JP5503854B2 - (Oxy) nitride phosphor, white light emitting device including the same, and method for producing phosphor - Google Patents

(Oxy) nitride phosphor, white light emitting device including the same, and method for producing phosphor Download PDF

Info

Publication number
JP5503854B2
JP5503854B2 JP2008211956A JP2008211956A JP5503854B2 JP 5503854 B2 JP5503854 B2 JP 5503854B2 JP 2008211956 A JP2008211956 A JP 2008211956A JP 2008211956 A JP2008211956 A JP 2008211956A JP 5503854 B2 JP5503854 B2 JP 5503854B2
Authority
JP
Japan
Prior art keywords
phosphor
light emitting
white light
nitride
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008211956A
Other languages
Japanese (ja)
Other versions
JP2009046680A (en
Inventor
俊一 窪田
泳 植 金
承 宰 任
泰 坤 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Publication of JP2009046680A publication Critical patent/JP2009046680A/en
Application granted granted Critical
Publication of JP5503854B2 publication Critical patent/JP5503854B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/71Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus also containing alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、(オキシ)ナイトライド蛍光体、それを含む白色発光素子及びナイトライド蛍光体の製造方法に係り、特に優秀な赤色及び優秀な発光効率を具現する(オキシ)ナイトライド蛍光体、それを含む白色発光素子及びマイルドな工程条件を有する蛍光体の製造方法に関する。   The present invention relates to a (oxy) nitride phosphor, a white light emitting device including the same, and a method for manufacturing the nitride phosphor, and in particular, an (oxy) nitride phosphor that realizes excellent red and excellent luminous efficiency, and The present invention relates to a white light-emitting element containing phosphor and a method of manufacturing a phosphor having mild process conditions.

従来の光システムとして蛍光灯及び白熱灯が広く使われる。しかし、蛍光灯で使われるHgは、環境問題をもたらす。また、前記従来の光システムは、寿命が非常に短いだけでなく、その効率も非常に低いため、節電の側面から望ましくない。これに対し、最近多くの研究により白色発光素子の効率が向上している。   Fluorescent lamps and incandescent lamps are widely used as conventional light systems. However, Hg used in fluorescent lamps causes environmental problems. In addition, the conventional optical system not only has a very short lifetime, but also has a very low efficiency, which is undesirable from the viewpoint of power saving. On the other hand, the efficiency of white light emitting devices has been improved by many recent studies.

かかる白色発光素子を具現する方法は、UV発光ダイオード(Light Emitting Diode:LED、以下、UV−LEDとも称する)を光源として利用し、光の三原色である三原色蛍光体を励起させて白色を具現する方式、青色発光ダイオード(以下、青色LEDとも称する)を光源として使用して赤色及び緑色蛍光体を励起させて白色を具現する方式、または青色LEDを光源として使用して黄色蛍光体を励起させることによって白色を具現する方式に区分される。   A method of realizing such a white light emitting device uses a UV light emitting diode (LED, hereinafter also referred to as UV-LED) as a light source, and realizes white by exciting three primary color phosphors that are three primary colors of light. A method of exciting white by using a blue light emitting diode (hereinafter also referred to as a blue LED) as a light source to excite red and green phosphors, or exciting a yellow phosphor using a blue LED as a light source. Depending on the type, it is classified into a method of realizing white.

前記三つの方法のうち、青色LEDを光源として使用して黄色蛍光体を励起させることによって白色を具現する方式は、赤色の強度が低下して色再現の側面で問題がある。   Of the three methods, the method of realizing white by exciting a yellow phosphor using a blue LED as a light source has a problem in terms of color reproduction due to a decrease in the intensity of red.

したがって、前記三つの方式のうち、残りのUV及び青色LED及び蛍光体を使用して光システムを開発しようとする研究が増加している。しかし、それらの方式は、色再現には優れているが、効率が低下するという短所がある。   Therefore, among the above three methods, research for developing a light system using the remaining UV and blue LEDs and phosphors is increasing. However, these methods are excellent in color reproduction, but have a disadvantage that efficiency is lowered.

一方、従来の公知の赤色蛍光体は、白色発光素子に適用するのに適していない。それらは、カソードレイ、VUV(Vacuum Ultraviolet)レイ及び短波長光に対しては発光効率が優れているが、前記白色発光素子で使われるUV及び青色光に対する発光効率に劣る。したがって、白色発光素子の技術分野で、UV及び青色光に対して高効率を有する赤色蛍光体の開発が強く要求されている。   On the other hand, the conventional known red phosphor is not suitable for application to a white light emitting element. They are excellent in luminous efficiency for cathode ray, VUV (vacuum ultraviolet) ray and short wavelength light, but inferior in luminous efficiency for UV and blue light used in the white light emitting device. Accordingly, there is a strong demand for the development of red phosphors having high efficiency with respect to UV and blue light in the technical field of white light emitting devices.

かかる状況で、ナイトライド蛍光体の開発が進められている。   Under such circumstances, the development of nitride phosphors is underway.

しかしながら、従来のナイトライド蛍光体は、UV及び青色光に対して発光するものの、白色発光素子として商業化されるには発光強度が十分な程度ではない。また、公知のナイトライド蛍光体の製造方法は、高い温度、0.1MP以上の高い窒素ガス圧力の工程条件が必要となる。したがって、かかる高温、高圧に耐えるように考案された特別な装置が必要となり、また、出発物質として不安定な物質を使用しているため、それらの出発物質の取扱時に要求される条件が厳しい。このように、現在までは商業化するのに適した赤色蛍光体が開発されていないのが実情である。   However, although conventional nitride phosphors emit light with respect to UV and blue light, the light emission intensity is not sufficient to be commercialized as a white light emitting device. Moreover, the manufacturing method of a well-known nitride fluorescent substance requires the process conditions of high temperature and high nitrogen gas pressure of 0.1 MP or more. Therefore, a special apparatus designed to withstand such high temperature and high pressure is required, and since unstable materials are used as starting materials, the conditions required when handling these starting materials are severe. Thus, until now, no actual red phosphor suitable for commercialization has been developed.

本発明が解決しようとする課題は、前述した問題点を解決した赤色蛍光体として(オキシ)ナイトライド蛍光体を提供するところにある。   The problem to be solved by the present invention is to provide an (oxy) nitride phosphor as a red phosphor that solves the above-mentioned problems.

本発明が解決しようとする他の課題は、前記(オキシ)ナイトライド蛍光体を含む白色発光素子を提供するところにある。   Another problem to be solved by the present invention is to provide a white light emitting device including the (oxy) nitride phosphor.

本発明が解決しようとするさらに他の課題は、安定かつマイルドな工程条件を有する蛍光体の製造方法を提供するところにある。   Still another problem to be solved by the present invention is to provide a method for producing a phosphor having stable and mild process conditions.

前記課題を解決するために、本発明では、下記化学式1の化合物で表示される(オキシ)ナイトライド蛍光体を提供する。   In order to solve the above-mentioned problems, the present invention provides an (oxy) nitride phosphor represented by a compound represented by the following chemical formula 1.

前記式で、Mは、アルカリ土類金属であり、0<x<1、1.8<a<2.2、4.5<b<5.5、0≦c<8、0<d≦8及び0<c+d≦8である。   In the above formula, M is an alkaline earth metal and 0 <x <1, 1.8 <a <2.2, 4.5 <b <5.5, 0 ≦ c <8, 0 <d ≦ 8 and 0 <c + d ≦ 8.

前記化学式1の化合物の(オキシ)ナイトライド蛍光体は、ポアを含みうる。   The (oxy) nitride phosphor of the compound of Formula 1 may include a pore.

前記他の課題を解決するために、本発明では、UV−LEDと、前記本発明による(オキシ)ナイトライド赤色蛍光体と、を含む白色発光素子を提供する。   In order to solve the other problems, the present invention provides a white light emitting device including a UV-LED and the (oxy) nitride red phosphor according to the present invention.

前記さらに他の課題を解決するために、本発明では、(a)アルカリ土類金属前駆体化合物、Eu前駆体化合物、酸、Si粉末及びキレート化合物の混合物をゲル状態に形成する工程と、(b)前記ゲル状態の混合物を乾燥及び1次焼成する工程と、(c)前記(b)工程の結果物を粉砕及び2次焼成する工程と、を含む蛍光体の製造方法を提供する。 In order to solve the above-described further problems, in the present invention, (a) a step of forming a mixture of an alkaline earth metal precursor compound, an Eu precursor compound, an acid, Si 3 N 4 powder and a chelate compound in a gel state And (b) a step of drying and primary firing the mixture in the gel state, and (c) a step of pulverizing and secondary firing the resultant product of the step (b). To do.

