JP5505959B2 - A slanted group pile method using a large-diameter core with a bearing plate structure at the head to allow pile deformation - Google Patents

A slanted group pile method using a large-diameter core with a bearing plate structure at the head to allow pile deformation Download PDF

Info

Publication number
JP5505959B2
JP5505959B2 JP2009231657A JP2009231657A JP5505959B2 JP 5505959 B2 JP5505959 B2 JP 5505959B2 JP 2009231657 A JP2009231657 A JP 2009231657A JP 2009231657 A JP2009231657 A JP 2009231657A JP 5505959 B2 JP5505959 B2 JP 5505959B2
Authority
JP
Japan
Prior art keywords
core material
deformation
head
pile
reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009231657A
Other languages
Japanese (ja)
Other versions
JP2011080210A (en
Inventor
芳則 新見
祐司 神宮
利一 渡邉
国博 中尾
充哉 榎田
亮一 大野
孝之 眞弓
正彦 市村
直人 岩佐
ミン クァン ゲン
隆信 津田
徳嘉 江頭
秀雄 山下
行男 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Metal Products Co Ltd
Japan Conservation Engineers Co Ltd
Original Assignee
Nippon Steel Metal Products Co Ltd
Japan Conservation Engineers Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Metal Products Co Ltd, Japan Conservation Engineers Co Ltd filed Critical Nippon Steel Metal Products Co Ltd
Priority to JP2009231657A priority Critical patent/JP5505959B2/en
Publication of JP2011080210A publication Critical patent/JP2011080210A/en
Application granted granted Critical
Publication of JP5505959B2 publication Critical patent/JP5505959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は,太径芯材を利用することによるたわみ補強の効果,頭部支圧版構造を有することによる引張り補強の効果,さらにプレストレスを載荷しないことですべり面変位を移動層内の変形挙動に転換し,地盤と芯材の一体化効果を発現して緩みを生じた斜面全体の安定性向上を図る斜群杭工法に関するものである。   The present invention has the effect of deflection reinforcement by using a large-diameter core material, the effect of tension reinforcement by having a head-supported plate structure, and the deformation of the sliding surface within the moving layer by not loading prestress. It is related to the oblique group pile construction method that improves the stability of the entire slope that has been loosened due to the integration effect of the ground and core material.

地すべりを生じた斜面の末端部は,一般に本体の地すべり対策工事が完了した後も不安定な斜面状態を呈することが多い。不安定化した斜面は,背後からの土圧や地すべり推力を受け,受動破壊によるせん断帯が重層構造を形成するもの,本体地すべりの移動土塊がトップリングをともなう緩んだ岩盤露頭の急崖を成すもの,急傾斜部から供給された土砂が崖面脚部に被りの厚い崖錐斜面を形成するもの等,多種多様である。   In general, the end of the slope where the landslide has occurred often exhibits an unstable slope after completion of the landslide countermeasure work on the main body. The destabilized slope is subjected to earth pressure and landslide thrust from the back, and the shear zone due to passive fracture forms a multi-layer structure, and the moving landslide of the main landslide forms a steep cliff with a rocky outcrop with a top ring There are a wide variety of things, such as those where the earth and sand supplied from the steep slope part forms a thick cliff with a cliff face.

また,降雨パターンが変化し,豪雨災害のリスクが増している近年,地すべり末端部におけるこうした不安定要素を残した斜面が,将来,崩壊または浸食されることで,概成したはずの地すべり本体が再び不安定化するリスクが高まっている。   Also, in recent years when the rainfall pattern has changed and the risk of heavy rain disasters has increased, the slopes that have left such unstable elements at the end of the landslide will be collapsed or eroded in the future. The risk of destabilization is increasing.

しかしながら,こうした地すべり末端部の挙動に対して,将来起こり得る不安定化要素の排除を目的とした対策を計画することは,本体工事費に匹敵する事業量となる場合もあり,重要な保全対象が背後に控える場合を除き,特別に対策工が導入されることは少ない。   However, planning the countermeasures for the purpose of eliminating destabilizing elements that may occur in the future against the behavior of the landslide end may result in a business volume that is comparable to the construction cost of the main unit. There are few cases where special countermeasures are introduced, except when refraining from behind.

