JP5505293B2 - Nitrogen analysis sample processing method and processing apparatus - Google Patents

Nitrogen analysis sample processing method and processing apparatus Download PDF

Info

Publication number
JP5505293B2
JP5505293B2 JP2010289828A JP2010289828A JP5505293B2 JP 5505293 B2 JP5505293 B2 JP 5505293B2 JP 2010289828 A JP2010289828 A JP 2010289828A JP 2010289828 A JP2010289828 A JP 2010289828A JP 5505293 B2 JP5505293 B2 JP 5505293B2
Authority
JP
Japan
Prior art keywords
nitrogen
sample
copper
sample gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010289828A
Other languages
Japanese (ja)
Other versions
JP2012137381A (en
Inventor
則夫 林
正輔 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Analytech Co Ltd
Original Assignee
Mitsubishi Chemical Analytech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Analytech Co Ltd filed Critical Mitsubishi Chemical Analytech Co Ltd
Priority to JP2010289828A priority Critical patent/JP5505293B2/en
Publication of JP2012137381A publication Critical patent/JP2012137381A/en
Application granted granted Critical
Publication of JP5505293B2 publication Critical patent/JP5505293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本発明は、窒素分析用試料の処理方法および処理装置に関するものであり、詳しくは、食品などに含まれる窒素化合物の定量分析において、試料の前処理として好適な処理方法および処理装置に関するものである。   The present invention relates to a processing method and a processing apparatus for a sample for nitrogen analysis, and more particularly to a processing method and a processing apparatus suitable as a sample pretreatment in quantitative analysis of nitrogen compounds contained in foods and the like. .

食品中のタンパク質等、窒素化合物含有試料中の窒素の定量分析においては、試料の燃焼分解により窒素を抽出する所謂デュマ法が利用されている。デュマ法による窒素の分析においては、試料の燃焼分解により窒素酸化物を生成し、これを還元剤としての金属銅と反応させて窒素を生成した後、斯かる窒素をヘリウムや炭酸ガス等のキャリアガスと共に検出器に導入して濃度を測定する(特許文献1,2参照)。   In quantitative analysis of nitrogen in samples containing nitrogen compounds such as proteins in foods, a so-called Dumas method is used in which nitrogen is extracted by combustion decomposition of the sample. In the analysis of nitrogen by the Dumas method, nitrogen oxides are generated by combustion decomposition of a sample, and this is reacted with metallic copper as a reducing agent to generate nitrogen, which is then used as a carrier such as helium or carbon dioxide. It introduce | transduces into a detector with gas and measures a density | concentration (refer patent document 1, 2).

上記の窒素分析において、試料から試料ガスを生成する前処理のメカニズムは図3に示す通りである。すなわち、試料ガスの生成では、先ず、加熱装置(加熱炉)において、酸素(O)を供給しながら加熱することにより試料を燃焼分解し、試料ガスとして窒素酸化物(NOx)を生成する。次いで、還元装置において、銅(Cu)に窒素酸化物(NOx)を接触させて窒素(N)に還元する。また、同時に、上記の還元装置において、加熱装置で燃焼に費やされなかった余剰の酸素(O)を銅(Cu)と反応させて除去する。 In the above nitrogen analysis, the pretreatment mechanism for generating the sample gas from the sample is as shown in FIG. That is, in the generation of the sample gas, first, the sample is combusted and decomposed by heating while supplying oxygen (O 2 ) in a heating device (heating furnace), and nitrogen oxide (NOx) is generated as the sample gas. Next, in a reducing device, nitrogen oxide (NOx) is brought into contact with copper (Cu) to be reduced to nitrogen (N 2 ). At the same time, in the above reducing device, excess oxygen (O 2 ) that has not been spent on combustion by the heating device is reacted with copper (Cu) to be removed.

特開2003−107071号公報JP 2003-107071 A 特開2005−300550号公報JP 2005-300550 A

ところで、上記のデュマ法による処理では、還元剤としての銅が窒素酸化物および余剰酸素と反応し、酸化銅として消費されるため、分析ごとに高価な銅を逐次補充する必要がある。実際、還元装置において銅が充填されたカラム等を適当なタイミングで交換している。換言すれば、上記のような窒素分析の前処理においては、銅の消耗により分析コストが低減し難く、また、還元装置の取扱いに多くの労力を必要とする。   By the way, in the treatment by the Dumas method, copper as a reducing agent reacts with nitrogen oxides and surplus oxygen and is consumed as copper oxide. Therefore, it is necessary to replenish expensive copper sequentially for each analysis. Actually, a column filled with copper is exchanged at an appropriate timing in the reducing device. In other words, in the nitrogen analysis pretreatment as described above, it is difficult to reduce the analysis cost due to the consumption of copper, and much labor is required for handling the reducing device.

本発明は、上記の実情に鑑みなされたものであり、その目的は、窒素化合物含有試料中の窒素を分析するに当たり、試料から窒素を抽出するための試料の処理方法および処理装置であって、分析コスト及び労力を一層低減できる窒素分析用試料の処理方法および処理装置を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to provide a sample processing method and a processing apparatus for extracting nitrogen from a sample in analyzing nitrogen in a nitrogen compound-containing sample, An object of the present invention is to provide a nitrogen analysis sample processing method and processing apparatus that can further reduce analysis costs and labor.

本発明では、試料の燃焼で得られた試料ガス、すなわち、窒素酸化物と余剰酸素を含む試料ガスから窒素を抽出するに当たり、予め、試料ガスをグラファイトに接触させ、余剰酸素を一酸化炭素および二酸化炭素に変換した後、これを金属銅に接触させることにより、窒素酸化物を還元して窒素を生成し、同時に、還元反応で生成される酸化銅を一酸化炭素で還元することにより銅を再生し且つ一酸化炭素を二酸化炭素に変換する。これにより、試料ガスの成分を窒素と二酸化炭素とし、しかも、還元剤としての銅の消耗を無くすようにした。   In the present invention, in extracting nitrogen from the sample gas obtained by burning the sample, that is, the sample gas containing nitrogen oxide and surplus oxygen, the sample gas is previously brought into contact with graphite, and the surplus oxygen is converted into carbon monoxide and After conversion to carbon dioxide, this is brought into contact with metallic copper to reduce nitrogen oxides to produce nitrogen. At the same time, copper oxide produced by the reduction reaction is reduced with carbon monoxide. Regenerate and convert carbon monoxide to carbon dioxide. As a result, the components of the sample gas were nitrogen and carbon dioxide, and consumption of copper as a reducing agent was eliminated.