本発明の(オキシ)ナイトライド蛍光体は、UV−LED及び青色LED型白色発光素子に使用するのに優れた赤色を具現し、優秀な効率を具現する。また、本発明による蛍光体の製造方法は、安定した物質を出発物質として使用し、工程条件がマイルドかつ環境親和的であるので、商業的に活用するのに有効である。   The (oxy) nitride phosphor of the present invention realizes a red color that is excellent for use in UV-LED and blue LED type white light emitting devices, and realizes excellent efficiency. In addition, the method for producing a phosphor according to the present invention uses a stable substance as a starting material, and the process conditions are mild and environmentally friendly. Therefore, it is effective for commercial use.

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明は、下記化学式1の(オキシ)ナイトライド系蛍光体を提供する。   The present invention provides an (oxy) nitride phosphor of the following chemical formula 1.

前記式で、Mは、アルカリ土類金属であり、0<x<1、1.8<a<2.2、4.5<b<5.5、0≦c<8、0<d≦8及び0<c+d≦8である。   In the above formula, M is an alkaline earth metal and 0 <x <1, 1.8 <a <2.2, 4.5 <b <5.5, 0 ≦ c <8, 0 <d ≦ 8 and 0 <c + d ≦ 8.

前記化学式1の化合物の例として下記の化学式が挙げられる。   Examples of the compound represented by Formula 1 include the following chemical formula.

前記式で、Mは、アルカリ土類金属であり、0<x<1、1.8<a<2.2、4.5<b<5.5、0<c<8、0<d≦8及び0<c+d≦8である。   In the above formula, M is an alkaline earth metal, 0 <x <1, 1.8 <a <2.2, 4.5 <b <5.5, 0 <c <8, 0 <d ≦. 8 and 0 <c + d ≦ 8.

前記(オキシ)ナイトライド蛍光体は、ポアを含みうる。   The (oxy) nitride phosphor may include a pore.

前記化学式1の(オキシ)ナイトライド蛍光体は、赤色蛍光体であって、UV及び青色光に対して励起され、赤色発光時に高効率を表す物質である。したがって、前記化学式1の(オキシ)ナイトライド蛍光体を含む白色発光素子は、UV−LED及び青色−LEDを励起光源として使用できる。   The (oxy) nitride phosphor of Formula 1 is a red phosphor, which is excited by UV and blue light and exhibits high efficiency when emitting red light. Accordingly, the white light emitting device including the (oxy) nitride phosphor of Formula 1 can use UV-LEDs and blue-LEDs as excitation light sources.

本発明による化学式1の(オキシ)ナイトライド蛍光体は、従来の赤色蛍光体が有する色々な短所を効果的に改善する。例えば、発光元素が窒素と結合することによって、消光と関連した熱活性化エネルギーが非常に大きくなる。このため、赤色発光の熱損失を減らすことができ、赤色発光の高い効率が得られる。また、既存の赤色蛍光体には、空気中の水分に敏感である、バインダと予期せぬ反応を起こす、熱に対する耐久性が弱いといった問題点があった。オキシナイトライド蛍光体は、従来の赤色蛍光体が有するかような問題を解決しうる物質であるため、白色発光素子用の赤色蛍光体として非常に有効である。   The (oxy) nitride phosphor of Formula 1 according to the present invention effectively improves various disadvantages of the conventional red phosphor. For example, when the luminescent element is combined with nitrogen, the thermal activation energy associated with quenching becomes very large. For this reason, heat loss of red light emission can be reduced, and high efficiency of red light emission can be obtained. In addition, the existing red phosphor has a problem that it is sensitive to moisture in the air, causes an unexpected reaction with the binder, and has low durability against heat. Since the oxynitride phosphor is a substance that can solve the problems of conventional red phosphors, it is very effective as a red phosphor for white light emitting devices.

したがって、本発明による(オキシ)ナイトライド赤色蛍光体は、UV−LEDを光源として利用し、赤色、緑色、青色を有する3個の蛍光体を組み合わせて白色を具現する方式、及び青色LEDを光源として使用して赤色及び緑色蛍光体を励起させることによって白色を具現する方式の白色発光素子の類型に非常に適している。かかる白色発光素子は、良好な白色発光を実現し、かつ高い効率を具現できる。   Therefore, the (oxy) nitride red phosphor according to the present invention uses a UV-LED as a light source, combines three phosphors having red, green, and blue to realize white, and a blue LED as a light source. It is very suitable for the type of white light-emitting element that realizes white by exciting red and green phosphors. Such a white light emitting device realizes good white light emission and can realize high efficiency.

一方、前記本発明による(オキシ)ナイトライド蛍光体は、人の目に対する敏感度が高い赤色を再現できる。   On the other hand, the (oxy) nitride phosphor according to the present invention can reproduce red having high sensitivity to human eyes.

また、本発明は、ポアを含む(オキシ)ナイトライド蛍光体を提供する。ポアを有するオキシナイトライド蛍光体の製造過程で、活性窒素(N)がポア内に浸透して窒化を起こす。オキシナイトライド蛍光体がポアを有すると、ポアを通じて円滑なガスの出入が行われる。したがって窒化の観点から見るとき、ポアが蛍光体の合成過程上、肯定的な役割を行う側面があると見られる。 The present invention also provides (oxy) nitride phosphors containing pores. In the process of manufacturing the oxynitride phosphor having pores, active nitrogen (N * ) permeates into the pores to cause nitriding. When the oxynitride phosphor has pores, smooth gas flow in and out through the pores. Therefore, when viewed from the viewpoint of nitriding, it seems that the pore plays a positive role in the phosphor synthesis process.

本発明による(オキシ)ナイトライド蛍光体がポアを含む場合、前記ポアは、平均直径が0.6μm以下であり、望ましくは、約0.2μmないし0.6μmである。ポアの平均直径が0.2μm未満の場合、Nの含量が少なくなる可能性がある。これは、蛍光体の製造過程で前述したように活性窒素(N)がポア内に浸透して窒化を起こすが、ポアが小さくなれば、かかる作用が不十分になるためである。また、ポアの平均直径が0.6μmを超える場合、蛍光体の密度が減少して発光強度が低下するという問題点がありうる。なお、ポアが概略円形以外の場合、平均直径を算出する際の直径とは、楕円形の場合、長径を指し、多角形の場合、各頂点を結んだ長さのうち最大径を指す。 When the (oxy) nitride phosphor according to the present invention includes pores, the pores have an average diameter of 0.6 μm or less, preferably about 0.2 μm to 0.6 μm. When the average diameter of the pores is less than 0.2 μm, the N content may be reduced. This is because active nitrogen (N * ) permeates into the pore and causes nitridation as described above in the process of manufacturing the phosphor, but this effect becomes insufficient when the pore is reduced. Further, when the average diameter of the pores exceeds 0.6 μm, there may be a problem that the density of the phosphor is reduced and the emission intensity is lowered. When the pore is other than a substantially circular shape, the diameter when calculating the average diameter indicates the major axis in the case of an ellipse, and indicates the maximum diameter among the lengths connecting the vertices in the case of a polygon.

また、ポアは、(オキシ)ナイトライド蛍光体の断面1μm当たり約0.01個以下、望ましくは、約0.005個ないし0.01個を含む。前記単位面積当たりポアの個数、すなわち(オキシ)ナイトライド蛍光体の断面1μm当たりポアが0.005個未満の場合、Nの含量が少なくなる虞れがある。これも、蛍光体の製造過程で活性窒素(N)がポア内に浸透して窒化を起こすが、ポアの個数が少なくなれば、かかる作用が不十分になるためである。前記単位面積当たりポアの個数、すなわち(オキシ)ナイトライド蛍光体の断面1μm当たりポアが0.01個を超える場合、蛍光体の密度が減少して発光強度が低下するという問題点がありうる。 Further, the pore contains about 0.01 or less, preferably about 0.005 to 0.01 per 1 μm 2 of the cross section of the (oxy) nitride phosphor. If the number of pores per unit area, that is, less than 0.005 pores per 1 μm 2 cross section of the (oxy) nitride phosphor, the N content may be reduced. This is also because active nitrogen (N * ) permeates into the pores during the manufacturing process of the phosphor to cause nitriding, but this effect becomes insufficient when the number of pores decreases. When the number of pores per unit area, that is, when the number of pores exceeds 1 per 1 μm 2 of the cross section of the (oxy) nitride phosphor, there may be a problem that the phosphor density decreases and the emission intensity decreases. .