従来工法をこうした用途に適用する場合,幾つかの課題に直面する。まず,「杭工法」や「アンカー工法」は,大きな抑止力を列状に配置することで一体化した滑動体を停止に導くよう設計されており,安定化の対象が斜面全体に拡散する場合は適用が困難である。また,不安定化を生じる土層は基岩面に達して深く,移動層厚が最大3mを対象とする既存の「補強土工法」は,適用外となる。
「新版 地すべり鋼管杭設計要領」,社団法人日本地すべり学会監修、社団法人地すべり対策技術協会発行,2003年6月30日改訂新版第1刷) 「地盤工学会基準 グラウンドアンカー設計・施工基準,同解説JGS4101・2000)」,(地盤工学会編集、社団法人地盤工学会発行,平成12年3月30日) 「切土補強土工法設計・施工指針」,(日本道路公団監修、財団法人道路厚生会発行,平成16年6月 第5刷)
When applying the conventional method to such applications, we face several problems. First, the “pile method” and “anchor method” are designed to guide the integrated sliding body to stop by arranging a large deterrent force in a row, and the stabilization target spreads over the entire slope. Is difficult to apply. In addition, the soil layer that causes destabilization reaches the base rock surface and is deep, and the existing “Reinforced Earth Construction Method” with a moving layer thickness of up to 3 m is not applicable.
"New landslide steel pipe pile design guidelines", supervised by the Japan Landslide Society, published by the Japan Landslide Countermeasure Technology Association, revised edition 30 June 2003 “Geotechnical Society Standards Ground Anchor Design and Construction Standards, JGS4101 ・ 2000”, (edited by Geotechnical Society, published by Geotechnical Society, March 30, 2000) “Guidelines for Design and Construction of Cut Reinforced Earth Construction Method” (supervised by the Japan Highway Public Corporation, issued by the Road Welfare Society, June 2004, 5th print)

本体地すべりが活発に活動することで地すべり末端部に生じた,押し出され,孕んだ急勾配の不安定斜面は,一般に内的安定を確保すべき施工面積が広く,かつ地耐力が小さいため,大きな抑止力を局所的に配置することを設計の基本とする杭工やアンカー工では1本当たりの設計荷重を小さくせざるを得ない点から不経済となる。逆に,移動層厚が面的対応に有利性を有する補強土工法の適用を考えた場合は,移動層厚が5〜10mとなって適用の範囲を超え,対応が困難であった。   Extruded, steep, steep and unstable slopes generated at the end of the landslide due to active landslide activity are generally large because the construction area to ensure internal stability is large and the landslide strength is small. Pile work and anchor work whose design is based on local placement of deterrence is uneconomical because the design load per piece must be reduced. Conversely, when considering the application of a reinforced earth method in which the moving layer thickness has an advantage in terms of surface response, the moving layer thickness was 5 to 10 m, exceeding the range of application, and it was difficult to respond.

そこで,本発明の第1は,頭部に支圧版構造を有する太径芯材を利用した杭体変形を許容する斜杭工法において,太径芯材の周囲のクリアランス部をグラウトすることで,定着長の区間と当該芯材の頭部に独楽型支圧版構造により発現する引張り補強の効果とともに,当該芯材頭部にプレストレスを載荷せずに独楽型支圧版で拘束することで地すべり滑動時に太径芯材が大きくたわみ,長方千鳥配置,または正方千鳥配置とすることで,このたわみ過程で地盤内に生じる移動層の変形抵抗力と太径芯材の曲げ耐力をたわみ補強の効果として補強力に加え,許容最大変形時における引張り補強の効果及びたわみ補強の効果の分担割合を図る設計にするものである。
Accordingly, the first aspect of the present invention is to grout the clearance around the large-diameter core material in the oblique group pile construction method that allows deformation of the pile body using the large-diameter core material having a bearing plate structure at the head. In addition to the effect of the tension reinforcement developed by the top plate support plate structure on the fixing length section and the core head, the top plate is restrained by the top plate support plate without prestressing Therefore, the large-diameter core is flexed greatly during sliding on the landslide, and is arranged in a zigzag arrangement or a square zigzag arrangement, so that the deformation resistance of the moving layer generated in the ground during this deflection process and the bending resistance of the large-diameter core In addition to the reinforcing force as a flexural reinforcement effect, it is designed to share the proportion of the tensile reinforcement effect and the flexural reinforcement effect at the maximum allowable deformation .

また、本発明は,上記太径芯材の頭部にプレストレスを載荷しないようにするものである。
Moreover, this invention prevents a prestress from being loaded on the head of the said large diameter core material .

さらに,本発明は,地山変形量を考慮した解析に基づくたわみ補強力と引張補強力とからなる設計補強力を勘案して,補強材及び支圧版を長方千鳥または正方千鳥配置を選定するようにするものである。
Furthermore, the present invention selects the staggered staggered or square staggered arrangement of the stiffeners and bearing plates in consideration of the design stiffening force consisting of the flexural stiffening force and the tensile stiffening force based on the analysis considering the amount of ground deformation. It is what you want to do.

そして,本発明は,緩みを生じた斜面に設置する際には独楽型支圧版を用いるようにするものである。
In the present invention, a self-supporting pressure plate is used when installing on a sloping slope.

配置は不安定化した斜面全体の内的安定を確保すべく計画され,かつ芯材を大断面とすることで自然斜面を対象とする補強土工法としては大深度(深度10m程度まで)の地すべりを設計対象とすることを可能にした。また,斜杭構造とすることで,軸力成分の引留め・締付け効果を有効化し,補強力の強化を図った。さらに,軸力と曲げせん断抵抗力の発現割合を,応力−歪み関係と補強材の降伏基準から評価することで,芯材の撓みに伴う軸力,曲げせん断抵抗力の発現形態を考慮した補強力評価を実現した。   The arrangement is planned to ensure the internal stability of the entire unstable slope, and the landslide of a large depth (up to about 10 m depth) is a reinforced earth method for natural slopes by making the core material a large cross section. Can be made a design object. In addition, the slanted pile structure has enabled the effect of retaining and tightening the axial force component to strengthen the reinforcing force. In addition, by evaluating the ratio of the axial force and bending shear resistance based on the stress-strain relationship and the yield criterion of the reinforcing material, the reinforcement considering the manifestation of the axial force and bending shear resistance due to the bending of the core material. Achieved strength evaluation.

また,敢えてプレストレスを掛けず,補強効果発現に至るまでの間の芯材および地山の変形を許容する設計とすることで(移動層内芯材長の5%を上限),芯材の変形過程で生じる地山と芯材の一体化効果を発現し,補強材の打設間隔を最大4mまで拡大してコスト縮減を実現した。   Also, by deliberately applying prestress and allowing deformation of the core material and natural ground until the reinforcement effect appears (up to 5% of the core material length in the moving layer), the core material The integration effect of the ground and the core material generated in the deformation process was expressed, and the cost reduction was realized by expanding the reinforcement placement distance to a maximum of 4 m.

また,千鳥配置を基本とする長方配置,正方配置を選択可能とし,斜面長/施工延長比に応じて補強効率の優れた配置を選定し,さらなるコスト縮減を実現した。   In addition, a rectangular arrangement and a square arrangement based on the staggered arrangement can be selected, and an arrangement with excellent reinforcement efficiency is selected according to the slope length / construction extension ratio, further reducing costs.

さらに,独楽型支圧版形状を採用することで,地耐力が小さな緩み斜面においても効率的に引張り補強を発現することを可能にした。   In addition, by adopting a top-end type bearing plate shape, it has become possible to develop tensile reinforcement efficiently even on sloping slopes with small earth bearing strength.

本発明の適用範囲は,自然斜面,人工斜面の区別を問わず,下記条件を満足する斜面に対して導入が可能となる。
(1) 緩み層厚3m以上,10m以下
(2) 非粘性土斜面
(3) 背後に本体地すべりが存在したとしても,既に完全に活動を停止している。
(4) 杭頭変位を許容(移動層内杭長の5%程度)
The application range of the present invention can be introduced to slopes that satisfy the following conditions regardless of whether they are natural slopes or artificial slopes.
(1) Loose layer thickness of 3m or more and 10m or less (2) Non-viscous soil slope (3) Even if there is a mainland landslide behind, the activity has already stopped completely.
(4) Permissible pile head displacement (about 5% of pile length in moving layer)

本発明の実施例を後述の段落「0031」に示す「表1」および図面によって説明する。当該「表1」において,本発明は多様な形態を有する緩み斜面に対応すべく2タイプの仕様がある。   An embodiment of the present invention will be described with reference to “Table 1” shown in paragraph “0031” described later and the drawings. In the “Table 1”, the present invention has two types of specifications in order to cope with loose slopes having various forms.

まず,地塊型のすべり変位が卓越する斜面においては,芯材の断面強度を高め,乗り越え,小ブロック化を生じない施工位置に数列のGCPを配置する曲げせん断主体のAタイプが有効である。   First, on slopes where the slip displacement of the block type is dominant, the A type mainly composed of bending shear is effective, in which several rows of GCPs are arranged at construction positions that increase the cross-sectional strength of the core material, overcome the block, and do not generate small blocks. .

これに対し,泥濘化,流動化といった状況が顕著で小規模な斜面崩壊が多発する地区においては,引張り主体で地盤の一体化効果を誘導するBタイプを採用することで,斜面全体に太径棒鋼を配置し,緩んだ斜面を締めて安定性を向上することができる。   On the other hand, in areas where mudging and fluidization are conspicuous and small-scale slope failures occur frequently, adopting the B type, which induces the ground integration effect mainly by pulling, increases the diameter of the entire slope. Stability can be improved by placing steel bars and tightening loose slopes.

また,部分的に極度に泥濘化が進行した箇所に対しては,増打ちを行うことで斜面状況に臨機応変に対応するものとする。   In addition, in areas where mudification has progressed extremely partly, it will be possible to respond flexibly to slope conditions by increasing the number of hits.

図1は,本発明の適用判定フローである。本発明は,太径芯材を利用することによるたわみ補強の効果,頭部支圧版構造を有することによる引張り補強の効果,さらに地盤と芯材の一体化効果に期待することで,緩みを生じた斜面全体の安定性向上を図る工法である。よって本工法の採用にあたっては,緩みの状態,土質,変動形態,基岩面の深さ(緩み層厚),ブロックの規模,斜面の向き,湧水状況,また背後に地すべり本体ブロックの存在が明らかな場合は,これの活動性についても検討を行い導入の可否,工法仕様について吟味することが肝要となる。   FIG. 1 is an application determination flow of the present invention. The present invention reduces the looseness by expecting the effect of deflection reinforcement by using a large-diameter core material, the effect of tension reinforcement by having a head bearing plate structure, and the integration effect of the ground and core material. This is a method to improve the stability of the entire slope. Therefore, in adopting this construction method, the looseness state, soil quality, variation form, depth of basement surface (loose layer thickness), block scale, slope direction, spring condition, and the presence of landslide main body block behind If it is clear, it is important to examine the activity of this and examine whether it can be introduced and the method specifications.

また,プレストレスを載荷しない工法であるため,本工法による補強力は地山の緩みが進行するのに伴い徐々に発揮されることとなる。このため,設計に期待する補強力が発揮されるまでには,相応の緩み変位を許容することとなる。よって,保全対象が緩み斜面に隣接する場合等では,本工法の適用を見合わせる判断が必要となる。   In addition, because it is a method that does not load prestress, the reinforcement by this method will be gradually exerted as the loosening of the ground progresses. For this reason, a moderate loose displacement is allowed before the expected reinforcement force is exhibited. Therefore, when the object to be maintained is adjacent to a sloping slope, it is necessary to judge the application of this method.

従来工法(地すべり対策工法であれば杭工,アンカー工,補強土工であれば地山補強土工の代表としてノンフレーム工法等)との使い分けは,緩み層厚が5mを上回り,かつ緩み斜面が小規模に崩壊・変形・浸食を繰り返す場合に,本工法の優位性が発揮され,斜面全体の内的安定を確保する総工費としてコスト縮減効果が高い。   The conventional method (pile, anchor if landslide prevention method, non-frame method, etc. as a representative of earth and mountain reinforced earth for reinforced earth works) can be used properly. The loose layer thickness is more than 5m and the sloping slope is small. When collapse, deformation, and erosion are repeated on the scale, the advantage of this method is demonstrated, and the cost reduction effect is high as the total construction cost to ensure the internal stability of the entire slope.

図2は本発明の標準構造図「GCP=Geo Coat Piling(ジオコートパイル)」−Aタイプ)である。1は本発明に係る芯材であり,当該芯材として鋼管1′を用いる仕様をAタイプと呼び,直径φ=101.6mm,肉厚t=25mm,定着長L=3m以上のものを用いる。また,芯材1に異形棒鋼1″を用いる仕様の場合は,D51(直径=50.8mm)程度のものを使用する場合をBタイプと呼ぶ。当該芯材の直径は50〜186mmの適当なものを選定する。2は注入孔付きヘッドキャップであり,芯材1に鋼管1′を用いる場合に,鋼管自体をグラウト材gの注入管として使用するため,先端面に設けると共に,これに注入孔21を設けてある。 FIG. 2 is a standard structure diagram of the present invention “GCP = Geo Coat Piling” -A type). 1 is a core material according to the present invention, and a specification using a steel pipe 1 'as the core material is called A type, and a diameter φ = 101.6 mm, a wall thickness t = 25 mm, and a fixing length L = 3 m or more is used. . Further, in the case of the specification using the deformed steel bar 1 ″ for the core material 1, the case of using the one having a diameter of about D51 (diameter = 50.8 mm) is referred to as B type. 2 is a head cap with an injection hole, and when the steel pipe 1 'is used as the core material 1, the steel pipe itself is used as an injection pipe for the grout material g. the holes 2 1 is provided.

3は支圧版と芯材1となる鋼管1′を縁切りすべく設けた総ネジPC鋼棒ゲビンデスターブであり,当該ゲビンデスターブと芯材1との結合は,鋼管1′とゲビンデスターブの場合は,図2及び図3のようにねじ込み式を可とし,鋼管1′の頭部である地表側端部側に中央ネジ加工されたキャップ9を取り付け,このネジ孔にゲビンデスターブ3をねじ込んでナット6′で固定してある。4はゲビンデスターブ3の長さの先端部位に装着する独楽型支圧版である。
上記のゲビンデスターブ3は,独楽型支圧版4と鋼管1′を縁切りするために設置してあるが,その「縁切り」とは,支圧版4に力が加わった際に地上部から芯材1の周囲のグラウトgが破壊することを防止すべく両者4・1′の間に緩衝域を設けることを意味する。
3 is a full thread PC steel rod Gevin desturb that is provided to cut off the steel pipe 1 'that becomes the bearing plate and the core material 1. The connection between the Gevin desturb and the core material 1 is the case of the steel pipe 1' and Gevin desturb. 2 and 3, a screw-in type is allowed, and a cap 9 which is center-threaded is attached to the surface side end side which is the head of the steel pipe 1 ', and the Gevin Destab 3 is screwed into this screw hole. It is fixed with a nut 6 '. Reference numeral 4 denotes a self-supporting type pressure bearing plate that is attached to the distal end portion of the length of the Gevin desturb 3.
The above-mentioned Gevin Destave 3 is installed to cut the top plate-type bearing plate 4 and the steel pipe 1 '. The “edge cutting” means that when the force is applied to the bearing plate 4 from the ground part. This means that a buffer area is provided between the two 4 1 'in order to prevent the grout g around the material 1 from being broken.

次に,芯材1が異形ボルト1″とゲビンデスターブ3の場合は,カップラー継手12を使用して連結する(図5)。   Next, when the core material 1 is the deformed bolt 1 "and the Gevin desturb 3, the coupler joint 12 is used for connection (FIG. 5).

5は地表面Gから独楽型支圧版4に装着する頭部プレート,6はゲビンデスターブ3の先端に装着して頭部プレート5に固着するナット,7はオイルキャップ,8はオイルキャップ内に入れる防錆材である。上記移動層内の杭長L′の先端に連結するゲビンデスターブ3の長さは,当該移動層内の杭長の上部構造L″の長さに少なくとも頭部プレート5の厚さ及びナット6の高さを加えた寸法に設定してある。
タイプAでは,定着長L及び移動層内杭長L′の区間における芯材周囲のクリアランス部はセメントミルクで閉塞され,芯材1とグラウトg,グラウトgと削孔10の壁との付着を実現する。
Reference numeral 5 denotes a head plate to be attached to the top plate 4 from the ground surface G, 6 is a nut attached to the tip of the Gevin desturb 3 and fixed to the head plate 5, 7 is an oil cap, and 8 is in the oil cap. It is a rust preventive. The length of the Gebin desturb 3 connected to the tip of the pile length L ′ in the moving layer is at least the thickness of the head plate 5 and the nut 6 of the upper structure L ″ of the pile length in the moving layer. The height is set to the added dimension.
In Type A, the clearance around the core material in the section of the fixing length L and the pile length L ′ in the moving bed is closed with cement milk, and the core material 1 and grout g, and the grout g and the hole 10 wall are adhered. Realize.

次に,タイプBでは,芯材1が異形棒鋼1″となり,カップラー式継手12を介して連結される。その頭部構造は芯材1となる異形棒鋼1″が独楽型支圧版4に直接連結される。さらに異形ボルトに沿わせて注入パイプ11を設け,その注入パイプ11を利用して,グラウトgは,支圧版4の裏面まで充填実施される。   Next, in type B, the core material 1 becomes a deformed bar 1 ″ and is connected via a coupler-type joint 12. The head structure is such that the deformed bar 1 ″ which becomes the core 1 becomes the top plate 4 Directly linked. Further, an injection pipe 11 is provided along the deformed bolt, and the grout g is filled up to the back surface of the bearing plate 4 by using the injection pipe 11.

図4は具体的な設計の流れを示す。本発明の設計に当たっては,地盤条件,地下水の状態,周辺構造物などを十分考慮し,十分に安定が保たれ,かつ有害な変形を生じないように設計する必要がある。   FIG. 4 shows a specific design flow. In designing the present invention, it is necessary to sufficiently consider ground conditions, groundwater conditions, surrounding structures, and the like so as to be sufficiently stable and not cause harmful deformation.

まず,崩壊形態・すべりの想定を行うにおいては,地盤条件等から崩壊形態やすべり面を想定し,これに応じて補強材の補強効果を考慮して,極限釣り合い法により安定性の検討を行う。斜面の安定計算は,円弧すべり法,直線すべり法,非円弧すべり法,複合すべり法など,想定するすべりに応じた安定計算により行い,斜面安全率を検討する。   First, in assuming the collapse form and slip, the collapse form and slip surface are assumed based on the ground conditions, etc., and the stability is examined by the limit balance method considering the reinforcement effect of the reinforcing material accordingly. . The slope stability calculation is performed by the stability calculation according to the assumed slip, such as the arc slip method, the linear slip method, the non-arc slip method, and the composite slip method, and the slope safety factor is examined.

また,本発明は補強材と地盤の一体化を前提とする。したがって,想定通りに一体化が生じ,期待する補強力が発揮されるよう以下の点に留意する必要がある。まず,粘性土地盤はアーチアクションが生じにくく,地盤と補強材の一体化を期待することが難しい。一体化効果は移動層内杭長L′の下方3/4深度付近で強く発揮されることから,当該深度の移動層地盤が有する粘性度合いを確認するものとする。また,一体化により補強材の変形拘束効果が斜面に働くとき,補強領域内部において斜面が破壊することはない。よって,本発明では中抜けなどの内的安定検討は行なわなくてよい。   Moreover, this invention presupposes integration of a reinforcing material and the ground. Therefore, it is necessary to pay attention to the following points so that integration will occur as expected and the expected reinforcing force will be exhibited. First, the viscous ground is less likely to cause arch action and it is difficult to expect integration of the ground and the reinforcing material. Since the integration effect is strongly exerted in the vicinity of the depth 3/4 below the pile length L ′ in the moving layer, the degree of viscosity of the moving layer ground at the depth is confirmed. In addition, when the deformation restraining effect of the reinforcing material acts on the slope due to the integration, the slope does not break inside the reinforcement region. Therefore, in the present invention, it is not necessary to examine internal stability such as hollowing out.

さらに必要抑止力の算定は,設計断面のすべり面上の釣り合いより求め,計画安全率を満足しなければならない。また設計断面荷重は,必要抑止力に荷重係数を乗じて定める。   Furthermore, the required deterrence is calculated from the balance on the slip surface of the design section, and the planned safety factor must be satisfied. The design cross-sectional load is determined by multiplying the required deterrent by the load factor.

次に現斜面の安定性,移動層厚,必要抑止力を考慮し,タイプ(A,B)と芯材を選定する。移動層が厚いすべりに対してはAタイプ(曲げせん断主体),そうでないすべりにはBタイプ(引張主体)を検討する。
「表1」は,本発明の特徴及び型式を示す表である。
Next, the type (A, B) and core material are selected in consideration of the stability of the current slope, the thickness of the moving layer, and the required deterrence. A type (mainly bending shear) is considered for slips with a thick moving layer, and B type (mainly tensile) is considered for slips that are not.
“Table 1” is a table showing features and types of the present invention.

さらに一体化の制御条件として,補強材間隔と支圧版の組合せを検討する。
(1)補強材間隔B,補強材角度θ
Aタイプ(曲げせん断主体)
・補強材間隔B=2.0〜4.0mの範囲とする。
・補強材角度θ=0°〜30°の範囲とする。
Bタイプ(引張主体)
・補強材間隔B=1.0〜3.0mの範囲とする。
・引張補強を発揮させるため,補強材角度θ=30°〜45°を基本とする。
(2)支圧版
Aタイプ(曲げせん断主体)
・独楽(こま)型支圧版の場合,支圧版サイズ1.0mとする。
・独楽型以外の支圧版の場合,支圧版サイズ1.5mとする。
Bタイプ(引張主体)
・支圧版サイ1.0mを基本とする。
(3)配置
・千鳥配置とする。設計補強力および施工性を勘案し,長方配置,正方配置などから効率のすぐれた配置を選択する。
In addition, as a control condition for integration, the combination of reinforcing material interval and bearing plate is studied.
(1) Stiffener spacing B, stiffener angle θ
A type (mainly bending shear)
-Reinforcement space | interval B shall be the range of 2.0-4.0m.
-Reinforcement material angle [theta] = 0 to 30 [deg.].
B type (mainly tension)
-It is set as the range of the reinforcement material space | interval B = 1.0-3.0m.
・ In order to exert tensile reinforcement, the reinforcement angle θ is basically 30 ° ~ 45 °.
(2) Pressure plate
A type (mainly bending shear)
・ In the case of a top type support plate, the support plate size is 1.0 m.
・ For bearing plates other than the top-of-the-game type, the bearing plate size is 1.5 m.
B type (mainly tension)
・ Based on a bearing plate size of 1.0m.
(3) Arrangement • Staggered arrangement. Considering design reinforcement and workability, select a layout with excellent efficiency from rectangular layout and square layout.

設計断面荷重を満足するように根入れ長を設定する。   Set the penetration length to satisfy the design section load.

補強力は,地山の変形後に初めて発生するものであり,地山の変形および補強材との相互作用により,補強力の値は変化する。本発明においては,地山変形量を考慮した解析に基づき,設計最大引抜き抵抗力Tmaxにより引張補強力を評価し,設計最大たわみ補強力ΣRmaxにより曲げせん断補強力を評価する。その上で,設計耐力Rudを算定し,設計断面荷重Rrdと比較照査を行い,補強材の終局限界状態に対する安全性照査を行う。 Reinforcement force occurs only after deformation of the natural ground, and the value of the reinforcing force changes due to deformation of the natural ground and interaction with the reinforcing material. In the present invention, based on the analysis in consideration of natural ground deformation amount, to evaluate the reinforcement force pulling the design maximum pull-out resistance force T max, to evaluate the shear reinforcement bending force by the maximum deflection reinforcing force .SIGMA.R max design. After that, the design strength R ud is calculated, compared with the design cross-sectional load R rd, and the safety is checked against the ultimate limit state of the reinforcement.

設計耐力に対応した変位量ySmaxを設計変形量とし,地山の想定最大変形量とする。施工中および施工後において,地山の変形量は設計変形量ySmax以内であることが求められる。 The displacement y Smax corresponding to the design strength is defined as the design deformation, and the assumed maximum deformation of the natural ground. During and after construction, the natural ground deformation is required to be within the design deformation y Smax .

本発明によ,従来の地すべり対策工法や補強土工法の適用範囲に属さない地すべり末端部における緩み斜面の安定化を促進する工法が創出され,かつ中小規模の地すべりに対しても,変形を考慮した支持機構の導入によるコスト縮減効果が高い地すべり対策工法として,新たな工法の選択肢生じた。
Ri by the present invention, method of promoting stabilization of loose slope which are created in not belonging landslide end the scope of conventional landslide control method and reinforced earthwork method, and also to small and medium-sized landslide, the deformation As a landslide countermeasure method with a high cost reduction effect due to the introduction of the support mechanism in consideration, a new option for the method has arisen.

は,本発明の適用判定フローである。These are the application determination flow of this invention. は,芯材に鋼管を用いた本発明に係る構造図(GCP−Aタイプ)である。These are the structural drawings (GCP-A type) based on this invention which used the steel pipe for the core material. は,鋼管頭部とゲビンデスターブの下端部と頭部の接続状態を示す拡大断面図である。These are expanded sectional views which show the connection state of a steel pipe head, the lower end part of a Gevin desturb, and a head. は,図2の先端を示す拡大断面図である。FIG. 3 is an enlarged sectional view showing the tip of FIG. 2. は,芯材に異形鋼棒を用いた構造図(Bタイプ)である。These are structural drawings (B type) using a deformed steel bar as the core material. は,本発明の設計手順のフローである。These are the flow of the design procedure of this invention.

1……芯材(鋼管1′又は異形鋼棒1″)
2……注入孔付きヘッドキャップ
3……ゲビンデスターブ
4……独楽型支圧版
5……頭部プレート
6・6′……ナット
7……オイルキャップ
8……防錆材
9……接続キャップ
10……削孔
11……注入パイプ
12……カップラー式継手
1. Core material (steel pipe 1 'or deformed steel bar 1 ")
2 …… Head cap with injection hole 3 …… Gevin de star 4 …… Self-supporting pressure plate 5 …… Head plate 6 ・ 6 '…… Nut 7 …… Oil cap 8 …… Rust prevention material 9 …… Connection cap 10 ... Drilling hole 11 ... Injection pipe 12 ... Coupler type joint

Claims (1)

太径芯材の周囲のクリアランス部をグラウトすることで,定着長の区間と当該芯材の頭部独楽型支圧版構造により発現する引張り補強の効果とともに,当該芯材頭部にプレストレスを載荷せずに独楽型支圧版で拘束することで地すべり滑動時に太径芯材が大きくたわみ,長方千鳥配置,または正方千鳥配置とすることで,このたわみ過程で地盤内に生じる移動層の変形抵抗力と芯材の曲げ耐力をたわみ補強の効果として補強力に加え,許容最大変形時における引張り補強の効果及びたわみ補強の効果の分担割合を図る設計にすることを特徴とする頭部に支圧版構造を有する太径芯材を利用した杭体変形を許容する斜杭工法。
By grouting the clearance around the large-diameter core material, pre-stress is applied to the core material head, along with the effect of the tension reinforcement that is manifested by the section of the fixing length and the self-supporting pressure plate structure of the core material. The large-diameter core material is deflected greatly when sliding on the landslide by restraining it with a topless support plate without loading, and the moving layer generated in the ground during this deflection process is arranged in a zigzag arrangement or a square zigzag arrangement. For the head, which is designed to share the deformation resistance and the bending strength of the core as a flexural reinforcement effect, as well as the share of the tensile reinforcement effect and the flexural reinforcement effect at the maximum allowable deformation. A slanted group pile construction method that allows deformation of pile bodies using a large-diameter core material having a bearing plate structure.
JP2009231657A 2009-10-05 2009-10-05 A slanted group pile method using a large-diameter core with a bearing plate structure at the head to allow pile deformation Active JP5505959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009231657A JP5505959B2 (en) 2009-10-05 2009-10-05 A slanted group pile method using a large-diameter core with a bearing plate structure at the head to allow pile deformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009231657A JP5505959B2 (en) 2009-10-05 2009-10-05 A slanted group pile method using a large-diameter core with a bearing plate structure at the head to allow pile deformation

Publications (2)

Publication Number Publication Date
JP2011080210A JP2011080210A (en) 2011-04-21
JP5505959B2 true JP5505959B2 (en) 2014-05-28

Family

ID=44074516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009231657A Active JP5505959B2 (en) 2009-10-05 2009-10-05 A slanted group pile method using a large-diameter core with a bearing plate structure at the head to allow pile deformation

Country Status (1)

Country Link
JP (1) JP5505959B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110747880A (en) * 2019-10-30 2020-02-04 中建五局第三建设有限公司 Construction method of high slope isolation bearing platform

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104674826B (en) * 2015-02-22 2016-02-03 中国地质环境监测院 Flush type micro combination pile group and anti-slide design method thereof
CN109914440B (en) * 2019-03-14 2023-09-22 中铁二院工程集团有限责任公司 Construction method of w-type high-capacity anti-slip structure
CN110864743B (en) * 2019-12-05 2020-10-16 河北工业大学 Reverse slope stability determination method capable of pre-determining fracture surface position

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185225A (en) * 1983-04-04 1984-10-20 K M Kikaku Kk Stabilization work of slope by anchor rod
JP3830065B2 (en) * 1998-02-06 2006-10-04 日鐵建材工業株式会社 Natural slope stabilization method and bearing member used therefor
JP2002129556A (en) * 2000-10-26 2002-05-09 Okabe Co Ltd Method for installing slope stabilizing anchor, and the slope stabilizing anchor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110747880A (en) * 2019-10-30 2020-02-04 中建五局第三建设有限公司 Construction method of high slope isolation bearing platform

Also Published As

Publication number Publication date
JP2011080210A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
KR20190036591A (en) Thrust pile with prestress and self-supporting type pile construction using it
JP5505959B2 (en) A slanted group pile method using a large-diameter core with a bearing plate structure at the head to allow pile deformation
WO2005005752A1 (en) Foundations for constructions
AU2014282262B2 (en) Steel-pipe pile and steel-pipe pile construction method
JP2017128921A (en) Slope stabilization structure
US20210115641A1 (en) Barbed micropiles for soil reinforcement
CN106869137A (en) One kind mixing steel reinforcement cage and foundation pit supporting pile
JP2014227729A (en) Banking reinforcement structure and banking reinforcement method
JP7028817B2 (en) Slope collapse prevention reinforcement body and slope collapse prevention reinforcement method using this
CN102002942A (en) Hollow drilling pile and piling construction process for steel tube-cement soil composite pile
KR20090070373A (en) The permanent bar anchors using steel bars with a high yeild strength for prestressing tendon and it's procedure of installation
JP5555050B2 (en) Construction structure of rebar insertion work using composite rebar
JP4844477B2 (en) Synthetic wall structure and its construction method
CN102363959B (en) Energy-saving pressure dispersed anti-floating pile and anti-pulling rib connecting structure
KR100741506B1 (en) Reinforcement for civil engineering works
JP2022067519A (en) Small step construction method in sloped land
EP2400063B1 (en) Foundation system
JP4607485B2 (en) Expanded caisson foundation structure and seismic reinforcement structure for existing caisson foundation
JPS6325134B2 (en)
Lindsay et al. Testing of self-drilled hollow bar soil nails
EP2808449B1 (en) Pile driven by drilling
JP6673695B2 (en) Construction method of mountain retaining wall and mountain retaining wall
KR102503844B1 (en) Upper reinforcement support to increase horizontal force of foundation pile
EP4098802B1 (en) Geotechnical method and geotechnical arrangement
US20220307218A1 (en) Aggregate piers reinforcement against axial loads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140313

R150 Certificate of patent or registration of utility model

Ref document number: 5505959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250