すなわち、本発明の第1の要旨は、試料の燃焼分解により得られる試料ガス中の窒素酸化物を還元して窒素を抽出する窒素分析用試料の処理方法であって、窒素酸化物および余剰酸素が含まれる試料ガスをグラファイトに接触させ、余剰酸素を一酸化炭素および二酸化炭素に変換した後、窒素酸化物、一酸化炭素および二酸化炭素が含まれる試料ガスを銅に接触させることにより、銅によって窒素酸化物を窒素に変換し、かつ、生成される酸化銅を試料ガス中の一酸化炭素で銅に再生することを特徴とする窒素分析用試料の処理方法に存する。   That is, the first gist of the present invention is a nitrogen analysis sample processing method for extracting nitrogen by reducing nitrogen oxide in a sample gas obtained by combustion decomposition of a sample. After contacting the sample gas containing nitrogen with graphite and converting surplus oxygen into carbon monoxide and carbon dioxide, the sample gas containing nitrogen oxide, carbon monoxide and carbon dioxide is brought into contact with copper by copper. A method for treating a sample for nitrogen analysis is characterized in that nitrogen oxides are converted into nitrogen, and the produced copper oxide is regenerated into copper with carbon monoxide in a sample gas.

また、本発明の第2の要旨は、試料の燃焼分解により得られる試料ガス中の窒素酸化物を還元して窒素を抽出する窒素分析用試料の処理装置であって、酸素を供給可能に構成され且つ試料を燃焼分解して窒素酸化物および余剰酸素が含まれる試料ガスを生成する加熱装置と、グラファイトが充填され且つ前記加熱装置で得られた試料ガス中の余剰酸素を一酸化炭素および二酸化炭素に変換する酸素除去装置と、銅が充填され且つ前記酸素除去装置で処理された試料ガス中の窒素酸化物を窒素に変換し、生成される酸化銅を試料ガス中の一酸化炭素で銅に再生する還元装置とを備えていることを特徴とする窒素分析用試料の処理装置に存する。   The second gist of the present invention is a sample processing apparatus for nitrogen analysis for extracting nitrogen by reducing nitrogen oxide in a sample gas obtained by combustion decomposition of a sample, and configured to supply oxygen A heating device that generates a sample gas containing nitrogen oxides and surplus oxygen by burning and decomposing the sample, and surplus oxygen in the sample gas filled with graphite and obtained by the heating device is converted into carbon monoxide and carbon dioxide. An oxygen removing device for converting to carbon, and nitrogen oxide in a sample gas filled with copper and processed by the oxygen removing device is converted to nitrogen, and the resulting copper oxide is converted to copper by carbon monoxide in the sample gas. And a reducing apparatus for regenerating the nitrogen analysis sample processing apparatus.

本発明によれば、試料の燃焼で得られた試料ガスを予めグラファイトに接触させ、試料ガス中の余剰酸素を一酸化炭素および二酸化炭素に変換することにより、窒素酸化物の還元剤として使用される銅を一酸化炭素によって常に再生できるため、高価な銅の消耗が無く、分析コストを一層低減でき、また、還元装置に銅を補充する必要がないため、分析の労力を一層低減できる。   According to the present invention, the sample gas obtained by burning the sample is previously brought into contact with graphite, and excess oxygen in the sample gas is converted into carbon monoxide and carbon dioxide, thereby being used as a nitrogen oxide reducing agent. Since the copper can always be regenerated with carbon monoxide, there is no consumption of expensive copper, the analysis cost can be further reduced, and it is not necessary to replenish the reduction device with copper, so that the labor of analysis can be further reduced.

本発明に係る窒素分析用試料の処理装置の主要な構成を示すフロー図である。It is a flowchart which shows the main structures of the processing apparatus of the sample for nitrogen analysis which concerns on this invention. 本発明に係る窒素分析用試料の処理方法の基本原理を示す説明図である。It is explanatory drawing which shows the basic principle of the processing method of the sample for nitrogen analysis which concerns on this invention. 従来のデュマ法による試料の処理方法の基本原理を示す説明図である。It is explanatory drawing which shows the basic principle of the processing method of the sample by the conventional Dumas method.

本発明に係る窒素分析用試料の処理方法(以下、「処理方法」と言う。)及び処理装置(以下、「処理装置」と言う。)の実施形態を図面に基づいて説明する。本発明は、食品などの窒素化合物含有試料に含まれる窒素の定量分析において、試料の燃焼分解により得られる試料ガス中の窒素酸化物を銅で還元して窒素を抽出する前処理に適用される。なお、本発明においては、燃焼分解工程以降で取り扱うガスを「試料ガス」と称する。   Embodiments of a method for processing a sample for nitrogen analysis (hereinafter referred to as “processing method”) and a processing apparatus (hereinafter referred to as “processing apparatus”) according to the present invention will be described with reference to the drawings. The present invention is applied to a pretreatment for extracting nitrogen by reducing nitrogen oxide in a sample gas obtained by combustion decomposition of a sample with copper in quantitative analysis of nitrogen contained in a sample containing nitrogen compounds such as food. . In the present invention, the gas handled after the combustion decomposition step is referred to as “sample gas”.

先ず、本発明の処理方法の実施に好適な処理装置について説明する。本発明の処理装置は、図1に示すように、酸素を供給可能に構成され且つ試料を燃焼分解して試料ガスを生成する加熱装置1と、グラファイト72が充填され且つ加熱装置1で得られた試料ガスから余剰酸素を除去する酸素除去装置2と、銅73が充填され且つ酸素除去装置2で処理された試料ガス中の窒素酸化物を窒素に変換する還元装置3とから主に構成される。   First, a processing apparatus suitable for carrying out the processing method of the present invention will be described. As shown in FIG. 1, the processing apparatus of the present invention is configured to be able to supply oxygen, and a heating apparatus 1 that generates a sample gas by burning and decomposing a sample, and is obtained by the heating apparatus 1 that is filled with graphite 72. The oxygen removal device 2 that removes excess oxygen from the sample gas, and the reduction device 3 that converts the nitrogen oxide in the sample gas filled with copper 73 and processed by the oxygen removal device 2 into nitrogen. The

加熱装置1は、試料を燃焼分解して窒素酸化物および余剰酸素が含まれる試料ガスを生成する装置であり、試料が装入され且つ酸素およびキャリアガスが供給されるステンレス製の加熱管11と、当該加熱管を加熱する加熱炉12とから構成される。加熱管11は、例えば、試料を収容するための有底円筒状のステンレス製の内管13を収容して鉛直に配置される。内管13は、加熱管11の内周面との間に通気用の隙間を確保するため、加熱管11の内径よりも小さな外径で且つ加熱管11の長さよりも短く設計される。例えば、加熱管11の直径は20〜50mm程度、加熱管11の長さは300〜450mm程度とされ、内管13の直径は15〜40mm程度、内管13の長さは100〜200mm程度とされる。   The heating device 1 is a device that generates a sample gas containing nitrogen oxides and surplus oxygen by burning and decomposing a sample, and a heating tube 11 made of stainless steel into which the sample is charged and oxygen and carrier gas are supplied. And a heating furnace 12 for heating the heating tube. The heating tube 11 accommodates, for example, a bottomed cylindrical stainless steel inner tube 13 for accommodating a sample, and is arranged vertically. The inner tube 13 is designed to have an outer diameter smaller than the inner diameter of the heating tube 11 and shorter than the length of the heating tube 11 in order to secure a clearance for ventilation between the inner tube 13 and the inner peripheral surface of the heating tube 11. For example, the diameter of the heating tube 11 is about 20 to 50 mm, the length of the heating tube 11 is about 300 to 450 mm, the diameter of the inner tube 13 is about 15 to 40 mm, and the length of the inner tube 13 is about 100 to 200 mm. Is done.

加熱管11の頭部には、試料が収められた内管13を装入し且つ加熱管11を気密に封止するための蓋14が設けられる。蓋14は、後述する流路62を加熱管11へ接続するための流路接続リング15を介して装着される。流路接続リング15は、配管の接続ポートを備えた短軸円筒状の部材であり、当該接続ポートには、キャリアガスとしての二酸化炭素を加熱管11へ供給する流路62が接続される。また、上記の流路62には、燃焼用の酸素を加熱管11へ供給するための流路61が繋ぎ込まれる。そして、図示しないが、加熱管11は、流量コントローラーによる制御により、酸素および例えば二酸化炭素の容器から流路61,62を通じてこれらのガスを一定流量で供給されるように構成される。   The head of the heating tube 11 is provided with a lid 14 for inserting the inner tube 13 containing the sample and sealing the heating tube 11 in an airtight manner. The lid 14 is mounted via a flow path connection ring 15 for connecting a flow path 62 described later to the heating tube 11. The flow path connection ring 15 is a short-axis cylindrical member having a pipe connection port, and a flow path 62 for supplying carbon dioxide as a carrier gas to the heating pipe 11 is connected to the connection port. The flow path 62 is connected to a flow path 61 for supplying combustion oxygen to the heating pipe 11. And although not shown in figure, the heating pipe | tube 11 is comprised so that these gas may be supplied with the fixed flow volume through the flow paths 61 and 62 from the container of oxygen and a carbon dioxide by control by a flow controller.

また、加熱管11の内管13よりも下側、すなわち、加熱管11の底部側には、燃焼を促進するための粒状の酸化銅71が酸化触媒として充填される。更に、酸化銅71の上部には、当該酸化銅の遊動防止のためにアルミナ繊維からなる不織布が挿入されてもよい。そして、加熱管11の底部には、燃焼によって得られた試料ガスを取り出して酸素除去装置2へ供給するための流路64が接続され、加熱装置1から酸素除去装置2へ、窒素酸化物、余剰酸素およびキャリアの二酸化炭素が含まれる試料ガスが供給されるようになされている。   Further, below the inner tube 13 of the heating tube 11, that is, on the bottom side of the heating tube 11, granular copper oxide 71 for promoting combustion is filled as an oxidation catalyst. Furthermore, a nonwoven fabric made of alumina fibers may be inserted into the upper portion of the copper oxide 71 in order to prevent the copper oxide from moving. And the flow path 64 for taking out the sample gas obtained by combustion and supplying it to the oxygen removal apparatus 2 is connected to the bottom part of the heating pipe 11, and nitrogen oxide, A sample gas containing surplus oxygen and carbon dioxide as a carrier is supplied.

加熱装置1の加熱炉12は、加熱管挿入穴が中心に設けられた円筒状の電気炉で構成される。具体的には、加熱炉12は、円筒状のケーシングにセラミックファイバーの成形体、あるいは、セラミックファイバーとアルミナファイバーの混合繊維の成形体から成る保温材を収容し、かつ、保温材の内部に複数のヒーター、例えば、カンタル発熱体、ニクロム発熱体、シルバー発熱体などを金属管に収容して成るシーズドヒーターを埋設して構成される。加熱装置1においては、加熱管11の温度が所定の温度、例えば800〜1000℃となる様に、加熱管11の温度を検出して加熱炉12のヒーターへの通電が制御される様になされている。   The heating furnace 12 of the heating device 1 is configured by a cylindrical electric furnace provided with a heating tube insertion hole at the center. Specifically, the heating furnace 12 accommodates a heat insulating material made of a ceramic fiber molded body or a mixed fiber of ceramic fiber and alumina fiber in a cylindrical casing, and a plurality of heat insulating materials are contained inside the heat insulating material. In other words, for example, a seeded heater in which a cantal heating element, a nichrome heating element, a silver heating element and the like are accommodated in a metal tube is embedded. In the heating device 1, the temperature of the heating tube 11 is detected and the power supply to the heater of the heating furnace 12 is controlled so that the temperature of the heating tube 11 becomes a predetermined temperature, for example, 800 to 1000 ° C. ing.

本発明においては、加熱装置1で得られた試料ガスに含まれる酸素、すなわち、上記の加熱装置1に供給され且つ消費されなかった余剰酸素を予め除去するため、上記の加熱装置1の下流側に酸素除去装置2が配置される。酸素除去装置2は、余剰酸素を一酸化炭素および二酸化炭素に変換する装置であり、グラファイト72が充填された石英ガラス製の反応管21と、当該反応管を加熱する加熱炉22とから構成される。反応管21の大きさは、前述の加熱装置1の加熱管11と略同様に設計される。また、加熱炉22も前述の加熱炉12と同様に構成され、そして、酸素除去装置2においては、反応管21の温度が例えば500〜1000℃となる様に、反応管21の温度を検出して加熱炉22のヒーターへの通電が制御される様になされている。   In the present invention, in order to remove in advance oxygen contained in the sample gas obtained by the heating device 1, that is, excess oxygen that has been supplied to the heating device 1 and has not been consumed, the downstream side of the heating device 1 is used. The oxygen removing device 2 is disposed in the middle. The oxygen removing device 2 is a device that converts surplus oxygen into carbon monoxide and carbon dioxide, and includes a reaction tube 21 made of quartz glass filled with graphite 72 and a heating furnace 22 that heats the reaction tube. The The size of the reaction tube 21 is designed in substantially the same manner as the heating tube 11 of the heating apparatus 1 described above. Further, the heating furnace 22 is configured in the same manner as the heating furnace 12 described above, and in the oxygen removing apparatus 2, the temperature of the reaction tube 21 is detected so that the temperature of the reaction tube 21 is, for example, 500 to 1000 ° C. Thus, energization to the heater of the heating furnace 22 is controlled.

酸素除去装置2の反応管21に充填されるグラファイトとしては、粒状のグラファイトが挙げられる。特に、酸素との接触効率を高める観点から、粒径1〜2mm程度のものが好ましい。   Examples of the graphite filled in the reaction tube 21 of the oxygen removing device 2 include granular graphite. In particular, from the viewpoint of increasing the contact efficiency with oxygen, those having a particle size of about 1 to 2 mm are preferable.

酸素除去装置2の反応管21の底部には、前述の加熱装置1の加熱管11から伸長された流路64が接続され、反応管21の頭部には、反応管21で処理された試料ガスを取り出して還元装置3へ供給するための流路65が接続される。すなわち、酸素除去装置2においては、試料ガスに含まれる余剰酸素とグラファイト72とを反応させ、酸素を一酸化炭素および二酸化炭素に変換し、流路65を通じて、窒素酸化物、一酸化炭素および二酸化炭素が含まれる試料ガスを還元装置3に供給するようになされている。   A flow path 64 extended from the heating tube 11 of the heating device 1 is connected to the bottom of the reaction tube 21 of the oxygen removing device 2, and a sample processed in the reaction tube 21 is connected to the head of the reaction tube 21. A flow path 65 is connected to take out the gas and supply it to the reduction device 3. That is, in the oxygen removing device 2, surplus oxygen contained in the sample gas reacts with the graphite 72 to convert oxygen into carbon monoxide and carbon dioxide, and through the channel 65, nitrogen oxide, carbon monoxide and carbon dioxide are converted. A sample gas containing carbon is supplied to the reduction device 3.

還元装置3は、酸素除去装置2で処理された試料ガス中の窒素酸化物を窒素に変換し、生成される酸化銅を試料ガス中の一酸化炭素で再生して当該一酸化炭素を二酸化炭素に変換する装置であり、銅73が充填された石英ガラス製の反応管31と、当該反応管を加熱する加熱炉32とから構成される。反応管31の大きさは、前述の加熱装置1の加熱管11と略同様に設計され、また、加熱炉32も加熱装置1のものと同様に構成される。そして、還元装置3においては、反応管31の温度が例えば500〜800℃となる様に、反応管31の温度を検出して加熱炉32のヒーターへの通電が制御される様になされている。   The reducing device 3 converts nitrogen oxides in the sample gas treated by the oxygen removing device 2 into nitrogen, regenerates the generated copper oxide with carbon monoxide in the sample gas, and converts the carbon monoxide into carbon dioxide. A reaction tube 31 made of quartz glass filled with copper 73 and a heating furnace 32 for heating the reaction tube. The size of the reaction tube 31 is designed to be substantially the same as that of the heating tube 11 of the heating device 1 described above, and the heating furnace 32 is configured similarly to that of the heating device 1. In the reduction device 3, the temperature of the reaction tube 31 is detected and the energization of the heater of the heating furnace 32 is controlled so that the temperature of the reaction tube 31 is 500 to 800 ° C., for example. .

還元装置3の反応管31に充填される銅としては、線状の銅が挙げられる。特に、試料ガスとの接触効率を高める観点から、線径(φ)0.5〜1mm程度、長さ2〜8mm程度のものが好ましい。   Examples of the copper filled in the reaction tube 31 of the reducing device 3 include linear copper. In particular, from the viewpoint of increasing the contact efficiency with the sample gas, those having a wire diameter (φ) of about 0.5 to 1 mm and a length of about 2 to 8 mm are preferable.

還元装置3の反応管31の頭部には、前述の酸素除去装置2の反応管21から伸長された流路65が接続され、反応管31の底部には、反応管31で処理された試料ガスを取り出して検出器5へ供給するための流路66が接続される。すなわち、還元装置3においては、試料ガスに含まれる窒素酸化物と還元剤である銅73とを反応させて窒素酸化物を窒素に変換し、また、同時に、生成される酸化銅を試料ガス中の一酸化炭素で銅73に再生し且つこれにより試料ガス中の一酸化炭素を二酸化炭素に変換し、そして、流路66を通じて、窒素および二酸化炭素が含まれる試料ガスを検出器5に送出するようになされている。   A flow path 65 extended from the reaction tube 21 of the oxygen removing device 2 is connected to the head of the reaction tube 31 of the reducing device 3, and a sample processed in the reaction tube 31 is connected to the bottom of the reaction tube 31. A flow path 66 for taking out the gas and supplying it to the detector 5 is connected. That is, in the reduction device 3, the nitrogen oxide contained in the sample gas and the copper 73 as the reducing agent are reacted to convert the nitrogen oxide into nitrogen, and at the same time, the produced copper oxide is converted into the sample gas. The carbon monoxide is regenerated into copper 73, thereby converting the carbon monoxide in the sample gas into carbon dioxide, and the sample gas containing nitrogen and carbon dioxide is sent to the detector 5 through the flow path 66. It is made like that.

ところで、本発明では、酸素除去装置2において試料ガス中の余剰酸素をグラファイト72と反応させて一酸化炭素および二酸化炭素に変換するが、最初に加熱装置1に導入される酸素の量、および、加熱装置1で生成される試料ガス中の窒素酸化物の量、すなわち、還元装置3における酸化銅の生成量によっては、還元装置3から余剰の一酸化炭素が排出され、これにより、後段の検出器5において窒素を正確に定量できなくなる虞がある。そこで、本発明では、還元装置3において一酸化炭素を確実に二酸化炭素に変換するため、還元装置3の反応管31の下側、すなわち、還元剤としての銅73よりも下流側には、過剰の一酸化炭素を二酸化炭素に変換する酸化剤としての酸化銅74が充填される。なお、酸化銅74としては、前述の銅73と同様に線状であって且つ線径(φ)0.5〜1mm程度、長さ2〜8mm程度のものが使用される。   By the way, in the present invention, excess oxygen in the sample gas is reacted with graphite 72 in the oxygen removing device 2 to convert it into carbon monoxide and carbon dioxide. The amount of oxygen initially introduced into the heating device 1 and Depending on the amount of nitrogen oxides in the sample gas produced by the heating device 1, that is, the amount of copper oxide produced in the reducing device 3, excess carbon monoxide is discharged from the reducing device 3, thereby detecting the subsequent stage. There is a possibility that nitrogen cannot be accurately quantified in the vessel 5. Therefore, in the present invention, in order to reliably convert carbon monoxide into carbon dioxide in the reducing device 3, an excess is provided below the reaction tube 31 of the reducing device 3, that is, downstream of the copper 73 as the reducing agent. Copper oxide 74 is filled as an oxidizing agent that converts carbon monoxide into carbon dioxide. In addition, as the copper oxide 74, the thing similar to the above-mentioned copper 73, and a wire diameter (phi) of about 0.5-1 mm and length of about 2-8 mm is used.

更に、上記のように、酸化銅74による一酸化炭素の酸化処理を続けた場合、酸化銅74が銅に変化し、酸化銅74が漸次減少する。そこで、本発明においては、メンテナンスや回分の分析処理の間など、分析を停止している際、酸化剤としての酸化銅74を再生するため、還元装置3の反応管31には、酸素導入用の流路69が付設される。流路69は、通常、銅73の収容部と酸化銅74の収容部との境界部分に対して接続される。これにより、反応管31は、流量コントローラーによる制御により、酸素の容器から流路69を通じて酸素を一定流量で供給可能に構成される。   Further, as described above, when the oxidation treatment of carbon monoxide with the copper oxide 74 is continued, the copper oxide 74 changes to copper, and the copper oxide 74 gradually decreases. Therefore, in the present invention, when the analysis is stopped, such as during maintenance or batch analysis processing, the copper oxide 74 as the oxidant is regenerated, so that the reaction tube 31 of the reduction device 3 is used for introducing oxygen. The flow path 69 is attached. The channel 69 is normally connected to a boundary portion between the copper 73 accommodating portion and the copper oxide 74 accommodating portion. Thus, the reaction tube 31 is configured to be able to supply oxygen at a constant flow rate from the oxygen container through the flow channel 69 under the control of the flow rate controller.

還元装置3において、反応管31に充填される銅73と酸化銅74の比率は、窒素酸化物を確実に窒素に変換し得る還元剤としての銅73と、余剰の一酸化炭素を確実にトラップし得る酸化剤としての酸化銅74との量的なバランスを考慮して決定されるが、通常は体積比で1:1〜1:2とされる。   In the reducing apparatus 3, the ratio of the copper 73 and the copper oxide 74 filled in the reaction tube 31 is such that the copper 73 as a reducing agent that can reliably convert nitrogen oxides into nitrogen and excess carbon monoxide are reliably trapped. Although it is determined in consideration of a quantitative balance with copper oxide 74 as a possible oxidizing agent, the volume ratio is usually 1: 1 to 1: 2.

本発明の処理装置は、窒素および二酸化炭素が含まれる試料ガスを上記の還元装置3から流路66を通じて除湿剤カラム41に送出し、当該除湿剤カラムから流路67を通じて検出器5に供給するように構成される。また、流路62から加熱装置1へキャリアガスとして供給される例えば二酸化炭素の一部を流路63を通じて除湿剤カラム42に送出し、当該除湿剤カラムから流路68を通じて検出器5に供給するように構成される。   The processing apparatus of the present invention sends a sample gas containing nitrogen and carbon dioxide from the reducing apparatus 3 to the dehumidifying agent column 41 through the flow path 66 and supplies the dehumidifying agent column to the detector 5 through the flow path 67. Configured as follows. Further, a part of, for example, carbon dioxide supplied as a carrier gas from the flow path 62 to the heating apparatus 1 is sent to the dehumidifying agent column 42 through the flow path 63, and supplied from the dehumidifying agent column to the detector 5 through the flow path 68. Configured as follows.

除湿剤カラム41,42は、試料ガスから水分を除去するために配置され、除湿剤を収容して構成される。斯かる除湿剤としては、例えば、水分量に応じて変色する指示薬を五酸化二燐の粒子に混合したものが使用される。また、検出器5としては、通常、試料ガス導入部に恒温槽が設けられた熱伝導度検出器が使用される。周知の通り、熱伝導度検出器は、一対の加熱フィラメント及び抵抗測定用の回路を備え、キャリアガスと同様のガスを基準ガスとして一方のフィラメントに流し、キャリアガスを含む試料ガスを他方のフィラメントに流し、両方のフィラメントにおける電気抵抗の差を比較することにより、試料ガスの熱伝導度の変化を検出する測定器であり、熱伝導度の変化に基づいてコンピュータにより例えば窒素濃度を解析することができる。なお、図示を省略するが、流路64〜66には、試料ガス中の水分を捕捉するためのトラップカラムが配置されてもよい。   The dehumidifying agent columns 41 and 42 are arranged to remove moisture from the sample gas, and are configured to accommodate the dehumidifying agent. As such a dehumidifying agent, for example, a mixture of an indicator that changes color depending on the amount of water and particles of diphosphorus pentoxide is used. Moreover, as the detector 5, a thermal conductivity detector in which a constant temperature bath is provided in the sample gas introduction part is usually used. As is well known, the thermal conductivity detector includes a pair of heating filaments and a resistance measurement circuit, and the same gas as the carrier gas is supplied to one filament as a reference gas, and the sample gas containing the carrier gas is supplied to the other filament. This is a measuring device that detects the change in the thermal conductivity of the sample gas by comparing the difference in electrical resistance between both filaments, and analyzes the nitrogen concentration by a computer based on the change in the thermal conductivity. Can do. Although illustration is omitted, trap channels for capturing moisture in the sample gas may be disposed in the flow paths 64 to 66.

次に、上記のような処理装置を使用した本発明の処理方法について説明する。窒素の定量分析では、先ず、図1に示す加熱装置1において、内管13に試料を収容し、当該内管を加熱管11に挿入した後、加熱管11に酸素を100〜500ml/分の流量で供給しながら、加熱炉12によって加熱管11の内部を800〜1000℃に加熱することにより、試料を燃焼分解して試料ガスを生成する。得られる試料ガスは、図2に示すように、試料中の窒素化合物から生じた窒素酸化物(NOx)、消費されなかった余剰酸素(O)、ならびに、図示しないが、二酸化炭素(CO)を含んでいる。 Next, the processing method of the present invention using the above processing apparatus will be described. In the quantitative analysis of nitrogen, first, in the heating apparatus 1 shown in FIG. 1, a sample is accommodated in the inner tube 13, the inner tube is inserted into the heating tube 11, and then oxygen is added to the heating tube 11 at 100 to 500 ml / min. While supplying at a flow rate, the inside of the heating tube 11 is heated to 800 to 1000 ° C. by the heating furnace 12 to burn and decompose the sample to generate a sample gas. As shown in FIG. 2, the obtained sample gas includes nitrogen oxide (NOx) generated from nitrogen compounds in the sample, surplus oxygen (O 2 ) not consumed, and carbon dioxide (CO 2) (not shown). ) Is included.

次いで、試料の燃焼分解により得られた上記の試料ガスを図1に示す酸素除去装置2の反応管21に導入し、グラファイト72に接触させる。その際、反応管21の内部は、加熱炉22によって500〜1000℃に加熱した状態に保持しておく。これにより、余剰酸素を一酸化炭素および二酸化炭素に変換する。すなわち、酸素除去装置2においては、図2に示すように、グラファイト(C)に試料ガスを接触させることにより、試料ガス中の余剰酸素(O)とグラファイト(C)を反応させ、一部の酸素(O)を一酸化炭素(CO)に変換し、その他の酸素(O)を二酸化炭素(CO)に変換する。 Next, the sample gas obtained by combustion decomposition of the sample is introduced into the reaction tube 21 of the oxygen removing apparatus 2 shown in FIG. At that time, the inside of the reaction tube 21 is kept in a state heated to 500 to 1000 ° C. by the heating furnace 22. Thereby, surplus oxygen is converted into carbon monoxide and carbon dioxide. That is, in the oxygen removing device 2, as shown in FIG. 2, the sample gas is brought into contact with the graphite (C), thereby causing the excess oxygen (O 2 ) in the sample gas to react with the graphite (C). Of oxygen (O 2 ) is converted into carbon monoxide (CO), and other oxygen (O 2 ) is converted into carbon dioxide (CO 2 ).

続いて、グラファイト72に接触させた上記の試料ガス、すなわち、窒素酸化物(NOx)、一酸化炭素(CO)及び二酸化炭素(CO)を含むガスを図1に示す還元装置3の反応管31に導入し、試料ガスを銅73に接触させ、銅73によって窒素酸化物を窒素に変換する。その際、反応管31の内部は、加熱炉32によって500〜800℃に加熱した状態に保持しておく。すなわち、還元装置3においては、図2に示すように、銅(Cu)に試料ガスを接触させることにより、試料ガス中の窒素酸化物(NOx)を銅(Cu)で還元し、窒素(N)を生成する。 Subsequently, the above-described sample gas brought into contact with the graphite 72, that is, the gas containing nitrogen oxide (NOx), carbon monoxide (CO), and carbon dioxide (CO 2 ) is used in the reaction tube of the reducing device 3 shown in FIG. The sample gas is brought into contact with copper 73 and nitrogen oxide is converted into nitrogen by copper 73. At that time, the inside of the reaction tube 31 is kept in a state heated to 500 to 800 ° C. by the heating furnace 32. That is, in the reduction device 3, as shown in FIG. 2, by bringing the sample gas into contact with copper (Cu), nitrogen oxide (NOx) in the sample gas is reduced with copper (Cu), and nitrogen (N 2 ) is generated.

また、上記の還元装置3においては、窒素酸化物の還元処理で生じる酸化銅を銅73に再生する。すなわち、還元装置3においては、図2に示すように、窒素酸化物(NOx)の還元によって酸化銅(CuO)が生成されるが、試料ガスには前段の酸素除去装置2で生成された一酸化炭素(CO)が含まれているため、斯かる一酸化炭素(CO)と酸化銅(CuO)を反応させ、酸化銅(CuO)を銅(Cu)に還元、再生することができる。そして、銅(Cu)の再生により、換言すれば、生成される酸化銅(CuO)によって試料ガス中の一酸化炭素(CO)を二酸化炭素(CO)に変換することができる。 In the reducing device 3 described above, the copper oxide generated by the reduction treatment of nitrogen oxides is regenerated into copper 73. That is, in the reduction device 3, as shown in FIG. 2, copper oxide (CuO) is generated by reduction of nitrogen oxides (NOx), but the sample gas is generated by the oxygen removal device 2 in the previous stage. Since carbon oxide (CO) is contained, such carbon monoxide (CO) and copper oxide (CuO) can be reacted to reduce and regenerate copper oxide (CuO) to copper (Cu). Then, by regenerating copper (Cu), in other words, carbon monoxide (CO) in the sample gas can be converted into carbon dioxide (CO 2 ) by the generated copper oxide (CuO).

しかも、還元装置3においては、反応管31に酸化銅74が酸化剤として充填されており、酸素除去装置2で過剰に一酸化炭素が生成された場合には、酸化銅74によって試料ガス中の一酸化炭素を二酸化炭素に変換できる。その結果、還元装置3において、窒素(N)及び二酸化炭素(CO)からなる試料ガスを得ることができる。そして、流路66、除湿剤カラム41、流路67を通じて、試料ガスを検出器5に導入し、試料ガス中の窒素濃度を測定することができる。 Moreover, in the reducing device 3, the reaction tube 31 is filled with copper oxide 74 as an oxidant, and when carbon monoxide is excessively generated in the oxygen removing device 2, the copper oxide 74 causes the sample gas to be contained in the sample gas. Can convert carbon monoxide to carbon dioxide. As a result, in the reduction device 3, a sample gas composed of nitrogen (N 2 ) and carbon dioxide (CO 2 ) can be obtained. And sample gas can be introduce | transduced into the detector 5 through the flow path 66, the dehumidifier column 41, and the flow path 67, and the nitrogen concentration in sample gas can be measured.

上記のように、本発明では、加熱装置1で試料を燃焼させて得られた試料ガス、すなわち、窒素酸化物と余剰酸素を含む試料ガスから窒素を抽出するに当たり、予め、酸素除去装置2において試料ガスをグラファイト72に接触させ、余剰酸素を一酸化炭素および二酸化炭素に変換した後、これを還元装置3において銅73に接触させることにより、窒素酸化物を還元して窒素を生成し、同時に、還元反応で生成される酸化銅を一酸化炭素で還元することにより銅73を再生し且つ一酸化炭素を二酸化炭素に変換し、試料ガスの成分を窒素と二酸化炭素にする。従って、本発明によれば、還元装置3において高価な銅73を逐次補充する必要がなく、酸素除去装置2において比較的低コストのグラファイト72を補充するだけで分析を継続できるため、分析コスト及び労力を一層低減することができる。   As described above, in the present invention, in extracting nitrogen from the sample gas obtained by burning the sample with the heating device 1, that is, the sample gas containing nitrogen oxides and surplus oxygen, in the oxygen removing device 2 in advance. After contacting the sample gas with graphite 72 and converting surplus oxygen into carbon monoxide and carbon dioxide, this is brought into contact with copper 73 in the reduction device 3, thereby reducing nitrogen oxides to generate nitrogen, Then, by reducing the copper oxide produced by the reduction reaction with carbon monoxide, the copper 73 is regenerated and the carbon monoxide is converted to carbon dioxide, and the components of the sample gas are changed to nitrogen and carbon dioxide. Therefore, according to the present invention, it is not necessary to sequentially replenish expensive copper 73 in the reducing device 3, and the analysis can be continued only by replenishing the relatively low-cost graphite 72 in the oxygen removing device 2. The labor can be further reduced.

また、本発明においては、酸素除去装置2における一酸化炭素の生成量が多く、還元装置3の銅73の再生において処理できない場合も、還元装置3に酸化剤として酸化銅74が充填されているため、過剰に発生した一酸化炭素を確実に捕捉することができる。しかも、還元装置3の反応管31は、流路69によって酸素を供給可能に構成されているため、酸化銅74が減少してきた場合は、回分の分析処理の間やメンテナンスの際、酸素を供給することにより酸化銅74を再生することができる。従って、還元装置3の酸化銅74も入れ替える必要がなく、メンテナンスの労力を低減できる。   Further, in the present invention, even when the amount of carbon monoxide produced in the oxygen removing device 2 is large and treatment cannot be performed in the regeneration of the copper 73 of the reducing device 3, the reducing device 3 is filled with copper oxide 74 as an oxidizing agent. Therefore, excessively generated carbon monoxide can be reliably captured. In addition, since the reaction tube 31 of the reduction device 3 is configured to be able to supply oxygen through the flow path 69, when the copper oxide 74 has decreased, oxygen is supplied during batch analysis processing or during maintenance. By doing so, the copper oxide 74 can be regenerated. Therefore, it is not necessary to replace the copper oxide 74 of the reduction device 3 and the maintenance labor can be reduced.

1 :加熱装置
11:加熱管
12:加熱炉
13:内管
14:蓋
15:流路接続リング
2 :酸素除去装置
21:反応管
22:加熱炉
3 :還元装置
31:反応管
32:加熱炉
41:除湿剤カラム
42:除湿剤カラム
5 :検出器(熱伝導度検出器)
61〜69:流路
71:酸化銅(酸化触媒)
72:グラファイト
73:銅(還元剤)
74:酸化銅(酸化剤)
1: Heating device 11: Heating tube 12: Heating furnace 13: Inner tube 14: Lid 15: Flow path connecting ring 2: Oxygen removing device 21: Reaction tube 22: Heating furnace 3: Reducing device 31: Reaction tube 32: Heating furnace 41: Dehumidifier column 42: Dehumidifier column 5: Detector (thermal conductivity detector)
61-69: Channel 71: Copper oxide (oxidation catalyst)
72: Graphite 73: Copper (reducing agent)
74: Copper oxide (oxidant)

Claims (5)

試料の燃焼分解により得られる試料ガス中の窒素酸化物を還元して窒素を抽出する窒素分析用試料の処理方法であって、窒素酸化物および余剰酸素が含まれる試料ガスをグラファイトに接触させ、余剰酸素を一酸化炭素および二酸化炭素に変換した後、窒素酸化物、一酸化炭素および二酸化炭素が含まれる試料ガスを銅に接触させることにより、銅によって窒素酸化物を窒素に変換し、かつ、生成される酸化銅を試料ガス中の一酸化炭素で銅に再生することを特徴とする窒素分析用試料の処理方法。   A method for treating a sample for nitrogen analysis, which extracts nitrogen by reducing nitrogen oxide in a sample gas obtained by combustion decomposition of the sample, wherein the sample gas containing nitrogen oxide and surplus oxygen is brought into contact with graphite, After converting surplus oxygen into carbon monoxide and carbon dioxide, the sample gas containing nitrogen oxides, carbon monoxide and carbon dioxide is brought into contact with copper to convert the nitrogen oxides into nitrogen with copper, and A method for treating a sample for nitrogen analysis, wherein the produced copper oxide is regenerated into copper with carbon monoxide in a sample gas. 過剰に発生した一酸化炭素を更に酸化銅によって二酸化炭素に変換する請求項1に記載の処理方法。   The treatment method according to claim 1, wherein the excessively generated carbon monoxide is further converted into carbon dioxide by copper oxide. 試料の燃焼分解により得られる試料ガス中の窒素酸化物を還元して窒素を抽出する窒素分析用試料の処理装置であって、酸素を供給可能に構成され且つ試料を燃焼分解して窒素酸化物および余剰酸素が含まれる試料ガスを生成する加熱装置と、グラファイトが充填され且つ前記加熱装置で得られた試料ガス中の余剰酸素を一酸化炭素および二酸化炭素に変換する酸素除去装置と、銅が充填され且つ前記酸素除去装置で処理された試料ガス中の窒素酸化物を窒素に変換し、生成される酸化銅を試料ガス中の一酸化炭素で銅に再生する還元装置とを備えていることを特徴とする窒素分析用試料の処理装置。   A processing apparatus for a sample for nitrogen analysis that extracts nitrogen by reducing nitrogen oxide in a sample gas obtained by combustion decomposition of the sample, and configured to supply oxygen, and the sample is subjected to combustion decomposition for nitrogen oxide And a heating device that generates a sample gas containing surplus oxygen, an oxygen removing device that is filled with graphite and converts surplus oxygen in the sample gas obtained by the heating device into carbon monoxide and carbon dioxide, and copper A reduction device that converts nitrogen oxide in the sample gas that has been filled and processed by the oxygen removal device into nitrogen, and that regenerates the copper oxide that is produced into carbon with carbon monoxide in the sample gas. An apparatus for processing a sample for nitrogen analysis characterized by the following. 還元装置には、過剰の一酸化炭素を二酸化炭素に変換する酸化剤としての酸化銅が充填されている請求項3に記載の処理装置。   The processing apparatus according to claim 3, wherein the reducing apparatus is filled with copper oxide as an oxidizing agent that converts excess carbon monoxide into carbon dioxide. 還元装置には、酸化剤としての酸化銅を再生するための酸素が供給されるように構成されている請求項4に記載の処理装置。   The processing apparatus according to claim 4, wherein oxygen for regenerating copper oxide as an oxidizing agent is supplied to the reducing apparatus.
JP2010289828A 2010-12-27 2010-12-27 Nitrogen analysis sample processing method and processing apparatus Active JP5505293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010289828A JP5505293B2 (en) 2010-12-27 2010-12-27 Nitrogen analysis sample processing method and processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010289828A JP5505293B2 (en) 2010-12-27 2010-12-27 Nitrogen analysis sample processing method and processing apparatus

Publications (2)

Publication Number Publication Date
JP2012137381A JP2012137381A (en) 2012-07-19
JP5505293B2 true JP5505293B2 (en) 2014-05-28

Family

ID=46674912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010289828A Active JP5505293B2 (en) 2010-12-27 2010-12-27 Nitrogen analysis sample processing method and processing apparatus

Country Status (1)

Country Link
JP (1) JP5505293B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6260433B2 (en) * 2014-04-24 2018-01-17 株式会社三菱ケミカルアナリテック Nitrogen analysis method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244236B2 (en) * 1973-11-20 1977-11-05
JPS6219762A (en) * 1985-07-17 1987-01-28 Fuji Electric Co Ltd Analysis of hydrogen concentration in gaseous helium which is coolant for high-temperature gas furnace
JPH02170048A (en) * 1988-12-23 1990-06-29 Agency Of Ind Science & Technol Method and apparatus for analyzing trace oxygen
JP2003107071A (en) * 2001-09-27 2003-04-09 Sumika Chemical Analysis Service Ltd Total nitrogen measuring method
ITMI20040740A1 (en) * 2004-04-15 2004-07-15 Ecoenergetics S R L AUTOMATIC ANALYZER FOR NITROGEN DETECTION FROM ORGANIC COMPOUNDS

Also Published As

Publication number Publication date
JP2012137381A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
TWI307409B (en) Measuring method of total organic carbon, measuring method of total nitrogen, measuring apparatus for the measuring methods
JP2009503438A (en) Method and apparatus for converting mercury oxide to elemental mercury
EP3053637B1 (en) Soldering apparatus with a formic acid decomposition apparatus and formic acid decomposition method
JPH1015349A (en) Method and apparatus for decomposing fluorocarbons
JP5001419B2 (en) Heated combustion tube, pyrolysis device and mercury analyzer for mercury analysis
KR101229577B1 (en) The method for analysis of total organic carbon and apparatus
JP4816420B2 (en) Chlorine analyzer
JP5505293B2 (en) Nitrogen analysis sample processing method and processing apparatus
KR20100066098A (en) An appratus for graphitization and graphitization method
JPWO2013121577A1 (en) Total nitrogen measuring device
JP2010096688A (en) Pyrolytically decomposing apparatus for analyzing mercury, mercury analyzer, and its method
JP6260433B2 (en) Nitrogen analysis method
JP2008082808A (en) Analyzer
JP2016200590A (en) Analyzing method for nitrogen
JP4779911B2 (en) Analysis equipment
JP2005214933A (en) Hydrogen sensor
JP2007131936A (en) Burnout method for vacuum carburizing furnace
JPH0833490B2 (en) Method and apparatus for decontaminating waste gas from a fusion reactor fuel cycle
JP2009228106A (en) Method for collecting metal arsenic
JP2009300203A (en) Sulfur analyzing method and sulfur analyzer
JP2011085566A (en) Method for facilitating recovery of uranium from catalyst containing uranium-antimony complex oxide
JP4821646B2 (en) Adsorptive organic halogen analysis method
JPS61191956A (en) Method and apparatus for measuring sulfur portion in material containing nitrogen and sulfur
JPH0954078A (en) Measuring method for cao content in steel
JP2010025749A (en) Element analyzing method or element analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5505293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250