ポア間の平均距離は、約1μm以上、望ましくは、約1μmないし3μmである。ポア間の平均距離が1μm未満で形成される場合、蛍光体の密度が減少して発光強度が低下するという問題点がありうる。3μmを超えて形成される場合、Nの含量が少なくなる可能性がある。これも、前記蛍光体の製造過程で活性窒素(N)がポア内に浸透して窒化を起こすが、ポア間の平均距離が大きくなれば、かかる作用が不十分になるためである。 The average distance between the pores is about 1 μm or more, preferably about 1 μm to 3 μm. When the average distance between the pores is less than 1 μm, there may be a problem that the density of the phosphor decreases and the emission intensity decreases. When formed to exceed 3 μm, the N content may be reduced. This is also because active nitrogen (N * ) permeates into the pores during the manufacturing process of the phosphor to cause nitriding, but this effect becomes insufficient if the average distance between the pores increases.

ポアは、色々な形態を有するところ、その断面が円形、楕円形、多角形などでありうる。   The pore has various forms, and its cross section may be circular, elliptical, polygonal, or the like.

化学式1において、Mはアルカリ土類金属であり、好ましくはBa、SrまたはCaである。ここでMは、1種のアルカリ土類金属であっても、あるいは2種以上のアルカリ土類金属を表すものであってもよい。   In Chemical Formula 1, M is an alkaline earth metal, preferably Ba, Sr or Ca. Here, M may be one kind of alkaline earth metal or may represent two or more kinds of alkaline earth metals.

前記化学式1の化合物の具体例としては、(Sr1−xEuSi(0<x≦0.1、1.8<a<2.2、4.5<b<5.5、0≦c<8及び0<c+d≦8、望ましくは、(Sr1−xEuSi(0<x≦0.1)が挙げられる。 Specific examples of the compound of Formula 1 include (Sr 1-x Eu x ) a Si b O c N d (0 <x ≦ 0.1, 1.8 <a <2.2, 4.5 <b <5.5, 0 ≦ c <8 and 0 <c + d ≦ 8, preferably (Sr 1-x Eu x ) 2 Si 5 N 8 (0 <x ≦ 0.1).

前記化学式1の化合物の他の具体例としては、(Sr1−xEuSi(0<x<1)、(Sr1−xEu1.99Si(0<x<1)、(Ba1−x−ySrEuSi(0<x<1、0<y<1及び0<x+y<1)、(Sr1−x−yCaEuSi(0<x<1、0<y<1及び0<x+y<1)または(Ba0.5Sr1−xCa0.5Eu)Si(0<x<1)のような化合物でありうる。 Other specific examples of the compound of Formula 1 include (Sr 1-x Eu x ) 2 Si 5 N 8 (0 <x <1), (Sr 1−x Eu x ) 1.99 Si 5 N 8 ( 0 <x <1), (Ba 1-xy Sr x Eu y ) 2 Si 5 N 8 (0 <x <1, 0 <y <1 and 0 <x + y <1), (Sr 1-x− y Ca x Eu y) 2 Si 5 N 8 (0 <x <1,0 <y <1 and 0 <x + y <1) or (Ba 0.5 Sr 1-x Ca 0.5 Eu x) Si 5 N 8 (0 <x <1).

本発明は、また、UV−LEDと、本発明による(オキシ)ナイトライド赤色蛍光体(ポアを有する場合及びポアを有さない場合いずれも可能である)と、を含む白色発光素子を提供する。   The present invention also provides a white light-emitting element comprising a UV-LED and the (oxy) nitride red phosphor according to the present invention (both having and without a pore are possible). .

望ましくは、UV−LEDは、励起光源が紫外線または近紫外線領域の電磁波である。   Preferably, in the UV-LED, the excitation light source is an electromagnetic wave in the ultraviolet or near ultraviolet region.

さらに望ましくは、白色発光素子において、UV−LEDの励起光源の波長帯域が390〜460nmの範囲である。   More preferably, in the white light emitting element, the wavelength band of the excitation light source of the UV-LED is in the range of 390 to 460 nm.

UV−LEDと、本発明によるオキシナイトライド赤色蛍光体を含む白色発光素子は、青色蛍光体および/または緑色蛍光体をさらに含む。   The white light emitting device including the UV-LED and the oxynitride red phosphor according to the present invention further includes a blue phosphor and / or a green phosphor.

前記青色蛍光体の例としては、(Sr,Ba,Ca)(POCl:Eu2+;BaMgAl1627:Eu2+;SrAl1425:Eu2+;BaAl13:Eu2+;(Sr,Mg,Ca,Ba)(POCl:Eu2+;BaMgAl1017:Eu2+及びSrSi2SrCl:Eu2+などが挙げられる。これらは1種単独で用いてもよいし、2種以上併用してもよい。 Examples of the blue phosphor include (Sr, Ba, Ca) 5 (PO 4 ) 3 Cl: Eu 2+ ; BaMg 2 Al 16 O 27 : Eu 2+ ; Sr 4 Al 14 O 25 : Eu 2+ ; BaAl 8 O 13 : Eu 2+ ; (Sr, Mg, Ca, Ba) 5 (PO 4 ) 3 Cl: Eu 2+ ; BaMgAl 10 O 17 : Eu 2+ and Sr 2 Si 3 O 8 2 SrCl 2 : Eu 2+ . These may be used alone or in combination of two or more.

前記緑色蛍光体の例としては、(Ba,Sr,Ca)SiO:Eu2+;BaMgSi:Eu2+;BaZnSi:Eu2+;BaAl:Eu2+;SrAl:Eu2+;BaMgAl1017:Eu2+,Mn2+及びBaMgAl1627:Eu2+,Mn2+などが挙げられる。これらは1種単独で用いてもよいし、2種以上併用してもよい。 Examples of the green phosphor include (Ba, Sr, Ca) 2 SiO 4 : Eu 2+ ; Ba 2 MgSi 2 O 7 : Eu 2+ ; Ba 2 ZnSi 2 O 7 : Eu 2+ ; BaAl 2 O 4 : Eu 2+ SrAl 2 O 4 : Eu 2+ ; BaMgAl 10 O 17 : Eu 2+ , Mn 2+ and BaMg 2 Al 16 O 27 : Eu 2+ , Mn 2+ and the like. These may be used alone or in combination of two or more.

望ましくは、前記赤色蛍光体の放出スペクトル(蛍光スペクトル)でピークの波長は、610〜650nmである。望ましくは、前記緑色蛍光体の放出スペクトルでピークの波長は、510〜560nmである。望ましくは、前記青色蛍光体の放出スペクトルでピークの波長は、440〜460nmである。   Preferably, the peak wavelength in the emission spectrum (fluorescence spectrum) of the red phosphor is 610 to 650 nm. Preferably, the peak wavelength in the emission spectrum of the green phosphor is 510 to 560 nm. Preferably, the peak wavelength in the emission spectrum of the blue phosphor is 440 to 460 nm.

また、本発明は、青色LEDと、本発明による(オキシ)ナイトライド赤色蛍光体と、を含む白色発光素子を提供する。望ましくは、青色LEDは、励起光源であって、420〜480nmの波長帯域を有する。   Moreover, this invention provides the white light emitting element containing blue LED and the (oxy) nitride red fluorescent substance by this invention. Preferably, the blue LED is an excitation light source and has a wavelength band of 420 to 480 nm.

青色LEDと、本発明によるオキシナイトライド赤色蛍光体を含む白色発光素子は、緑色蛍光体をさらに含むことが好ましい。   The white light emitting device including the blue LED and the oxynitride red phosphor according to the present invention preferably further includes a green phosphor.

緑色蛍光体の例としては、(Ba,Sr,Ca)SiO:Eu2+;BaMgSi:Eu2+;BaZnSi:Eu2+;BaAl:Eu2+;SrAl:Eu2+;BaMgAl1017:Eu2+,Mn2+及びBaMgAl1627:Eu2+,Mn2+などが挙げられる。これらは1種単独で用いてもよいし、2種以上併用してもよい
望ましくは、前記赤色蛍光体の放出スペクトルでピークの波長は、610〜650nmである。望ましくは、前記緑色蛍光体の放出スペクトルでピークの波長は、510〜560nmである。
Examples of the green phosphor include (Ba, Sr, Ca) 2 SiO 4 : Eu 2+ ; Ba 2 MgSi 2 O 7 : Eu 2+ ; Ba 2 ZnSi 2 O 7 : Eu 2+ ; BaAl 2 O 4 : Eu 2+ ; SrAl 2 O 4 : Eu 2+ ; BaMgAl 10 O 17 : Eu 2+ , Mn 2+ and BaMg 2 Al 16 O 27 : Eu 2+ , Mn 2+ and the like. These may be used alone or in combination of two or more. Desirably, the peak wavelength in the emission spectrum of the red phosphor is 610 to 650 nm. Preferably, the peak wavelength in the emission spectrum of the green phosphor is 510 to 560 nm.

本発明の白色発光素子は、信号灯、通信機器、ディスプレイ装置のバックライトまたは照明用として用いることができる。   The white light emitting device of the present invention can be used for a signal lamp, a communication device, a backlight of a display device or illumination.

図1は、本発明の一実施形態によるLEDの構造を示す概略図であって、高分子レンズタイプの表面実装型LEDを示すものである。ここで、高分子レンズの一実施例としてエポキシレンズを使用する。   FIG. 1 is a schematic diagram illustrating the structure of an LED according to an embodiment of the present invention, and illustrates a surface mount LED of a polymer lens type. Here, an epoxy lens is used as an example of the polymer lens.

図1に示すように、UV LEDチップ10は、金ワイヤー20を通じて電気リード線30とダイボンディングされ、本発明による赤色蛍光体を含有する蛍光体組成物40を含むようにエポキシモールド層50が形成されている。そして、図1において、成形モールド60の内部は、アルミニウムまたは銀でコーティングされた反射膜からなり、これは、ダイオードから放出された光を上方に反射させる役割及び適当量のエポキシを溜める役割を行う。   As shown in FIG. 1, the UV LED chip 10 is die-bonded to an electrical lead wire 30 through a gold wire 20, and an epoxy mold layer 50 is formed so as to include a phosphor composition 40 containing a red phosphor according to the present invention. Has been. In FIG. 1, the interior of the mold 60 is made of a reflective film coated with aluminum or silver, which serves to reflect the light emitted from the diode upward and to store an appropriate amount of epoxy. .

前記エポキシモールド層50の上部には、エポキシドームレンズ70が形成されており、このエポキシドームレンズ70は、所望の配向角によって形態が変化しうる。   An epoxy dome lens 70 is formed on the epoxy mold layer 50, and the shape of the epoxy dome lens 70 can be changed according to a desired orientation angle.

本発明のLEDは、図1の構造にのみ限定されることを意味するものではなく、その他の構造、例えばLEDに蛍光体が実装されるタイプ、砲弾型、PCBタイプの表面実装型の構造を有するLEDでありうる。   The LED of the present invention is not limited to the structure shown in FIG. 1, and other structures such as a type in which a phosphor is mounted on the LED, a shell type, and a PCB type surface mount type structure are used. It can be LED which has.

一方、本発明の化学式1で表示されるオキシナイトライド蛍光体は、前述したLED以外に水銀ランプ、キセノンランプのようなランプまたは自発光液晶表示素子(LCD)にも適用可能である。   On the other hand, the oxynitride phosphor represented by Chemical Formula 1 of the present invention can be applied to a lamp such as a mercury lamp or a xenon lamp or a self-luminous liquid crystal display element (LCD) in addition to the LED described above.

また、本発明は、(a)アルカリ土類金属前駆体化合物、Eu前駆体化合物、酸、Si粉末及びキレート化合物の混合物をゲル状態に形成する工程と、(b)前記(a)工程で得られる混合物を乾燥及び1次焼成する工程と、(c)前記(b)工程の結果物を粉砕及び2次焼成する工程と、を含む蛍光体の製造方法を提供する。 The present invention also includes (a) a step of forming a mixture of an alkaline earth metal precursor compound, an Eu precursor compound, an acid, Si 3 N 4 powder and a chelate compound in a gel state, and (b) the above (a) There is provided a method for producing a phosphor comprising: a step of drying and primary firing the mixture obtained in the step; and a step of (c) crushing and secondary firing the resultant product of the step (b).

上記方法を本発明の一具現例によってさらに具体的に説明すれば、次の通りである。   The above method will be described in more detail with reference to an embodiment of the present invention as follows.

まず、アルカリ土類金属前駆体化合物及びEu前駆体化合物の混合物を準備する。アルカリ土類金属前駆体化合物は、望ましくは、Ba前駆体化合物、Sr前駆体化合物、Ca前駆体化合物などを使用できる。Ba前駆体化合物の例として、BaCO,Ba(NO,BaCl,BaOなどがある。Sr前駆体化合物の例として、SrCO,Sr(NO,SrCl,SrOなどがある。Ca前駆体化合物の例として、CaCO,Ca(NO,CaCl,CaOなどがある。また、前記Eu前駆体化合物として、Eu,Eu(NO,EuClなどを使用できる。前記各前駆体化合物は、それぞれ1種単独で用いてもよいし、2種以上併用してもよい。 First, a mixture of an alkaline earth metal precursor compound and an Eu precursor compound is prepared. As the alkaline earth metal precursor compound, a Ba precursor compound, an Sr precursor compound, a Ca precursor compound, or the like can be desirably used. Examples of the Ba precursor compound include BaCO 3 , Ba (NO 3 ) 2 , BaCl 2 and BaO. Examples of the Sr precursor compound include SrCO 3 , Sr (NO 3 ) 2 , SrCl 2 , SrO and the like. Examples of the Ca precursor compound include CaCO 3 , Ca (NO 3 ) 2 , CaCl 2 , and CaO. Further, Eu 2 O 3 , Eu (NO 3 ) 3 , EuCl 3 and the like can be used as the Eu precursor compound. Each said precursor compound may be used individually by 1 type, respectively, and may be used together 2 or more types.

次いで、前記アルカリ土類金属前駆体化合物及びEu前駆体化合物の混合物を酸に溶解させる。このとき、使用可能な酸は、無機酸または有機酸などが広く使われ、その例としては、HNO、HCl、HSO、酢酸、酪酸、パルミチン酸、シュウ酸、酒石酸などがある。これらは1種単独で用いてもよいし、2種以上併用してもよい。望ましくは、前記酸は、0.1ないし10mol/lの濃度である。 Next, the mixture of the alkaline earth metal precursor compound and the Eu precursor compound is dissolved in an acid. At this time, as the usable acid, inorganic acid or organic acid is widely used, and examples thereof include HNO 3 , HCl, H 2 SO 4 , acetic acid, butyric acid, palmitic acid, oxalic acid, tartaric acid and the like. These may be used alone or in combination of two or more. Preferably, the acid is at a concentration of 0.1 to 10 mol / l.

次いで、前記アルカリ土類金属前駆体化合物及びEu前駆体化合物の混合物が溶解された酸にSi粉末を添加する。 Next, Si 3 N 4 powder is added to the acid in which the mixture of the alkaline earth metal precursor compound and the Eu precursor compound is dissolved.

次いで、前記アルカリ土類金属前駆体化合物、Eu前駆体化合物の混合物が溶解された酸及びSi粉末の混合物にキレート化合物を添加してゲル状態に形成する。前記キレート化合物の例は、クエン酸、グリシン、尿素、エチレンジアミン四酢酸(EDTA)などでありうる。キレート剤の添加量は、混合物全体に対して25〜30質量%であることが好ましい。前記キレート化合物は、それぞれ1種単独で用いてもよいし、2種以上併用してもよい。 Next, a chelate compound is added to the mixture of the acid in which the mixture of the alkaline earth metal precursor compound and the Eu precursor compound is dissolved and the Si 3 N 4 powder to form a gel state. Examples of the chelate compound may include citric acid, glycine, urea, ethylenediaminetetraacetic acid (EDTA), and the like. It is preferable that the addition amount of a chelating agent is 25-30 mass% with respect to the whole mixture. Each of the chelate compounds may be used alone or in combination of two or more.

前記キレート化合物を混合すれば、下記反応式によって反応してSr2+キレート化合物、Eu3+キレート化合物が形成される。 When the chelate compound is mixed, it reacts according to the following reaction formula to form Sr 2+ chelate compound and Eu 3+ chelate compound.

前記Sr2+キレート化合物、Eu3+キレート化合物の反応経路を、アルカリ土類金属前駆体化合物としてSrCOを、Eu前駆体化合物としてEuを使用し、酸として硝酸を、キレート化合物としてクエン酸を使用した場合を例として説明すれば、次の通りである。この場合、下記反応式1のような反応が起こる。 The reaction route of the Sr 2+ chelate compound and Eu 3+ chelate compound is as follows: SrCO 3 is used as the alkaline earth metal precursor compound, Eu 2 O 3 is used as the Eu precursor compound, nitric acid is used as the acid, and citric acid is used as the chelate compound. As an example, the case of using is as follows. In this case, the reaction shown in the following reaction formula 1 occurs.

さらに詳しくは、前記Sr2+キレート化合物は、まず、SrCOが硝酸と反応してSr2+を形成し、次いで、クエン酸と反応して形成される。 More specifically, the Sr 2+ chelate compound is formed by first reacting SrCO 3 with nitric acid to form Sr 2+ and then reacting with citric acid.

このように形成されたSr2+キレート化合物は、図5で示した通りである。 The Sr 2+ chelate compound thus formed is as shown in FIG.

また、前記Eu3+キレート化合物も、まず、Euが硝酸と反応してEu3+を形成し、次いで、クエン酸と反応して形成される。 The Eu 3+ chelate compound is also formed by first reacting Eu 2 O 3 with nitric acid to form Eu 3+ and then reacting with citric acid.

図6は、前記のような過程で形成されたゲル状態の混合物を図式化したものである。図6において、Si間に介在されたキレート化合物は、Sr2+キレート化合物及びEu3+キレート化合物がランダムに分布したことを意味する。 FIG. 6 is a schematic diagram of a gel-like mixture formed in the above process. In FIG. 6, the chelate compound interposed between Si 3 N 4 means that the Sr 2+ chelate compound and the Eu 3+ chelate compound are randomly distributed.

次いで、前記ゲル状態の結果物を乾燥した後、1次焼成する。望ましくは、前記焼成は、300ないし700℃の空気雰囲気下で行う。焼成時間は特に限定されるものではないが、好ましくは0.5〜5時間、より好ましくは1〜5時間である。かかる1次焼成によりアルカリ土類金属キレート化合物及びEu3+キレート化合物が酸化されて、アルカリ土類金属酸化物及びEuが合成される。このように生成されたアルカリ土類金属酸化物は、前記酸化時に共に発生するCO及びHOガスにより生成された複数のポアを有する。 Next, the gel-like resultant is dried and then subjected to primary firing. Preferably, the baking is performed in an air atmosphere of 300 to 700 ° C. Although baking time is not specifically limited, Preferably it is 0.5 to 5 hours, More preferably, it is 1 to 5 hours. By such primary firing, the alkaline earth metal chelate compound and Eu 3+ chelate compound are oxidized, and the alkaline earth metal oxide and Eu 2 O 3 are synthesized. The alkaline earth metal oxide generated in this way has a plurality of pores generated by CO 2 and H 2 O gas generated together during the oxidation.

図7は、前記反応式1の例で1次焼成過程を通じた変化を概略的に示す図面である。   FIG. 7 is a view schematically showing changes through the primary firing process in the example of the reaction formula 1.

次いで、前記のように1次焼成を行って得た結果物を粉砕し、2次焼成を行う。このとき、焼成は、1300〜1700℃で行うことが好ましい。また焼成時間は、10〜100時間で行うことが好ましい。さらに焼成雰囲気は、NH及び/またはH/N混合ガス雰囲気下で行うことが好ましい。H/N混合ガスの混合割合は、好ましくはH:N=0.05:1〜0.2:1である。なお、工程中の一部に前記好適な条件を具備する焼結工程が少なくとも含まれて入ればよい。かような2次焼成を行うことによって、ナイトライド化合物が得られる。 Subsequently, the resultant obtained by performing the primary firing as described above is pulverized and subjected to secondary firing. At this time, the firing is preferably performed at 1300 to 1700 ° C. The firing time is preferably 10 to 100 hours. Further, the firing atmosphere is preferably performed in an NH 3 and / or H 2 / N 2 mixed gas atmosphere. The mixing ratio of the H 2 / N 2 mixed gas is preferably H 2 : N 2 = 0.05: 1 to 0.2: 1. In addition, it is sufficient that at least a sintering process having the above-described preferable conditions is included in a part of the process. A nitride compound is obtained by performing such secondary firing.

前記NH及び/またはH/N混合物ガス雰囲気下での2次焼成過程をさらに詳細に説明すれば、まず、高温でNHまたはNは分解されて活性窒素(N)を生成する。 The secondary firing process in the NH 3 and / or H 2 / N 2 mixture gas atmosphere will be described in more detail. First, NH 3 or N 2 is decomposed at a high temperature to generate active nitrogen (N * ). To do.

は、ポアを通過できる。一般的に、酸化物は、前記のようなポアを有さないため、酸化物粒子の表面積が非常に小さい。一方、本発明の蛍光体の製造過程では、ポアが生成されるため、表面積が非常に広くなる。窒化反応は、気体及び固体の反応であるため、活性表面が広いほどさらに望ましい。したがって、本発明の蛍光体の製造過程では、ポアの生成により広い活性表面を提供できるので、窒化反応に対して非常に有利である。 N * can pass through the pore. In general, an oxide does not have a pore as described above, and thus the surface area of oxide particles is very small. On the other hand, in the manufacturing process of the phosphor according to the present invention, since the pores are generated, the surface area becomes very wide. Since the nitriding reaction is a gas and solid reaction, a wider active surface is more desirable. Therefore, in the manufacturing process of the phosphor of the present invention, a wide active surface can be provided by the generation of pores, which is very advantageous for the nitriding reaction.

前記1次焼成後に生成されたアルカリ土類金属酸化物及びEuのNとの窒化反応により、アルカリ土類金属窒化物、Eu(このとき、E3+は、E2+に還元される)が生成される。前述したように、前記アルカリ土類金属がSrである場合、アルカリ土類金属窒化物はSrである。このように生成されたアルカリ土類金属窒化物及びEuは、空気中では不安定であるが、前記本発明の蛍光体の製造方法による環境では安定している。次いで、さらなる反応によりナイトライド蛍光体が製造される。また、前記アルカリ土類金属がSrである場合の例を挙げれば、前記生成されたナイトライド蛍光体は(Sr1−xEuSi(0<x<1)でありうる。 Due to the nitriding reaction of the alkaline earth metal oxide and Eu 2 O 3 produced after the primary firing with N * , alkaline earth metal nitride, Eu 3 N 2 (where E 3+ becomes E 2+ Reduced) is produced. As described above, when the alkaline earth metal is Sr, the alkaline earth metal nitride is Sr 3 N 2 . The alkaline earth metal nitride and Eu 3 N 2 produced in this way are unstable in the air, but are stable in the environment according to the phosphor manufacturing method of the present invention. The nitride phosphor is then produced by a further reaction. In addition, in the case where the alkaline earth metal is Sr, the generated nitride phosphor may be (Sr 1-x Eu x ) 2 Si 5 N 8 (0 <x <1). .

図8は、これまで詳述した2次焼成過程を通じた蛍光体の形成過程をアルカリ土類金属がSrである場合の例として挙げて概略的に示す図面である。   FIG. 8 is a drawing schematically showing the phosphor formation process through the secondary firing process described in detail so far as an example when the alkaline earth metal is Sr.

図9は、本発明の他の具現例による蛍光体の製造方法の概略的なフローチャートである。フローチャート中、使用される化合物および記載のない製造条件としては、上述したものと同様のものを用いることができる。   FIG. 9 is a schematic flowchart of a method for manufacturing a phosphor according to another embodiment of the present invention. In the flowchart, the same compounds as described above can be used as the compounds used and the production conditions not described.

図10は、アルカリ土類金属としてSrを使用し、酸としてクエン酸を使用した場合を例として本発明のさらに他の具現例による蛍光体の製造方法の概略的な工程図である。   FIG. 10 is a schematic process diagram of a method for manufacturing a phosphor according to still another embodiment of the present invention, using as an example the case where Sr is used as the alkaline earth metal and citric acid is used as the acid.

選択的に、前記のように得た結果物は、粉砕及び焼成する段階を反復して優秀な結晶性を有するナイトライド蛍光体が得られる。このとき、焼成は、望ましくは、1300〜1700℃で10〜100時間、NH及び/またはH/N混合ガス雰囲気下で行える。 Alternatively, the resultant obtained as described above is repeatedly pulverized and fired to obtain a nitride phosphor having excellent crystallinity. At this time, the firing is desirably performed at 1300 to 1700 ° C. for 10 to 100 hours in an NH 3 and / or H 2 / N 2 mixed gas atmosphere.

次いで、前記結果物を洗浄して、最終粉末状態の蛍光体結果物が得られる。   Next, the resultant product is washed to obtain a phosphor result in a final powder state.

図11は、本発明の一具現例による(オキシ)ナイトライド蛍光体のSEM写真を示す。前記図11から分かるように、前記(オキシ)ナイトライド蛍光体は、ポアを有し、前記ポアの平均直径は、0.6μm以下であり、前記ポアの数は、単位面積(1μm)当たり0.01以下であり、前記ポア間の平均距離は、1μm以上であり、前記ポアの断面積は、円形、楕円形、長方形、正方形、多角形などの形態を有する。 FIG. 11 is a SEM photograph of an (oxy) nitride phosphor according to an embodiment of the present invention. As can be seen from FIG. 11, the (oxy) nitride phosphor has pores, the average diameter of the pores is 0.6 μm or less, and the number of pores per unit area (1 μm 2 ). 0.01 or less, an average distance between the pores is 1 μm or more, and a cross-sectional area of the pores has a form such as a circle, an ellipse, a rectangle, a square, and a polygon.

前記本発明による蛍光体の製造方法は、特にナイトライド蛍光体の製造に有利である。すなわち、従来技術は、不安定な一部のナイトレートを前駆体として使用するところ、グローブボックスのように特別な装置の使用が要求されることと異なり、本発明による蛍光体の製造方法は、Sr,Ba,Ca,Euのそれぞれの前駆体としてSrCO,SrO,Sr(NO,SrCl,BaCO,BaO,Ba(NO,BaCl,CaCO,CaO,Ca(NO,CaCl,Eu,Eu(NO,EuClのようにカーボネートまたはオキサイドなどの非常に安定な粉末を使用し、一方、Siの前駆体は、大気で安定なSiを使用するので、グローブボックスのような特別な装置を要求しない。 The method for producing a phosphor according to the present invention is particularly advantageous for producing a nitride phosphor. That is, the prior art uses an unstable part of the nitrate as a precursor, and unlike the use of a special device such as a glove box, the method for producing a phosphor according to the present invention includes: SrCO 3 , SrO, Sr (NO 3 ) 2 , SrCl 2 , BaCO 3 , BaO 3 , Ba (NO 3 ) 2 , BaCl 2 , CaCO 3 , CaO, Ca (Sr, Ba, Ca, Eu) NO 3 ) 2 , CaCl 2 , Eu 2 O 3 , Eu (NO 3 ) 3 , EuCl 3 and other highly stable powders such as carbonates or oxides are used, while Si precursors are stable in the atmosphere. Since special Si 3 N 4 is used, no special equipment such as a glove box is required.

このように、本発明による蛍光体の製造方法は、安定な物質を出発物質として使用し、また、マイルドな工程条件で可能であるので、商業的に応用するのに非常に適している。すなわち、従来の公知のナイトライド系蛍光体の製造方法は、高温、高圧の窒素雰囲気を要求したが、前記本発明によるナイトライド蛍光体の製造方法は、それをいずれも解決した方法である。したがって、高温、高圧の工程条件を組成し、また、かかる高温、高圧の工程条件に耐えるために特別に設備された装置を要求しない。   Thus, the method for producing a phosphor according to the present invention is very suitable for commercial application because it uses a stable material as a starting material and is possible under mild process conditions. That is, the conventional method for producing a nitride phosphor requires a high-temperature and high-pressure nitrogen atmosphere, but the method for producing a nitride phosphor according to the present invention is a method that solves all of them. Therefore, it does not require equipment specially equipped to compose high temperature and high pressure process conditions and withstand such high temperature and high pressure process conditions.

また、本発明によるナイトライド蛍光体の製造方法は、環境問題をもたらす物質を使用しないために環境にやさしい。   In addition, the method for manufacturing a nitride phosphor according to the present invention is environmentally friendly because it does not use substances that cause environmental problems.

本発明は、また、前記本発明による蛍光体の製造方法によって製造されたナイトライド蛍光体を提供する。   The present invention also provides a nitride phosphor manufactured by the method for manufacturing a phosphor according to the present invention.

以下、本発明を下記実施例を挙げて詳細に説明するが、本発明が下記実施例にのみ限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to the following examples, but the present invention is not limited to the following examples.

実施例1
SrCO5.0g及びEu0.06gを10質量%硝酸水溶液100cc(混合物中、1.7N)に溶解した。前記混合溶液にSi4.0gを添加した。クエン酸4.8gを前記混合溶液と混ぜて乾燥させた。前記乾燥された混合物を空気雰囲気下で700℃で1時間焼成した。焼成された混合物を、めのう乳鉢を利用して粉砕した。前記粉砕して得た粉末をペレット形態に得た後、それをアルミナるつぼに入れ、それを電気炉に入れて炭素と共にNH雰囲気で1100℃まで加熱し(1100℃での維持時間;3時間)、その後5%のH及び95%のN雰囲気で1600℃まで加熱する。1600℃での焼成時間は、5時間行った。前記炭素は、ナイトライド出発物質の酸化を防止するために使われる。このように得た焼結体を粉末に粉砕し、蒸溜水で洗浄した後、オーブンで乾燥して蛍光体サンプル1(Sr0.99Eu0.01Siを得た。
Example 1
5.0 g of SrCO 3 and 0.06 g of Eu 2 O 3 were dissolved in 100 cc of a 10% by mass nitric acid aqueous solution (1.7 N in the mixture). 4.0 g of Si 3 N 4 was added to the mixed solution. 4.8 g of citric acid was mixed with the mixed solution and dried. The dried mixture was calcined at 700 ° C. for 1 hour in an air atmosphere. The fired mixture was ground using an agate mortar. After the powder obtained by pulverization is obtained in the form of pellets, it is put in an alumina crucible, which is put in an electric furnace and heated to 1100 ° C. in an NH 3 atmosphere with carbon (maintenance time at 1100 ° C .; 3 hours ) And then heated to 1600 ° C. in an atmosphere of 5% H 2 and 95% N 2 . The baking time at 1600 ° C. was 5 hours. The carbon is used to prevent oxidation of the nitride starting material. The sintered body thus obtained was pulverized into powder, washed with distilled water, and then dried in an oven to obtain phosphor sample 1 (Sr 0.99 Eu 0.01 ) 2 Si 5 N 8 .

実施例2
出発物質としてSrCO5.0g及びEu0.12gを10質量%硝酸100ccに溶解して使用した点を除いては、実施例1と同様に行って蛍光体サンプル2(Sr0.98Eu0.02Siを得た。
Example 2
Except that 5.0 g of SrCO 3 and 0.12 g of Eu 2 O 3 were dissolved in 100 cc of 10% by mass nitric acid as starting materials and used in the same manner as in Example 1, phosphor sample 2 (Sr 0. 98 Eu 0.02 ) 2 Si 5 N 8 was obtained.

実施例3
出発物質としてSrCO5.0g及びEu0.18gを10質量%硝酸100ccに溶解した後、前記混合溶液にSi4.1gを添加して使用した点を除いては、実施例1と同様に行って蛍光体サンプル3(Sr0.97Eu0.03Siを得た。
Example 3
Except that 5.0 g of SrCO 3 and 0.18 g of Eu 2 O 3 as starting materials were dissolved in 100 cc of 10% by mass nitric acid, and 4.1 g of Si 3 N 4 was added to the mixed solution. to obtain a phosphor sample 3 (Sr 0.97 Eu 0.03) 2 Si 5 N 8 and conducted in the same manner as in example 1.

図2は、蛍光体サンプル1の励起スペクトルを示す。UVから青色までの広い領域で光を吸収するので、本発明の蛍光体サンプルは、UV−LEDや青色LEDにいずれも適用可能である。   FIG. 2 shows an excitation spectrum of the phosphor sample 1. Since light is absorbed in a wide region from UV to blue, the phosphor sample of the present invention can be applied to both UV-LEDs and blue LEDs.

図3は、蛍光体サンプル1の発光スペクトルを示す。   FIG. 3 shows an emission spectrum of the phosphor sample 1.

図4は、サンプル1、2及び3に対する発光スペクトルを示す図面である。これから、EuのSrに対する相対的な含量が多くなるほどピーク波長が長くなることを確認した。   FIG. 4 is a diagram showing emission spectra for Samples 1, 2 and 3. From this, it was confirmed that the peak wavelength becomes longer as the relative content of Eu with respect to Sr increases.

本発明は、発光素子関連の技術分野に適用可能である。   The present invention is applicable to a technical field related to a light emitting element.

本発明の一具現例によるLEDの構造を示す概略図である。1 is a schematic diagram illustrating a structure of an LED according to an embodiment of the present invention. 本発明の他の具現例による(オキシ)ナイトライド蛍光体の励起スペクトルを示す図面である。4 is a diagram illustrating an excitation spectrum of a (oxy) nitride phosphor according to another embodiment of the present invention. 本発明のさらに他の具現例による(オキシ)ナイトライド蛍光体の発光スペクトルを示す図面である。6 is a view showing an emission spectrum of a (oxy) nitride phosphor according to another embodiment of the present invention. 本発明のさらに他の具現例による(オキシ)ナイトライド蛍光体に対する発光スペクトルを示す図面である。6 is a diagram illustrating an emission spectrum of an (oxy) nitride phosphor according to another embodiment of the present invention. 本発明の蛍光体の製造方法の一具現例において、中間産物として生成されるSr2+キレート化合物の構造式を示す図面である。1 is a view showing a structural formula of an Sr 2+ chelate compound produced as an intermediate product in an embodiment of the method for producing a phosphor of the present invention. 本発明の蛍光体の製造方法によって中間過程で形成されるゲル状態の混合物を図式化した図面である。1 is a diagram schematically showing a gel-like mixture formed in an intermediate process by the method for producing a phosphor of the present invention. 本発明の蛍光体の製造方法の他の具現例において、1次焼成過程を通じた変化を概略的に示す図面である。6 is a diagram schematically illustrating a change through a primary firing process in another embodiment of the method for producing a phosphor of the present invention. 本発明の蛍光体の製造方法のさらに他の具現例において、2次焼成過程を通じた蛍光体の形成過程を概略的に示す図面である。6 is a diagram schematically illustrating a phosphor formation process through a secondary firing process in still another embodiment of the phosphor manufacturing method of the present invention. 本発明のさらに他の具現例による蛍光体の製造方法の概略的な工程図である。FIG. 6 is a schematic process diagram of a method for manufacturing a phosphor according to still another embodiment of the present invention. アルカリ土類金属としてSrを使用し、酸としてクエン酸を使用した場合を例とした本発明のさらに他の具現例による蛍光体の製造方法の概略的な工程図である。FIG. 5 is a schematic process diagram of a method for manufacturing a phosphor according to still another embodiment of the present invention, in which Sr is used as an alkaline earth metal and citric acid is used as an acid. 本発明の一具現例による(オキシ)ナイトライド蛍光体のSEM写真である。3 is an SEM photograph of an (oxy) nitride phosphor according to an embodiment of the present invention.

符号の説明Explanation of symbols

10 LEDチップ
20 金ワイヤー
30 電気リード線
40 蛍光体組成物
50 エポキシモールド層
60 成形モールド
70 エポキシドームレンズ
10 LED chip 20 Gold wire 30 Electrical lead wire 40 Phosphor composition 50 Epoxy mold layer 60 Molding mold 70 Epoxy dome lens

Claims (23)

(Sr (1−x) Eu Si (0<x≦0.1)で表示され、ポアを有するナイトライド蛍光体。 A nitride phosphor represented by (Sr (1-x) Eu x ) 2 Si 5 N 8 (0 <x ≦ 0.1) and having a pore. 前記ポアは、平均直径が0.6μm以下である、請求項に記載のナイトライド蛍光体。 The nitride phosphor according to claim 1 , wherein the pore has an average diameter of 0.6 μm or less. 前記ナイトライド蛍光体の断面1μm当たり0.01個以下のポア個数を有する、請求項1または2に記載のナイトライド蛍光体。 With the nitride phosphor section 1 [mu] m 2 0.01 or less pore number per, nitride phosphor according to claim 1 or 2. 前記ポア間の平均距離は、1μm以上である、請求項1ないしのいずれか1項に記載のナイトライド蛍光体。 The average distance between the pores is 1μm or more, nitride phosphor according to any one of claims 1 to 3. 前記ポアの断面は、円形、楕円形または多角形である、請求項1〜のいずれか1項に記載のナイトライド蛍光体。 Cross-section of the pores may be circular, elliptical or polygonal, nitride phosphor according to any one of claims 1-4. UV発光ダイオードと、
請求項1ないしのうちいずれか一項に記載のナイトライド蛍光体と、を含むことを特徴とする白色発光素子。
A UV light emitting diode;
A white light emitting device comprising the nitride phosphor according to any one of claims 1 to 5 .
前記UV発光ダイオードは、励起光源が紫外または近紫外線領域の電磁波である、請求項に記載の白色発光素子。 The white light-emitting element according to claim 6 , wherein the UV light-emitting diode has an excitation light source that is an electromagnetic wave in an ultraviolet or near-ultraviolet region. 前記UV発光ダイオードの励起光源は、390ないし460nmの範囲の波長帯域を有する、請求項に記載の白色発光素子。 The white light emitting device according to claim 6 , wherein the excitation light source of the UV light emitting diode has a wavelength band in a range of 390 to 460 nm. 青色蛍光体及び緑色蛍光体から選択された一つ以上をさらに含む、請求項のいずれか1項に記載の白色発光素子。 The white light emitting device according to any one of claims 6 to 8 , further comprising at least one selected from a blue phosphor and a green phosphor. 前記青色蛍光体は、(Sr,Ba,Ca)(POCl:Eu2+;BaMgAl1627:Eu2+;SrAl1425:Eu2+;BaAl13:Eu2+;(Sr,Mg,Ca,Ba)(POCl:Eu2+;BaMgAl1017:Eu2+及びSrSi2SrCl:Eu2+からなる群から選択された一つ以上である、請求項に記載の白色発光素子。 The blue phosphor includes (Sr, Ba, Ca) 5 (PO 4 ) 3 Cl: Eu 2+ ; BaMg 2 Al 16 O 27 : Eu 2+ ; Sr 4 Al 14 O 25 : Eu 2+ ; BaAl 8 O 13 : Eu 2+ ; (Sr, Mg, Ca, Ba) 5 (PO 4 ) 3 Cl: Eu 2+ ; BaMgAl 10 O 17 : Eu 2+ and Sr 2 Si 3 O 8 2 SrCl 2 : one selected from the group consisting of Eu 2+ The white light-emitting element according to claim 9 , which is as described above. 前記緑色蛍光体は、(Ba,Sr,Ca)SiO:Eu2+;BaMgSi:Eu2+;BaZnSi:Eu2+;BaAl:Eu2+;SrAl:Eu2+;BaMgAl1017:Eu2+,Mn2+;及びBaMgAl1627:Eu2+,Mn2+からなる群から選択された一つ以上である、請求項または10に記載の白色発光素子。 The green phosphor includes (Ba, Sr, Ca) 2 SiO 4 : Eu 2+ ; Ba 2 MgSi 2 O 7 : Eu 2+ ; Ba 2 ZnSi 2 O 7 : Eu 2+ ; BaAl 2 O 4 : Eu 2+ ; SrAl 2 O 4: Eu 2+; BaMgAl 10 O 17: Eu 2+, Mn 2+; and BaMg 2 Al 16 O 27: Eu 2+, is one or more selected from the group consisting of Mn 2+, according to claim 9 or 10 White light emitting element. 請求項1ないしのうちいずれか一項に記載のナイトライド蛍光体の放出スペクトルピーク波長が610ないし650nmであり、前記青色蛍光体の放出スペクトルピーク波長が440ないし460nmであり、前記緑色蛍光体の放出スペクトルピーク波長が510ないし560nmであることを特徴とする請求項11のいずれか1項に記載の白色発光素子。 The emission spectrum peak wavelength of the nitride phosphor according to any one of claims 1 to 5 is 610 to 650 nm, the emission spectrum peak wavelength of the blue phosphor is 440 to 460 nm, and the green phosphor white light emitting device according to any one of claims 9 to 11, the emission spectrum peak wavelength of characterized in that to not 510 is 560 nm. 青色発光ダイオードと、
請求項1ないしのうちいずれか一項に記載のナイトライド蛍光体と、を含む、白色発光素子。
A blue light emitting diode,
A white light emitting device comprising the nitride phosphor according to any one of claims 1 to 5 .
緑色蛍光体をさらに含む、請求項13に記載の白色発光素子。 The white light emitting device according to claim 13 , further comprising a green phosphor. 前記白色発光素子は、信号灯、通信機器、ディスプレイ装置のバックライトまたは照明用である、請求項ないし14のうちいずれか一項に記載の白色発光素子。 The white light emitting element according to any one of claims 6 to 14 , wherein the white light emitting element is used for a signal lamp, a communication device, a backlight of a display device, or illumination. (a)Sr前駆体化合物、Eu前駆体化合物、酸、Si粉末及びキレート化合物の混合物をゲル状態に形成する工程と、
(b)前記(a)工程で得られる混合物を乾燥及び1次焼成する工程と、
(c)前記(b)工程の結果物を粉砕及び2次焼成する工程と、を含むことを特徴とする請求項1〜5のいずれか1項に記載の蛍光体の製造方法。
(A) forming a mixture of Sr precursor compound, Eu precursor compound, acid, Si 3 N 4 powder and chelate compound into a gel state;
(B) drying and primary firing the mixture obtained in the step (a);
The method for producing a phosphor according to any one of claims 1 to 5, further comprising: (c) a step of pulverizing and secondary firing the resultant product of the step (b).
前記(a)工程で、前記Sr前駆体化合物は、SrCO,SrO,Sr(NO,およびSrClからなる群から選ばれる少なくとも1種である、請求項16に記載の蛍光体の製造方法。 The phosphor of claim 16 , wherein in the step (a), the Sr precursor compound is at least one selected from the group consisting of SrCO 3 , SrO, Sr (NO 3 ) 2 , and SrCl 2 . Production method. 前記(a)工程で、前記Eu前駆体化合物は、Eu,Eu(NOおよびEuClからなる群から選ばれる少なくとも1種である、請求項16または17に記載の蛍光体の製造方法。 The phosphor according to claim 16 or 17 , wherein, in the step (a), the Eu precursor compound is at least one selected from the group consisting of Eu 2 O 3 , Eu (NO 3 ) 3 and EuCl 3. Manufacturing method. 前記(a)工程で、前記酸は、塩酸、硫酸、硝酸、酢酸、酪酸、パルミチン酸、シュウ酸および酒石酸からなる群から選ばれる少なくとも1種である、請求項1618のいずれか1項に記載の蛍光体の製造方法。 Wherein in step (a), said acid is hydrochloric acid, at least one selected sulfuric, nitric, acetic, butyric, palmitic acid, from the group consisting of oxalic acid and tartaric acid, any one of claims 16-18 A method for producing the phosphor according to 1. 前記(a)工程で、前記酸は、混合物中、0.1ないし10mol/lの濃度である、請求項1619のいずれか1項に記載の蛍光体の製造方法。 The method for producing a phosphor according to any one of claims 16 to 19 , wherein, in the step (a), the acid has a concentration of 0.1 to 10 mol / l in the mixture. 前記(a)工程で、前記キレート化合物は、クエン酸、グリシン、尿素およびエチレンジアミン四酢酸からなる群から選ばれる少なくとも1種である、請求項1620のいずれか1項に記載の蛍光体の製造方法。 The phosphor of any one of claims 16 to 20 , wherein in the step (a), the chelate compound is at least one selected from the group consisting of citric acid, glycine, urea, and ethylenediaminetetraacetic acid. Production method. 前記(b)工程の1次焼成過程を空気雰囲気下で300ないし700℃で行う、請求項1621のいずれか1項に記載の蛍光体の製造方法。 The method for producing a phosphor according to any one of claims 16 to 21 , wherein the primary firing step of the step (b) is performed at 300 to 700 ° C in an air atmosphere. 前記(c)工程の2次焼成過程を1300ないし1700℃で10ないし100時間の間にNH、H及びNの混合ガス、またはNH、H及びNの混合ガス雰囲気下で行う、請求項1622のいずれか1項に記載の蛍光体の製造方法。 Wherein (c) 2 primary firing NH process to between 10 to 100 hours to no 1300 1700 ° C. 3, a mixed gas of H 2 and N 2 steps, or NH 3, H 2 and a mixed gas atmosphere of N 2 at performing method for manufacturing the phosphor according to any one of claims 16-22.
JP2008211956A 2007-08-21 2008-08-20 (Oxy) nitride phosphor, white light emitting device including the same, and method for producing phosphor Expired - Fee Related JP5503854B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20070084030 2007-08-21
KR10-2007-0084030 2007-08-21
KR10-2007-0112306 2007-11-05
KR20070112306 2007-11-05

Publications (2)

Publication Number Publication Date
JP2009046680A JP2009046680A (en) 2009-03-05
JP5503854B2 true JP5503854B2 (en) 2014-05-28

Family

ID=40499177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211956A Expired - Fee Related JP5503854B2 (en) 2007-08-21 2008-08-20 (Oxy) nitride phosphor, white light emitting device including the same, and method for producing phosphor

Country Status (3)

Country Link
JP (1) JP5503854B2 (en)
KR (2) KR20090019677A (en)
CN (1) CN101434839B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8773494B2 (en) 2006-08-29 2014-07-08 Microsoft Corporation Techniques for managing visual compositions for a multimedia conference call
JP2009287027A (en) * 2008-05-30 2009-12-10 Samsung Electro Mech Co Ltd (oxy)nitride phosphor material, white-colored light-emitting element containing the same and method for producing the phosphor material
JP2009287024A (en) * 2008-05-30 2009-12-10 Samsung Electro Mech Co Ltd (oxy)nitride phosphor material, white-colored light-emitting element containing the same and method for producing the phosphor material
US8731152B2 (en) 2010-06-18 2014-05-20 Microsoft Corporation Reducing use of periodic key frames in video conferencing
US9023240B2 (en) 2010-08-04 2015-05-05 Ube Industries, Ltd. Silicon nitride powder for siliconnitride phosphor, CaAlSiN3 phosphor using same, Sr2Si5N8 phosphor using same, (Sr, Ca)AlSiN3 phosphor using same, La3Si6N11 Phosphor using same, and methods for producing the phosphors
KR101225002B1 (en) * 2010-09-27 2013-01-22 삼성전자주식회사 Phosphor and method of manufacturing the same
KR101866228B1 (en) * 2011-09-21 2018-06-11 엘지이노텍 주식회사 Oxynitride phosphor, and light-emitting device package comprising the same
CN104245882B (en) 2012-02-27 2015-12-09 京畿大学校产学协力团 Silicon-oxygen nitride fluor and preparation method thereof and comprise the optics of this fluor
KR101449639B1 (en) * 2013-02-27 2014-10-13 경기대학교 산학협력단 Silicon oxynitride phosphor, method of fabricating the same and light device having the same
KR101409489B1 (en) * 2012-02-27 2014-06-18 경기대학교 산학협력단 Silicon oxynitride phosphor and light device having the same
KR101427529B1 (en) * 2013-06-10 2014-08-08 주식회사 효성 Oxy-nitride phosphor with the improved thermal degradation characteristics, manufacturing method thereof, and white-light emitting device comprising the same
JP5868542B1 (en) * 2014-12-12 2016-02-24 大電株式会社 Phosphor production method, phosphor, light-emitting element, and light-emitting device based on nitride or oxynitride
CN109192844A (en) * 2018-08-30 2019-01-11 合肥工业大学智能制造技术研究院 One kind is repaired and regenerated LED light emitting device and application for retina cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1104799A1 (en) * 1999-11-30 2001-06-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Red emitting luminescent material
AU2003221442A1 (en) * 2002-03-22 2003-10-08 Nichia Corporation Nitride phosphor and method for preparation thereof, and light emitting device
TWI359187B (en) * 2003-11-19 2012-03-01 Panasonic Corp Method for preparing nitridosilicate-based compoun
JP4009868B2 (en) * 2004-10-27 2007-11-21 日亜化学工業株式会社 Nitride phosphor and light emitting device using the same
US7671529B2 (en) * 2004-12-10 2010-03-02 Philips Lumileds Lighting Company, Llc Phosphor converted light emitting device
JP4931372B2 (en) * 2005-06-06 2012-05-16 日亜化学工業株式会社 Light emitting device

Also Published As

Publication number Publication date
CN101434839B (en) 2013-07-17
KR20090019677A (en) 2009-02-25
CN101434839A (en) 2009-05-20
KR101390908B1 (en) 2014-05-27
KR20110004832A (en) 2011-01-14
JP2009046680A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
JP5503854B2 (en) (Oxy) nitride phosphor, white light emitting device including the same, and method for producing phosphor
JP4617323B2 (en) Yellow light emitting Ce3 + activated silicate-based yellow phosphor having a new composition, method for producing the same, and white light emitting diode including the phosphor
JP5926302B2 (en) Novel silicate yellow-green phosphor
JP5139300B2 (en) Silicate-based phosphor for ultraviolet and long wavelength excitation and method for producing the same
KR101172143B1 (en) OXYNITRIDE-BASED PHOSPHORS COMPOSING OF SiON ELEMENT FOR WHITE LEDs, MANUFACTURING METHOD THEREOF AND LEDs USING THE SAME
US8262934B2 (en) Silicate phosphor and white light emitting device including the same
US8137589B2 (en) Non stoichiometric tetragonal copper alkaline earth silicate phosphors and method of preparing the same
KR20060093260A (en) Novel silicate-based yellow-green phosphors
TW200907026A (en) Process for the preparation of phosphors consisting of orthosilicates for pcLEDs
KR100458126B1 (en) Green-emitting phosphor for long wavelength ultraviolet and a preparation method thereof
KR20100070731A (en) Halosilicate phosphors and white light emitting devices including same
US20110001154A1 (en) Method of preparing an oxynitride phosphor, oxynitride phosphor obtained using the method, and a white light-emitting device including the oxynitride phosphor
JP2009287027A (en) (oxy)nitride phosphor material, white-colored light-emitting element containing the same and method for producing the phosphor material
KR20110050206A (en) Oxynitride phosphor, method for preparing the same, and white light emitting device using the same
JP2023522185A (en) Green-emitting phosphor and its device
CN104962286A (en) Garnet-structure multiphase fluorescent material and preparation method thereof
US8163202B2 (en) (Oxy) nitride phosphor, white light-emitting device including the (oxy) nitride phosphor, method of preparing phosphor, and nitride phosphor prepared by the method
CN104498031A (en) Phosphate yellow phosphor for white LED, and preparation method thereof
US8524118B2 (en) Nitride phosphor, method of preparing the same, and white light-emitting device using the same
JP2009287024A (en) (oxy)nitride phosphor material, white-colored light-emitting element containing the same and method for producing the phosphor material
CN107011895B (en) A kind of preparation method of blue-green LED luminescent material
JP3754701B2 (en) Phosphor and light emitting device using the same
CN104937073A (en) Alumosilicate-based phosphors
KR100571882B1 (en) Yellow phospher and white light emitting device comprising it
CN106978167B (en) A kind of blue-green LED luminescent material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5503854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees