JP5501120B2 - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP5501120B2
JP5501120B2 JP2010149069A JP2010149069A JP5501120B2 JP 5501120 B2 JP5501120 B2 JP 5501120B2 JP 2010149069 A JP2010149069 A JP 2010149069A JP 2010149069 A JP2010149069 A JP 2010149069A JP 5501120 B2 JP5501120 B2 JP 5501120B2
Authority
JP
Japan
Prior art keywords
heat exchanger
latent heat
temperature
flow path
latent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010149069A
Other languages
Japanese (ja)
Other versions
JP2012013285A (en
Inventor
雅紀 大石
Original Assignee
株式会社長府製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社長府製作所 filed Critical 株式会社長府製作所
Priority to JP2010149069A priority Critical patent/JP5501120B2/en
Publication of JP2012013285A publication Critical patent/JP2012013285A/en
Application granted granted Critical
Publication of JP5501120B2 publication Critical patent/JP5501120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

本発明は、液体燃料または気体燃料の燃焼機を備える給湯機で、顕熱を回収する熱交換器だけではなく、潜熱も回収する熱交換器を有し、顕熱回収用熱交換器および潜熱回収用熱交換器の内部に間接的に加熱される熱交換器を備えた給湯機に関する。   The present invention is a water heater provided with a combustor of liquid fuel or gaseous fuel, which has not only a heat exchanger that recovers sensible heat but also a heat exchanger that recovers latent heat, a sensible heat recovery heat exchanger and latent heat The present invention relates to a water heater provided with a heat exchanger that is indirectly heated inside a heat exchanger for recovery.

従来、液体燃料または気体燃料の燃焼機を備え、燃焼機の燃焼ガスと熱交換器内の水とで熱交換して温水に換える給湯機としては、熱交換率の向上を目的として潜熱の回収が可能な給湯機が知られていた。潜熱の回収が可能な給湯機は、顕熱回収用熱交換器と潜熱回収用熱交換器の二つの熱交換器を備えており、燃料を燃焼させた燃焼ガスを前記顕熱回収用熱交換器に接触させて熱交換し、顕熱を奪った後の燃焼ガスを潜熱回収用熱交換器に接触させて潜熱も奪う方式となっていた。また、燃焼ガスが流れる順序としては、顕熱回収用熱交換器を通過させた後に、潜熱回収用熱交換器を通過させるようになっていた。   Conventionally, as a water heater equipped with a combustor of liquid fuel or gas fuel and exchanging heat between the combustion gas of the combustor and the water in the heat exchanger to change to hot water, the recovery of latent heat for the purpose of improving the heat exchange rate There were known hot water heaters that could. The hot water heater capable of recovering latent heat has two heat exchangers, a sensible heat recovery heat exchanger and a latent heat recovery heat exchanger, and the combustion gas combusted by the fuel is exchanged with the sensible heat recovery heat exchanger. The heat exchange was performed by contacting the vessel, and the combustion gas after depriving sensible heat was brought into contact with the latent heat recovery heat exchanger to deprive the latent heat. Further, the combustion gas flows through the sensible heat recovery heat exchanger and then the latent heat recovery heat exchanger.

潜熱回収用熱交換器は、潜熱を回収するためできるだけ低い温度の水を給水する必要がある。そこで、季節によって異なるが5℃〜30℃程度の水道水を、最初に潜熱回収用熱交換器に供給するようにしていた。そして、潜熱回収用熱交換器を通過して加熱された水道水がその後、顕熱回収用熱交換器に供給する構成となっていた。   The latent heat recovery heat exchanger needs to supply water at a temperature as low as possible in order to recover the latent heat. Therefore, tap water of about 5 ° C. to 30 ° C. is first supplied to the latent heat recovery heat exchanger, although it varies depending on the season. And the tap water heated by passing through the latent heat recovery heat exchanger was then supplied to the sensible heat recovery heat exchanger.

給湯機には、給湯用の熱交換器の内部に間接的に加熱される熱交換器を設け、所謂二重構造の熱交換器として、内部の熱交換器を追焚きや暖房等の熱源として利用するものがあった(特許文献1の図1参照)。特許文献1においては、一つの加熱手段により給湯用の貯湯缶体の内部に追焚き用の風呂用(暖房用)熱交換器が設けられ、貯湯缶体内部の給湯用の温水で風呂用(暖房用)熱交換器を間接的に加熱するものであった。これは、間接的に加熱される側の追焚きや暖房が常時使用される可能性が低いことや、給湯に比較して低い温度にしても問題がない場合が多いことによっていた。   The water heater is provided with a heat exchanger that is indirectly heated inside the heat exchanger for hot water supply. As a so-called dual-structure heat exchanger, the internal heat exchanger is used as a heat source for chasing and heating. There was what was used (refer to FIG. 1 of Patent Document 1). In Patent Document 1, a reheating bath (heating) heat exchanger is provided inside the hot water storage can body by one heating means, and the hot water for the hot water supply in the hot water storage can body is used for the bath ( Heating) Heat exchanger was indirectly heated. This is because there is a low possibility that the reheating or heating on the side to be heated indirectly is always used, and there is often no problem even if the temperature is lower than that of hot water supply.

本件出願人は本件出願に先立ち特許文献2の図5に示すものを提案した。すなわち、顕熱熱交換器である貯湯缶体に追加して潜熱熱交換器を設ける場合には、追焚き時の潜熱回収も考慮する必要がある。そして、顕熱熱交換器が二重構造となっている関係で、潜熱熱交換器も二重構造とした方が構造上も簡単に出来ることになる。この場合、顕熱熱交換器の内部の熱交換器(以下、「顕熱2次熱交換器」と呼ぶ。)と潜熱熱交換器の内部の熱交換器(以下、「潜熱2次熱交換器」と呼ぶ。)は直列に接続されるが、前述の顕熱熱交換器と潜熱熱交換器の関係と同様に、潜熱を回収し易くするために、追焚き等の循環水は、潜熱2次熱交換器を通過した後に、顕熱2次熱交換器を通過するように構成される必要があった。   Prior to the present application, the present applicant has proposed the one shown in FIG. That is, when a latent heat exchanger is provided in addition to the hot water storage can that is a sensible heat exchanger, it is necessary to consider the latent heat recovery during reheating. Since the sensible heat exchanger has a double structure, the structure of the latent heat exchanger can also be simplified if the latent heat exchanger has a double structure. In this case, a heat exchanger inside the sensible heat exchanger (hereinafter referred to as “sensible heat secondary heat exchanger”) and a heat exchanger inside the latent heat exchanger (hereinafter referred to as “latent heat secondary heat exchange”). Are connected in series, but in the same way as the relationship between the sensible heat exchanger and the latent heat exchanger described above, in order to make it easier to recover the latent heat, the circulating water such as reheating is latent heat. After passing through the secondary heat exchanger, it was necessary to be configured to pass through the sensible heat secondary heat exchanger.

二重構造の熱交換器の場合に、内部の熱交換器が間接的に加熱されるためには、顕熱2次熱交換器や潜熱2次熱交換器を通過する流体の温度よりも、顕熱2次熱交換器や潜熱2次熱交換器を間接的に加熱する外部の流体の温度の方が高い必要がある。もし、逆に外部の流体の温度よりも顕熱2次熱交換器や潜熱2次熱交換器を通過する流体の温度が高い場合には、顕熱2次熱交換器や潜熱2次熱交換器を通過する流体の温度は加熱されないだけでなく、逆に、顕熱2次熱交換器や潜熱2次熱交換器を通過する流体が外部の流体に対して放熱することになった。   In the case of a dual-structure heat exchanger, in order for the internal heat exchanger to be indirectly heated, rather than the temperature of the fluid passing through the sensible heat secondary heat exchanger or the latent heat secondary heat exchanger, The temperature of the external fluid that indirectly heats the sensible heat secondary heat exchanger or the latent heat secondary heat exchanger needs to be higher. Conversely, if the temperature of the fluid passing through the sensible heat secondary heat exchanger or latent heat secondary heat exchanger is higher than the temperature of the external fluid, the sensible heat secondary heat exchanger or latent heat secondary heat exchange The temperature of the fluid passing through the vessel is not heated, but conversely, the fluid passing through the sensible heat secondary heat exchanger and the latent heat secondary heat exchanger radiates heat to the external fluid.

また、顕熱2次熱交換器や潜熱2次熱交換器を通過する循環水は、追焚きや暖房で使用されるので、浴槽や温水暖房機と循環配管で結ばれる。この循環配管は給湯機と浴槽や温水暖房機との設置条件により、様々の場合を想定する必要がある。そして、循環配管の様々な設置条件に対応するために給湯機の設置業者が循環配管を用意し、循環配管の延長距離や保温状態は設置業者が施工する工事の方法により変わることになり、循環配管の延長距離が長い場合や、循環配管の保温の程度が悪い場合は循環配管から、放熱する可能性があった。さらには、循環配管の外部の雰囲気温度は季節により変わることから、寒冷期では、循環配管からある程度の放熱が発生することを見込む必要があった。   Moreover, since the circulating water which passes a sensible heat secondary heat exchanger or a latent heat secondary heat exchanger is used for reheating or heating, it is connected with a bathtub or a hot water heater by circulation piping. This circulation pipe needs to assume various cases depending on the installation conditions of the hot water heater and the bathtub or hot water heater. Then, in order to respond to various installation conditions of the circulation piping, the water heater installation company prepares the circulation piping, and the extension distance and heat insulation state of the circulation piping will change depending on the construction method constructed by the installation contractor. There was a possibility that heat was radiated from the circulation piping when the extension distance of the piping was long or when the temperature of the circulation piping was poor. Furthermore, since the ambient temperature outside the circulation pipe changes depending on the season, it is necessary to expect that a certain amount of heat is generated from the circulation pipe in the cold season.

特開2009−210203号公報JP 2009-210203 A 特願2010−112969号Japanese Patent Application No. 2010-112969

しかしながら、顕熱熱交換器と潜熱熱交換器を備え、前記顕熱熱交換器の内部で間接的に加熱される顕熱2次熱交換器と前記潜熱熱交換器の内部で間接的に加熱される潜熱2次熱交換器とを備える給湯機においては、顕熱熱交換器と潜熱熱交換器を給湯に使用して、顕熱2次熱交換器と潜熱2次熱交換器を追焚きや暖房に使用することとなる。そして、追焚きや暖房に使用される顕熱2次熱交換器と潜熱2次熱交換器は循環して使用されるのが通常であるので、浴槽や温水暖房機で放熱した後に潜熱2次熱交換器に戻ってくる加熱対象となる流体の温度は放熱しているとは言え、水道水の温度よりも一般的に高くなることが通常であった。   However, it is provided with a sensible heat exchanger and a latent heat exchanger, and indirectly heated inside the sensible heat secondary heat exchanger and the latent heat exchanger that is indirectly heated inside the sensible heat exchanger. In a water heater provided with a latent heat secondary heat exchanger to be used, the sensible heat exchanger and the latent heat exchanger are used for hot water, and the sensible heat secondary heat exchanger and the latent heat secondary heat exchanger are tracked. It will be used for heating. Since the sensible heat secondary heat exchanger and the latent heat secondary heat exchanger used for reheating and heating are normally used in a circulating manner, the latent heat secondary heat is radiated after being radiated in a bathtub or hot water heater. Although the temperature of the fluid to be heated returning to the heat exchanger is dissipating heat, it is generally higher than the temperature of tap water.

そして、給湯機能と、追焚き機能または暖房機能を有している給湯機においては、給湯機能と追焚き機能を同時に使用する場合や、給湯機能と暖房機能を同時に使用する場合も考えられる。この同時に使用する場合には、給湯用に潜熱熱交換器に供給される水は水道水であり、追焚きまたは暖房で潜熱2次熱交換器に戻って来る循環流体の温度は水道水よりも高い温度となることになり、潜熱2次熱交換器では循環流体の有する熱量は、潜熱熱交換器の水道水または水道水に近い温度の水に奪われ、潜熱2次熱交換器では循環流体の温度が下がるという問題があった。   And in the water heater which has a hot-water supply function, a reheating function, or a heating function, the case where a hot-water supply function and a reheating function are used simultaneously, and the case where a hot-water supply function and a heating function are used simultaneously are also considered. When used at the same time, the water supplied to the latent heat exchanger for hot water supply is tap water, and the temperature of the circulating fluid returned to the latent heat secondary heat exchanger by reheating or heating is higher than that of tap water. In the latent heat secondary heat exchanger, the amount of heat of the circulating fluid is lost to the tap water of the latent heat exchanger or water close to tap water, and the circulating fluid is used in the latent heat secondary heat exchanger. There was a problem that the temperature dropped.

もちろん、給湯機能が使用される場合には、追焚き機能または暖房機能を給湯機能が使用される間だけ停止させるという方法も考えられるが、使用者にとって追焚き時間が長くなることや、暖房が中断して温水暖房機が設置されている部屋の室温が低下するという使用者の利便性を損なうという問題が生じることになった。   Of course, when the hot water supply function is used, a method of stopping the reheating function or the heating function only while the hot water supply function is used is also conceivable. A problem arises that the convenience of the user is impaired because the room temperature of the room where the hot water heater is installed is lowered.

上記の課題を解決するため、本発明では、次の技術的手段が講じられている。   In order to solve the above problems, the following technical means are taken in the present invention.

第1発明の給湯機は、潜熱熱交換器と、顕熱熱交換器と、燃焼ガスを発生させる燃焼機と、前記燃焼ガスは、前記顕熱熱交換器を通過して更に前記潜熱熱交換器を通過するようになっており、第一の被加熱流体が前記潜熱熱交換器を通り、前記顕熱熱交換器に入る第一の熱交換流路と、前記潜熱熱交換器の内部で間接的に加熱される潜熱2次熱交換器と、前記顕熱熱交換器の内部で間接的に加熱される顕熱2次熱交換器と、第二の被加熱流体が前記潜熱2次熱交換器を通り、前記顕熱2次熱交換器に入る第二の熱交換流路と、前記潜熱2次熱交換器をバイパスするバイパス流路と、前記バイパス流路と前記潜熱2次熱交換器の流路を切換える切換え手段と、前記切換え手段の切換え条件を判断する切換え制御手段が備えられている。
第2発明の給湯機は、請求項1記載の発明において、前記切換え制御手段には計時手段が設けられ、前記切換え制御手段の判断は、前記第一の熱交換流路に設けられている通水検知手段を用い、前記通水検知手段で通水を検知した場合は前記第二の被加熱流体の流路を前記バイパス流路側に切換え、前記通水検知手段で通水を検知しなくなってから前記計時手段で計時を開始し、所定時間経過後前記第二の被加熱流体の流路を前記潜熱2次熱交換器側に切換えている。
第3発明の給湯機は、請求項1記載の発明において、前記切換え制御手段の判断が、前記顕熱熱交換器に設けられている顕熱熱交温度検知器で検知する前記顕熱熱交換器内の第一の被加熱流体の温度から前記潜熱熱交換器に設けられている潜熱熱交温度検知器で検知する前記潜熱熱交換器内の第一の被加熱流体の温度を引いた温度差が所定温度以上の場合は、前記第二の被加熱流体の流路を前記バイパス流路側に切換え、所定温度未満の場合は前記第二の被加熱流体の流路を潜熱2次熱交換器側に切換えている。
第4発明の給湯機は、請求項1記載の発明において、前記切換え制御手段の判断が、前記潜熱熱交換器に設けられている潜熱熱交温度検知器で検知する潜熱熱交換器内の第一の被加熱流体の温度から前記潜熱2次熱交換器の入口側に設けられている潜熱2次熱交温度検知器で検知する前記第二の被加熱流体温度を引いた温度差が所定温度未満の場合は、前記第二の被加熱流体の流路を前記バイパス流路側に切換え、所定温度以上の場合は、前記第二の被加熱流体の流路を潜熱2次熱交換器側に切換えている。
A water heater according to a first aspect of the present invention includes a latent heat exchanger, a sensible heat exchanger, a combustor that generates combustion gas, and the combustion gas further passes through the sensible heat exchanger and further performs the latent heat exchange. The first heated fluid passes through the latent heat exchanger and enters the sensible heat exchanger, and inside the latent heat exchanger A latent heat secondary heat exchanger that is indirectly heated, a sensible heat secondary heat exchanger that is indirectly heated inside the sensible heat exchanger, and a second fluid to be heated are the latent heat secondary heat. A second heat exchange channel passing through the exchanger and entering the sensible heat secondary heat exchanger, a bypass channel bypassing the latent heat secondary heat exchanger, the bypass channel and the latent heat secondary heat exchange Switching means for switching the flow path of the vessel, and switching control means for judging the switching condition of the switching means.
A water heater according to a second aspect of the present invention is the water heater of the first aspect, wherein the switching control means is provided with a time measuring means, and the judgment of the switching control means is performed in the first heat exchange flow path. When water flow is detected by the water flow detection means, the flow path of the second heated fluid is switched to the bypass flow path side, and water flow is not detected by the water flow detection means. Then, the time is started by the time measuring means, and after a predetermined time has elapsed, the flow path of the second heated fluid is switched to the latent heat secondary heat exchanger side.
A water heater according to a third aspect of the present invention is the water heater of the first aspect, wherein the switching control means determines the sensible heat exchange detected by a sensible heat exchange temperature detector provided in the sensible heat exchanger. The temperature obtained by subtracting the temperature of the first heated fluid in the latent heat exchanger detected by the latent heat exchanger temperature detector provided in the latent heat exchanger from the temperature of the first heated fluid in the vessel When the difference is equal to or higher than the predetermined temperature, the flow path of the second heated fluid is switched to the bypass flow path side. When the difference is lower than the predetermined temperature, the flow path of the second heated fluid is switched to the latent heat secondary heat exchanger. Switching to the side.
According to a fourth aspect of the present invention, there is provided a water heater according to the first aspect of the present invention, wherein the determination of the switching control means is performed by a latent heat heat exchanger detected by a latent heat heat exchanger temperature detector provided in the latent heat exchanger. A temperature difference obtained by subtracting the second heated fluid temperature detected by the latent heat secondary heat exchange temperature detector provided on the inlet side of the latent heat secondary heat exchanger from the temperature of the one heated fluid is a predetermined temperature. If the temperature is less than the predetermined temperature, the flow path of the second heated fluid is switched to the bypass flow path side. If the temperature is equal to or higher than the predetermined temperature, the flow path of the second heated fluid is switched to the latent heat secondary heat exchanger side. ing.

以上のような、技術的手段が講じられていることにより、以下の効果を有する。
第1発明によれば、潜熱2次熱交換器をバイパスするバイパス流路と、前記バイパス流路と潜熱2次熱交換器の流路を切換える切換え手段と、前記切換え手段の切換え条件を判断する切換え制御手段が備えられていることにより、潜熱熱交換器の第一の被加熱流体の温度よりも潜熱2次熱交換器の第二の被加熱流体の温度の方が、高くなる条件が発生した場合でも、バイパス流路に切換えることで、第二の被加熱流体の温度が低下することがないという効果を有する。
第2発明によれば、第1発明を利用し、第一の熱交換流路に設けられている通水検知手段を用い、通水検知手段で通水を検知した場合は第二の被加熱流体の流路を前記バイパス流路側に切換え、通水検知手段で通水を検知しなくなってから計時手段で計時を開始し、所定時間経過後第二の被加熱流体の流路を前記潜熱2次熱交換器側に切換えることで、潜熱熱交換器の第一の被加熱流体の温度よりも潜熱2次熱交換器の第二の被加熱流体の温度の方が、高くなる可能性が高い給湯使用時の一定期間を、バイパス流路に切換えることが可能となり、簡単な構成で第一の発明をより確実に実現することができる。
第3発明によれば、第1発明を利用し、顕熱熱交換器に設けられている顕熱熱交温度検知器で検知する顕熱熱交換器内の第一の被加熱流体の温度から潜熱熱交換器に設けられている潜熱熱交温度検知器で検知する潜熱熱交換器内の第一の被加熱流体の温度を引いた温度差が所定温度以上の場合は、第二の被加熱流体の流路を前記バイパス流路側に切換え、所定温度未満の場合は前記第二の被加熱流体の流路を潜熱2次熱交換器側に切換えることで、顕熱熱交換器内の第一の被加熱流体の温度を基準として潜熱熱交換器内の第一被加熱流体の温度差が大きい場合に潜熱熱交換器内に供給される第一の被加熱流体が水道水に近いと判断することが可能となり、簡単な構成で第一の発明をより確実に実現することができる。
第4発明によれば、第1発明を利用し、潜熱熱交換器に設けられている潜熱熱交温度検知器で検知する潜熱熱交換器内の第一の被加熱流体の温度から潜熱2次熱交換器の入口側に設けられている潜熱2次熱交温度検知器で検知する前記第二の被加熱流体温度を引いた温度差が所定温度未満の場合は、第二の被加熱流体の流路をバイパス流路側に切換え、所定温度以上の場合は、第二の被加熱流体の流路を潜熱2次熱交換器側に切換えることで、第二の被加熱流体を低い温度の第一の被加熱流体に熱交換させないことにより、第一の発明をより確実に実現することができる。
By taking the technical means as described above, the following effects are obtained.
According to the first aspect of the present invention, the bypass flow path for bypassing the latent heat secondary heat exchanger, the switching means for switching the bypass flow path and the flow path of the latent heat secondary heat exchanger, and the switching condition of the switching means are determined. Since the switching control means is provided, there is a condition that the temperature of the second heated fluid of the latent heat secondary heat exchanger is higher than the temperature of the first heated fluid of the latent heat exchanger. Even if it does, it has the effect that the temperature of a 2nd to-be-heated fluid does not fall by switching to a bypass flow path.
According to the second invention, when the water flow detecting means provided in the first heat exchange channel is used and water flow is detected by the water flow detecting means, the second heated object is used. The fluid flow path is switched to the bypass flow path side, and when the water flow detection means no longer detects water flow, the time measuring means starts measuring time, and after a predetermined time has passed, the second heated fluid flow path passes through the latent heat 2 By switching to the secondary heat exchanger side, the temperature of the second heated fluid of the latent heat secondary heat exchanger is likely to be higher than the temperature of the first heated fluid of the latent heat exchanger. It is possible to switch to a bypass flow path for a certain period when hot water is used, and the first invention can be more reliably realized with a simple configuration.
According to the third invention, from the temperature of the first fluid to be heated in the sensible heat exchanger detected by the sensible heat exchanger temperature detector provided in the sensible heat exchanger using the first invention. If the temperature difference obtained by subtracting the temperature of the first heated fluid in the latent heat exchanger detected by the latent heat exchanger temperature detector provided in the latent heat exchanger is equal to or higher than a predetermined temperature, the second heated The flow path of the fluid is switched to the bypass flow path side. When the temperature is lower than the predetermined temperature, the flow path of the second heated fluid is switched to the latent heat secondary heat exchanger side. When the temperature difference of the first heated fluid in the latent heat exchanger is large with reference to the temperature of the heated fluid, it is determined that the first heated fluid supplied into the latent heat exchanger is close to tap water Therefore, the first invention can be realized more reliably with a simple configuration.
According to the fourth invention, the latent heat secondary is obtained from the temperature of the first heated fluid in the latent heat exchanger detected by the latent heat exchanger temperature detector provided in the latent heat exchanger using the first invention. If the temperature difference obtained by subtracting the second heated fluid temperature detected by the latent heat secondary heat exchanger temperature detector provided on the inlet side of the heat exchanger is less than a predetermined temperature, the second heated fluid When the flow path is switched to the bypass flow path side and the temperature is equal to or higher than the predetermined temperature, the flow path of the second heated fluid is switched to the latent heat secondary heat exchanger side, so that the second heated fluid is cooled to the first temperature lower. By not exchanging heat with the heated fluid, the first invention can be realized more reliably.

本発明に係る実施例1を説明するための給湯機の概略構成図である。It is a schematic block diagram of the water heater for demonstrating Example 1 which concerns on this invention. 実施例1の給湯運転を説明するための概念図である。It is a conceptual diagram for demonstrating the hot water supply driving | operation of Example 1. FIG. 実施例1の追焚き運転を説明するための概念図である。FIG. 3 is a conceptual diagram for explaining a chasing operation according to the first embodiment. 実施例1の給湯運転と追焚き運転が同時に行われた場合で本発明を実施しない場合を説明するための概念図である。It is a conceptual diagram for demonstrating the case where this invention is not implemented by the case where the hot water supply driving | operation and chasing operation of Example 1 are performed simultaneously. 実施例1の給湯運転と追焚き運転が同時に行われた場合で本発明が行われた場合を説明するための概念図である。It is a conceptual diagram for demonstrating the case where this invention is performed by the case where the hot water supply driving | operation of Example 1 and a chasing operation are performed simultaneously. 本発明に係る実施例2を説明するための給湯機の概略構成図である。It is a schematic block diagram of the water heater for demonstrating Example 2 which concerns on this invention. 本発明に係る実施例3を説明するための給湯機の概略構成図である。It is a schematic block diagram of the water heater for demonstrating Example 3 which concerns on this invention. 本発明に係る実施例4を説明するための給湯機の概略構成図である。It is a schematic block diagram of the water heater for demonstrating Example 4 which concerns on this invention.

発明を実施する形態について、図面に基づいて具体的に説明する。   Embodiments for carrying out the invention will be specifically described with reference to the drawings.

本発明の給湯機の概略について図1を用いて説明する。給湯機1は灯油や重油等の液体燃料やLPGや都市ガス等の気体燃料を燃焼機9で燃焼させ、この燃焼により発生する燃焼ガスを利用して熱交換器に通水された水を加熱するものである。熱交換率を向上させるため顕熱熱交換器20だけではなく、顕熱熱交換器20の上部、つまり排気側に給水温度を上昇させて熱交換率の向上を可能とする潜熱熱交換器30を有している。また、顕熱熱交換器20の内部には顕熱2次熱交換器25が設けられ、潜熱熱交換器30の内部には潜熱2次熱交換器35が設けられている。顕熱熱交換器20および潜熱熱交換器30は給湯機能に用いられ、顕熱2次熱交換器25および潜熱2次熱交換器35は給湯機1の外部に設けられた浴槽7を追焚きする追焚き機能に用いられている。なお、本実施例においては、給湯機1の顕熱2次熱交換器25および潜熱2次熱交換器35を追焚き機能に用いる例を説明するが暖房機能に用いる場合も同様である。   An outline of the water heater of the present invention will be described with reference to FIG. The water heater 1 burns liquid fuel such as kerosene and heavy oil or gaseous fuel such as LPG and city gas in the combustor 9 and heats the water passed through the heat exchanger using the combustion gas generated by the combustion. To do. In order to improve the heat exchange rate, not only the sensible heat exchanger 20, but also the latent heat heat exchanger 30 that can improve the heat exchange rate by raising the feed water temperature to the upper part of the sensible heat exchanger 20, that is, the exhaust side. have. A sensible heat secondary heat exchanger 25 is provided inside the sensible heat exchanger 20, and a latent heat secondary heat exchanger 35 is provided inside the latent heat heat exchanger 30. The sensible heat exchanger 20 and the latent heat exchanger 30 are used for the hot water supply function, and the sensible heat secondary heat exchanger 25 and the latent heat secondary heat exchanger 35 track the bathtub 7 provided outside the water heater 1. It is used for the tracking function. In the present embodiment, an example in which the sensible heat secondary heat exchanger 25 and the latent heat secondary heat exchanger 35 of the water heater 1 are used for the reheating function will be described.

給湯機1の給湯機能を発揮する第一の被加熱流体の流路について説明する。給湯機1は第一の被加熱流体である水道水が給水配管11で結ばれ、減圧弁12を介して給水されている。減圧された水道水は、潜熱熱交換器30の下部の潜熱熱交入接続口31から入り、潜熱熱交換器30の内部を通過して潜熱熱交換器30の上部の潜熱熱交出接続口32に至る。これにより、水道水は顕熱熱交換器20で大部分熱を奪われた燃焼ガスより更に熱を奪い、昇温する。潜熱熱交出接続口32は内部配管14で、顕熱熱交換器20の高さ方向中間部の顕熱熱交入接続口21に接続されている。潜熱熱交換器30でやや昇温された水道水は内部配管14を通じ、顕熱熱交入接続口21から入り、顕熱熱交換器20の内部を通過して顕熱熱交換器20の上部の顕熱熱交出接続口22に至り、給湯配管15により風呂場等の給湯栓6に接続されている。これにより、潜熱熱交換器30でやや昇温された水道水は、顕熱熱交換器20で燃焼ガスにより、設定されている所望の温度まで昇温されて給湯栓6で利用される。なお、給水配管11や給湯配管15には、顕熱熱交換器20と潜熱熱交換器30を過大な圧力から保護する目的で、逃がし弁(図示せず)が設けられている。   The flow path of the 1st to-be-heated fluid which exhibits the hot_water | molten_metal supply function of the water heater 1 is demonstrated. In the water heater 1, tap water, which is the first fluid to be heated, is connected by a water supply pipe 11 and supplied through a pressure reducing valve 12. The depressurized tap water enters from the latent heat exchange inlet 31 at the bottom of the latent heat exchanger 30, passes through the inside of the latent heat exchanger 30, and the latent heat exchange outlet at the top of the latent heat exchanger 30. 32. As a result, the tap water is further deprived of heat from the combustion gas that has been largely deprived of heat by the sensible heat exchanger 20, and the temperature is raised. The latent heat exchange port 32 is an internal pipe 14 and is connected to the sensible heat exchange connection port 21 at the intermediate portion in the height direction of the sensible heat exchanger 20. The tap water heated slightly in the latent heat exchanger 30 enters the sensible heat inlet port 21 through the internal pipe 14, passes through the sensible heat exchanger 20, and passes through the upper part of the sensible heat exchanger 20. Is connected to a hot water tap 6 such as a bathroom by a hot water supply pipe 15. As a result, the tap water slightly heated in the latent heat exchanger 30 is heated to the set desired temperature by the combustion gas in the sensible heat exchanger 20 and used in the hot water tap 6. The water supply pipe 11 and the hot water supply pipe 15 are provided with a relief valve (not shown) for the purpose of protecting the sensible heat exchanger 20 and the latent heat exchanger 30 from excessive pressure.

第一の被加熱流体の流路には、給水配管11上の潜熱熱交入接続口31近傍に水流検知器13が設けられている。水流検知器13は給水配管11の水の流れを検知して、電圧の変化やパルス等により制御装置70に伝達される。顕熱熱交換器20の上部で顕熱熱交出接続口22の近傍には顕熱熱交温度検知器23が、第一の被加熱流体の温度を検知するために設けられている。顕熱熱交温度検知器23で検知した温度は電圧により制御装置70に伝達される。   In the flow path of the first heated fluid, a water flow detector 13 is provided in the vicinity of the latent heat input port 31 on the water supply pipe 11. The water flow detector 13 detects the flow of water in the water supply pipe 11 and transmits it to the control device 70 by a change in voltage or a pulse. A sensible heat exchange temperature detector 23 is provided above the sensible heat exchanger 20 and in the vicinity of the sensible heat exchange connection port 22 to detect the temperature of the first heated fluid. The temperature detected by the sensible heat exchange temperature detector 23 is transmitted to the control device 70 by voltage.

給湯機1の追焚き機能を発揮する第二の被加熱流体の流路について説明する。給湯機1の外部には、浴槽7が設けられており、浴槽7には給湯機1の給湯機能によりお湯張りされた湯水が第二の被加熱流体として満たされている。浴槽7には循環口8が取り付けられており、循環口8には循環戻り配管17と循環往き配管18が連通して取り付けられている。循環往き配管18の途中に設けられている循環ポンプ19が駆動することにより、浴槽7内の湯水は、循環口8の吸い込み口より循環戻り配管17に流れる。循環戻り配管17は潜熱2次熱交換器35の潜熱2次入接続口36につながっており、潜熱2次熱交換器35で間接的に加熱され、潜熱2次出接続口37に至る。潜熱2次出接続口37は2次熱交内部配管16を介して顕熱2次熱交換器25の顕熱2次入接続口26につながっており、顕熱2次熱交換器25で間接的に加熱され、顕熱2次出接続口27に至る。顕熱2次出接続口27には循環往き配管18がつながっており、循環口8の吐出側へと至る。なお、循環戻り配管17と循環往き配管18は給湯機1の内部に設けられる部分と、給湯機1の外部に設けられる部分があり、給湯機1の外部に設けられる部分については、浴槽7と給湯機1との離隔距離に合わせて選定されている。また、循環戻り配管17と循環往き配管18は給湯機1の外部にあっては管を覆うように保温されており、給湯機1の内部にあっては給湯機1の内部が全体として保温されている。   The flow path of the 2nd to-be-heated fluid which exhibits the chasing function of the water heater 1 is demonstrated. A bathtub 7 is provided outside the water heater 1, and the bathtub 7 is filled with hot water filled with hot water by the hot water supply function of the water heater 1 as a second heated fluid. A circulation port 8 is attached to the bathtub 7, and a circulation return pipe 17 and a circulation forward pipe 18 are attached to the circulation port 8 in communication with each other. When a circulation pump 19 provided in the middle of the circulation forward pipe 18 is driven, hot water in the bathtub 7 flows from the suction port of the circulation port 8 to the circulation return pipe 17. The circulation return pipe 17 is connected to the latent heat secondary input connection port 36 of the latent heat secondary heat exchanger 35, and is indirectly heated by the latent heat secondary heat exchanger 35 to reach the latent heat secondary output connection port 37. The latent heat secondary outlet port 37 is connected to the sensible heat secondary inlet port 26 of the sensible heat secondary heat exchanger 25 via the secondary heat exchange internal pipe 16, and indirectly through the sensible heat secondary heat exchanger 25. Heated to the sensible heat secondary outlet 27. The circulation outlet pipe 18 is connected to the sensible heat secondary outlet connection port 27 and reaches the discharge side of the circulation port 8. The circulation return pipe 17 and the circulation return pipe 18 have a part provided inside the water heater 1 and a part provided outside the water heater 1, and a part provided outside the water heater 1 It is selected according to the separation distance from the water heater 1. In addition, the circulation return pipe 17 and the circulation forward pipe 18 are kept warm so as to cover the pipe outside the water heater 1, and inside the water heater 1, the inside of the water heater 1 is kept warm as a whole. ing.

また、循環戻り配管17の途中で潜熱2次入接続口36の近傍には三方弁40が設けられ、三方弁40は潜熱2次入接続口36に向かう流路以外にバイパス流路41とも連通されている。バイパス流路41は潜熱2次出接続口37の近傍の2次熱交内部配管16と連通している。これによりバイパス流路41は潜熱2次熱交換器35と並列に設けられる。三方弁40を切換えることで、潜熱2次熱交換器35とバイパス流路41とを切換えることができる。   A three-way valve 40 is provided in the vicinity of the latent heat secondary input connection port 36 in the middle of the circulation return pipe 17, and the three-way valve 40 communicates with the bypass flow path 41 in addition to the flow path toward the latent heat secondary input connection port 36. Has been. The bypass passage 41 communicates with the secondary heat exchange internal pipe 16 in the vicinity of the latent heat secondary outlet connection port 37. Thereby, the bypass flow path 41 is provided in parallel with the latent heat secondary heat exchanger 35. By switching the three-way valve 40, the latent heat secondary heat exchanger 35 and the bypass passage 41 can be switched.

第二の被加熱流体の流路には、循環戻り配管17の途中で三方弁40に入る前の近傍には第二の被加熱流体の温度を検知するために潜熱2次熱交入温度検知器38が設けられている。潜熱2次熱交入温度検知器38で検知した温度は電圧により制御装置70に伝達される。   In the flow path of the second heated fluid, in the vicinity of the circulation return pipe 17 before entering the three-way valve 40, in order to detect the temperature of the second heated fluid, the latent heat secondary heat entry temperature detection is performed. A container 38 is provided. The temperature detected by the latent heat secondary heat input temperature detector 38 is transmitted to the control device 70 by voltage.

燃焼ガスの流れで説明すると、燃焼機9が燃焼することで発生する燃焼ガスは、顕熱熱交換器20の内部に有る複数の煙管(一本の煙管で簡略的に図示)を上方に向かって移動する。複数の煙管には、顕熱熱交換器20の熱効率を上昇させるため燃焼ガスの流れを屈曲させる整流板(図示せず)が、それぞれ設けられている。これにより、顕熱熱交換器20では潜熱熱交換器30でやや昇温された水道水が所望の温度に熱交換される。   Explaining in terms of the flow of combustion gas, the combustion gas generated by the combustion of the combustor 9 is directed upward through a plurality of smoke tubes (simply shown as a single smoke tube) inside the sensible heat exchanger 20. Move. Each of the plurality of smoke pipes is provided with a rectifying plate (not shown) that bends the flow of the combustion gas in order to increase the thermal efficiency of the sensible heat exchanger 20. Thereby, in the sensible heat exchanger 20, the tap water slightly heated in the latent heat exchanger 30 is heat-exchanged to a desired temperature.

燃焼ガスは潜熱熱交換器30に接触することにより潜熱が奪われ、燃焼ガスの温度はさらに下がる。この場合、燃焼ガスには燃料に含まれる水素成分の燃焼により生じた水蒸気が含まれているので、潜熱熱交換器30の表面に凝縮水が発生する。凝縮水の発生する量は燃料の種類や燃焼量、給水温度、更には外気の湿度等により異なり一定ではないが、多かれ少なかれ凝縮水は発生し、凝縮水には燃焼によって生成された窒素酸化物や硫黄酸化物が溶解するため強酸性の液体となる。   When the combustion gas comes into contact with the latent heat exchanger 30, the latent heat is taken away, and the temperature of the combustion gas further decreases. In this case, since the combustion gas contains water vapor generated by the combustion of the hydrogen component contained in the fuel, condensed water is generated on the surface of the latent heat exchanger 30. The amount of condensed water generated varies depending on the type of fuel, the amount of combustion, the feed water temperature, the humidity of the outside air, etc. and is not constant, but more or less condensed water is generated, and the condensed water contains nitrogen oxides generated by combustion. It becomes a strongly acidic liquid because sulfur oxides dissolve.

そして、強酸性の凝縮水を給湯機1の内部に留めておくことは、製品の劣化等の要因になるため、潜熱熱交換器30で発生した強酸性の凝縮水は、潜熱熱交換器30の下部に設けた凝縮水回収装置である凝縮水受け皿50により集められ、中和槽55で中和した後に外部の下水等に排出される。   And keeping strong acidic condensate inside the hot water heater 1 causes deterioration of the product, etc., so the strong acid condensate generated in the latent heat exchanger 30 is the latent heat exchanger 30. Is collected by a condensate tray 50 that is a condensate recovery device provided at the lower part of the water, neutralized in a neutralization tank 55, and then discharged to external sewage.

給湯機1には、制御装置70が備えられており、電気的に給湯器1を制御する。制御装置70は、水流検知器13、顕熱熱交温度検知器23、潜熱2次熱交入温度検知器38などより得られる給湯器1内の状況を電気的な信号により検知し、燃焼機9、循環ポンプ19、三方弁40などに電力を供給することで制御している。制御装置70は、CPU(中央処理装置)の処理装置、ROM、RAM等の記憶装置より構成され、前記の各種制御を電気的に処理し、制御するようになっている。   The water heater 1 is provided with a control device 70 and electrically controls the water heater 1. The control device 70 detects the situation in the water heater 1 obtained from the water flow detector 13, the sensible heat heat temperature detector 23, the latent heat secondary heat input temperature detector 38, and the like by an electrical signal, and combustor 9. Control is performed by supplying power to the circulation pump 19, the three-way valve 40, and the like. The control device 70 includes a processing device of a CPU (central processing unit), and a storage device such as a ROM and a RAM, and electrically processes and controls the various controls.

制御装置70には、三方弁40を所定の条件で切換え方向を制御する切換え制御手段71が備えられており、切換え制御手段71内には、所定の条件で計時を開始し、所定の時間になった場合に切換え制御手段71に信号を送る計時手段72を有している。なお、給湯機1では、燃焼機9、水流検知器13、2次熱交内部配管16、循環ポンプ19、顕熱熱交換器20、顕熱2次熱交換器25、潜熱熱交換器30、潜熱2次熱交換器35、潜熱2次熱交入温度検知器38、三方弁40、バイパス流路41、凝縮水受け皿50、中和槽55および制御装置70等を一つの筐体に納められた状態になっている。   The control device 70 is provided with a switching control means 71 for controlling the switching direction of the three-way valve 40 under a predetermined condition. In the switching control means 71, timing is started under a predetermined condition, and at a predetermined time. In this case, it has time measuring means 72 for sending a signal to the switching control means 71. In the water heater 1, the combustor 9, the water flow detector 13, the secondary heat exchange internal piping 16, the circulation pump 19, the sensible heat exchanger 20, the sensible heat secondary heat exchanger 25, the latent heat exchanger 30, The latent heat secondary heat exchanger 35, the latent heat secondary heat input temperature detector 38, the three-way valve 40, the bypass passage 41, the condensate tray 50, the neutralization tank 55, the control device 70 and the like can be housed in one housing. It is in the state.

(給湯運転時)
給湯運転時の給湯機1の加熱状況の一例を図2で説明する。制御装置70により燃焼機9が駆動されると、燃焼機9は燃焼ガスを発生する。燃焼ガスは最初に顕熱熱交換器20を加熱し、顕熱熱交換器20を加熱した後の顕熱の大部分を奪われた燃焼ガスにより、潜熱熱熱交換器30は加熱される。よって図2の燃焼ガスは、右から左に向かうにつれて温度は低くなる。制御装置70は顕熱熱交温度検知器23の測定する温度と給湯機1の外部等に設けた遠隔操作装置の給湯温度設定部(図示せず)で設定されている温度(仮に70℃とする)により燃焼機9を制御する。
(During hot water operation)
An example of the heating situation of the water heater 1 during the hot water supply operation will be described with reference to FIG. When the combustor 9 is driven by the control device 70, the combustor 9 generates combustion gas. The combustion gas first heats the sensible heat exchanger 20, and the latent heat heat exchanger 30 is heated by the combustion gas from which most of the sensible heat after heating the sensible heat exchanger 20 is deprived. Therefore, the temperature of the combustion gas in FIG. 2 decreases from the right to the left. The controller 70 measures the temperature measured by the sensible heat exchanger temperature detector 23 and the temperature set by a hot water supply temperature setting unit (not shown) of a remote control device provided outside the hot water heater 1 (assuming that the temperature is 70 ° C.). To control the combustor 9.

この加熱されている顕熱熱交換器20と潜熱熱交換器30には、減圧弁12で減圧された水道圧が加わっており、給湯栓6が開かれると水道水が供給される。水道水の温度は季節により異なるが、仮に15℃の水道水が給水管から供給された場合であるとすると、潜熱熱交換器30で加熱された後の潜熱熱交出接続口32付近では、約30℃となり、これが顕熱熱交換20に供給され顕熱熱交出接続口22付近では設定されている温度に等しい約70℃となり、給湯栓6より外部に供給される。   The heated sensible heat exchanger 20 and the latent heat exchanger 30 are applied with tap water pressure reduced by the pressure reducing valve 12, and tap water is supplied when the hot water tap 6 is opened. The temperature of the tap water varies depending on the season, but if tap water of 15 ° C. is supplied from the water supply pipe, in the vicinity of the latent heat exchange port 32 after being heated by the latent heat exchanger 30, The temperature is about 30 ° C., which is supplied to the sensible heat exchange 20, reaches about 70 ° C. equal to the set temperature in the vicinity of the sensible heat heat exchange connection port 22, and is supplied to the outside from the hot water tap 6.

(追焚き運転時)
追焚き運転時の給湯機1の加熱状況の一例を図3で説明する。この場合においては、給湯運転はされてないものとする。また、燃焼ガスの状況については給湯運転時と大凡同等であるので説明を省略する。追焚き時においては、制御装置70では遠隔操作装置で追焚き運転をする旨の操作がされると、顕熱熱交温度検知器23で検知する温度が最高温度(仮に70℃とする)になるように燃焼機9が制御される。これは、追焚き時、顕熱2次熱交換器25および潜熱2次熱交換器35で間接的に加熱されるために給湯側設定温度を、高い温度にした方が有利だからである。
(During driving)
An example of the heating state of the water heater 1 during the chasing operation will be described with reference to FIG. In this case, the hot water supply operation is not performed. Further, the state of the combustion gas is almost the same as that in the hot water supply operation, and thus the description thereof is omitted. At the time of chasing, if the control device 70 is operated to perform chasing operation with a remote control device, the temperature detected by the sensible heat exchange temperature detector 23 reaches the maximum temperature (assuming 70 ° C.). Thus, the combustor 9 is controlled. This is because it is advantageous to make the hot water supply side set temperature higher because it is indirectly heated by the sensible heat secondary heat exchanger 25 and the latent heat secondary heat exchanger 35 during reheating.

この顕熱熱交換器20と潜熱熱交換器30が加熱されている状態で、循環ポンプ19が制御装置70により駆動させられると、浴槽7内の温水(仮に35℃)は循環を開始する。浴槽7の温水は循環口8の吸い込み側8a(分かり易い図にするため循環口8は分割して記載してある)より、循環戻り配管17に流れ潜熱2次熱交換器35に入る。潜熱熱交換器30の第一の被加熱流体は静止したままであるが、第一の被加熱流体が38℃程度に上昇した後で燃焼ガスの温度が低いため一定となり、第二の被加熱流体はわずかに熱交換されて潜熱2次出接続口32付近で35℃よりやや高い温度となる。顕熱熱交換器20の第一の被加熱流体は静止したままで、70℃程度に上昇した後で一定となり、これにより顕熱2次熱交換器25が間接的に加熱され、顕熱2次出接続口27付近では50℃程度まで上昇し循環往き配管18、循環口8の吐出側8bを経由して浴槽7に戻る。浴槽7は200リットル程度の温水を貯めているので、50℃に加熱された温水が戻っても、攪拌されて全体としては浴槽7内の温水は若干上昇することになる。これを繰り返すことで浴槽7の温水は上昇していくことになる。遠隔操作装置の追焚き温度設定部(図示せず)により追焚きの温度を仮に42℃に設定している場合には、潜熱2次熱交入温度検知器38で浴槽7内を循環する温度を検知し、設定されている温度に達した場合には制御装置70は追焚き運転を停止させる。   When the circulation pump 19 is driven by the control device 70 in a state where the sensible heat exchanger 20 and the latent heat exchanger 30 are heated, the hot water (temporarily 35 ° C.) in the bathtub 7 starts to circulate. The hot water in the bathtub 7 flows into the circulation return pipe 17 from the suction side 8a of the circulation port 8 (the circulation port 8 is divided for the sake of clarity) and enters the latent heat secondary heat exchanger 35. The first heated fluid of the latent heat exchanger 30 remains stationary, but becomes constant because the temperature of the combustion gas is low after the first heated fluid rises to about 38 ° C., and the second heated The fluid is slightly heat-exchanged and reaches a temperature slightly higher than 35 ° C. near the latent heat secondary outlet 32. The first heated fluid of the sensible heat exchanger 20 remains stationary and becomes constant after rising to about 70 ° C., whereby the sensible heat secondary heat exchanger 25 is indirectly heated and the sensible heat 2 In the vicinity of the next connection port 27, the temperature rises to about 50 ° C. and returns to the bathtub 7 via the circulation forward pipe 18 and the discharge side 8 b of the circulation port 8. Since the bathtub 7 stores about 200 liters of hot water, even if the hot water heated to 50 ° C. returns, the hot water in the bathtub 7 rises slightly as a whole. By repeating this, the hot water in the bathtub 7 rises. When the reheating temperature is set to 42 ° C. by the reheating temperature setting unit (not shown) of the remote control device, the temperature circulating in the bathtub 7 by the latent heat secondary heat input temperature detector 38 When the temperature reaches the set temperature, the control device 70 stops the chasing operation.

(給湯運転と追焚き運転が同時に行われる場合)
給湯運転と追焚き運転が同時に行われる場合で本発明が実施されない場合の給湯機1の加熱状況の一例を図4で説明する。給湯運転と追焚き運転が同時に行われる場合は、潜熱熱交換器30には第一の被加熱流体である水道水が連続的に供給されることになる。よって、この状態においては、第二の被加熱流体である浴槽7の温水は35℃であり、第一の被加熱流体である水道水が15℃であるので、浴槽7の温水は潜熱2次熱交換器35を通過することで、冷やされ、顕熱2次熱交換器25を通過しても浴槽7の元の温水の温度35℃よりも若干高い38℃になる。これにより、浴槽7の温水はゆっくりと上昇するが、若干高い温度であるため、適温である42℃になるまで長い時間が掛かることになる。なお、循環戻り配管17と循環往き配管18の延長距離が長い場合、循環戻り配管17と循環往き配管18の保温材の断熱性能が悪い場合、循環戻り配管17と循環往き配管18の外気温度が寒冷期で低い場合には、循環戻り配管17と循環往き配管18から多く放熱損失が発生し、浴槽7の元の温水の温度35℃以下になる場合もある。
(When hot water operation and chasing operation are performed simultaneously)
An example of the heating situation of the water heater 1 when the present invention is not carried out when the hot water supply operation and the chasing operation are performed simultaneously will be described with reference to FIG. When the hot water supply operation and the chasing operation are performed at the same time, the latent heat exchanger 30 is continuously supplied with tap water as the first heated fluid. Therefore, in this state, the hot water in the bathtub 7 that is the second heated fluid is 35 ° C., and the tap water that is the first heated fluid is 15 ° C. By passing through the heat exchanger 35, it is cooled, and even if it passes through the sensible heat secondary heat exchanger 25, it becomes 38 ° C., which is slightly higher than the temperature 35 ° C. of the original hot water in the bathtub 7. Thereby, although the warm water of the bathtub 7 rises slowly, since it is a little high temperature, it will take a long time until it will be 42 degreeC which is suitable temperature. When the extension distance between the circulation return pipe 17 and the circulation forward pipe 18 is long, the heat insulation performance of the heat insulating material of the circulation return pipe 17 and the circulation forward pipe 18 is poor, and the outside air temperature of the circulation return pipe 17 and the circulation forward pipe 18 is low. When the temperature is low in the cold season, a large heat dissipation loss occurs from the circulation return pipe 17 and the circulation forward pipe 18, and the temperature of the original hot water in the bathtub 7 may be 35 ° C. or less.

給湯運転と追焚き運転が同時に行われる場合で本発明が実施される給湯機1の加熱状況の一例を図5で説明する。給湯運転と追焚き運転が同時に行われる場合において、水流検知器13が水の流れを検知し、水道水が潜熱熱交換器30に供給されたことを切換え制御手段71が判断すると、三方弁40を循環戻り配管17と潜熱2次熱交換器35とを連通させる流路から、循環戻り配管17とバイパス流路41とを連通させる流路に切換える。これにより浴槽7の温水は顕熱2次熱交換器25に入り、顕熱2次出接続口27付近では50℃程度まで上昇して浴槽7の温水を追焚きすることになる。   An example of the heating situation of the water heater 1 in which the present invention is implemented when the hot water supply operation and the chasing operation are performed simultaneously will be described with reference to FIG. When the hot water supply operation and the reheating operation are performed simultaneously, the water flow detector 13 detects the flow of water, and when the switching control means 71 determines that the tap water has been supplied to the latent heat exchanger 30, the three-way valve 40 Is switched from a flow path that connects the circulation return pipe 17 and the latent heat secondary heat exchanger 35 to a flow path that connects the circulation return pipe 17 and the bypass flow path 41. Thus, the hot water in the bathtub 7 enters the sensible heat secondary heat exchanger 25 and rises to about 50 ° C. in the vicinity of the sensible heat secondary outlet 27 to follow the hot water in the bathtub 7.

追焚き中に給湯栓6が閉弁された結果として給湯運転が停止すると、水流検知器13が水の流れがなくなったことを検知し、切換え制御手段71で給湯運転が停止されたことを判断し、判断した時点から切換え制御手段71の計時手段72で所定時間の計時を開始する。計時手段72の所定時間の計時が終了すると、切換え制御手段71で三方弁40の流路を循環戻り配管17とバイパス流路41とを連通させる流路から、流路循環戻り配管17と潜熱2次熱交換器35とを連通させる流路に切換える。給湯運転が終了したと同時に切換えないのは、潜熱熱交換器30内の第一の被加熱流体である水道水が上昇する時間を考慮するものであり、潜熱熱交換30の容量と燃焼機9の時間当たりの燃焼量により変わる。なお、三方弁40の切換えを待つ時間が短時間の場合や、浴槽7の温水の温度の低下する時間が短時間の場合には、水流検知器13が水の流れがなくなったことを検知すると同時に三方弁40を切換えるようにしても良い。   When the hot water supply operation is stopped as a result of closing of the hot water tap 6 during reheating, the water flow detector 13 detects that the flow of water has disappeared, and the switching control means 71 determines that the hot water supply operation has been stopped. Then, from the determined time, the time measuring means 72 of the switching control means 71 starts to measure a predetermined time. When the counting of the predetermined time by the time measuring means 72 is completed, the switching control means 71 starts the flow path circulation return pipe 17 and the latent heat 2 from the flow path connecting the circulation return pipe 17 and the bypass flow path 41 through the flow path of the three-way valve 40. It switches to the flow path which connects the next heat exchanger 35. The reason for not switching at the same time as the hot water supply operation is completed is to consider the time when the tap water, which is the first heated fluid in the latent heat exchanger 30, rises, and the capacity of the latent heat exchanger 30 and the combustor 9 Varies depending on the amount of combustion per hour. When the time for waiting for the switching of the three-way valve 40 is short or when the temperature of the hot water in the bathtub 7 decreases for a short time, the water flow detector 13 detects that the water flow has ceased. At the same time, the three-way valve 40 may be switched.

実施例2を図6により説明する。給湯機2は、給湯運転と追焚き運転が同時に行われる場合の三方弁40の切換え制御手段71aの判断が顕熱熱交温度検知器23と潜熱熱交温度検知器33の検知により行われるものであり、実施例1と異なる点は、水流検知器13は設けられておらず、潜熱熱交換器30には潜熱熱交温度検知器33が設けられている。潜熱熱交温度検知器33で検知した温度は電圧により制御装置70aに伝達される。他の構成については実施例1と同様であるので、実施例1と同一の構成部品には同一の符号を付けて説明を省略する。   A second embodiment will be described with reference to FIG. In the hot water heater 2, the determination of the switching control means 71 a of the three-way valve 40 when the hot water supply operation and the reheating operation are performed at the same time is performed by the detection of the sensible heat exchanger temperature detector 23 and the latent heat exchanger temperature detector 33. The difference from the first embodiment is that the water flow detector 13 is not provided, and the latent heat exchanger 30 is provided with a latent heat exchange temperature detector 33. The temperature detected by the latent heat heat exchanger temperature detector 33 is transmitted to the control device 70a by voltage. Since other configurations are the same as those of the first embodiment, the same components as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

給湯運転と追焚き運転が同時に行われる場合において、切換え制御手段71aは顕熱熱交温度検知器23の検知した温度から潜熱熱交温度検知器33の検知した温度を引いた温度差が所定温度以上になった場合には、給湯運転が開始され、水道水が潜熱熱交換器30に供給されたと判断する。この所定温度とは、給湯運転が開始され水道水が供給されることにより、潜熱熱交換器30の第一の被加熱流体の温度が低下することにより判断できるので、潜熱熱交温度検知器33の取付け位置や潜熱熱交換器30の熱効率によって定まり、水道水が潜熱熱交換器30に供給されたと判断できる温度となる。切換え制御手段71aで給湯が行われたと判断すると、三方弁40の流路を循環戻り配管17と潜熱2次熱交換器35とを連通させる流路から、循環戻り配管17とバイパス流路41とを連通させる流路に切換える。これにより浴槽7の温水は顕熱2次熱交換器25に入り、顕熱2次出接続口27付近では50℃程度まで上昇して浴槽7の温水を追焚きすることになる。   When the hot water supply operation and the reheating operation are performed at the same time, the switching control means 71a has a temperature difference obtained by subtracting the temperature detected by the latent heat heat exchanger temperature detector 33 from the temperature detected by the sensible heat heat exchanger temperature detector 23. When it becomes above, it is judged that the hot water supply operation is started and the tap water is supplied to the latent heat exchanger 30. The predetermined temperature can be determined by the temperature of the first fluid to be heated in the latent heat exchanger 30 being lowered when the hot water supply operation is started and the tap water is supplied. The temperature is determined by the mounting position of the heat exchanger 30 and the thermal efficiency of the latent heat exchanger 30 and can be determined to be that tap water has been supplied to the latent heat exchanger 30. If it is determined that the hot water is supplied by the switching control means 71a, the circulation return pipe 17 and the bypass flow path 41 are connected to the flow path of the three-way valve 40 from the flow path that connects the circulation return pipe 17 and the latent heat secondary heat exchanger 35. Switch to a flow path that allows communication. Thus, the hot water in the bathtub 7 enters the sensible heat secondary heat exchanger 25 and rises to about 50 ° C. in the vicinity of the sensible heat secondary outlet 27 to follow the hot water in the bathtub 7.

追焚き中に給湯栓6が閉弁された結果として給湯運転が停止すると、潜熱熱交温度検知器33で検知される潜熱熱交換器30の第一の被加熱流体の温度が、水道水が供給されないことにより上昇することになり、顕熱熱交温度検知器23で検知される温度との温度差が所定温度未満となることで、切換え制御手段71aで給湯運転が停止されたことを判断し、三方弁40の流路を循環戻り配管17とバイパス流路41とを連通させる流路から、循環戻り配管17と潜熱2次熱交換器35とを連通させる流路に切換える。   When the hot water supply operation is stopped as a result of closing of the hot water tap 6 during reheating, the temperature of the first heated fluid of the latent heat exchanger 30 detected by the latent heat exchange temperature detector 33 is changed to the tap water. If the temperature difference from the temperature detected by the sensible heat exchanger temperature detector 23 becomes less than a predetermined temperature, the switching control means 71a determines that the hot water supply operation has been stopped. Then, the flow path of the three-way valve 40 is switched from the flow path connecting the circulation return pipe 17 and the bypass flow path 41 to the flow path connecting the circulation return pipe 17 and the latent heat secondary heat exchanger 35.

実施例3を図7により説明する。給湯機3は、給湯運転と追焚き運転が同時に行われる場合の三方弁40の切換え制御手段71bの判断が潜熱熱交温度検知器33と潜熱2次熱交入温度検知器38の検知により行われるものであり、実施例1と異なる点は、水流検知器13は設けられておらず、潜熱熱交換器30には潜熱熱交温度検知器33が設けられている。潜熱熱交温度検知器33で検知した温度は電圧により制御装置70bに伝達される。他の構成については実施例1と同様であるので、実施例1と同一の構成部品には同一の符号を付けて説明を省略する。   A third embodiment will be described with reference to FIG. In the water heater 3, the determination of the switching control means 71 b of the three-way valve 40 when the hot water supply operation and the reheating operation are performed at the same time is performed by detection of the latent heat heat exchange temperature detector 33 and the latent heat secondary heat input temperature detector 38. What is different from the first embodiment is that the water flow detector 13 is not provided, and the latent heat exchanger 30 is provided with a latent heat exchange temperature detector 33. The temperature detected by the latent heat exchange temperature detector 33 is transmitted to the control device 70b by voltage. Since other configurations are the same as those of the first embodiment, the same components as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

給湯運転と追焚き運転が同時に行われる場合において、切換え制御手段71bは潜熱熱交温度検知器33の検知した温度から潜熱2次熱交入温度検知器38の検知した温度を引いた温度差が所定温度未満になった場合には、給湯運転が開始され、水道水が潜熱熱交換器30に供給されたことにより潜熱2次熱交換器35での加熱ができないと判断する。この所定温度とは、潜熱2次熱交換器35内の第二の被加熱流体が潜熱2次熱交換器35の外側の第一の被加熱流体よりも少しでも低い温度であれば第一の被加熱流体から第二の被加熱流体への熱移動が可能であることで定められる温度となる。切換え制御手段71bが給湯が行われたと判断すると、三方弁40の流路を循環戻り配管17と潜熱2次熱交換器35とを連通させる流路を、循環戻り配管17とバイパス流路41とを連通させる流路に切換える。これにより浴槽7の温水は直接顕熱2次熱交換器25に入り、顕熱2次出接続口27付近では50℃程度まで上昇して浴槽7の温水を追焚きすることが可能になる。   In the case where the hot water supply operation and the reheating operation are performed simultaneously, the switching control means 71b has a temperature difference obtained by subtracting the temperature detected by the latent heat secondary heat input temperature detector 38 from the temperature detected by the latent heat heat exchange temperature detector 33. When the temperature is lower than the predetermined temperature, the hot water supply operation is started, and it is determined that the latent heat secondary heat exchanger 35 cannot be heated by supplying tap water to the latent heat exchanger 30. The predetermined temperature is the first temperature if the second heated fluid in the latent heat secondary heat exchanger 35 is at a lower temperature than the first heated fluid outside the latent heat secondary heat exchanger 35. The temperature is determined by enabling heat transfer from the heated fluid to the second heated fluid. When the switching control means 71b determines that the hot water supply has been performed, the flow path connecting the circulation return pipe 17 and the latent heat secondary heat exchanger 35 through the flow path of the three-way valve 40 is defined as the circulation return pipe 17 and the bypass flow path 41. Switch to a flow path that allows communication. As a result, the hot water in the bathtub 7 directly enters the sensible heat secondary heat exchanger 25, and rises to about 50 ° C. near the sensible heat secondary outlet 27 so that the hot water in the bathtub 7 can be tracked.

追焚き中に給湯栓6が閉弁された結果として給湯運転が停止すると、潜熱熱交温度検知器33で検知される潜熱熱交換器30の第一の被加熱流体の温度が水道水が供給されないことにより上昇することになり、潜熱2次熱交入温度検知器38で検知される温度との温度差が所定温度以上となることで、切換え制御手段71bで第一の被加熱流体から第二の被加熱流体への熱移動が可能であると判断し、三方弁40の流路を循環戻り配管17とバイパス流路41とを連通させる流路から、循環戻り配管17と潜熱2次熱交換器35とを連通させる流路に切換える。   When the hot water supply operation is stopped as a result of closing of the hot water tap 6 during reheating, the temperature of the first heated fluid of the latent heat exchanger 30 detected by the latent heat exchange temperature detector 33 is supplied by the tap water. If the temperature difference from the temperature detected by the latent heat secondary heat input temperature detector 38 exceeds a predetermined temperature, the switching control means 71b changes the first heated fluid from the first heated fluid. It is determined that heat transfer to the second fluid to be heated is possible, and the circulation return pipe 17 and the latent heat secondary heat are passed from the flow path connecting the circulation return pipe 17 and the bypass flow path 41 through the flow path of the three-way valve 40 The flow path is switched to communicate with the exchanger 35.

実施例4を図8により説明する。給湯機4は、実施例1の三方弁40を二方弁42に置き換えた場合の実施例であり、他の構成については実施例1と同様であるので、実施例1と同一の構成部品には同一の符号を付けて説明を省略する。   A fourth embodiment will be described with reference to FIG. The water heater 4 is an embodiment in which the three-way valve 40 of the first embodiment is replaced with a two-way valve 42, and the other components are the same as those of the first embodiment. Are given the same reference numerals and their description is omitted.

二方弁42はバイパス流路41の途中に設けられており、バイパス流路41の開閉が可能となっている。実施例1の三方弁40が設けられていた場所には、循環戻り配管17を分岐するバイパス流路41が連通している。   The two-way valve 42 is provided in the middle of the bypass flow path 41 so that the bypass flow path 41 can be opened and closed. A bypass passage 41 that branches the circulation return pipe 17 communicates with the place where the three-way valve 40 of the first embodiment is provided.

給湯機4で給湯運転と追焚き運転が同時に行われる場合において、水流検知器13が水の流れを検知し、水道水が潜熱熱交換器30に供給されたことを切換え制御手段71cが判断すると、二方弁42は開状態となる。二方弁42が閉状態となっている場合は、バイパス流路41は遮断されて第二の被加熱流体は潜熱2次熱交換器35の方向へ流れるが、二方弁42が開状態となると、潜熱2次熱交換器35は、潜熱2次熱交換器35の熱交換率を上昇させるため屈曲させており通過距離が長いので、第二の被加熱流体の通過抵抗が、バイパス流路41よりも大きいので、潜熱2次熱交換器35へはほとんど第二の被加熱流体はながれないようになり、流路の切り換えが可能となる。これにより浴槽7の温水はバイパス流路41を経由して、顕熱2次熱交換器25に入り、顕熱2次出接続口27付近では50℃程度まで上昇して浴槽7の温水を追焚きすることになる。   When the hot water supply operation and the reheating operation are simultaneously performed in the water heater 4, the water flow detector 13 detects the flow of water and the switching control means 71c determines that the tap water has been supplied to the latent heat exchanger 30. The two-way valve 42 is opened. When the two-way valve 42 is in the closed state, the bypass passage 41 is blocked and the second heated fluid flows in the direction of the latent heat secondary heat exchanger 35, but the two-way valve 42 is in the open state. Then, the latent heat secondary heat exchanger 35 is bent in order to increase the heat exchange rate of the latent heat secondary heat exchanger 35 and has a long passage distance. Since it is larger than 41, the second heated fluid hardly flows to the latent heat secondary heat exchanger 35, and the flow path can be switched. As a result, the hot water in the bathtub 7 enters the sensible heat secondary heat exchanger 25 via the bypass channel 41 and rises to about 50 ° C. in the vicinity of the sensible heat secondary outlet 27 to follow the hot water in the bathtub 7. I will whisper.

追焚き中に給湯栓6が閉弁された結果として給湯運転が停止すると、水流検知器13が水の流れがなくなったことを検知し、切換え制御手段71cで給湯運転が停止されたことを判断し、判断した時点から切換え制御手段71cの計時手段72で所定時間の計時を開始する。計時手段72の所定時間の計時が終了すると、切換え制御手段71cで二方弁42を閉状態に動かしバイパス流路41を遮断して、第二の被加熱流体を潜熱2次熱交換器35の方向へ流す。給湯運転が終了したと同時に二方弁42を閉状態に動かさないのは、潜熱熱交換器30内の第一の被加熱流体である水道水の温度が上昇する時間を考慮するものであり、潜熱熱交換30の容量と燃焼機9の時間当たりの燃焼量により変わる。なお、二方弁42を閉状態に動かすのを待つ時間が短時間の場合や、浴槽7の温水の温度の低下する時間が短時間の場合には、水流検知器13が水の流れがなくなったことを検知すると同時に二方弁42を閉状態に動かしても良い。   When the hot water supply operation is stopped as a result of closing of the hot water tap 6 during reheating, the water flow detector 13 detects that the flow of water has disappeared, and the switching control means 71c determines that the hot water supply operation has been stopped. Then, from the determined time, the time measuring means 72 of the switching control means 71c starts measuring a predetermined time. When the timing of the predetermined time of the time measuring means 72 is finished, the two-way valve 42 is moved to the closed state by the switching control means 71c to shut off the bypass passage 41, and the second heated fluid is transferred to the latent heat secondary heat exchanger 35. Flow in the direction. The reason why the two-way valve 42 is not moved to the closed state at the same time as the hot water supply operation is finished is to consider the time during which the temperature of the tap water that is the first heated fluid in the latent heat exchanger 30 rises, It varies depending on the capacity of the latent heat exchange 30 and the amount of combustion per hour of the combustor 9. In addition, when the time which waits to move the two-way valve 42 to a closed state is short, or when the time when the temperature of the hot water of the bathtub 7 falls is short, the water flow detector 13 loses the flow of water. At the same time, the two-way valve 42 may be moved to the closed state.

なお、三方弁40を二方弁42に変更する場合の例を実施例1に基づいて説明したが、実施例2または実施例3においても同様に三方弁40を二方弁42に変更して実施することは可能である。   Although the example in which the three-way valve 40 is changed to the two-way valve 42 has been described based on the first embodiment, the three-way valve 40 is similarly changed to the two-way valve 42 in the second or third embodiment. It is possible to implement.

1、2、3、4:給湯機
6:給湯栓
7:浴槽
8:循環口
9:燃焼機
11:給水配管
12:減圧弁
13:水流検知器
14:内部配管
15:給湯配管
16:2次熱交内部配管
17:循環戻り配管
18:循環往き配管
19:循環ポンプ
20:顕熱熱交換器
21:顕熱熱交入接続口
22:顕熱熱交出接続口
23:顕熱熱交温度検知器
25:顕熱2次熱交換器
26:顕熱2次入接続口
27:顕熱2次出接続口
30:潜熱熱交換器
31:潜熱熱交入接続口
32:潜熱熱交出接続口
33:潜熱熱交温度検知器
35:潜熱2次熱交換器
36:潜熱2次入接続口
37:潜熱2次出接続口
38:潜熱2次熱交入温度検知器
40:三方弁
41:バイパス流路
42:二方弁
50:凝縮水受け皿
55:中和槽
70、70a、70b、70c:制御装置
71、71a、71b、71c:切換え制御手段
72:計時手段
1, 2, 3, 4: Hot water heater 6: Hot water tap 7: Bathtub 8: Circulation port 9: Combustor 11: Water supply pipe 12: Pressure reducing valve 13: Water flow detector 14: Internal pipe 15: Hot water supply pipe 16: Secondary Heat exchange internal pipe 17: Circulation return pipe 18: Circulation return pipe 19: Circulation pump 20: Sensible heat exchanger 21: Sensible heat heat inlet port 22: Sensible heat heat outlet port 23: Sensible heat heat exchanger temperature Detector 25: Sensible heat secondary heat exchanger 26: Sensible heat secondary inlet 27: Sensible heat secondary outlet 30: Latent heat exchanger 31: Latent heat inlet 32: Latent heat outlet connection Port 33: Latent heat heat exchange temperature detector 35: Latent heat secondary heat exchanger 36: Latent heat secondary input connection port 37: Latent heat secondary output connection port 38: Latent heat secondary heat input temperature detector 40: Three-way valve 41: Bypass channel 42: Two-way valve 50: Condensate tray 55: Neutralization tank 70, 70a, 70b, 70c: Control devices 71, 71a, 71 , 71c: switching control means 72: timer means

Claims (4)

潜熱熱交換器と、顕熱熱交換器と、燃焼ガスを発生させる燃焼機と、前記燃焼ガスは、前記顕熱熱交換器を通過して更に前記潜熱熱交換器を通過するようになっており、第一の被加熱流体が前記潜熱熱交換器を通り、前記顕熱熱交換器に入る第一の熱交換流路と、前記潜熱熱交換器の内部で間接的に加熱される潜熱2次熱交換器と、前記顕熱熱交換器の内部で間接的に加熱される顕熱2次熱交換器と、第二の被加熱流体が前記潜熱2次熱交換器を通り、前記顕熱2次熱交換器に入る第二の熱交換流路と、前記潜熱2次熱交換器をバイパスするバイパス流路と、前記バイパス流路と前記潜熱2次熱交換器の流路を切換える切換え手段と、前記切換え手段の切換え条件を判断する切換え制御手段が備えられた給湯機。   A latent heat exchanger, a sensible heat exchanger, a combustor that generates combustion gas, and the combustion gas passes through the sensible heat exchanger and further passes through the latent heat exchanger. And a first heat exchange fluid that passes through the latent heat exchanger and enters the sensible heat exchanger, and latent heat 2 that is indirectly heated inside the latent heat exchanger. A secondary heat exchanger, a sensible heat secondary heat exchanger heated indirectly inside the sensible heat exchanger, and a second heated fluid passing through the latent heat secondary heat exchanger, and the sensible heat A second heat exchange channel entering the secondary heat exchanger, a bypass channel bypassing the latent heat secondary heat exchanger, and a switching means for switching between the bypass channel and the channel of the latent heat secondary heat exchanger And a water heater provided with switching control means for determining switching conditions of the switching means. 前記切換え制御手段には計時手段が設けられ、前記切換え制御手段の判断は、前記第一の熱交換流路に設けられている通水検知手段を用い、前記通水検知手段で通水を検知した場合は前記第二の被加熱流体の流路を前記バイパス流路側に切換え、前記通水検知手段で通水を検知しなくなってから前記計時手段で計時を開始し、所定時間経過後前記第二の被加熱流体の流路を前記潜熱2次熱交換器側に切換える請求項1記載の給湯機。   The switching control means is provided with a timing means, and the switching control means uses the water flow detection means provided in the first heat exchange flow path to detect water flow with the water flow detection means. In such a case, the flow path of the second heated fluid is switched to the bypass flow path side, and when the water flow detecting means stops detecting water flow, the time measuring means starts measuring time, and after a predetermined time has passed, The hot water heater according to claim 1, wherein the flow path of the second fluid to be heated is switched to the latent heat secondary heat exchanger side. 前記切換え制御手段の判断が、前記顕熱熱交換器に設けられている顕熱熱交温度検知器で検知する前記顕熱熱交換器内の第一の被加熱流体の温度から前記潜熱熱交換器に設けられている潜熱熱交温度検知器で検知する前記潜熱熱交換器内の第一の被加熱流体の温度を引いた温度差が所定温度以上の場合は、前記第二の被加熱流体の流路を前記バイパス流路側に切換え、所定温度未満の場合は前記第二の被加熱流体の流路を潜熱2次熱交換器側に切換える請求項1記載の給湯機。   The determination of the switching control means is the latent heat exchange from the temperature of the first heated fluid in the sensible heat exchanger detected by a sensible heat exchange temperature detector provided in the sensible heat exchanger. When the temperature difference obtained by subtracting the temperature of the first heated fluid in the latent heat exchanger detected by the latent heat exchange temperature detector provided in the chamber is equal to or higher than a predetermined temperature, the second heated fluid The hot water heater according to claim 1, wherein the flow path is switched to the bypass flow path side, and the flow path of the second heated fluid is switched to the latent heat secondary heat exchanger side when the temperature is lower than a predetermined temperature. 前記切換え制御手段の判断が、前記潜熱熱交換器に設けられている潜熱熱交温度検知器で検知する潜熱熱交換器内の第一の被加熱流体の温度から前記潜熱2次熱交換器の入口側に設けられている潜熱2次熱交温度検知器で検知する前記第二の被加熱流体温度を引いた温度差が所定温度未満の場合は、前記第二の被加熱流体の流路を前記バイパス流路側に切換え、所定温度以上の場合は、前記第二の被加熱流体の流路を潜熱2次熱交換器側に切換える請求項1記載の給湯機。

The determination of the switching control means is based on the temperature of the first heated fluid in the latent heat exchanger detected by the latent heat exchange temperature detector provided in the latent heat exchanger. When the temperature difference obtained by subtracting the second heated fluid temperature detected by the latent heat secondary heat exchanger temperature detector provided on the inlet side is less than a predetermined temperature, the flow path of the second heated fluid is The hot water heater according to claim 1, wherein the flow path of the second fluid to be heated is switched to the latent heat secondary heat exchanger side when switching to the bypass flow path side and above a predetermined temperature.

JP2010149069A 2010-06-30 2010-06-30 Water heater Active JP5501120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010149069A JP5501120B2 (en) 2010-06-30 2010-06-30 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010149069A JP5501120B2 (en) 2010-06-30 2010-06-30 Water heater

Publications (2)

Publication Number Publication Date
JP2012013285A JP2012013285A (en) 2012-01-19
JP5501120B2 true JP5501120B2 (en) 2014-05-21

Family

ID=45599934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010149069A Active JP5501120B2 (en) 2010-06-30 2010-06-30 Water heater

Country Status (1)

Country Link
JP (1) JP5501120B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6026308B2 (en) * 2013-02-08 2016-11-16 株式会社コロナ Latent heat recovery hot water bath system

Also Published As

Publication number Publication date
JP2012013285A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5206106B2 (en) Water heater
JP5121378B2 (en) Water heater
JP2014016075A (en) Hybrid system
JP5370807B2 (en) Latent heat recovery water heater
RU2006135180A (en) HEAT SUPPLY SYSTEM AND HOT WATER SUPPLY (OPTIONS)
JP2007120865A (en) Single-drum two-waterway hot water supply system
JP5501120B2 (en) Water heater
JP2010169293A (en) Latent heat recovery type water heater
JP6115754B2 (en) Heat source machine and freeze prevention control method
JP2010054131A (en) Storage type hot water supply device
JP5285920B2 (en) Gas hot water heating system
JP5667856B2 (en) Water heater
CN216924756U (en) Gas heating water heater
JP5828264B2 (en) Heat source machine
JP6530299B2 (en) Heating system
JP2019124366A (en) Highly efficient water heater
CN114198904A (en) Gas heating water heater
JP4867282B2 (en) Water heater
JP3962753B2 (en) Hot water system
SU736887A3 (en) Method and device for control of heat-transferring unit preferably with circulating heat-carrier
KR100279883B1 (en) Insulation control method of gas boiler
JP5606141B2 (en) Heat source device and hot water supply device
JP2015010753A (en) Water heater
JP2014122768A (en) Combustion device provided with one heat exchanger and two water channels
JP2017122535A (en) Bath water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130425

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140311

R150 Certificate of patent or registration of utility model

Ref document number: 5501120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250