれした場合、直上方向に出射される光については円錐への入射角に変化がないため、位置ずれを許容することができるが、直上以外の方向への出射光を制御することはできない。このため、光の取り出し効率を向上させることは難しい。   On the other hand, the configuration using the conical sealing resin described in Patent Document 1 is designed to collect light traveling from the plurality of LED chips in a directly upward direction at the tip of the conical sealing resin. . However, since the light emitted from the LED chip is actually emitted with a certain spread angle, it is difficult to control the light emitted in a direction not directly above with the conical sealing resin. In addition, when the LED chip is displaced, the incident angle to the cone does not change for light emitted in the directly upward direction, so that the positional deviation can be allowed, but the emitted light in a direction other than directly above is controlled. I can't do it. For this reason, it is difficult to improve the light extraction efficiency.

本発明の目的は、LEDチップが位置ずれした場合であっても、指向性のずれが少なく、光の取り出し効率が高い発光装置を提供することにある。   An object of the present invention is to provide a light-emitting device with little directivity deviation and high light extraction efficiency even when the LED chip is displaced.

上記目的を達成するために、本発明の発光装置は、発光素子が搭載される搭載面と、搭載面の発光素子の周囲に配置された反射面と、発光素子と反射面との間の空間を少なくとも封止する封止部材とを有する。封止部材は、反射面よりも上側に突出する部分を有し、該突出する部分は、円錐形である。反射面は、発光素子からの入射する光を上方に向けて正反射するとともに、予め定めた割合で拡散光を生じる拡散反射面である。   In order to achieve the above object, a light-emitting device of the present invention includes a mounting surface on which a light-emitting element is mounted, a reflective surface disposed around the light-emitting element on the mounting surface, and a space between the light-emitting element and the reflective surface. And a sealing member for sealing at least. The sealing member has a portion protruding upward from the reflecting surface, and the protruding portion has a conical shape. The reflection surface is a diffuse reflection surface that regularly reflects the incident light from the light emitting element upward and generates diffused light at a predetermined rate.

円錐形の封止部材の円錐面は、発光素子から出射され、拡散反射面で正反射された光が直接入射する位置にあるように設計することが望ましい。   It is desirable to design the conical surface of the conical sealing member so that light emitted from the light emitting element and regularly reflected by the diffuse reflection surface is directly incident.

搭載面は、発光素子の光を反射する反射面であることが望ましい。   The mounting surface is preferably a reflecting surface that reflects light from the light emitting element.

反射面は、光拡散性の粒子を分散させた樹脂、光拡散性のセラミック、および、表面が粗面の金属膜のいずれかにより構成することが可能である。   The reflecting surface can be made of any one of a resin in which light diffusing particles are dispersed, a light diffusing ceramic, and a metal film having a rough surface.

発光素子は、複数であり、円錐形の封止部材の中心からずれた位置にそれぞれ搭載されている構成にすることも可能である。   A plurality of light emitting elements may be provided and mounted at positions shifted from the center of the conical sealing member.

本発明の発光装置は、拡散反射面により発光素子を囲み、拡散反射面よりも上側に突出する封止部材を円錐形にしたことにより、発光素子の位置ずれが生じた場合であっても、指向特性の変化を抑制することができる。すなわち、発光素子の位置ずれにロバスト性を持たせることができる。また、複数の発光素子を配置した場合であっても、指向性の変化が小さく、発光素子の発光色が異なる場合でも色ムラを抑制することができる。   The light emitting device of the present invention surrounds the light emitting element by the diffuse reflection surface, and the sealing member protruding upward from the diffuse reflection surface has a conical shape. A change in directivity can be suppressed. That is, it is possible to provide robustness to the positional deviation of the light emitting element. Further, even when a plurality of light emitting elements are arranged, the change in directivity is small, and color unevenness can be suppressed even when the light emitting colors of the light emitting elements are different.

従来のドーム型の封止樹脂を備える発光装置の断面図。Sectional drawing of a light-emitting device provided with the conventional dome shape sealing resin. 図1の発光装置において(a)LEDチップの位置ずれがない場合の指向特性を示すグラフ、(b)LEDチップの位置ずれがある場合の指向性を示すグラフ。In the light-emitting device of FIG. 1, (a) The graph which shows the directivity characteristic when there is no position shift of an LED chip, (b) The graph which shows the directivity when there is position shift of an LED chip. 第1の実施形態の発光装置の断面図。Sectional drawing of the light-emitting device of 1st Embodiment. 図3の発光装置の封止樹脂内部の光の反射および拡散を示す説明図。Explanatory drawing which shows reflection and diffusion of the light inside the sealing resin of the light emitting device of FIG. 図3の発光装置において(a)LEDチップの位置ずれがない場合の指向特性を示すグラフ、(b)LEDチップの位置ずれがある場合の指向性を示すグラフ。3A is a graph showing directivity characteristics when there is no positional deviation of LED chips, and FIG. 4B is a graph showing directivity when there is positional deviation of LED chips. 第1の実施形態の発光装置において、複数のLEDチップを搭載した場合の上面から見た配置を示す説明図。Explanatory drawing which shows the arrangement | positioning seen from the upper surface at the time of mounting a some LED chip in the light-emitting device of 1st Embodiment. 図6の発光装置において指向特性を示すグラフ。7 is a graph showing directivity characteristics in the light emitting device of FIG. 6. 第2の実施形態の発光装置の断面図。Sectional drawing of the light-emitting device of 2nd Embodiment.

本発明の一実施の形態の発光装置について図面を用いて説明する。
(第1の実施形態)
図3に、第1の実施形態の発光装置の断面図を示す。この発光装置は、リードフレーム12を表面に備えた樹脂製の基板13と、基板13上に搭載されたリフレクタ部14と、リードフレーム12上にダイボンディングされたLEDチップ11と、LEDチップ11を封止する封止樹脂16とを備えて構成される。LEDチップ11は、上面に一対の電極(不図示)を有し、これらの電極は、ボンディングワイヤ15によりリードフレーム12にそれぞれ接続されている。
A light emitting device according to an embodiment of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 3 is a cross-sectional view of the light emitting device according to the first embodiment. This light emitting device includes a resin substrate 13 having a lead frame 12 on the surface, a reflector portion 14 mounted on the substrate 13, an LED chip 11 die-bonded on the lead frame 12, and an LED chip 11. And a sealing resin 16 for sealing. The LED chip 11 has a pair of electrodes (not shown) on its upper surface, and these electrodes are respectively connected to the lead frame 12 by bonding wires 15.

封止樹脂16は、リフレクタ14よりも上に突出して盛り上がった形状であり、突出した部分は円錐形状である。封止樹脂16は、LEDチップ11の発する光に対して透明な材料により形成されている。封止樹脂16の屈折率は、円錐面において空気との屈折率差により全反射の臨界角を決定するため、円錐の頂角の角度と共に、LEDチップ11からの光のうち円錐面で外部に出射する角度範囲が決まる。よって、これを考慮して封止樹脂16の屈折率および円錐の頂角を設計する。また、円錐面における光の取り出し効率を高めるため、LEDチップ11との屈折率差が小さい材料で封止樹脂6を形成することが好ましい。また、封止樹脂16は、ランプハウスを構成する基板13およびリフレクタ14の材質や熱膨張係数等を考慮して、密着性が高く、熱膨張係数差が小さいものを選択することが好ましい。   The sealing resin 16 has a shape that protrudes and rises above the reflector 14, and the protruding portion has a conical shape. The sealing resin 16 is made of a material that is transparent to the light emitted from the LED chip 11. The refractive index of the sealing resin 16 determines the critical angle of total reflection based on the refractive index difference with air on the conical surface, so that the conical surface of the light from the LED chip 11 is exposed to the outside along with the angle of the apex angle of the cone. The range of angles to be emitted is determined. Therefore, considering this, the refractive index of the sealing resin 16 and the apex angle of the cone are designed. In order to increase the light extraction efficiency on the conical surface, it is preferable to form the sealing resin 6 with a material having a small refractive index difference from the LED chip 11. In addition, it is preferable to select a sealing resin 16 having high adhesion and a small difference in thermal expansion coefficient in consideration of the material of the substrate 13 and the reflector 14 constituting the lamp house and the thermal expansion coefficient.

具体的には、例えば、紫外光領域から可視光領域の光に対して透過率の高いシリコーン樹脂、エポキシ樹脂、ユリア樹脂、ポリオレフィン樹脂、PVA樹脂、フッ素系樹脂、ウレタン樹脂等により封止樹脂16を形成することができる。   Specifically, the sealing resin 16 is made of, for example, a silicone resin, an epoxy resin, a urea resin, a polyolefin resin, a PVA resin, a fluorine resin, a urethane resin, or the like that has a high transmittance with respect to light in the ultraviolet light region to the visible light region. Can be formed.

リードフレーム12の基材は、銅や鉄系を用いることができる。基材の表面には、耐食性を向上させるための層として、例えば厚さ0.5〜9μm程度のNi層を配置する。さらに、表面を高反射率にするために、厚さ0.5〜5μm程度のAu、Ag、Pd、A1、Pt、Pu、Ph、Pd、Os、Ir、Cu等の層で被覆された構造にすることが好ましい。   The base material of the lead frame 12 can be made of copper or iron. On the surface of the base material, for example, a Ni layer having a thickness of about 0.5 to 9 μm is disposed as a layer for improving the corrosion resistance. Furthermore, in order to make the surface highly reflective, a structure coated with a layer of Au, Ag, Pd, A1, Pt, Pu, Ph, Pd, Os, Ir, Cu or the like having a thickness of about 0.5 to 5 μm It is preferable to make it.

基板13は、LEDチップ11の出射光を上方に向けて高効率で反射するために、基板13の上面が、高反射率の金属層(A1、Ag、Au、Pt、Pu、Ph、Pd、Os、Ir、Cu等の金属層)により覆われていることが好ましい。ただし、リードフレーム12を短絡させないように配置する。または、基板13の上面のできるだけ広い面積をリードフレーム12が覆うようにし、リードフレーム12の形状を設計することも可能である。高反射率の金属層は、蒸着法やメッキ法により基板上面もしくはリードフレーム上面に形成することができる。   Since the substrate 13 reflects the emitted light of the LED chip 11 upward with high efficiency, the upper surface of the substrate 13 is made of a highly reflective metal layer (A1, Ag, Au, Pt, Pu, Ph, Pd, It is preferably covered with a metal layer of Os, Ir, Cu or the like. However, the lead frame 12 is arranged so as not to be short-circuited. Alternatively, it is possible to design the shape of the lead frame 12 by covering the widest possible area of the upper surface of the substrate 13 with the lead frame 12. The high reflectance metal layer can be formed on the upper surface of the substrate or the upper surface of the lead frame by vapor deposition or plating.

リフレクタ14は、反射面140が、所定の割合の拡散光を生じさせ、残りの光を正反射する拡散反射面となるように構成する。拡散反射面140の拡散光の光量S1と正反射光の光量S2との割合は、S1/(S+S2)=30%〜70%程度であることが望ましい。一例としては、S1/(S1+S2)=50%に設定することができる。   The reflector 14 is configured such that the reflection surface 140 becomes a diffusion reflection surface that generates a predetermined ratio of diffused light and regularly reflects the remaining light. The ratio of the diffused light amount S1 of the diffuse reflection surface 140 and the regular reflected light amount S2 is preferably about S1 / (S + S2) = 30% to 70%. As an example, S1 / (S1 + S2) = 50% can be set.

このような拡散反射面140は、例えば酸化チタンやチタン酸バリウム等の拡散性の粒子を分散させた樹脂によりリフレクタ14を構成することにより実現することができる。例えば、粒径0.1〜0.5μmの酸化チタンを10%〜75%含む樹脂によりリフレクタ14を形成することにより、S1/(S+S2)=30%〜70%にすることができる。また、粒径0.15〜0.25μmの酸化チタンを20%〜50%含む樹脂によりリフレクタ14を形成することができる。   Such a diffuse reflection surface 140 can be realized by configuring the reflector 14 with a resin in which diffusible particles such as titanium oxide and barium titanate are dispersed. For example, by forming the reflector 14 with a resin containing 10% to 75% of titanium oxide having a particle diameter of 0.1 to 0.5 μm, S1 / (S + S2) = 30% to 70% can be obtained. Further, the reflector 14 can be formed of a resin containing 20% to 50% of titanium oxide having a particle size of 0.15 to 0.25 μm.

基板13およびリフレクタ14の基材樹脂としては、PPA(ポリフタルアミド)、PC(ポリカーボネート)、PCT(ポリシクロへキシレン・ジメチレン・テレフタレート)、PI(ポリイミド)、PP(ポリプロピレン)等を用いることができる。   As the base resin of the substrate 13 and the reflector 14, PPA (polyphthalamide), PC (polycarbonate), PCT (polycyclohexylene / dimethylene / terephthalate), PI (polyimide), PP (polypropylene), or the like can be used. .

また、リフレクタ14をセラミックで構成することも可能である。具体的には例えば、アルミナ、酸化チタン、ジルコニア、BeO、SiC、CuW等によりリフレクタ14を構成し、拡散反射面140の表面粗さを調整することにより、S1/(S+S2)=30%〜70%を実現することができる。   The reflector 14 can be made of ceramic. Specifically, for example, the reflector 14 is made of alumina, titanium oxide, zirconia, BeO, SiC, CuW, or the like, and the surface roughness of the diffuse reflection surface 140 is adjusted, so that S1 / (S + S2) = 30% to 70%. % Can be realized.

さらに、リフレクタ14の拡散反射面を金属により形成し、表面粗さを調整することにより、上記拡散反射面140を構成することも可能である。   Further, the diffuse reflection surface 140 can be configured by forming the diffuse reflection surface of the reflector 14 from metal and adjusting the surface roughness.

リフレクタ14の拡散反射面140の傾斜角と、封止樹脂16の円錐の頂角との関係は、LEDチップ11から出射される光のうち、拡散反射面140に入射した光の正反射光が、封止樹脂14の円錐面(斜面)に入射する関係になるように設計する。   The relationship between the inclination angle of the diffuse reflection surface 140 of the reflector 14 and the apex angle of the cone of the sealing resin 16 is that the regular reflection light of the light incident on the diffuse reflection surface 140 out of the light emitted from the LED chip 11 is , The sealing resin 14 is designed to be incident on the conical surface (slope).

このように、封止樹脂16を所定の全反射角の円錐面を有する円錐形状とし、かつ、所定の割合で拡散光を生じさせる拡散反射面140をLEDチップ1の周囲に配置し、さらに、正反射光が円錐面に直接入射するように円錐形の封止樹脂16を配置したことにより、図4に示すように、LEDチップ11から上方(基板13の法線方向)に向けて出射される光のうち、臨界角より小さい角度で円錐面に入射する光41は、そのまま外部に出射される。臨界角より大きい角度で円錐面に入射する光42は、円錐面で反射されて封止樹脂16内部に戻され、リードフレーム12や基板13の表面や拡散反射面140で1回以上反射され、臨界角より小さい角度で再び円錐面に到達して外部に出射される。これにより、円錐形の封止樹脂16のレンズ効果により円錐面から出射される光の角度が制御される。   In this way, the sealing resin 16 has a conical shape having a conical surface with a predetermined total reflection angle, and the diffuse reflection surface 140 that generates diffused light at a predetermined ratio is disposed around the LED chip 1. By arranging the conical sealing resin 16 so that the specularly reflected light is directly incident on the conical surface, it is emitted upward (in the normal direction of the substrate 13) from the LED chip 11 as shown in FIG. The light 41 incident on the conical surface at an angle smaller than the critical angle is emitted to the outside as it is. The light 42 incident on the conical surface at an angle larger than the critical angle is reflected by the conical surface and returned to the inside of the sealing resin 16, and is reflected one or more times by the surface of the lead frame 12 and the substrate 13 and the diffuse reflection surface 140. It reaches the conical surface again at an angle smaller than the critical angle and exits to the outside. Thereby, the angle of the light emitted from the conical surface is controlled by the lens effect of the conical sealing resin 16.

法線方向から大きく傾いてLEDチップ11から出射された光43は、拡散反射面140に入射し、正反射光44と所定の割合の拡散光45を生じさせる。正反射光44は、封止樹脂16の円錐面に入射する。拡散光45のうち上方に向けて拡散された光は、正反射光44とは異なる様々な角度で封止樹脂16の円錐面の広範囲に入射する。これらの光は、円錐面の入射角が臨界角より小さい場合は外部に出射される。臨界角以上である場合は、円錐面で反射され、封止樹脂16内部に戻され、リードフレーム12や基板13の表面や拡散反射面140で1回以上反射され、臨界角より小さい角度で再び円錐面に到達して外部に出射される。拡散光44のうち下方に向けて拡散された光は、リードフレーム12および基板13の表面で反射されることにより、上方に向けて反射され、円錐面に到達して出射される。   The light 43 emitted from the LED chip 11 with a large inclination from the normal direction is incident on the diffuse reflection surface 140, and generates specular reflection light 44 and a predetermined ratio of diffused light 45. The regular reflection light 44 is incident on the conical surface of the sealing resin 16. Of the diffused light 45, the light diffused upward is incident on a wide range of the conical surface of the sealing resin 16 at various angles different from the regular reflected light 44. These lights are emitted to the outside when the incident angle of the conical surface is smaller than the critical angle. If the angle is greater than the critical angle, it is reflected by the conical surface, returned to the inside of the sealing resin 16, reflected by the surface of the lead frame 12 and the substrate 13, and the diffuse reflection surface 140 at least once, and again at an angle smaller than the critical angle. It reaches the conical surface and is emitted to the outside. Of the diffused light 44, the light diffused downward is reflected by the surfaces of the lead frame 12 and the substrate 13, thereby being reflected upward and reaching the conical surface and emitted.

このように拡散反射面140で拡散光44を生じさせることにより、LEDチップ11から直接到達する光のみの場合よりも、円錐面全体に、広い入射角の範囲で光を入射させることができるため、拡散反射面140がない場合と比較して、円錐面から出射される光に指向角に依存した強度ムラが生じるのを低減することができる。   By causing the diffused light 44 to be generated on the diffuse reflection surface 140 in this way, light can be incident on the entire conical surface in a wide incident angle range, compared to the case of only the light reaching directly from the LED chip 11. Compared with the case where there is no diffuse reflection surface 140, it is possible to reduce the occurrence of intensity unevenness depending on the directivity angle in the light emitted from the conical surface.

よって、円錐形の封止樹脂16のレンズ効果と、拡散反射面140の拡散光による指向角に依存した強度ムラ低減効果により、所定の指向特性の出射光を得ることができる。   Therefore, the emitted light having a predetermined directivity can be obtained by the lens effect of the conical sealing resin 16 and the intensity unevenness reducing effect depending on the directivity angle by the diffused light of the diffuse reflection surface 140.

このような構造であるため、LEDチップ11が、封止樹脂16の中心位置からずれてダイボンドされた場合であっても、出射光の指向性のずれを抑制することができる。すなわち、LEDチップ11が封止樹脂16の中心位置からずれてダイボンドされた場合、ずれた側の円錐面および拡散傾斜面140に入射する光量が増加するが、円錐面に臨界角以上で入射した光は全反射され、戻り光は基板面やリードフレーム12で1回以上反射することにより、ずれた側とは逆側の円錐面へも光を入射させることができる。また、拡散反射面140においては所定の割合で拡散光が生じるため、円錐面全体に拡散光を広い角度範囲で入射させることができる。これにより、LEDチップ11の位置ずれによる光の偏りを修正し、指向性のずれを低減できる。   Due to such a structure, even if the LED chip 11 is die-bonded with a deviation from the center position of the sealing resin 16, it is possible to suppress a deviation in the directivity of the emitted light. That is, when the LED chip 11 is die-bonded with a deviation from the center position of the sealing resin 16, the amount of light incident on the conical surface on the shifted side and the diffusion inclined surface 140 increases, but is incident on the conical surface at a critical angle or more. The light is totally reflected, and the return light is reflected once or more by the substrate surface or the lead frame 12, so that the light can be incident on the conical surface opposite to the shifted side. Further, since diffused light is generated at a predetermined rate on the diffuse reflection surface 140, the diffused light can be incident on the entire conical surface over a wide angle range. Thereby, the deviation of the light due to the positional deviation of the LED chip 11 can be corrected, and the deviation of directivity can be reduced.

一例として、本実施形態の発光装置の構成において、封止樹脂16の中心位置からのLEDチップ11の位置ずれがない場合のシミュレーションで求めた出射光の指向特性を図5(a)に、位置ずれがある場合の出射光の指向特性を図5(b)に示す。ただし、封止樹脂16の屈折率1.4、拡散反射面140の拡散光の光量S1と正反射光の光量S2との割合S1/(S+S2)=50%、リフレクタ14の高さ1.05mm、リフレクタ14の開口径2.8mm、封止樹脂16の頂角114.5°、LEDチップ11の発光波長615nmとして求めた。図5(b)のLEDチップ11の位置ずれ量は、0.1mmとした。   As an example, in the configuration of the light emitting device according to the present embodiment, the directivity characteristics of the emitted light obtained by the simulation when the LED chip 11 is not displaced from the center position of the sealing resin 16 are shown in FIG. FIG. 5B shows the directivity characteristics of the emitted light when there is a deviation. However, the refractive index 1.4 of the sealing resin 16, the ratio S1 / (S + S2) = 50% of the diffused light amount S1 of the diffuse reflection surface 140 and the regular reflected light amount S2, and the height of the reflector 14 is 1.05 mm. The aperture diameter of the reflector 14 was 2.8 mm, the apex angle of the sealing resin 16 was 114.5 °, and the emission wavelength of the LED chip 11 was 615 nm. The positional deviation amount of the LED chip 11 in FIG. 5B was 0.1 mm.

図5(b)の指向特性から明らかなように、LEDチップ11が位置ずれした場合であっても、ずれていない図5(a)の指向特性と比較して、指向角が2度しかずれておらず、従来のドーム型の発光装置と比較してLEDチップ11の位置ずれにロバスト性を持っていることがわかる。   As is apparent from the directivity characteristics of FIG. 5B, even when the LED chip 11 is misaligned, the directivity angle is shifted by only 2 degrees compared to the directivity characteristics of FIG. It can be seen that the positional deviation of the LED chip 11 is more robust than the conventional dome-shaped light emitting device.

本実施形態の発光装置の製造方法は、リフレクタおよび封止樹脂を備えた発光装置の製造方法と同様であるが、円錐形の封止樹脂16は、インジェクション成形プロセスを用いて形成する。   Although the manufacturing method of the light-emitting device of this embodiment is the same as the manufacturing method of the light-emitting device provided with the reflector and sealing resin, the conical sealing resin 16 is formed using an injection molding process.

なお、上述の実施形態では、LEDチップ11を一つだけ搭載した発光装置について説明したが、図6に示すように、複数のLEDチップ11を配列してリードフレーム12上に配置した構成にすることも可能である。ここではLEDチップ11を4個配置している。この場合、円錐形の封止樹脂16の中心からずれた位置に4個のLEDチップ11が配置されるが、本実施形態の構成を用いることにより、出射光の指向性は、複数ビームに分割されたり、指向特性が大きく傾いたりせず、図7に示すように法線方向に向かう一つのビーム状の指向性をしめす。   In the above-described embodiment, the light emitting device having only one LED chip 11 is described. However, as shown in FIG. 6, a plurality of LED chips 11 are arranged and arranged on the lead frame 12. It is also possible. Here, four LED chips 11 are arranged. In this case, the four LED chips 11 are arranged at positions shifted from the center of the conical sealing resin 16, but by using the configuration of this embodiment, the directivity of the emitted light is divided into a plurality of beams. As shown in FIG. 7, the directivity of one beam heading in the normal direction is not shown.

また、複数のLEDチップ11としてそれぞれ異なる出射波長のものを用い、マルチカラーとすることも可能である。マルチカラーとした場合も、本実施形態の発光装置ではLEDチップ11がセンターからずれた位置に存在しても指向特性に偏りを生じにくい構成であるため、複数のLEDチップ11の混色性がよく、発光色の分布の少ないマルチカラー発光装置を提供できる。   Moreover, it is possible to use multi-colors by using LED chips 11 having different emission wavelengths. Even in the case of multi-color, the light emitting device of this embodiment has a configuration in which the directional characteristics are less likely to be biased even if the LED chip 11 is located at a position shifted from the center. It is possible to provide a multi-color light emitting device with a small distribution of emitted color.

LEDチップ11としては、波長領域が紫外線域から赤外線域までどのようなものでもよい。例えば、窒化ガリウム系化合物半導体やシリコンカーバイト系化合物半導体等を用いることができる。   The LED chip 11 may have any wavelength range from the ultraviolet range to the infrared range. For example, a gallium nitride compound semiconductor or a silicon carbide compound semiconductor can be used.

なお、上述の実施形態では、基板13は樹脂製であり、その上にリードフレーム12を配置した構成であったが、基板13をセラミック製とし、リードフレーム12に代えて電極膜を配置することも可能である。   In the above-described embodiment, the substrate 13 is made of resin and the lead frame 12 is arranged thereon. However, the substrate 13 is made of ceramic and an electrode film is arranged instead of the lead frame 12. Is also possible.

また、基板13およびリフレクタ14をリジッド基板により構成することも可能である。   In addition, the substrate 13 and the reflector 14 can be configured by a rigid substrate.

封止樹脂16に代えて、低融点ガラス、ゾルーゲルガラス等のガラスを用いることも可能である。   Instead of the sealing resin 16, it is also possible to use a glass such as a low melting point glass or a sol-gel glass.

(第2の実施形態)
本発明の第2の実施形態の発光装置について説明する。
(Second Embodiment)
A light emitting device according to a second embodiment of the present invention will be described.

第2の実施形態では、図8に示すように、リフレクタ14と基板13を一体としてシリコン基板で構成する。シリコン基板の表面に金属膜を配置することにより、電極および拡散反射層140を形成している。他の構成は、第1の実施形態と同様であるので説明を省略する。   In the second embodiment, as shown in FIG. 8, the reflector 14 and the substrate 13 are integrally formed of a silicon substrate. The electrode and the diffuse reflection layer 140 are formed by disposing a metal film on the surface of the silicon substrate. Other configurations are the same as those of the first embodiment, and thus description thereof is omitted.

リフレクタ14および基板13は、シリコン基板をエッチングしてリフレクタ14の開口を形成することにより一体に形成する。形成した開口の底面(基板13の上面)および開口の内側面(リフレクタ14の反射面)および外側面に高反射率の金属膜を形成する。基板13の上面の金属膜130を所定のパターンにフォトリソグラフィ等により加工することにより、LEDチップ11を搭載する電極が形成される。また、リフレクタ14の反射面の金属膜130をエッチング法またはブラスト法により、表面粗さRaが0.1μm以上の粗面に加工することにより拡散反射面140を形成する。   The reflector 14 and the substrate 13 are integrally formed by etching the silicon substrate to form the opening of the reflector 14. A highly reflective metal film is formed on the bottom surface (upper surface of the substrate 13) of the formed opening, the inner side surface (reflecting surface of the reflector 14) and the outer surface of the opening. An electrode on which the LED chip 11 is mounted is formed by processing the metal film 130 on the upper surface of the substrate 13 into a predetermined pattern by photolithography or the like. Further, the diffuse reflection surface 140 is formed by processing the metal film 130 on the reflection surface of the reflector 14 into a rough surface having a surface roughness Ra of 0.1 μm or more by an etching method or a blast method.

シリコン基板からリフレクタ14と基板13を一体に形成する具体的な方法の一例を説明する。まずSiウエハの(100)面に熱酸化膜を形成する。次にSiウエハの表面にレジストをスピンコートした後、プリベークし、マスク露光、現像することで、エッチングする面を残し、レジストで覆う。ポストプリベークの後、レジストをマスクとして、フッ酸とフッ化アンモニウムを混合したバッファードフッ酸で熱酸化膜をエッチングすることにより、熱酸化膜を所定のパターンに加工した後、レジストを除去する。熱酸化膜をマスクとして、KOH系のアルカリウェットエッチング液によりシリコン基板をエッチングする。これにより、(111)面を斜面としたリフレクタ14および基板13が形成される。   An example of a specific method for integrally forming the reflector 14 and the substrate 13 from a silicon substrate will be described. First, a thermal oxide film is formed on the (100) surface of the Si wafer. Next, after spin-coating a resist on the surface of the Si wafer, pre-baking, mask exposure, and development are performed to leave a surface to be etched and cover with the resist. After the post-prebaking, the thermal oxide film is etched into a predetermined pattern by etching the thermal oxide film with buffered hydrofluoric acid mixed with hydrofluoric acid and ammonium fluoride using the resist as a mask, and then the resist is removed. Using the thermal oxide film as a mask, the silicon substrate is etched with a KOH-based alkaline wet etchant. Thereby, the reflector 14 and the board | substrate 13 which made the (111) surface inclined are formed.

リフレクタ14および基板13の表面に、リフトオフ法により所定のパターンのTi/Ni/Agの積層膜を金属膜130として形成する。リフレクタ14の斜面の金属膜130を粗面加工し、拡散反射面140を形成する。   A Ti / Ni / Ag laminated film having a predetermined pattern is formed as a metal film 130 on the surfaces of the reflector 14 and the substrate 13 by a lift-off method. The diffused reflection surface 140 is formed by roughening the metal film 130 on the inclined surface of the reflector 14.

なお、金属膜130の表面全体を成膜時に表面粗さが0.1μm以上になるように形成することも可能である。   It is possible to form the entire surface of the metal film 130 so that the surface roughness becomes 0.1 μm or more at the time of film formation.

また、金属膜130は、光による硫化、または酸化が起こらないような材料であることが望ましく、上記層構成の他に、Ti/Ni/AgBiNd、Ti/Ni/Au、Cr/Ni/Au、TiW/Au、Ti/NiV/Au、Cr/NiV/Au、Ti/Ni/AgNdCu、Cr/Ni/AgNdCu、TiW/AgNdCu、Ti/Ni/AgBi、Cr/Ni/AgBi、TiW/AgBi、Cr/Ni/AgBiNd、TiW/AgBiNd、Cr/NiV/AgBiNd、Ti/Ni/AgBiAu、Cr/Ni/AgBiAu、TiW/AgBiAu、または、Cr/NiV/AgBiAu等の積層膜とすることも可能である。これらは、蒸着等により成膜することができる。   Further, the metal film 130 is desirably a material that does not cause sulfidation or oxidation due to light. In addition to the above layer structure, Ti / Ni / AgBiNd, Ti / Ni / Au, Cr / Ni / Au, TiW / Au, Ti / NiV / Au, Cr / NiV / Au, Ti / Ni / AgNdCu, Cr / Ni / AgNdCu, TiW / AgNdCu, Ti / Ni / AgBi, Cr / Ni / AgBi, TiW / AgBi, Cr / A laminated film of Ni / AgBiNd, TiW / AgBiNd, Cr / NiV / AgBiNd, Ti / Ni / AgBiAu, Cr / Ni / AgBiAu, TiW / AgBiAu, or Cr / NiV / AgBiAu can also be used. These can be formed by vapor deposition or the like.

また、金属膜130は、Cu膜を無電解メッキや電鋳により形成した後、Cu膜の上にさらにAu、AgBi、Pd、Ag/Re、Ag/Re、Ag/Rh等を電界メッキ等で積層した構成とすることも可能である。これにより、共晶接合が可能な電極を形成することができる。   Further, the metal film 130 is formed by forming a Cu film by electroless plating or electroforming, and then further Au, AgBi, Pd, Ag / Re, Ag / Re, Ag / Rh, etc. on the Cu film by electroplating or the like. A stacked structure is also possible. Thereby, an electrode capable of eutectic bonding can be formed.

シリコン基板のエッチングに用いる溶液は、KOH以外に、TMAH(水酸化テトラメチルアンモニウム)やEDP(エチレンジアミンピロカテコール)やNとH0の混合液を用いることも可能である。また、ドライエッチングプロセス、ダイシングブレードによるプロセス、ブラストプロセス等によりシリコン基板を加工することも可能である。 As a solution used for etching the silicon substrate, TMAH (tetramethylammonium hydroxide), EDP (ethylenediamine pyrocatechol), or a mixed solution of N 2 H 4 and H 2 0 can be used in addition to KOH. It is also possible to process the silicon substrate by a dry etching process, a dicing blade process, a blast process, or the like.

第2の実施形態の発光装置の作用および効果は、第1の実施形態と同様であるので詳細な説明を省略する。   Since the operation and effect of the light emitting device of the second embodiment are the same as those of the first embodiment, detailed description thereof is omitted.

(第3の実施形態)
第3の実施形態として砲弾型の発光装置について説明する。砲弾型の発光装置は、リードフレームが拡散反射面を備える形状に加工され、リフレクタを兼用する。リードフレームを内包するように封止樹脂で封止される。封止樹脂は、少なくともリードフレームよりも上の部分が円錐形に形成されている。リードフレームがLEDチップを搭載する面には、高反射率膜配置することが望ましい。拡散反射面は、高反射率のリードフレームの表面を粗面加工することにより形成されている。
(Third embodiment)
A bullet-type light emitting device will be described as a third embodiment . Bullet-shaped light emitting device, the lead frame is processed into a shape having a diffuse reflective surface, also serves as a reflector. It is sealed with Futomeju fat so as to include a lead frame. Futomeju butter, at least part of the lead frame by Rimoue is formed conically. On the surface lead frame is mounted an LED chip, it is desirable to place a highly reflective film. Diffuse reflecting surface is formed by roughening the surface of the lead frame of high reflectivity.

このように砲弾型の発光装置であっても、本発明を適用することができ、LEDチップの位置ずれの許容度の大きな発光装置を提供できる。作用および効果は、第1の実施形態と同様であるので詳細な説明を省略する。 Even in this light emitting device of the bullet-shaped as can be applied to the present invention can provide a large light emitting device of the tolerance for positional deviation of the LED chip. Since the operation and effect are the same as those of the first embodiment, detailed description thereof is omitted.

上述した第1〜第3の実施形態の発光装置は、拡散反射面140によりLEDチップ11を囲み、拡散反射面よりも上側に突出する封止樹脂を円錐形にしたことにより、LEDチップの位置ずれが生じた場合であっても、指向特性の変化を抑制することができる。すなわち、LEDチップずれにロバスト性を持たせることができる。また、複数のLEDチップを配置した場合であっても、指向性の変化が小さく、各LEDチップの発光色が異なる場合でも色ムラを抑制することができる。   In the light emitting devices of the first to third embodiments described above, the LED chip 11 is surrounded by the diffuse reflection surface 140 and the sealing resin protruding upward from the diffuse reflection surface is formed into a conical shape. Even if a deviation occurs, the change in directivity can be suppressed. That is, robustness can be imparted to LED chip displacement. Further, even when a plurality of LED chips are arranged, the change in directivity is small, and color unevenness can be suppressed even when the emission colors of the LED chips are different.

本発明の発光装置は、バックライト用光源、車載用インジケータ、ストロボ用光源、ダウンライト用光源、非常灯、温度センサー用光源、ガスセンサー用光源、花卉成長制御用光源、集魚用光源、無影灯用光源、光CT用光源、白血病細胞破壊用光源、集虫用光源、光触媒励起用光源、人検知センサー用光源、紙検知センサ用光源等に好適に用いることができる。   The light-emitting device of the present invention includes a backlight light source, an on-vehicle indicator, a strobe light source, a downlight light source, an emergency light, a temperature sensor light source, a gas sensor light source, a flower growth control light source, a fish collection light source, a shadowless light source. It can be suitably used as a light source for lamps, a light source for optical CT, a light source for destroying leukemia cells, a light source for collecting insects, a light source for photocatalyst excitation, a light source for human detection sensors, a light source for paper detection sensors, and the like.

1、11…LEDチップ、2、15…リードフレーム、3、13…基板、4、14…リフレクタ、5、15…ボンディングワイヤ、6、16…封止樹脂、7…中心位置、130…金属膜。 DESCRIPTION OF SYMBOLS 1,11 ... LED chip, 2, 15 ... Lead frame, 3, 13 ... Board | substrate, 4, 14 ... Reflector, 5, 15 ... Bonding wire, 6, 16 ... Sealing resin, 7 ... Center position, 130 ... Metal film .

Claims (5)

発光素子が搭載される搭載面と、前記搭載面の前記発光素子の周囲に配置された反射面と、前記発光素子と反射面との間の空間を少なくとも封止する封止部材とを有し、
前記封止部材は、前記反射面よりも上側に突出する部分を有し、該突出する部分は、円錐形であり、
前記反射面は、前記発光素子からの入射する光を上方に向けて正反射するとともに、予め定めた割合で拡散光を生じる拡散反射面であり、
前記封止樹脂の円錐面の傾斜角は、前記発光素子から出射される光のうち、前記拡散反射面に直接入射した光の正反射光が、当該拡散反射面と接する側の前記円錐面に直接入射するように定められていることを特徴とする発光装置。
A mounting surface on which the light emitting element is mounted; a reflective surface disposed around the light emitting element on the mounting surface; and a sealing member that seals at least a space between the light emitting element and the reflective surface. ,
The sealing member has a portion protruding above the reflecting surface, and the protruding portion is conical,
The reflective surface with specularly reflects the light incident from the light emitting element upward, Ri diffuse reflector der producing diffused light at a ratio predetermined
The inclination angle of the conical surface of the sealing resin is such that the regular reflection light of the light directly incident on the diffuse reflection surface out of the light emitted from the light emitting element is incident on the conical surface on the side in contact with the diffuse reflection surface. A light emitting device characterized in that it is set to be directly incident .
請求項1に記載の発光装置において、前記円錐形の封止部材の円錐面は、前記発光素子から出射され、前記拡散反射面で正反射された光が直接入射する位置にあることを特徴とする発光装置。   2. The light emitting device according to claim 1, wherein the conical surface of the conical sealing member is at a position where light emitted from the light emitting element and regularly reflected by the diffuse reflection surface is directly incident. Light-emitting device. 請求項1または2に記載の発光装置において、前記搭載面は、前記発光素子の光を反射する反射面であることを特徴とする発光装置。   3. The light emitting device according to claim 1, wherein the mounting surface is a reflecting surface that reflects light of the light emitting element. 請求項1ないし3のいずれか1項に記載の発光装置において、前記反射面は、光拡散性の粒子を分散させた樹脂、光拡散性のセラミック、および、表面が粗面の金属膜のいずれかにより構成されていることを特徴とする発光装置。   4. The light emitting device according to claim 1, wherein the reflecting surface is any one of a resin in which light diffusing particles are dispersed, a light diffusing ceramic, and a metal film having a rough surface. A light-emitting device comprising the above. 請求項1ないし4のいずれか1項に記載の発光装置において、前記発光素子は、複数であり、前記円錐形の封止部材の中心からずれた位置にそれぞれ搭載されていることを特徴とする発光装置。   5. The light-emitting device according to claim 1, wherein a plurality of the light-emitting elements are mounted at positions shifted from a center of the conical sealing member. 6. Light emitting device.
JP2010165154A 2010-07-22 2010-07-22 Light emitting device Expired - Fee Related JP5507372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010165154A JP5507372B2 (en) 2010-07-22 2010-07-22 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010165154A JP5507372B2 (en) 2010-07-22 2010-07-22 Light emitting device

Publications (2)

Publication Number Publication Date
JP2012028523A JP2012028523A (en) 2012-02-09
JP5507372B2 true JP5507372B2 (en) 2014-05-28

Family

ID=45781112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010165154A Expired - Fee Related JP5507372B2 (en) 2010-07-22 2010-07-22 Light emitting device

Country Status (1)

Country Link
JP (1) JP5507372B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623614B (en) * 2012-03-29 2014-10-29 深圳市华星光电技术有限公司 Light-emitting diode (LED), backlight module and liquid crystal display device
JP6025529B2 (en) * 2012-11-29 2016-11-16 三菱電機株式会社 LED display device
JP6261854B2 (en) * 2012-12-05 2018-01-17 日亜化学工業株式会社 Light emitting unit
JPWO2016143152A1 (en) * 2015-03-12 2017-08-31 三菱電機株式会社 LIGHT EMITTING ELEMENT AND VIDEO DISPLAY DEVICE
JP7129746B2 (en) * 2019-01-17 2022-09-02 Koa株式会社 Flow sensor device and flow sensor device with cover
JP2021162768A (en) * 2020-04-01 2021-10-11 株式会社ジャパンディスプレイ Display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204575A (en) * 1982-05-24 1983-11-29 Mitsubishi Rayon Co Ltd Semiconductor light emitting element
JP2004191718A (en) * 2002-12-12 2004-07-08 Mitsubishi Electric Corp Led light source device
JP2006054396A (en) * 2004-08-16 2006-02-23 Toshiba Discrete Technology Kk Light-emitting device
EP1686630A3 (en) * 2005-01-31 2009-03-04 Samsung Electronics Co., Ltd. Led device having diffuse reflective surface
JP2008192928A (en) * 2007-02-06 2008-08-21 Masaaki Kano Lead plate type led lamp and led lighting system

Also Published As

Publication number Publication date
JP2012028523A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JP7381974B2 (en) light emitting device
JP5507372B2 (en) Light emitting device
US6995402B2 (en) Integrated reflector cup for a light emitting device mount
KR101091304B1 (en) Light emitting device package and fabricating method thereof
JP5047162B2 (en) Light emitting device
JP4046118B2 (en) LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE USING SAME, AND SURFACE EMITTING LIGHTING DEVICE
JP5543884B2 (en) Wavelength converting particle, wavelength converting member using the same, and light emitting device
CN108110117B (en) Light emitting diode with light blocking layer
CN104885235B (en) For the LED of the growth substrates with forming of side transmitting
JP5393796B2 (en) Light emitting device
JP2004501507A (en) Light emitting diode chip and method of manufacturing the same
US10672953B2 (en) Flip-chip light emitting diode chip and fabrication method
JP2006278675A (en) Semiconductor light-emitting device
JP2008016647A (en) Light-emitting device and manufacturing method therefor
JP2008147610A (en) Light emitting device
JP4688553B2 (en) Light emitting device and lighting device
JP2018067630A (en) Light-emitting device and method for manufacturing the same
JP4948841B2 (en) Light emitting device and lighting device
WO2013015140A1 (en) Lighting device
US20130088851A1 (en) Lighting module and lighting device thereof
KR101954203B1 (en) Lamp unit and vehicle lamp apparatus for using the same
JP2010100827A (en) Wavelength conversion member and light-emitting device using the same
JP2006351611A (en) Substrate for mounting light-emitting device and optical semiconductor device using same
JP5749599B2 (en) Light emitting device
JP2006093612A (en) Light emitting device and illuminator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140319

R150 Certificate of patent or registration of utility model

Ref document number: 5507372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees