JP5506624B2 - Thermal property identification method of multilayer laminates by unsteady heating - Google Patents

Thermal property identification method of multilayer laminates by unsteady heating Download PDF

Info

Publication number
JP5506624B2
JP5506624B2 JP2010215015A JP2010215015A JP5506624B2 JP 5506624 B2 JP5506624 B2 JP 5506624B2 JP 2010215015 A JP2010215015 A JP 2010215015A JP 2010215015 A JP2010215015 A JP 2010215015A JP 5506624 B2 JP5506624 B2 JP 5506624B2
Authority
JP
Japan
Prior art keywords
sample
heating
evaluation function
thermophysical
temperature rise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010215015A
Other languages
Japanese (ja)
Other versions
JP2012068193A (en
Inventor
喜代継 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP2010215015A priority Critical patent/JP5506624B2/en
Publication of JP2012068193A publication Critical patent/JP2012068193A/en
Application granted granted Critical
Publication of JP5506624B2 publication Critical patent/JP5506624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、試料の熱伝導率、熱拡散率などの熱物性の同定方法、特に、多層積層材の各層の熱伝導率、熱拡散率などの熱物性を同定する方法に関する。   The present invention relates to a method for identifying thermal properties such as thermal conductivity and thermal diffusivity of a sample, and more particularly to a method for identifying thermal properties such as thermal conductivity and thermal diffusivity of each layer of a multilayer laminate.

金属、セラミックス、ガラス、カーボン、プラスチックなど個体材料の熱的特性を精度よく測定する方法としてフラッシュ加熱法がある。このフラッシュ加熱法は、試料の表面にレーザ光を瞬間的(フラッシュ状)に照射して加熱し、一定距離離れた場所に伝わる熱を温度変化から測定するものである。例えば、直径10mm、厚さ1〜3mm程度の小円板状試料の片面をレーザ光で瞬時に加熱して反対側の温度挙動から熱測定を行う装置があり、熱的特性としては、熱拡散率、及び比熱容量を測定することができ、さらに密度が既知であれば、熱伝導率を算出することができる。   A flash heating method is a method for accurately measuring the thermal characteristics of solid materials such as metals, ceramics, glass, carbon, and plastics. In this flash heating method, the surface of a sample is irradiated with laser light instantaneously (flash) to heat, and the heat transmitted to a place away from a certain distance is measured from a temperature change. For example, there is a device that instantaneously heats one side of a small disk-shaped sample having a diameter of 10 mm and a thickness of 1 to 3 mm with a laser beam to measure heat from the temperature behavior on the opposite side. If the density is known, the thermal conductivity can be calculated.

一方、近年の新しい材料開発の動向の一つとして、複数の素材を組み合わせることにより、今までに無かった新しい機能を持たせた材料を開発することが行われており、その中でも特に高熱伝導性基板などが注目されている。しかし、この分野で必要とされる評価測定の部門で、出来上がった新機能材料の各々の層の熱物性を直接測定する方法はまだ確立されていない。   On the other hand, as a trend of new material development in recent years, materials with new functions that have never existed before have been developed by combining multiple materials, especially high thermal conductivity. Substrates are drawing attention. However, in the department of evaluation and measurement required in this field, a method for directly measuring the thermophysical properties of each layer of the completed new functional material has not yet been established.

このような多層試料の熱物性を測定する場合、従来、定常法での熱伝導率測定により、多層試料全体の熱伝導率を測定することが行われている。この測定法は試料板の片面を加熱、反対面を冷却し、試料板厚み方向に温度勾配をつけ、その温度差と試料厚み及び試料を貫通する熱流束から熱伝導率を算出する方法である。   In the case of measuring the thermophysical properties of such a multilayer sample, conventionally, the thermal conductivity of the entire multilayer sample is measured by measuring the thermal conductivity by a steady method. In this measurement method, one side of the sample plate is heated, the opposite side is cooled, a temperature gradient is provided in the thickness direction of the sample plate, and the thermal conductivity is calculated from the temperature difference, the sample thickness, and the heat flux penetrating the sample. .

また、各層の熱物性を測定する試みとして、上記のフラッシュ加熱法を使用することが提案されている。すなわち、未知の一層を含む多層材料の表面側からレーザフラッシュを照射して得られる裏面側の温度応答と、多層材料の熱物性による理論温度応答との2乗誤差を評価関数(ポテンシャル)とし、この評価関数が最小値になるパラメータを求めることにより高精度でかつ効率的に多層材料中の一層における未知の熱拡散率、比熱等の熱定数を決定するようにしている(例えば、特許文献1参照)。   As an attempt to measure the thermophysical properties of each layer, it has been proposed to use the above flash heating method. That is, the evaluation error (potential) is a square error between the temperature response on the back side obtained by irradiating the laser flash from the surface side of the multilayer material including the unknown layer and the theoretical temperature response due to the thermal properties of the multilayer material. By obtaining a parameter that minimizes the evaluation function, a thermal constant such as an unknown thermal diffusivity and specific heat in one layer of the multilayer material is determined with high accuracy and efficiency (for example, Patent Document 1). reference).

特開平8−261967号公報JP-A-8-261967

上記のように、熱拡散率及び比熱が未知の一層を含む多層材料の表面側からレーザフラッシュを照射して得られる裏面側の温度応答と、熱拡散率、比熱、及びビオー数を変数として含む理論温度応答とを比較することにより、多層積層材の熱物性を同定することが提案されているが、この方法では、多層材料の一層の熱拡散率及び比熱が未知の場合のみ、熱物性を同定できるだけであり、積層試料を構成する物質の全ての熱物性値が未知の場合には同定することは困難である。   As described above, the temperature response on the back side obtained by irradiating the laser flash from the front side of the multilayer material including one layer whose thermal diffusivity and specific heat are unknown, and the thermal diffusivity, specific heat, and biot number are included as variables. It has been proposed to identify the thermophysical properties of multilayer laminates by comparing the theoretical temperature response, but with this method, the thermophysical properties can only be determined when the thermal diffusivity and specific heat of the multilayer material are unknown. It can only be identified, and it is difficult to identify when all the thermophysical values of the substances constituting the laminated sample are unknown.

以下、2層積層試料を構成する各試料をそれぞれの形状(厚み)を既知として、未知の熱物性値の組み合わせについてフラッシュ加熱法を用いて最小2乗法で各パラメータ、すなわち熱物性値を決定できるかについて説明する。
未知パラメータを独立変数とした評価関数(ポテンシャル)を以下のJPで定義し、このポテンシャルが単一の極値を持つなら、滑降シンプレックス法で観測された昇温曲線に解析解曲線群をフィッティングさせることによりパラメータ、すなわち、熱物性値を決定することができる。
P1122)=∫{YP(t)-yP(t,λ1122)}2dt
ただし、YP(t)はフラッシュ加熱で得られた観測信号データ、yP(t,λ1122)はフィッティングさせる解析解を表す。
Hereinafter, it is possible to determine each parameter, that is, the thermophysical property value by the least square method using the flash heating method for each combination of unknown thermophysical property values, with the shape (thickness) of each sample constituting the two-layer laminated sample being known. Will be explained.
Define evaluation function as independent variables the unknown parameters (potential) in the following J P, if this potential has a single extreme, fitting an analytical solution curves to raise the temperature curve observed in the downhill simplex method By doing so, a parameter, that is, a thermophysical property value can be determined.
J P1 , α 1 , λ 2 , α 2 ) = ∫ {Y P (t) −y P (t, λ 1 , α 1 , λ 2 , α 2 )} 2 dt
However, Y P (t) represents observation signal data obtained by flash heating, and y P (t, λ 1 , α 1 , λ 2 , α 2 ) represents an analytical solution to be fitted.

上記の解析解yP (t,λ1122)は、以下の数式1のθr(t)で表わされる。なお、数式1において、λ、α、dをそれぞれ熱伝導率、熱拡散率、試料厚みとしたとき、bは熱浸透率でb=λ/√α、τは特性時間でτ=d2/αである。また、添え字1、2は1層目、2層目の物性値を表す。 The analytical solution y P (t, λ 1 , α 1 , λ 2 , α 2 ) is expressed by θ r (t) in the following Equation 1. In Equation 1, where λ, α, and d are the thermal conductivity, thermal diffusivity, and sample thickness, b is the thermal permeability, b = λ / √α, τ is the characteristic time, and τ = d 2 / α. Subscripts 1 and 2 represent physical property values of the first and second layers.

Figure 0005506624
Figure 0005506624

ただし、skはsを複素数として下記数式2のk番目の解である。 However, s k is the kth solution of Equation 2 below, where s is a complex number.

Figure 0005506624
Figure 0005506624

ここで、第1層目(試料1)を銅(λ=398W/mK、α=117mm2/s、厚み1mm)、第2層目(試料2)をアルミ(λ=237W/mK、α=96.8mm2/s、厚み1mm)とし、また、昇温波形の最大値は、試料からの熱放散がないと考え(すなわちビオー数をゼロとした)、観測データYP(t)から知ることができるとし、λ1=398mK、α1=117mm2/s、λ2=237W/mK、α2=96.8mm2/sのときの上記数式1で計算した解析解を観測データYP(t)として用い、試料1の熱伝導率λ1、試料2の熱伝導率λ2を未知パラメータとし、λ1を398±50W/mK、λ2を237±50W/mKの範囲で変化させた場合のポテンシャルJPは、図1に示すようになり、極値の識別は困難である。なお、数式1の解析解の級数和の個数は40とした。 Here, the first layer (sample 1) is copper (λ = 398 W / mK, α = 117 mm 2 / s, thickness 1 mm), and the second layer (sample 2) is aluminum (λ = 237 W / mK, α = 96.8 mm 2 / s, thickness 1 mm), and the maximum value of the temperature rise waveform is assumed that there is no heat dissipation from the sample (that is, the biot number is zero), and is known from the observation data Y P (t) The analytical solution calculated by the above equation 1 when λ 1 = 398 mK, α 1 = 117 mm 2 / s, λ 2 = 237 W / mK, α 2 = 96.8 mm 2 / s is observed data Y P (t), the thermal conductivity λ 1 of sample 1 and the thermal conductivity λ 2 of sample 2 are unknown parameters, and λ 1 is changed in the range of 398 ± 50 W / mK and λ 2 is changed in the range of 237 ± 50 W / mK. In this case, the potential JP is as shown in FIG. 1, and it is difficult to identify the extreme value. Note that the number of series sums of the analytical solution of Equation 1 is 40.

また、試料1の熱拡散率α1、試料2の熱拡散率α2を未知パラメータとし、α1を117±20mm2/s、α2を96.8±20mm2/sの範囲で変化させた場合のポテンシャルJPは、図2に示すようになり多峰性が見られる。なお解析解の級数和の個数は40とした。 The thermal diffusivity alpha 1 of the sample 1, the thermal diffusivity alpha 2 of the sample 2 as unknown parameters, alpha 1 and 117 ± 20 mm 2 / s, varied between alpha 2 to 96.8 ± 20 mm 2 / s In this case, the potential JP is as shown in FIG. The number of series sum of analytical solutions was 40.

このようにポテンシャルJPを評価関数とした場合、極小値が見られず解が不定になる場合が予想される。また、解析解の級数和の取り方で評価関数の景観が異なり、極小値に多峰性が見られ、熱物性の同定法に滑降シンプレックス法だけでは対応できなくなる、という問題が生じる。 In this way, when the potential JP is used as an evaluation function, it is expected that the minimum value is not seen and the solution becomes indefinite. In addition, the landscape of the evaluation function differs depending on how to take the series sum of the analytical solution, the multimodality is seen in the minimum value, and the problem that the thermal physical property identification method cannot be handled by the downhill simplex method alone arises.

本発明は、上記の課題を解決するために創案されたものであり、積層試料を構成する物質の全ての熱物性値が未知の場合にも、熱物性値を同定することができる非定常加熱による多層積層材の熱物性同定方法を提供することを目的とする。   The present invention was devised to solve the above-described problems, and unsteady heating capable of identifying thermophysical values even when all thermophysical values of substances constituting the laminated sample are unknown. An object of the present invention is to provide a thermophysical property identification method for a multilayer laminated material.

請求項1に係る発明の非定常加熱による多層積層材の熱物性同定方法は、フラッシュ加熱により得られる試料裏面の温度上昇信号と、試料の熱物性をパラメータとするフラッシュ加熱の解析解との偏差、及び、ステップ加熱により得られる試料裏面の温度上昇信号と、試料の熱物性をパラメータとするステップ加熱の解析解との偏差を評価関数とし、この評価関数が最小となるパラメータから多層積層材の各層の熱物性を決定することを特徴とする。   The method for identifying thermophysical properties of a multi-layer laminate by unsteady heating according to claim 1 is a deviation between a temperature rise signal on the back side of a sample obtained by flash heating and an analytical solution of flash heating using the thermophysical properties of the sample as a parameter. The deviation between the temperature rise signal on the back of the sample obtained by step heating and the analytical solution of step heating using the thermophysical properties of the sample as an evaluation function is used as an evaluation function. The thermophysical property of each layer is determined.

また、請求項2に係る発明の非定常加熱による多層積層材の熱物性同定方法は、請求項1に係る発明の非定常加熱による多層積層材の熱物性同定方法において、評価関数の極値探索アルゴリズムに滑降シンプレックス法を用い、評価関数の極値が多峰性を有することに対応する為、各層の熱物性の解候補である複数の粒子を含んだ粒子分布を生成する粒子フィルタを用いたことを特徴とする。なお、粒子フィルタは、予測モデルを複数用意し、観測データと尤度を比較し、適切な予測モデルを選択することで精度の高い状態を同定するものである。   In addition, the method for identifying thermophysical properties of a multilayer laminate material by non-stationary heating according to the invention of claim 2 is the method for identifying the thermophysical properties of a multilayer laminate material by non-stationary heating of the invention according to claim 1, The downhill simplex method is used for the algorithm, and a particle filter that generates a particle distribution that includes multiple particles that are candidates for the thermophysical properties of each layer was used to support the extreme value of the evaluation function having multimodality. It is characterized by that. The particle filter prepares a plurality of prediction models, compares observation data with likelihood, and selects an appropriate prediction model to identify a highly accurate state.

本発明は、フラッシュ加熱の情報だけでは解が不定となることから、付帯条件としてさらにステップ加熱の情報を加えたものである。すなわち、4つの熱物性値をパラメータとした評価関数(ポテンシャル)が単一の極小値をもつなら滑降シンプレックス法で、多峰性の極値を持つなら確率要素を加味し、例えば、粒子フィルタなどの手法を取り入れ、観測された昇温曲線に解析解曲線群を評価関数が最小になるようにフィッティングさせることにより、パラメータすなわち熱物性値を決定することができる。   In the present invention, since the solution becomes indefinite only by the flash heating information, step heating information is further added as an incidental condition. That is, if the evaluation function (potential) with four thermophysical values as parameters has a single minimum value, it is a downhill simplex method, and if it has a multi-peak extreme value, a random element is added, for example, a particle filter, etc. The parameter, that is, the thermophysical property value can be determined by fitting the analytical solution curve group to the observed temperature rise curve so that the evaluation function is minimized.

未知パラメータとして試料1の熱伝導率λ、試料2の熱伝導率λを選んだ場合のポテンシャルJを示すグラフである。Thermal conductivity lambda 1 of the sample 1 as the unknown parameter is a graph showing the potential J P when you choose a thermal conductivity lambda 2 of the sample 2. 未知パラメータとして試料1の熱拡散率α、試料2の熱拡散率αを選んだ場合のポテンシャルJを示すグラフである。Thermal diffusivity alpha 1 of the sample 1 as the unknown parameter is a graph showing the potential J P when selected thermal diffusivity alpha 2 of the sample 2. 本発明の非定常加熱による多層積層材の熱物性同定方法を実施する装置の構成を示す図である。It is a figure which shows the structure of the apparatus which implements the thermophysical property identification method of the multilayer laminated material by unsteady heating of this invention. フラッシュ加熱を行った場合の試料裏面の温度上昇を測定した観測信号データ及び解析解の一例を示す図である。It is a figure which shows an example of the observation signal data and analytical solution which measured the temperature rise of the sample back surface at the time of performing flash heating. ステップ加熱を行った場合の試料裏面の温度上昇を測定した観測信号データ及び解析解の一例を示す図である。It is a figure which shows an example of the observation signal data which measured the temperature rise of the sample back surface at the time of performing step heating, and an analytical solution. 未知パラメータとして試料1の熱伝導率λ、試料2の熱伝導率λを選んだ場合のポテンシャルJを示すグラフである。Thermal conductivity lambda 1 of the sample 1 as the unknown parameter is a graph showing the potential J when you choose a thermal conductivity lambda 2 of the sample 2. 未知パラメータとして試料1の熱拡散率α、試料2の熱拡散率αを選んだ場合のポテンシャルJを示すグラフである。It is a graph which shows the potential J at the time of selecting the thermal diffusivity (alpha) 1 of the sample 1 and the thermal diffusivity (alpha) 2 of the sample 2 as an unknown parameter. 本発明の多層積層材の熱物性同定方法を実施するアルゴリズムを示すフローチャートである。It is a flowchart which shows the algorithm which implements the thermophysical property identification method of the multilayer laminated material of this invention.

図3は本発明の非定常加熱による多層積層材の熱物性同定方法を実施する装置の構成を示す図であり、フラッシュ加熱またはステップ加熱される被測定試料10と、試料10裏面の温度を測定する放射温度計20により構成されている。図4に示すYP(t)は、レーザパルス発生装置(図示せず)からパルス幅0.5ms程度のレーザ光で照射・加熱し、試料裏面の温度上昇を測定した場合の昇温曲線の一例であり、また、図5に示すYS(t)は、試料10をステップ加熱し、試料裏面の温度上昇を測定した場合の昇温曲線の一例である。 FIG. 3 is a diagram showing a configuration of an apparatus for carrying out the thermal property identification method for a multilayer laminate material by unsteady heating according to the present invention, and measures the temperature of the sample 10 to be measured which is flash-heated or step-heated and the back surface of the sample 10. The radiation thermometer 20 is configured. Y P (t) shown in FIG. 4 is a temperature rise curve when a laser pulse generator (not shown) is irradiated and heated with a laser beam having a pulse width of about 0.5 ms and the temperature rise on the back surface of the sample is measured. Further, Y S (t) shown in FIG. 5 is an example of a temperature rise curve when the sample 10 is step-heated and the temperature rise on the back surface of the sample is measured.

以下、2層積層材試料の熱物性同定を例に、フラッシュ加熱法及びステップ加熱法により得られる試料裏面の昇温信号の情報により、試料の熱伝導率、熱拡散率などの熱物性値を同定する場合について説明する。
2層積層材のフラッシュ加熱時の試料裏面温度上昇信号の解析解は、上記のように数式1で表わされるが、2層積層材のステップ加熱による裏面温度上昇信号の解析解は、下記数式3で表わされる。ただし、Qはステップ加熱の大きさであり、xkは下記数式4のk番目の解である。
Hereinafter, taking thermal property identification of a two-layer laminated material sample as an example, the thermal property values such as the thermal conductivity and thermal diffusivity of the sample are obtained from the information on the temperature rise signal on the back of the sample obtained by the flash heating method and the step heating method A case of identification will be described.
The analytical solution of the sample back surface temperature rise signal at the time of flash heating of the two-layer laminate is expressed by Equation 1 as described above, but the analytical solution of the back surface temperature rise signal due to step heating of the two-layer laminate is represented by Equation 3 below. It is represented by However, Q is the magnitude of step heating, and x k is the kth solution of Equation 4 below.

Figure 0005506624
Figure 0005506624

Figure 0005506624
Figure 0005506624

次に、2層積層材試料を構成する各試料のそれぞれの形状(厚み)を既知として、未知の熱物性値の組み合わせについて最小2乗法で熱物性値(パラメータ)を決定する方法について説明する。
すなわち、4つの熱物性値をパラメータとした評価関数(ポテンシャル)Jを以下の通り定義し、このポテンシャルJが単一の極小値を持つなら、滑降シンプレックス法で、多峰性の極値をもつなら、確率要素を加味し、例えば、粒子フィルタなどの手法を取り入れ、観測された昇温曲線に解析解曲線を評価関数が最小になるようにフィッティングさせることにより、パラメータ、すなわち、熱物性値を決定することができる。
J=WSS+WPP
なお、WS、WPは重み係数である。
Next, a method for determining the thermophysical property values (parameters) by the least square method for a combination of unknown thermophysical property values, assuming that the shape (thickness) of each sample constituting the two-layer laminated material sample is known, will be described.
That is, an evaluation function (potential) J with four thermophysical values as parameters is defined as follows. If this potential J has a single minimum value, it has a multimodal extreme value by the downhill simplex method. Then, taking the probability factor into account, for example, adopting a method such as a particle filter, and fitting the analytical solution curve to the observed temperature rise curve so that the evaluation function is minimized, the parameter, that is, the thermophysical property value Can be determined.
J = W S J S + W P J P
W S and W P are weighting factors.

上記JSは下記の式で表わされる。
S1122)=∫{YS(t)−yS(t, λ1122)}dt
なお、YS(t)はステップ加熱した試料裏面の昇温曲線観測データ、yS(t, λ1122)は上記数式3で表わしたステップ加熱の場合の解析解で、図5のyS(t)で示すものであり、JSはこの昇温曲線観測データYS(t)と解析解yS(t)との2乗誤差の積分値である。
また、Jは下記の式で表わされる。
P1122)=∫{YP(t) −yP (t, λ1122)}dt
なお、上記で説明したように、YP(t)はフラッシュ加熱した試料裏面の昇温曲線観測データ、yP(t, λ1122)は上記数式1で表わされるフラッシュ加熱の場合の解析解で、図4のyP(t)で示されるものであり、JPはこの昇温曲線観測データYP(t)と解析解yP(t)との2乗誤差の積分値である。
The above J S is represented by the following formula.
J S1 , α 1 , λ 2 , α 2 ) = ∫ {Y S (t) −y S (t, λ 1 , α 1 , λ 2 , α 2 )} 2 dt
Y S (t) is the temperature rise curve observation data on the back surface of the step-heated sample, and y S (t, λ 1 , α 1 , λ 2 , α 2 ) is the analysis in the case of step heating expressed by the above equation 3. The solution is indicated by y S (t) in FIG. 5, and J S is the integral value of the square error between the temperature rise curve observation data Y S (t) and the analytical solution y S (t).
Further, J P is expressed by the following equation.
J P1 , α 1 , λ 2 , α 2 ) = ∫ {Y P (t) −y P (t, λ 1 , α 1 , λ 2 , α 2 )} 2 dt
As described above, Y P (t) is the temperature rise curve observation data on the back surface of the sample heated by flash heating, and y P (t, λ 1 , α 1 , λ 2 , α 2 ) is expressed by Equation 1 above. 4, which is indicated by y P (t) in FIG. 4, and J P is 2 between the temperature rise curve observation data Y P (t) and the analytical solution y P (t). This is the integral value of the power error.

ここで、第1層目を銅(λ=398W/mK、α=117mm2/s、厚み1mm)、第2層目をアルミ(λ=237W/mK、α=96.8mm2/s、厚み1mm)とし、銅、アルミの真値を用いて上記数式3、数式1で計算した解析解を観測データYS (t)、YP(t)として用い、λ1を398±50W/mK、λ2を237±50W/mKの範囲で変化させた場合、評価関数Jは、図6に示すようになり、多峰性が認められるが、極値が表れている。 Here, the first layer is copper (λ = 398 W / mK, α = 117 mm2 / s, thickness 1 mm), and the second layer is aluminum (λ = 237 W / mK, α = 96.8 mm2 / s, thickness 1 mm). And using the analytical solutions calculated by Equation 3 and Equation 1 using the true values of copper and aluminum as observation data Y S (t) and Y P (t), λ 1 is 398 ± 50 W / mK, λ 2 Is changed in a range of 237 ± 50 W / mK, the evaluation function J is as shown in FIG. 6 and multimodality is recognized, but an extreme value appears.

また、試料1の熱拡散率α1と試料2の熱拡散率α2をパラメータとした評価関数Jは、α1を117±20mm2/s、α2を96.8±20mm2/sの範囲で変化させた場合、図7に示すようになり、ポテンシャルの多峰性は消えていくようである。 The evaluation function J using the thermal diffusivity α 1 of the sample 1 and the thermal diffusivity α 2 of the sample 2 as parameters is as follows: α 1 is 117 ± 20 mm 2 / s, and α 2 is 96.8 ± 20 mm 2 / s. When changed in the range, it becomes as shown in FIG. 7, and the multimodality of potential seems to disappear.

上記のように、フラッシュ加熱だけではなく、さらにステップ加熱の信号も含めると、熱伝導率の不定さが解消されることが分かり、また、極値の多峰性は探索アルゴリズムに確率的要素を持ち込めば解消できると考えられ、以下、実際の測定で熱物性を同定する場合のアルゴリズムについて、探索アルゴリズムとして滑降シンプレックス法に粒子フィルタの手法をプラスしたアルゴリズムを用いた例について、図8のフローチャートにより説明する。   As shown above, including not only flash heating, but also step heating signals, it can be seen that the instability of thermal conductivity is eliminated, and the multimodality of extreme values adds a probabilistic element to the search algorithm. It is thought that the problem can be solved by bringing it in. The following is an example of using an algorithm in which a particle filter technique is added to the downhill simplex method as an algorithm for identifying thermophysical properties by actual measurement. explain.

図3の装置で、レーザパルス発生装置からパルス幅0.5ms程度のレーザ光で試料10を照射・加熱し、放射温度計20により試料裏面の温度上昇を測定した昇温曲線観測データYP(t)を得、次に、試料10をステップ加熱し、試料裏面の温度上昇を測定した昇温曲線観測データYS (t)を得た後、図8のフローチャートのプログラムを実行する。 In the apparatus shown in FIG. 3, the temperature rise curve observation data YP (Y P ( Next, after the sample 10 is step-heated to obtain the temperature rise curve observation data Y S (t) obtained by measuring the temperature rise on the back side of the sample, the program of the flowchart of FIG. 8 is executed.

図8のフローチャートのプログラムを開始すると、まず、2層積層材の熱物性の初期値として適当な状態ベクトルx0を設定する(ステップ101)。なお、ここで言う状態ベクトルとはλ1、α1、λ2、α2を表す4元ベクトルである。
この後、昇温曲線観測データと解析解より状態ベクトルx0での評価関数(ポテンシャル)Jを計算し、J0として記憶する(ステップ102)。
When the program of the flowchart of FIG. 8 is started, first, an appropriate state vector x 0 is set as an initial value of the thermophysical properties of the two-layer laminated material (step 101). The state vector referred to here is a quaternary vector representing λ 1 , α 1 , λ 2 , α 2 .
Thereafter, an evaluation function (potential) J at the state vector x 0 is calculated from the temperature rise curve observation data and the analytical solution, and stored as J 0 (step 102).

次に、状態ベクトルx0を中心にある分散を持ったm個の粒子を一様に撒く(ステップ103)。この各粒子は色々な状態ベクトルを表している。
この後、夫々の粒子の状態ベクトル及び観測データを用いて評価関数Jを計算し、夫々の粒子の評価関数の極値を滑降シンプレックス法により追跡する(ステップ104)。なお、滑降シンプレックス法は、多次元関数の局所的な最小値を求める手法として広く用いられている方法であり、シンプレックス(N次元で説明するならば、N+1個の頂点とそれらを結ぶ辺、面からなる多面体)を順次更新していくことで、多次元関数の局所的な最小値を求めることができる。
Next, m particles having a dispersion centered on the state vector x 0 are uniformly scattered (step 103). Each particle represents various state vectors.
Thereafter, the evaluation function J is calculated using the state vector and the observation data of each particle, and the extreme value of the evaluation function of each particle is traced by the downhill simplex method (step 104). The downhill simplex method is a method widely used as a method for obtaining a local minimum value of a multidimensional function. Simplex (if described in N dimensions, N + 1 vertices and sides, surfaces connecting them) The local minimum value of the multidimensional function can be obtained by sequentially updating the polyhedron formed from

夫々の粒子が評価関数の極値に到達した後、それぞれの粒子に極値(ポテンシャル)の逆数により重み付けを行った(ステップ105)後、重み付けしたすべての粒子の重心を求め、新たな状態ベクトルxとする(ステップ106)。
次に、新たな状態ベクトルxでの評価関数J1を計算した(ステップ107)後、J0とJ1の差が十分小さいか否かを判定し(ステップ108)、J0とJ1の差が大きい場合には、J1をJ0に置き換えた(ステップ109)後、ステップ103に戻って再び、状態ベクトルxを中心にある分散を持ったm個の粒子を一様に撒く。
一方、ステップ108でJ0とJ1の差が十分小さいと判定した場合には、状態ベクトルが収束したと判断し、現在の状態ベクトルxを解とし(ステップ110)、プログラムを終了する。
After each particle reaches the extreme value of the evaluation function, each particle is weighted by the reciprocal of the extreme value (potential) (step 105), and then the center of gravity of all the weighted particles is obtained, and a new state vector is obtained. x is set (step 106).
Was then calculated evaluation function J 1 in the new state vector x (Step 107) after determining whether the difference between the J 0 and J 1 is sufficiently small (step 108), the J 0 and J 1 If the difference is large, J 1 is replaced with J 0 (step 109), and then the process returns to step 103 and m particles having dispersion centered on the state vector x are uniformly scattered.
On the other hand, if it is determined in step 108 that the difference between J 0 and J 1 is sufficiently small, it is determined that the state vector has converged, the current state vector x is taken as a solution (step 110), and the program is terminated.

次に、試料1、2の厚みd1、d2が既知で、λ1、α1、λ2、α2が未知であり、目標値で演算した解析解を昇温曲線観測データとして用い、各パラメータによる解析解から評価関数を計算して上記探索アルゴリズムにより最適解を探索した結果について説明する。
下記表1の条件で以下のソフトアルゴリズムを実行した。
1.状態ベクトルxの初期値を与える。
2.分散SigmaWにより状態ベクトルxを中心に分布する粒子100個を撒く。
3.それぞれの粒子の評価関数を計算し、滑降シンプレックス法により評価関数の極値を追跡する。
4.それぞれの粒子に到達極値の逆数により重み付けを行う。
5.全ての粒子の重心を求め、新たな状態ベクトルxとする。
6.以下収束するまで2〜5を繰り返す。
7.収束判定後、最小値を与える状態ベクトルを解とする。
Next, the thicknesses d 1 and d 2 of the samples 1 and 2 are known, λ 1 , α 1 , λ 2 , and α 2 are unknown, and the analytical solution calculated with the target value is used as the temperature rise curve observation data. The result of calculating the evaluation function from the analytical solution based on each parameter and searching for the optimal solution using the search algorithm will be described.
The following soft algorithm was executed under the conditions shown in Table 1 below.
1. Gives the initial value of the state vector x.
2. 100 particles distributed around the state vector x are dispersed by the dispersion SigmaW.
3. The evaluation function of each particle is calculated, and the extreme value of the evaluation function is tracked by the downhill simplex method.
4). Each particle is weighted by the inverse of the ultimate value.
5. The center of gravity of all particles is obtained and set as a new state vector x.
6). Repeat steps 2-5 until convergence.
7). After convergence determination, the state vector that gives the minimum value is taken as the solution.

Figure 0005506624
Figure 0005506624

上記探索アルゴリズムによる最適解の探索結果は下記表2に示す通りであり、初期値にもよると思われるが、3回の試行で正解にたどり着いている。なお、表2中の最小値Xは、計算実行中に現れた極値の最小値を示した状態ベクトルの解であり、このように最小値を示した状態ベクトルを求めておくことにより、初期設定の状態ベクトルから離れた位置に解がある場合にも対応することができる。   The search result of the optimum solution by the above search algorithm is as shown in Table 2 below, and although it depends on the initial value, it has reached the correct solution in three trials. Note that the minimum value X in Table 2 is a solution of the state vector indicating the minimum value of the extreme value that appears during the execution of the calculation. Thus, by obtaining the state vector indicating the minimum value, It is also possible to deal with a case where there is a solution at a position away from the set state vector.

Figure 0005506624
Figure 0005506624

また、実際によくある例として、試料1の熱物性値及び試料全体の厚みを既知として、試料2の厚みd2、熱伝導率λ2、熱拡散率α2が未知の場合に、下記表3の条件で以下のソフトアルゴリズムを実行した。
1.状態ベクトルxの初期値を与える。
2.分散SigmaWにより状態ベクトルxを中心に分布する粒子10個を撒く。
3.それぞれの粒子の評価関数を計算し、滑降シンプレックス法により評価関数の極値を追跡する。
4.それぞれの粒子に到達極値の逆数により重み付けを行う。
5.全ての粒子の重心を求め、新たな状態ベクトルxとする。
6.以下収束するまで2〜5を繰り返す。
7.収束判定後、最小値を与える状態ベクトルを解とする。
Further, as a common example, when the thermophysical value of sample 1 and the thickness of the entire sample are known, and the thickness d 2 , thermal conductivity λ 2 , and thermal diffusivity α 2 of sample 2 are unknown, the following table The following soft algorithm was executed under the condition of 3.
1. Gives the initial value of the state vector x.
2. Ten particles distributed around the state vector x are scattered by the dispersion SigmaW.
3. The evaluation function of each particle is calculated, and the extreme value of the evaluation function is tracked by the downhill simplex method.
4). Each particle is weighted by the inverse of the ultimate value.
5. The center of gravity of all particles is obtained and set as a new state vector x.
6). Repeat steps 2-5 until convergence.
7). After convergence determination, the state vector that gives the minimum value is taken as the solution.

Figure 0005506624
Figure 0005506624

上記探索アルゴリズムによる最適解の探索結果は下記表4に示す通りであり、非常に収束性がよく停留点がなく、粒子数10個程度で十分正解にたどり着くことができる。なお、上記と同様に、表4中の最小値Xは、計算実行中に現れた極値の最小値を示した状態ベクトルの解である。   The search result of the optimum solution by the above search algorithm is as shown in Table 4 below, and it is very convergent and has no stopping point, and can reach a sufficiently correct solution with about 10 particles. As described above, the minimum value X in Table 4 is a solution of a state vector indicating the minimum value of the extreme value that appears during the execution of the calculation.

Figure 0005506624
Figure 0005506624

さらに、2つの試料の4つの熱物性値が不明で、試料形状は全体の厚さLしかわからない場合を例として、下記表5の条件で以下のソフトアルゴリズムを実行した。
1.状態ベクトルxの初期値を与える。
2.分散SigmaWにより状態ベクトルxを中心に分布する粒子100個を撒く。
3.それぞれの粒子の評価関数を計算し、滑降シンプレックス法により評価関数の極値を追跡する。
4.それぞれの粒子に到達極値の逆数により重み付けを行う。
5.全ての粒子の重心を求め、新たな状態ベクトルxとする。
6.以下収束するまで2〜5を繰り返す。
7.収束判定後、最小値を与える状態ベクトルを解とする。
Further, the following soft algorithm was executed under the conditions of Table 5 below, taking as an example the case where the four thermophysical values of the two samples are unknown and the sample shape is only known as the total thickness L.
1. Gives the initial value of the state vector x.
2. 100 particles distributed around the state vector x are dispersed by the dispersion SigmaW.
3. The evaluation function of each particle is calculated, and the extreme value of the evaluation function is tracked by the downhill simplex method.
4). Each particle is weighted by the inverse of the ultimate value.
5. The center of gravity of all particles is obtained and set as a new state vector x.
6). Repeat steps 2-5 until convergence.
7). After convergence determination, the state vector that gives the minimum value is taken as the solution.

Figure 0005506624
Figure 0005506624

上記探索アルゴリズムによる最適解の探索結果は下記表6に示す通りであり、精度は落ちるが同定できることが分かる。なお、上記と同様に、表6中の最小値Xは、計算実行中に現れた極値の最小値を示した状態ベクトルの解である。   The search result of the optimum solution by the search algorithm is as shown in Table 6 below, and it can be seen that the accuracy can be identified although the accuracy is lowered. Similarly to the above, the minimum value X in Table 6 is a solution of the state vector indicating the minimum value of the extreme value that appeared during the execution of the calculation.

Figure 0005506624
Figure 0005506624

積層材の熱物性の同定が困難であった理由の一つはポテンシャルが極値を持たないため不定になる可能性があること、もう一つは極値が単峰性でなく多峰性となることと思われるが、本発明による非定常加熱による多層積層材の熱物性同定方法によれば、不定になることについては目的関数に付加条件としてステップ加熱情報を追加することで、多峰性については最小値探索アルゴリズムに確率性を持ち込むことで解決することができた。   One of the reasons why it was difficult to identify the thermophysical properties of laminated materials is that the potential does not have an extreme value and may become indeterminate, and the other is that the extreme value is not unimodal but multimodal. However, according to the thermal property identification method for multilayer laminates by non-stationary heating according to the present invention, multi-modality can be obtained by adding step heating information as an additional condition to the objective function for indefiniteness. Can be solved by bringing probability into the minimum search algorithm.

なお、上記の実施例のアルゴリズムでは、重み付けした粒子群の重心を求め、これを新たな状態ベクトルとしたが、評価関数の最小値を与える状態ベクトルを新たな状態ベクトルとすることもできる。
また、上記の実施例では、極値を探索するのに滑降シンプレックス法を採用したが、山登り法等を使用することも可能である。また、確率的要素として粒子フィルタのアルゴリズムを用いたが、これを遺伝的アルゴリズムに置き換えることも可能である。
さらに、上記の実施例では、観測データと解析解の偏差を求めるのに、2乗誤差を使用したが、偏差として誤差の絶対値の和等を使用することも可能である。
In the algorithm of the above embodiment, the center of gravity of the weighted particle group is obtained and used as a new state vector. However, a state vector that gives the minimum value of the evaluation function can be used as a new state vector.
In the above embodiment, the downhill simplex method is used to search for extreme values, but a hill-climbing method or the like can also be used. Further, although the particle filter algorithm is used as the stochastic element, it can be replaced with a genetic algorithm.
Furthermore, in the above embodiment, the square error is used to obtain the deviation between the observation data and the analytical solution. However, the sum of the absolute values of the errors can also be used as the deviation.

また、上記の実施例では、観測データとの比較に解析解を用いたが、解析解が得られていない場合は、この種の問題の解法の多くがラプラス変換をして問題を解いており、数値解析によるラプラス逆変換より得た解を利用することも可能である。   In the above example, an analytical solution was used for comparison with the observation data. However, when an analytical solution is not obtained, many of these types of problem solving methods use Laplace transform to solve the problem. It is also possible to use a solution obtained from Laplace inversion by numerical analysis.

さらに、上記実施例では、付加条件としてステップ加熱信号を使用したが、図5に示すグラフの直線の傾きの逆数が試料の全熱容量を示すから、ステップ加熱信号を別途測定した試料の全熱容量と置き換えてもよい。但しこのときは、付加条件の情報量が少なくなるから、例えば表3、表4に示す例の様に、当然決定できる未知変数も少なくなる。   Further, in the above embodiment, the step heating signal is used as an additional condition. However, since the reciprocal of the slope of the straight line in the graph shown in FIG. 5 indicates the total heat capacity of the sample, the step heating signal is measured separately from the total heat capacity of the sample. It may be replaced. However, in this case, since the information amount of the additional condition is reduced, the number of unknown variables that can be naturally determined is reduced as in the examples shown in Tables 3 and 4, for example.

10 試料
20 放射温度計
10 samples 20 radiation thermometer

Claims (2)

フラッシュ加熱により得られる試料裏面の温度上昇信号と、試料の熱物性をパラメータとするフラッシュ加熱の解析解との偏差、及び、ステップ加熱により得られる試料裏面の温度上昇信号と、試料の熱物性をパラメータとするステップ加熱の解析解との偏差を評価関数とし、この評価関数が最小となるパラメータから多層積層材の各層の熱物性を決定することを特徴とする、非定常加熱による多層積層材の熱物性同定方法。   Deviation between the temperature rise signal on the back side of the sample obtained by flash heating and the analytical solution of flash heating using the thermal properties of the sample as a parameter, and the temperature rise signal on the back side of the sample obtained by step heating and the thermal properties of the sample The deviation from the analytical solution of step heating as a parameter is used as an evaluation function, and the thermal properties of each layer of the multilayer laminate are determined from the parameter that minimizes this evaluation function. Thermophysical property identification method. 請求項1に係る発明の非定常加熱による多層積層材の熱物性同定方法において、評価関数の極値探索アルゴリズムに滑降シンプレックス法を用い、評価関数の極値が多峰性を有することに対応する為、各層の熱物性の解候補である複数の粒子を含んだ粒子分布を生成する粒子フィルタを用いたことを特徴とする、非定常加熱による多層積層材の熱物性同定方法。   In the thermophysical property identification method for multi-layer laminates by unsteady heating according to claim 1, the downhill simplex method is used for the extremum search algorithm of the evaluation function, and the extremum of the evaluation function has multimodality. Therefore, a thermophysical property identification method for a multilayer laminated material by unsteady heating, which uses a particle filter that generates a particle distribution including a plurality of particles that are candidates for thermophysical properties of each layer.
JP2010215015A 2010-09-27 2010-09-27 Thermal property identification method of multilayer laminates by unsteady heating Active JP5506624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010215015A JP5506624B2 (en) 2010-09-27 2010-09-27 Thermal property identification method of multilayer laminates by unsteady heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010215015A JP5506624B2 (en) 2010-09-27 2010-09-27 Thermal property identification method of multilayer laminates by unsteady heating

Publications (2)

Publication Number Publication Date
JP2012068193A JP2012068193A (en) 2012-04-05
JP5506624B2 true JP5506624B2 (en) 2014-05-28

Family

ID=46165633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010215015A Active JP5506624B2 (en) 2010-09-27 2010-09-27 Thermal property identification method of multilayer laminates by unsteady heating

Country Status (1)

Country Link
JP (1) JP5506624B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078903A (en) * 2013-10-17 2015-04-23 株式会社デンソー Parameter setting method and simulation device

Also Published As

Publication number Publication date
JP2012068193A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
Kashfuddoja et al. Study on experimental characterization of carbon fiber reinforced polymer panel using digital image correlation: A sensitivity analysis
Yong et al. Quantitative evaluation of thermal barrier coating based on eddy current technique
Balageas Defense and illustration of time-resolved pulsed thermography for NDE
Holland et al. Material evaluation by infrared thermography
Manuel Luna et al. Procedure to estimate thermophysical and geometrical parameters of embedded cancerous lesions using thermography
Chen et al. An inverse problem in estimating the space-dependent thermal conductivity of a functionally graded hollow cylinder
Iliopoulos et al. Direct strain tensor approximation for full‐field strain measurement methods
D’Alessandro et al. Modeling and measuring thermodynamic and transport thermophysical properties: A review
JP5506624B2 (en) Thermal property identification method of multilayer laminates by unsteady heating
JP6127019B2 (en) Method for measuring thermal diffusivity of translucent materials
Golbahar Haghighi et al. Inverse transient heat conduction problems of a multilayered functionally graded cylinder
Mishra et al. Use of scaled sensitivity coefficient relations for intrinsic verification of numerical codes and parameter estimation for heat conduction
Burkhardt Determination of the conductivity and thickness of conductive layers on conductive base materials
Pawlak et al. Measurement of the anisotropic thermal conductivity of carbon-fiber/epoxy composites based on laser-induced temperature field: Experimental investigation and numerical analysis
Winfree et al. Simulation of thermographic responses of delaminations in composites with quadrupole method
Rahideh et al. Two-dimensional inverse transient heat conduction analysis of laminated functionally graded circular plates
McMasters et al. Estimating two heat-conduction parameters from two complementary transient experiments
Peruchi Pacheco da Silva et al. Band Heater Heat Flux Characterization Using Inverse Heat Conduction Problem Models
Popow et al. Possibilities and limitations of passive and active thermography methods for investigation of composite materials using NDT simulations
Mayr et al. Non-destructive testing procedure for porosity determination in carbon fibre reinforced plastics using pulsed thermography
JP2005140693A (en) Method and apparatus for identifying thermophysical property values
Du et al. A thermal load identification method based on physics-guided neural network for honeycomb sandwich structures
Chen et al. Very fast numerical analysis of benchmark models of eddy-current testing for steam generator tube
Winfree et al. Improved sizing of impact damage in composites based on thermographic response
JP2008096250A (en) Temperature response calculating method of multilayered material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140318

R150 Certificate of patent or registration of utility model

Ref document number: 5506624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250