JP5501091B2 - Washing and drying machine - Google Patents

Washing and drying machine Download PDF

Info

Publication number
JP5501091B2
JP5501091B2 JP2010111611A JP2010111611A JP5501091B2 JP 5501091 B2 JP5501091 B2 JP 5501091B2 JP 2010111611 A JP2010111611 A JP 2010111611A JP 2010111611 A JP2010111611 A JP 2010111611A JP 5501091 B2 JP5501091 B2 JP 5501091B2
Authority
JP
Japan
Prior art keywords
washing
water
vibration
clothes
integrated value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010111611A
Other languages
Japanese (ja)
Other versions
JP2011239799A (en
Inventor
康博 松井
功 桧山
裕之 小池
亮二 平山
和俊 片根
伸一 綿引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010111611A priority Critical patent/JP5501091B2/en
Publication of JP2011239799A publication Critical patent/JP2011239799A/en
Application granted granted Critical
Publication of JP5501091B2 publication Critical patent/JP5501091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Description

本発明は、洗濯乾燥機に関するもので、特に布質検知に関する。   The present invention relates to a washing / drying machine, and more particularly to cloth quality detection.

洗濯乾燥機は、筐体内に洗濯水を溜める円筒体の外槽と、その外槽の内側で回転可能に設けられた円筒体でその円筒部に多数の孔が設けられた洗濯兼脱水槽(以下、洗濯槽と言う)と、この洗濯槽の底部で回転自在に設置し、衣類および水を撹拌する回転翼とこの洗濯槽および回転翼を回転させるモータ、および乾燥装置で構成されている。   The washing / drying machine has a cylindrical outer tub for storing washing water in a housing, and a washing / dehydrating tub having a large number of holes in the cylindrical portion provided rotatably inside the outer tub ( Hereinafter, it is referred to as a washing tub), and is constituted by a rotary blade that is rotatably installed at the bottom of the washing tub, agitates clothes and water, a motor that rotates the washing tub and the rotary wing, and a drying device.

このような洗濯乾燥機で洗濯する衣類は多種多様であり、それらの性質ごとに適した運転が望まれている。   There are a wide variety of clothes to be washed with such a washing and drying machine, and an operation suitable for each of these properties is desired.

従来の洗濯機および洗濯乾燥機の布質の判定方法としては、前記外槽内に水を溜めない状態で前記モータを駆動したときのモータにかかる負荷特性と水を溜めた状態でのモータにかかる負荷特性とから判定する方法が提案されている(下記特許文献1)。   As a method for determining the cloth quality of a conventional washing machine and washing / drying machine, load characteristics applied to the motor when the motor is driven in a state where water is not accumulated in the outer tub and a motor in a state where water is accumulated A method of determining from such load characteristics has been proposed (Patent Document 1 below).

特開平9−239187号公報Japanese Patent Laid-Open No. 9-239187

上記特許文献1では、回転翼の回転が悪い場合に、布質を吸水性の高い「ごわごわ」と判定しているが、滑りの悪い綿を素材とする衣類は、吸水性が低くても回転翼の回転を悪くする場合がある。従って、上記判定方法によれば、このような衣類についても「ごわごわ」と判定してしまう。   In the above-mentioned Patent Document 1, when the rotation of the rotor blade is poor, it is determined that the cloth quality is “wow” with high water absorption. However, clothing made of cotton with poor slippage is rotated even if water absorption is low. The wing rotation may be worsened. Therefore, according to the above determination method, such clothing is also determined to be “wow”.

本発明の第1の目的は、洗濯中の衣類の布質、特に含水量の多い衣類か否かを精度よく判定し、その判定結果に応じた運転が可能な洗濯乾燥機を提供することにある。また、本発明の第2の目的は、衣類の素材、例えば、綿か化学繊維かを精度よく判定し、その判定結果に応じた運転が可能な洗濯乾燥機を提供することにある。   A first object of the present invention is to provide a washing / drying machine that can accurately determine whether or not the clothes are being washed, particularly whether the clothes have a high water content, and can be operated according to the determination result. is there. A second object of the present invention is to provide a washing / drying machine capable of accurately determining a material of clothing, for example, cotton or chemical fiber, and capable of operating according to the determination result.

本発明は、このような課題を解決するために、衣類を収容する洗濯兼脱水槽と、前記洗濯兼脱水槽を内包する外槽と、前記洗濯兼脱水槽を回転駆動する駆動装置と、前記外槽の振動量を検知する振動検知手段と、前記外槽を覆う筺体を有した洗濯乾燥機において、前記洗濯兼脱水槽内部に衣類及び水を供給した状態で、前記洗濯兼脱水槽が回転又は停止するように前記駆動装置を操作した場合に、前記振動検知手段で検知した振動量に基づいて、洗濯,脱水又は乾燥の運転を変化させることを特徴とする。   In order to solve such a problem, the present invention provides a washing and dewatering tub for storing clothes, an outer tub containing the washing and dewatering tub, a drive device for rotationally driving the washing and dewatering tub, In the washing / drying machine having a vibration detecting means for detecting the vibration amount of the outer tub and a casing covering the outer tub, the washing / dehydrating tub is rotated while clothing and water are supplied into the washing / dehydrating tub. Alternatively, when the driving device is operated so as to stop, the operation of washing, dehydration or drying is changed based on the vibration amount detected by the vibration detecting means.

また、望ましくは、洗濯兼脱水槽を駆動するときの回転負荷量を検知する負荷検知手段を更に有し、この負荷検知手段で検知した回転負荷量に基づいて、含水量の多い衣類か否か及び化繊が多い衣類か否かを判定し、その判定結果に応じて、本洗い,すすぎ,脱水又は乾燥の運転を変化させることを特徴とする。   Desirably, it further includes load detection means for detecting a rotational load amount when driving the washing / dehydrating tub, and based on the rotational load amount detected by the load detection means, whether or not the clothing has a high water content. It is characterized in that it is determined whether or not the clothes have a lot of synthetic fibers, and the operation of main washing, rinsing, dehydration or drying is changed according to the determination result.

本発明によれば、洗濯中の衣類の布質、特に含水量の多い衣類か否かを精度よく判定し、その判定結果に応じた運転が可能な洗濯乾燥機を提供できる。また、衣類の素材、例えば、綿か化学繊維かを精度よく判定し、その結果に応じた運転が可能な洗濯乾燥機を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the washing dryer which can determine accurately whether the cloth quality of the clothing in washing | cleaning, especially clothing with much water content, and can be drive | operated according to the determination result can be provided. In addition, it is possible to provide a washing / drying machine that can accurately determine the material of clothing, for example, cotton or chemical fiber and can be operated according to the result.

第1実施形態に係る洗濯乾燥機内部の右側面図である。It is a right view inside the washing and drying machine concerning a 1st embodiment. 第1実施形態に係る洗濯乾燥機の外装を示した図である。It is the figure which showed the exterior of the washing / drying machine which concerns on 1st Embodiment. 第1実施形態に係る洗濯乾燥機の制御装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the control apparatus of the washing / drying machine which concerns on 1st Embodiment. 第1実施形態に係る洗濯乾燥機の動作フローを示す図である。It is a figure which shows the operation | movement flow of the washing / drying machine which concerns on 1st Embodiment. マイコンが備える布量・布質判定部の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the cloth amount and the cloth quality determination part with which a microcomputer is provided. 湿布重量と振動積算値Vの関係を示す図である。It is a figure which shows the relationship between a compress weight and the vibration integrated value V. FIG. 乾布重量と湿布重量の関係を示す図である。It is a figure which shows the relationship between dry cloth weight and poultry weight. 湿布重量と電流積算値Iの関係を示す図である。It is a figure which shows the relationship between a compress weight and the electric current integrated value I. 第2実施形態に係るマイコンが備える布量・布質判定部の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the cloth quantity and the cloth quality determination part with which the microcomputer concerning 2nd Embodiment is provided. 布量センシング値mと振動積算値Vの関係を示す図である。It is a figure which shows the relationship between the cloth amount sensing value m and the vibration integration value V. FIG. 布量センシング値mと電流積算値Iの関係を示す図である。It is a figure which shows the relationship between the cloth amount sensing value m and the electric current integration value I. FIG. 電流積算値距離DIと振動積算値距離DVの関係を示す図である。It is a figure which shows the relationship between the electric current integrated value distance DI and the vibration integrated value distance DV. 第3実施形態に係るドラム式洗濯乾燥機の外装を示した斜視図である。It is the perspective view which showed the exterior of the drum type washing-drying machine which concerns on 3rd Embodiment. 第3実施形態に係るドラム式洗濯乾燥機内部の右側面図である。It is a right view inside a drum type washing dryer concerning a 3rd embodiment. 第3実施形態に係る洗濯乾燥機の動作フローを示す図である。It is a figure which shows the operation | movement flow of the washing / drying machine which concerns on 3rd Embodiment. 第3実施形態に係るマイコンが備える布量・布質判定部の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the cloth quantity and the cloth quality determination part with which the microcomputer concerning 3rd Embodiment is provided. 乾布重量と振動積算値Vの関係を示す図である。It is a figure which shows the relationship between dry cloth weight and vibration integrated value V. FIG.

以下、本発明を実施するための形態(以下「実施形態」という)について、適宜図面を参照しながら詳細に説明する。   Hereinafter, modes for carrying out the present invention (hereinafter referred to as “embodiments”) will be described in detail with reference to the drawings as appropriate.

まず、縦型の洗濯乾燥機について説明する。   First, a vertical washer / dryer will be described.

図1は、第1実施形態に係る洗濯機内部を、図2は洗濯機外装を示している。この洗濯機の外装は、鋼板製の筐体1とその上部に取り付けたトップカバー2および操作・表示パネル3により構成する。この操作・表示パネル3は、電源スイッチ3a,操作ボタン3b,表示器3cを備える。トップカバー2は、蓋2aと主に給水に関連する部品を収納する後部収納部2bとで構成する。   FIG. 1 shows the inside of the washing machine according to the first embodiment, and FIG. 2 shows the exterior of the washing machine. The exterior of the washing machine is composed of a casing 1 made of steel plate, a top cover 2 attached to the upper part, and an operation / display panel 3. The operation / display panel 3 includes a power switch 3a, operation buttons 3b, and a display 3c. The top cover 2 includes a lid 2a and a rear storage portion 2b that mainly stores components related to water supply.

洗濯機の内部において、有底で円筒形状の水を貯める外槽4は、筐体上部の4隅より4本の吊り棒5により弾性的に支持されている(図では1本のみ示す)。この外槽4内には、円筒形状の洗濯槽6を回転自在に設ける。洗濯槽6の側面には多数の脱水穴6aを設け、上縁部には流体バランサ6bを設ける。また、洗濯槽6の底部には、回転翼7を回転可能に設ける。外槽4の底面外側には、支持板8を取り付け、この支持板8に駆動装置9を固定する。この駆動装置9により、脱水時には回転翼7を洗濯槽6に固定し、洗濯槽6を一方向に回転駆動させる。また洗濯時には、回転翼7は洗濯槽6から切り離され、洗濯槽6内で正転・逆転し、水および衣類を搖動させる。   Inside the washing machine, the outer tub 4 for storing cylindrical water with a bottom is elastically supported by four suspension bars 5 from the four corners of the upper part of the housing (only one is shown in the figure). A cylindrical washing tub 6 is rotatably provided in the outer tub 4. A large number of dewatering holes 6a are provided on the side surface of the washing tub 6, and a fluid balancer 6b is provided on the upper edge. A rotating blade 7 is rotatably provided at the bottom of the washing tub 6. A support plate 8 is attached to the outside of the bottom surface of the outer tub 4, and a driving device 9 is fixed to the support plate 8. With this driving device 9, the rotating blade 7 is fixed to the washing tub 6 during dehydration, and the washing tub 6 is rotationally driven in one direction. Further, during washing, the rotary blade 7 is separated from the washing tub 6 and rotates forward and reverse in the washing tub 6 to swing water and clothes.

トップカバー2の後部には給水口10を設け、後部収納部2b内には給水弁11,冷却水給水弁12を設け、これらを接続し、給水ユニットを構成する。この給水弁11により、外槽4に洗濯用水が供給される。洗濯機上部に設けた水位センサ13により水位を検知することにより、供給される水量は制御される。水位センサ13は、外槽4の下部で外槽4とつながった空気室14とチューブ15で繋がっており、空気室14内の圧力を検出している。   A water supply port 10 is provided in the rear part of the top cover 2, and a water supply valve 11 and a cooling water supply valve 12 are provided in the rear housing part 2 b, which are connected to constitute a water supply unit. Washing water is supplied to the outer tub 4 by the water supply valve 11. The amount of water supplied is controlled by detecting the water level with a water level sensor 13 provided in the upper part of the washing machine. The water level sensor 13 is connected to the air chamber 14 connected to the outer tub 4 at the lower part of the outer tub 4 and the tube 15, and detects the pressure in the air chamber 14.

外槽4の底面には、洗濯用水の排水を行う排水弁16を設け、この排水弁16に接続した排水ホース17を介して洗濯用水を洗濯機外に排出する。   A drain valve 16 for draining washing water is provided on the bottom surface of the outer tub 4, and the washing water is discharged outside the washing machine through a drain hose 17 connected to the drain valve 16.

また、外槽4の後ろには乾燥時に冷却除湿を行うダクト18を設ける。このダクト18と外槽4はゴム質のジャバラ管19で接続されている。ダクト18のジャバラ管19とは反対側にファン20が設けられ、乾燥時にはファン20を動作させ、ダクト18内の空気がファン20に吸い込まれる。ファン20の吐出側にヒータ21が設けられ、その先は外槽4に繋がっている。外槽4の上面には、外槽4の空気を逃がさないように、内蓋22が設けられている。   Further, a duct 18 for cooling and dehumidifying at the time of drying is provided behind the outer tub 4. The duct 18 and the outer tub 4 are connected by a rubber bellows pipe 19. A fan 20 is provided on the opposite side of the duct 18 from the bellows pipe 19, and the fan 20 is operated during drying, and the air in the duct 18 is sucked into the fan 20. A heater 21 is provided on the discharge side of the fan 20, and the tip is connected to the outer tub 4. An inner lid 22 is provided on the upper surface of the outer tub 4 so as not to let the air in the outer tub 4 escape.

乾燥時ではファン20を動作させ、空気を循環させながら乾燥する。ファン20から吐出された空気をヒータ21で温め、洗濯槽6に吹き込む。洗濯槽6内の湿った衣類を温めて水分を蒸発させる。蒸発した水分を含んだ空気はダクト18内に送り込まれる。このとき冷却水給水弁12を開き、ダクト18内に給水し、ダクト18内で湿った空気と接触することで水冷除湿し、乾いた空気に戻す。この空気がファン20に吸い込まれ、またヒータ21に向けて吐出される。このように空気を循環させながら、衣類の水分を蒸発させて乾燥を行う。   At the time of drying, the fan 20 is operated and drying is performed while circulating air. Air discharged from the fan 20 is warmed by the heater 21 and blown into the washing tub 6. The wet clothes in the washing tub 6 are warmed to evaporate the water. The air containing the evaporated water is sent into the duct 18. At this time, the cooling water supply valve 12 is opened, water is supplied into the duct 18, and water-cooling dehumidification is performed by contacting with the humid air in the duct 18 to return to dry air. This air is sucked into the fan 20 and discharged toward the heater 21. In this way, drying is performed by evaporating moisture from the clothes while circulating air.

ダクト18のファン20の吸い込み側に温度センサA23aが、ヒータ20の下流に温度センサB23bが設けられる。これら温度センサ23a,23bにより乾燥運転が制御される。   A temperature sensor A 23 a is provided on the suction side of the fan 20 of the duct 18, and a temperature sensor B 23 b is provided on the downstream side of the heater 20. These temperature sensors 23a and 23b control the drying operation.

また、モータ9にはその回転を検出するホール素子あるいはフォトインタラプタなどで構成される回転検出器24を設ける。   The motor 9 is provided with a rotation detector 24 composed of a Hall element or a photo interrupter for detecting the rotation.

また、外槽4の動きを検出する加速度センサ25を外槽4の胴部外周に固定する。この加速度センサ25はMEMS技術で作られたチップ状のセンサであり、外槽の上下方向,径方向,周方向の3方向の振動量を検知できる振動検知手段である。この加速度センサは抵抗等の電子部品とともに電子基板に実装され、プラスチック製のケース内に収められている。このケースの中には樹脂が流し込まれ、基板に水がかからないようにコーティングされている。また、加速度センサは外槽4の吊り棒5で支えられた部分の略鉛直上に設ける。吊り棒5により外槽4,洗濯槽6,衣類等の重量を支えるため、この付近は強固に作られている必要があり、外側に向かってリブが立てられている。このように強固に作られた部分に加速度センサ25を固定する。やわらかい部分に取り付けると、外槽4の動き以外に、外槽4自体の変形も検出してしまうため、望ましくない。   Further, an acceleration sensor 25 that detects the movement of the outer tub 4 is fixed to the outer periphery of the trunk of the outer tub 4. This acceleration sensor 25 is a chip-shaped sensor made by MEMS technology, and is a vibration detection means that can detect vibration amounts in three directions of the outer tank in the vertical direction, radial direction, and circumferential direction. This acceleration sensor is mounted on an electronic substrate together with electronic components such as resistors and is housed in a plastic case. Resin is poured into the case, and the substrate is coated so that it does not splash water. The acceleration sensor is provided substantially vertically above the portion of the outer tub 4 that is supported by the suspension bar 5. In order to support the weight of the outer tub 4, the washing tub 6, clothing, and the like by the suspension bar 5, it is necessary to make this area firmly and ribs are erected outward. The acceleration sensor 25 is fixed to the portion thus made firmly. If it is attached to a soft part, the deformation of the outer tub 4 itself is detected in addition to the movement of the outer tub 4, which is not desirable.

また、外槽4を覆う筐体1の下部にはモータ9,ファン20,ヒータ21などを制御する制御装置26を設ける。この制御装置26には、洗濯槽6および回転翼7を駆動するときの回転負荷量を検知する負荷検知手段、具体的には、モータへ供給する電流値を検知するモータ電流検出器27を設ける。   Further, a control device 26 for controlling the motor 9, the fan 20, the heater 21, and the like is provided at the lower part of the housing 1 that covers the outer tub 4. The control device 26 is provided with load detection means for detecting the rotational load amount when driving the washing tub 6 and the rotary blades 7, specifically, a motor current detector 27 for detecting a current value supplied to the motor. .

図3にこの制御装置26のブロック図を示す。制御装置26はマイクロコンピュータ(マイコン)31を中心に構成されている。使用者により操作ボタン3bから運転コースが入力され、その運転コースに合った運転パターンを運転パターンデータベース32から呼び出し、そのデータに沿って運転する。その運転は基本的にはモータ9の制御であり、モータ制御部33により制御される。モータ制御部33は、回転検出器24からの信号をもとに回転速度算出部34で回転速度を求めた結果を用いてモータ9を制御する。また、洗濯するための水量を制御するために水位制御部35は水位センサ13の出力を監視し、給水弁11,排水弁16の開閉を制御する。また、乾燥時においては温度センサ23a,23bの結果に基づきヒータ制御部36,ファン制御部37によりヒータ21,ファン20を制御する。また、モータ電流検出器27および加速度センサ25の結果をもとに布量・布質判定部38により衣類の布量,布質を判定する。この布量・布質判定部38について図4および図5を用いて詳しく説明する。   FIG. 3 shows a block diagram of the control device 26. The control device 26 is configured around a microcomputer (microcomputer) 31. A driving course is input from the operation button 3b by the user, a driving pattern suitable for the driving course is called from the driving pattern database 32, and driving is performed according to the data. The operation is basically control of the motor 9 and is controlled by the motor control unit 33. The motor control unit 33 controls the motor 9 using the result obtained by the rotation speed calculation unit 34 based on the signal from the rotation detector 24. Further, in order to control the amount of water for washing, the water level control unit 35 monitors the output of the water level sensor 13 and controls the opening and closing of the water supply valve 11 and the drain valve 16. Further, at the time of drying, the heater 21 and the fan 20 are controlled by the heater control unit 36 and the fan control unit 37 based on the results of the temperature sensors 23a and 23b. The cloth amount / cloth quality determination unit 38 determines the cloth amount and the cloth quality of the clothes based on the results of the motor current detector 27 and the acceleration sensor 25. The cloth amount / cloth quality determination unit 38 will be described in detail with reference to FIGS. 4 and 5. FIG.

図4は洗濯・乾燥動作のフローチャートであり、図5は布量・布質判定部のブロック図を示す。   FIG. 4 is a flowchart of the washing / drying operation, and FIG. 5 is a block diagram of the cloth amount / cloth quality determination unit.

図4に示すように、洗濯・乾燥がスタートしたら(S1)、乾布の布量センシングを行う(S2)。このとき回転翼7を正転・逆転させながら計測する。回転翼7を毎分130回転の速度で1.0秒間回転し、1.0秒間停止し、反対方向にも同様に1.0秒間回転し、1.0秒間停止させる。この動作周期は洗い時よりも短く、回転翼7は小刻みに動作する。この動作を複数回行う最中に、モータ電流検出器27の出力から電流積算値算出部(m)39により電流積算値mを算出する。この電流積算値mは時々刻々と変化する電流値を積算することで得る。この値から、乾布重量演算部40により乾布の重量を求める。この重量の結果から、表示器に衣類の重量に合った洗剤量を表示し、洗濯水を供給し(S3)、前洗いを行う(S4)。前洗いとは、前洗いの後に行われる本洗いより少ない量の水で洗剤を溶かし、その洗剤液を衣類にしみ込ませる工程であり、高濃度の洗剤液により衣類についた汚れをはがれやすい状態にする工程である。前洗では回転翼7の上面に出るか出ないか程度の洗剤液を供給し、回転翼7を複数回、本洗いよりも短い周期で正転・逆転させる。毎分130回転の速度で1.5秒間回転し、1.0秒間停止し、反対方向にも同様に1.5秒間回転し、1.0秒間停止させる。この動作を2分程度繰り返して前洗いを終了する。前洗いにより衣類に洗剤液をしみ込ませた状態にし、布質センシングを行う(S5)。   As shown in FIG. 4, when washing / drying starts (S1), cloth amount sensing of the dry cloth is performed (S2). At this time, the measurement is performed while rotating the rotor blades 7 in the forward and reverse directions. The rotor 7 is rotated at a speed of 130 revolutions per minute for 1.0 second, stopped for 1.0 second, and similarly rotated in the opposite direction for 1.0 second, and stopped for 1.0 second. This operation cycle is shorter than that at the time of washing, and the rotary blade 7 operates in small increments. During this operation, the current integrated value m is calculated from the output of the motor current detector 27 by the current integrated value calculating unit (m) 39. The current integrated value m is obtained by integrating current values that change from moment to moment. From this value, the dry cloth weight calculator 40 determines the weight of the dry cloth. From the result of the weight, the amount of detergent corresponding to the weight of the clothing is displayed on the display, washing water is supplied (S3), and pre-washing is performed (S4). Pre-washing is a process in which detergent is dissolved in a smaller amount of water than the main washing performed after pre-washing, and the detergent solution is soaked into clothing, so that the stains on the clothing can be easily removed with a high-concentration detergent solution. It is a process to do. In the pre-washing, a detergent solution is supplied to the extent that it comes out or does not come out on the upper surface of the rotary blade 7, and the rotary blade 7 is rotated forward and reverse a plurality of times in a cycle shorter than that of the main wash. Rotate for 1.5 seconds at a speed of 130 revolutions per minute, stop for 1.0 second, rotate in the opposite direction for 1.5 seconds and stop for 1.0 second. This operation is repeated for about 2 minutes to complete the pre-washing. The cloth is sensed by washing the clothes with a detergent solution by pre-washing (S5).

布質センシングは、洗濯槽6内部に衣類及び水を供給し、衣類を湿らせて前洗いした状態で、回転翼7を小刻みに回転又は停止するように駆動装置9を操作した場合に、加速度センサ25で検知した振動量に基づいて、含水量の多い衣類か否かを判定する。本実施形態では毎分130回転の速度で1.0秒間回転し、1.0秒間停止させる運転を正転・逆転を5回ずつ行う。このときのモータ電流検出器27の出力と加速度センサ25の出力からは、化繊の多い衣類か否かも判定する。   The cloth quality sensing is performed when the driving device 9 is operated so as to rotate or stop the rotating blade 7 in small increments while supplying clothes and water to the inside of the washing tub 6 and pre-washing the clothes with moisture. Based on the vibration amount detected by the sensor 25, it is determined whether or not the clothing has a high water content. In the present embodiment, the operation of rotating for 1.0 second at a speed of 130 rotations per minute and stopping for 1.0 second is performed forward and reverse 5 times each. It is also determined from the output of the motor current detector 27 and the output of the acceleration sensor 25 at this time whether or not the clothes have a lot of synthetic fibers.

具体的には、まず、加速度センサ25の出力を振動積算値算出部41により振動積算値Vを算出する。振動積算値Vは時々刻々と変化する加速度センサ出力を積算することで得る。本実施形態では加速度センサ25は3軸の加速度センサであり、3つの方向の出力が得られる。これら3方向の出力をそれぞれ積算し、これら3つの値を平均し、振動積算値Vとする。この振動積算値Vと湿布重量の関係を図6に示す。この図のひし形のプロットは綿100%のバスタオルの場合であり、四角形のプロットは綿35%,ポリエステル65%の混紡のワイシャツの場合であり、三角形のプロットはポリエステル100%のジャージの場合である。この図から布質によって異なる傾向は見られず、振動積算値Vは湿布重量に比例した値となる。つまり、布質が異なっても、同じ湿布重量ならばほぼ同じ振動積算値Vが算出されることがわかる。よって、この振動積算値Vにより湿布重量を推定することができ、湿布重量演算部42で湿布重量を推定する。   Specifically, first, the vibration integrated value calculation unit 41 calculates the vibration integrated value V from the output of the acceleration sensor 25. The vibration integrated value V is obtained by integrating acceleration sensor outputs that change from moment to moment. In the present embodiment, the acceleration sensor 25 is a triaxial acceleration sensor, and outputs in three directions are obtained. The outputs in these three directions are integrated, and the three values are averaged to obtain a vibration integrated value V. The relationship between this vibration integrated value V and the weight of the compress is shown in FIG. The rhombus plot in this figure is for a 100% cotton bath towel, the square plot is for a blended shirt of 35% cotton and 65% polyester, and the triangular plot is for a 100% polyester jersey. is there. From this figure, there is no different tendency depending on the fabric quality, and the vibration integrated value V is a value proportional to the weight of the compress. That is, it can be seen that even if the cloth quality is different, substantially the same vibration integrated value V is calculated if the weight of the compress is the same. Therefore, the weight of the compress can be estimated from the vibration integrated value V, and the compress weight is calculated by the compress weight calculating unit 42.

また参考として図7に乾布重量と湿布重量の関係を示す。この図から綿100%のバスタオルとポリエステル100%のジャージは乾布重量が同じなら湿布重量もほぼ同じ値であるが、綿35%,ポリエステル65%の混紡のワイシャツの湿布重量は他の衣類に比べて軽いことがわかる。これはバスタオルやジャージは水を多く含み重たくなる布質であるのに対して、ワイシャツは水を多く含むことができない布質であり、他の衣類にくらべて軽くなる。これは、繊維の編み方により大きく影響されると考える。バスタオルのように、生地が厚くなるように編むとその分水分を保持し易く、湿布重量が重くなる。逆にワイシャツのように生地が薄い場合は、水分をあまり保持できなく、湿布重量が軽くなる。   For reference, FIG. 7 shows the relationship between the dry cloth weight and the compress weight. From this figure, 100% cotton bath towel and 100% polyester jersey have the same dry weight if the dry weight is the same. However, the weight of the mixed shirt of 35% cotton and 65% polyester is similar to other clothes. You can see that it is lighter. This is because bath towels and jerseys are watery and heavy fabrics, while shirts are watery and waterless and lighter than other clothing. This is considered to be greatly influenced by how the fibers are knitted. If the fabric is knitted so as to be thick like a bath towel, moisture can be easily retained and the weight of the compress becomes heavy. Conversely, when the fabric is thin like a shirt, moisture cannot be retained so much and the weight of the compress is reduced.

このように布質によって含水量が多いものとそうでないものがあり、これらを判別する。湿布重量演算部42で得られた湿布重量と乾布の布量センシングで得られた乾布重量から含水量判定部43において含水量が多い布質と含水量が少ない衣類とを判別する。このように湿布重量を推測することで水を多く含みやすい衣類と、水をあまり含めない衣類とを判別することができる。   As described above, there are some that have a high water content and some that do not. Based on the weight of the poultice weight obtained by the poultice weight calculating section 42 and the weight of the dry cloth obtained by sensing the cloth amount of the dry cloth, the moisture content determining section 43 discriminates the cloth quality having a high water content and the clothing having a low water content. Thus, by estimating the weight of the compress, it is possible to discriminate between clothing that easily contains a lot of water and clothing that does not contain much water.

本実施形態における湿布重量は、加速度センサの振動値から推定した。回転翼7の回転開始時および停止時に外槽4はその反力を受けて振動する。この反力は回転翼7に乗った衣類の慣性モーメントの速度変化から生じるものであり、それは湿布の重量に大きく依存する。本実施形態では3方向すべての振動から湿布重量を求めたが、反力の影響が大きく現れる周方向の加速度だけでも良い。また、振動から湿布重量を推定するのではなく、吊り棒5等に重量センサを設けて直接的に重量の変化から検知してもよい。   The weight of the compress in this embodiment was estimated from the vibration value of the acceleration sensor. The outer tub 4 vibrates by receiving the reaction force when the rotation of the rotor blade 7 is started and stopped. This reaction force arises from a change in the speed of the moment of inertia of the garment riding on the rotor blade 7, and it largely depends on the weight of the compress. In the present embodiment, the weight of the compress is obtained from vibrations in all three directions, but only the acceleration in the circumferential direction in which the influence of the reaction force greatly appears may be used. Further, instead of estimating the weight of the compress from the vibration, a weight sensor may be provided on the suspension bar 5 or the like to detect the weight directly.

続いて、モータ電流検出器27の出力に対しても乾布の布量センシングと同様に、電流積算値算出部(I)44にてその積算値を求め、電流積算値Iとする(S5)。電流積算値Iと湿布重量の関係を図8に示す。この図も図6と同様にひし形のプロットは綿100%のバスタオルの場合であり、四角形のプロットは綿35%,ポリエステル65%の混紡のワイシャツの場合であり、三角形のプロットはポリエステル100%のジャージの場合である。同じ湿布重量の場合、ポリエステル100%の衣類の方が綿100%の衣類よりも低い値を示す。また、混紡の場合はポリエステルと綿の間に位置することが分かる。このことから湿布重量が分かれば、電流積算値Iは綿と化繊の配合割合を示していると考えられる。モータの電流値は回転翼7の回り難さを示しており、この回り難さは湿布重量と衣類の滑り難さに依存するものと考えられる。よって湿布重量が分かれば、電流積算値Iは衣類の滑り難さを示す指標となり、綿のように滑り難い繊維の場合は高い値となり、化繊のように滑りやすい繊維の場合は低い値となる。このように電流積算値Iと湿布重量演算部42から得られた湿布重量から繊維判定部45により綿が多い、もしくは化繊が多いと判断する。   Subsequently, similarly to the dry cloth detection, the integrated value is calculated by the integrated current value calculation unit (I) 44 and is set as the integrated current value I (S5). FIG. 8 shows the relationship between the integrated current value I and the weight of the compress. Similarly to FIG. 6, the rhombus plot is for a 100% cotton bath towel, the square plot is for a blended shirt of 35% cotton and 65% polyester, and the triangle plot is 100% polyester. This is the case for jerseys. For the same compress weight, 100% polyester garments show lower values than 100% cotton garments. In addition, in the case of blending, it can be seen that it is located between polyester and cotton. From this, if the weight of the compress is known, the current integrated value I is considered to indicate the blending ratio of cotton and synthetic fiber. The current value of the motor indicates that it is difficult to rotate the rotor blades 7, and it is considered that this difficulty of rotation depends on the weight of the compress and the difficulty of slipping the clothes. Therefore, if the weight of the poultice is known, the current integrated value I becomes an index indicating the slipping difficulty of the clothing, and is a high value in the case of a non-slipping fiber such as cotton, and a low value in the case of a slippery fiber such as synthetic fiber. . As described above, the fiber determination unit 45 determines that there is a lot of cotton or a large amount of synthetic fiber from the current integrated value I and the weight of the compress obtained from the compress weight calculating unit 42.

本実施形態では、電流積算値により回転翼7の回り難さを判断していたが、回転翼7の動きから判断してもよい。具体的には、一定電流でモータ速度を加速した時の回転数の加速率により評価したり、一定速で回転している状態からモータの回転が停止するまでにかかる時間により評価したりする方法が挙げられる。これらの方法で回転翼7の回り難さを判定してもよい。   In the present embodiment, the difficulty of rotating the rotor blade 7 is determined based on the integrated current value, but it may be determined from the movement of the rotor blade 7. Specifically, the evaluation is based on the acceleration rate of the rotation speed when the motor speed is accelerated with a constant current, or the evaluation is based on the time it takes for the motor to stop rotating from the state where it rotates at a constant speed. Is mentioned. The difficulty of turning the rotor blade 7 may be determined by these methods.

以上のようにモータ電流と加速度センサから布量・布質判定部38により衣類の含水量と繊維の種類を判別して、布質を判定する(S5)。布質は含水量が多い化繊(S6),含水量が少ない化繊(S7),含水量が多い綿(S8),含水量が少ない綿(S9)の4つに分類される。このように布質を細かく分類し、これらの布質に適した運転方法を行い、時短,節水による省エネ性を向上させる。   As described above, the cloth amount / cloth quality determination unit 38 determines the moisture content of the clothing and the type of the fiber from the motor current and the acceleration sensor, thereby determining the cloth quality (S5). Cloth quality is classified into four types: synthetic fiber (S6) having a high water content, synthetic fiber (S7) having a low water content, cotton (S8) having a high water content, and cotton (S9) having a low water content. In this way, the cloth quality is classified finely, and the operation method suitable for these cloth quality is performed, and the energy saving performance by saving time and water is improved.

含水量が多くかつ化繊が多い場合(S6)、所定の水量より多めに給水し(S10)、本洗いを開始する(S11)。本洗いの回転翼7の動きは綿の場合より弱く、毎分110回転の速度で2.0秒間回転し、1.0秒間停止する動作を繰り返し、弱い水流で洗う。化繊の場合、汚れが繊維の奥まで染み込むことがなく、弱い水流でも洗うことができる。すすぎは水量を多くしてすすぐ(S12)。水量が少ないと、衣類に満遍なくすすぎ水を行き渡らすことができない。脱水では高速回転に到達させるまで時間をかけてゆっくりと起動させる(S13)。この布質の場合、含水量が多いため、起動途中で衣類から水が多量に放出される。この放出される水量が外槽から排出される水量より多いと、外槽に溜まっていき、水の抵抗で洗濯槽の回転がロックして脱水できない状態になってしまう。そのため、ゆっくり速度を上昇させ、衣類から一気に水が放出されないようにし、外槽に水が溜まらないようにする。一方、高速回転まで起動した後に定常運転させる時間は短くする(S13)。化繊の多い衣類の場合、衣類からの水の抜けがよく、短い時間で所定の脱水性能を確保できるため、通常よりも脱水時間を短くする。その後、乾燥に移行するが、所定の温度で運転し、所定の乾燥度に達したら(S14)、運転を終了させる(S16)。   When the water content is high and the amount of synthetic fibers is large (S6), water is supplied in a larger amount than the predetermined water amount (S10), and the main washing is started (S11). The movement of the main washing rotor blade 7 is weaker than that of cotton, and it is rotated at a speed of 110 revolutions per minute for 2.0 seconds and stopped for 1.0 second, and washed with a weak water flow. In the case of chemical fiber, dirt does not penetrate into the fiber and can be washed even with a weak water flow. Rinsing is performed by increasing the amount of water (S12). If the amount of water is small, it will not be possible to distribute the rinse water evenly over clothing. In dehydration, it is slowly activated over time until high speed rotation is reached (S13). In the case of this cloth quality, since the water content is large, a large amount of water is released from the clothing during the start-up. When the amount of water discharged is larger than the amount of water discharged from the outer tub, the water is accumulated in the outer tub, and the rotation of the washing tub is locked due to the resistance of water, so that the water cannot be dehydrated. Therefore, the speed is increased slowly so that water is not released from the clothing at a stretch, and water does not accumulate in the outer tub. On the other hand, the time for steady operation after starting up to high speed rotation is shortened (S13). In the case of clothing having a lot of chemical fibers, water drains from the clothing well, and a predetermined dewatering performance can be secured in a short time. Therefore, the dewatering time is made shorter than usual. Thereafter, the process proceeds to drying, but the operation is performed at a predetermined temperature, and when the predetermined dryness is reached (S14), the operation is terminated (S16).

また含水量が少なくかつ化繊の多い場合(S7)には、所定の水量給水し(S17)、本洗いを開始する(S18)。本洗いの回転翼7の動きは綿の場合より弱く、毎分110回転の速度で2.0秒間回転し、1.0秒間停止する動作を繰り返し、弱い水流で洗う。そのあとのすすぎは水量を少なくしてすすぐ(S19)。含水量が少ない衣類のため、少ない水でも衣類に満遍なくすすぎ水を行き渡らすことができる。脱水では高速回転に到達させるまでの時間を短時間にし、素早く起動させる(S20)。この布質の場合、含水量が少ないため、起動途中で衣類から水が一気に放出されても、排水能力以上に放出しないため、短時間で起動させることで時短にすることができる。また、高速回転で定常運転させる時間も短くし、時短にすることができる。その後、乾燥に移行するが、所定の温度で運転し、所定の乾燥度に達したら(S21)、運転を終了させる(S16)。   If the water content is low and the amount of synthetic fibers is high (S7), a predetermined amount of water is supplied (S17), and main washing is started (S18). The movement of the main washing rotor blade 7 is weaker than that of cotton, and it is rotated at a speed of 110 revolutions per minute for 2.0 seconds and stopped for 1.0 second, and washed with a weak water flow. The subsequent rinsing is performed with a reduced amount of water (S19). Because the clothes have a low water content, the rinsing water can be distributed evenly even with a small amount of water. In the dehydration, the time required to reach the high speed rotation is shortened and activated quickly (S20). In the case of this cloth quality, since the water content is small, even if water is discharged from the clothing at a stretch during the start-up, it does not release more than the drainage capacity, so it can be shortened by starting in a short time. In addition, the time for steady operation at high speed can be shortened and the time can be shortened. Thereafter, the process proceeds to drying, but the operation is performed at a predetermined temperature, and when the predetermined dryness is reached (S21), the operation is terminated (S16).

また、含水量が多くかつ化繊が少ない場合(S8)、所定の水量より多めに給水し(S22)、本洗いを開始する(S23)。本洗いの回転翼7の動きは化繊の場合より強く、毎分130回転の速度で2.5秒間回転し、0.8秒間停止する動作を繰り返し、強い水流で洗う。綿の場合、汚れが繊維の奥まで染み込んでおり、強い水流で洗うことで所定の性能を確保する。そのあとのすすぎは水量を多くしてすすぐ(S24)。脱水では高速回転に到達させるまで時間をかけてゆっくりと起動させ(S25)、外槽に水が溜まらないようにする。また、高速回転まで起動した後の定常運転させる時間は所定の時間より長くする。綿の場合、衣類からの水の抜けが悪く、化繊より長い時間が必要であり、さらに含水量も多いため時間を長くして脱水性能を確保する。その後、乾燥に移行するが、綿は縮みやすいため、所定の温度より低めで運転し、衣類の縮みを抑える(S26)。また、含水量が多い衣類は布が厚手であるため、乾きむらが発生し易く、所定の乾燥度よりも高い乾燥度に達したら、運転を終了させる(S16)。   When the water content is high and the amount of chemical fiber is small (S8), water is supplied in a larger amount than the predetermined water amount (S22), and the main washing is started (S23). The movement of the rotary wing 7 in the main washing is stronger than that in the case of synthetic fibers, and the operation is repeated for 2.5 seconds at a speed of 130 revolutions per minute and stopped for 0.8 seconds, and washed with a strong water flow. In the case of cotton, dirt has penetrated to the back of the fiber, and a predetermined performance is ensured by washing with a strong water flow. The subsequent rinsing is performed with an increased amount of water (S24). In dehydration, it is slowly activated over time until high speed rotation is reached (S25), so that water does not accumulate in the outer tub. Further, the time for steady operation after starting up to high speed rotation is made longer than a predetermined time. In the case of cotton, the drainage of water from clothing is poor, and a longer time is required than that of synthetic fiber. Further, since the water content is large, the time is increased to ensure the dewatering performance. After that, although it shifts to drying, since cotton easily shrinks, it is operated at a temperature lower than a predetermined temperature to suppress shrinkage of clothes (S26). In addition, since clothes with a high water content have a thick cloth, uneven drying tends to occur, and when the dryness reaches a level higher than the predetermined dryness, the operation is terminated (S16).

また、含水量が少なくかつ化繊が少ない場合(S9)、所定の水量給水し(S27)、本洗いを開始する(S28)。本洗いの回転翼7の動きは化繊の場合より強く、毎分130回転の速度で2.5秒間回転し、0.8秒間停止する動作を繰り返し、強い水流で洗う。そのあとのすすぎは所定の水量ですすぐ(S29)。脱水では高速回転に到達させるまで時間も短時間で素早く起動させる(S30)。また、高速回転まで起動した後の定常運転させる時間は所定の時間で脱水する。その後、乾燥に移行するが、所定の温度より低めで運転し、衣類の縮みを抑える(S31)。所定の乾燥度に達したら、運転を終了させる(S16)。また、乾燥を終了する時期を通常よりも早めるよう設定しても良い。   When the water content is low and the amount of chemical fiber is small (S9), a predetermined amount of water is supplied (S27), and the main washing is started (S28). The movement of the rotary wing 7 in the main washing is stronger than that in the case of synthetic fibers, and the operation is repeated for 2.5 seconds at a speed of 130 revolutions per minute and stopped for 0.8 seconds, and washed with a strong water flow. The subsequent rinse is rinsed with a predetermined amount of water (S29). In dehydration, it is quickly activated in a short time until reaching high speed rotation (S30). In addition, dehydration is performed for a predetermined time during the steady operation after starting up to high speed rotation. Then, although it transfers to drying, it drive | works at lower than predetermined temperature and suppresses shrinkage | contraction of clothing (S31). When the predetermined dryness is reached, the operation is terminated (S16). Moreover, you may set so that the time which complete | finishes drying may be advanced rather than usual.

以上のように洗いの初期段階においてモータの電流値と外槽の加速度センサの値から布質を判定し、その後の洗濯・乾燥運転を布質に適した運転パターンで行うことで、所定の性能を維持しながら、省エネ性を向上させることができる。   As described above, at the initial stage of washing, the cloth quality is determined from the current value of the motor and the acceleration sensor value of the outer tub, and the subsequent washing / drying operation is performed with an operation pattern suitable for the cloth quality. Energy conservation can be improved while maintaining

次に第2の実施形態について、図9を用いて説明する。本実施形態は第1の実施形態とほとんど同じであるが、布質判定を行うマイコン内の布量・布質判定部が異なる。この部分についてのみ説明する。それ以外は第1の実施形態と同じである。   Next, a second embodiment will be described with reference to FIG. Although the present embodiment is almost the same as the first embodiment, the cloth amount / cloth quality determination unit in the microcomputer that performs the cloth quality determination is different. Only this part will be described. The rest is the same as the first embodiment.

洗濯・乾燥がスタートしたら給水する前に乾布布量センシングを行う。このときのモータ電流検出器から得られた電流値から電流積算値算出部(m)39にて電流積算値mを算出する。この値をもとに乾布重量演算部40において乾布重量を算出する。この処理と同時に、基準振動値V0なる値を基準振動値算出部51にて算出する。また、基準電流値I0なる値を基準電流値算出部52にて算出する。これら基準振動値V0,基準電流値I0は乾布時の電流積算値mに基づき求められるが、詳しくは後で説明する。   When washing and drying start, dry cloth amount sensing is performed before water supply. The current integrated value m is calculated by the current integrated value calculation unit (m) 39 from the current value obtained from the motor current detector at this time. Based on this value, the dry cloth weight calculator 40 calculates the dry cloth weight. Simultaneously with this process, the reference vibration value V0 is calculated by the reference vibration value calculation unit 51. Further, a reference current value I 0 is calculated by the reference current value calculation unit 52. The reference vibration value V0 and the reference current value I0 are obtained based on the integrated current value m at the time of dry cloth. Details will be described later.

この後給水し、前洗いを行い、布質センシングを行う。布質センシング時の回転翼の動作は第1の実施形態と同じであるが、布質判定の方法が異なる。まず、加速度センサ25から振動積算値算出部(V)41で振動積算値Vを求める。この振動積算値Vと先に求めた基準振動値V0から振動積算値距離演算部53にて振動積算値距離DVなる値を求める。(振動積算値距離DVは後で説明する。)また、電流積算値算出部(I)44により湿布時の電流積算値Iを求める。この電流積算値Iと先に求めた基準電流値I0から電流積算値距離演算部54にて電流積算値距離DIなる値を求める。(電流積算値距離DIは後で説明する。)これら振動積算値距離DVと電流積算値距離DIから布質判定部55により布質を判別する。   After this, water is supplied, pre-washed, and cloth quality sensing is performed. The operation of the rotor blades during cloth quality sensing is the same as that of the first embodiment, but the cloth quality judgment method is different. First, the integrated vibration value calculation unit (V) 41 calculates the integrated vibration value V from the acceleration sensor 25. The vibration integrated value distance DV is obtained from the vibration integrated value V and the reference vibration value V0 obtained previously by the vibration integrated value distance calculation unit 53. (The vibration integrated value distance DV will be described later.) Also, the current integrated value calculation unit (I) 44 obtains the current integrated value I during poultice. A current integrated value distance DI is obtained from the current integrated value I and the previously obtained reference current value I0 by the current integrated value distance calculation unit 54. (The current integrated value distance DI will be described later.) Based on the vibration integrated value distance DV and the current integrated value distance DI, the cloth quality determination unit 55 determines the cloth quality.

まず、上述した振動積算値距離DVおよび基準振動値V0について図10を用いて説明する。図10は乾布時の電流積算値mを横軸に、振動積算値Vを縦軸にしてそれらの関係を示した図である。図中のひし形のプロットは綿100%のバスタオルの場合であり、四角形のプロットは綿35%,ポリエステル65%の混紡のワイシャツの場合であり、三角形のプロットはポリエステル100%のジャージの場合であり、円形のプロットは綿100%の薄手の布の場合である。各布とも複数のプロットがあるが、布量を変えて計測した結果である。この図より、バスタオルとジャージは似通った傾向であり、ワイシャツと薄手の綿は似通った傾向であることが分かる。バスタオルとジャージはワイシャツと薄手の綿より振動積算値が高く、先に説明したように、水を多く含む衣類の方が大きな値を示す。この振動積算値を用いて布質を判別するための基準となる基準振動ラインを引き、分別する。この基準振動ラインは図中に太い実線で示し、バスタオルやジャージのような水を多く含む厚手の衣類とワイシャツや薄手の綿のような水をあまり含まない薄手の衣類との間に設ける。この基準振動ラインからの遠さで布質を判断する。そこで、基準振動ラインからの遠さを示す指標として、振動積算値距離DVを用いる。まず、乾布時の電流積算値mに対応する基準振動ライン上の点における振動積算値を基準振動値V0とする。(この処理を基準振動値算出部51で行う。)次に、湿布状態での振動積算値Vを求め、これら2つの値から式1により振動積算値距離DVを求める。
〔式1〕
DV=(V−V0)/V0×100
First, the vibration integrated value distance DV and the reference vibration value V0 described above will be described with reference to FIG. FIG. 10 is a diagram showing the relationship between the current integrated value m during dry cloth on the horizontal axis and the vibration integrated value V on the vertical axis. The rhombus plot in the figure is for a 100% cotton bath towel, the square plot is for a 35% cotton and 65% polyester shirt, and the triangular plot is for a 100% polyester jersey. Yes, the circular plot is for a thin fabric of 100% cotton. Each cloth has a plurality of plots, but the results are obtained by changing the amount of cloth. From this figure, it can be seen that bath towels and jerseys tend to be similar, and shirts and thin cotton tend to be similar. Bath towels and jerseys have a higher integrated value of vibration than shirts and thin cotton, and as explained earlier, clothing containing more water shows a larger value. Using this vibration integrated value, a reference vibration line serving as a reference for discriminating the cloth quality is drawn and sorted. This reference vibration line is indicated by a thick solid line in the figure, and is provided between a thick garment that contains a lot of water such as a bath towel or jersey and a thin garment such as a shirt or thin cotton that does not contain much water. The fabric quality is determined based on the distance from the reference vibration line. Therefore, the vibration integrated value distance DV is used as an index indicating the distance from the reference vibration line. First, the vibration integrated value at a point on the reference vibration line corresponding to the current integrated value m at the time of dry cloth is set as a reference vibration value V0. (This processing is performed by the reference vibration value calculation unit 51.) Next, the vibration integrated value V in the poultice state is obtained, and the vibration integrated value distance DV is obtained from these two values by Equation 1.
[Formula 1]
DV = (V−V0) / V0 × 100

この式に示すように振動積算値距離DVは、振動積算値Vと振動基準値V0との差を振動基準値V0で除算した値を百分率で表した値である。大きく捉えると、振動積算値距離DVがプラスならば水を多く含みやすい布質であり、マイナスなら水をあまり含まない布質であると判断される。   As shown in this equation, the vibration integrated value distance DV is a value obtained by dividing the difference between the vibration integrated value V and the vibration reference value V0 by the vibration reference value V0 in percentage. In general, if the vibration integrated value distance DV is positive, it is determined that the fabric is likely to contain a lot of water, and if it is negative, it is determined to be a fabric that does not contain much water.

次に、上述した電流積算値距離DIおよび基準電流値I0について図11を用いて説明する。図11は乾布時の電流積算値mを横軸に、電流積算値Vを縦軸にしてそれらの関係を示した図である。図中のひし形のプロットは綿100%のバスタオルの場合であり、四角形のプロットは綿35%,ポリエステル65%の混紡のワイシャツの場合であり、三角形のプロットはポリエステル100%のジャージの場合であり、円形のプロットは綿100%の薄手の布の場合である。各布とも複数のプロットがあるが、布量を変えて計測した結果である。この図より、ワイシャツとジャージは似通った傾向で低い値を示し、薄手の綿,バスタオルと値が高くなる。先にも説明したが、電流積算値は回転翼の回り難さを示しており、重さと滑り難さに影響される。重ければ値が高く、化繊よりも綿の方が値が高い。そのため化繊を多く含むワイシャツは電流積算値が低く、厚手だけど化繊であるためジャージは電流積算値が低い。逆に、バスタオルのように厚手で綿のものは電流積算値が高く、薄手の綿はバスタオルより低い電流積算値となる。この図から化繊を多く含む衣類と綿を多く含む衣類との間に大きな差が見られる。この差を利用して、布質を判別する。化繊を多く含む衣類と綿を多く含む衣類と間に基準となる基準電流ラインを引き、分別する。この基準電流ラインは図中に太い実線で示し、この基準電流ラインからの遠さで布質を判断する。そこで、基準電流ラインからの遠さを示す指標として、電流積算値距離DIを用いる。振動積算値距離DVと同様に、乾布時の電流積算値mに対応する基準電流ライン上の点における電流積算値を基準電流値I0とする。(この処理を基準電流値算出部52で行う。)次に、湿布状態での電流積算値Iを求め、これら2つの値から式2より電流積算値距離DIを求める。
〔式2〕
DI=(I−I0)/I0×100
Next, the current integrated value distance DI and the reference current value I0 will be described with reference to FIG. FIG. 11 is a diagram showing the relationship between the current integrated value m at the time of dry cloth on the horizontal axis and the current integrated value V on the vertical axis. The rhombus plot in the figure is for a 100% cotton bath towel, the square plot is for a 35% cotton and 65% polyester shirt, and the triangular plot is for a 100% polyester jersey. Yes, the circular plot is for a thin fabric of 100% cotton. Each cloth has a plurality of plots, but the results are obtained by changing the amount of cloth. From this figure, shirts and jerseys tend to be similar and show low values, while those of thin cotton and bath towels are high. As described above, the integrated current value indicates the difficulty of rotating the rotor blade, and is affected by the weight and the difficulty of slipping. If it is heavy, the value is high, and the value of cotton is higher than that of synthetic fiber. For this reason, a shirt containing a lot of synthetic fibers has a low current integrated value, and it is thick but a synthetic fiber, so a jersey has a low integrated current value. Conversely, a thick cotton material such as a bath towel has a high current integrated value, and a thin cotton has a current integrated value lower than that of a bath towel. From this figure, there is a large difference between clothing containing a lot of synthetic fibers and clothing containing a lot of cotton. Using this difference, the fabric quality is determined. A reference current line as a reference is drawn between the clothes containing a lot of synthetic fibers and the clothes containing a lot of cotton to separate them. The reference current line is indicated by a thick solid line in the figure, and the fabric quality is determined by the distance from the reference current line. Therefore, the current integrated value distance DI is used as an index indicating the distance from the reference current line. Similarly to the vibration integrated value distance DV, a current integrated value at a point on the reference current line corresponding to the current integrated value m at the time of dry cloth is defined as a reference current value I0. (This process is performed by the reference current value calculation unit 52.) Next, the current integrated value I in the poultice state is obtained, and the current integrated value distance DI is obtained from Equation 2 using these two values.
[Formula 2]
DI = (I−I0) / I0 × 100

大きく捉えると、電流積算値距離DIがプラスならば綿を多く含む布質であり、マイナスなら化繊を多く含む布質であると判断される。   In general, if the current integrated value distance DI is positive, it is determined that the fabric is rich in cotton, and if it is negative, the fabric is rich in chemical fiber.

これら振動積算値距離DVと電流積算距離DIから布質判定部55により布質を求める。図12にこれら2つの関係を示す。横軸に電流積算距離DIを示し、縦軸に振動積算値距離DVを示す。図中の太い破線で示した線がDI=0,DV=0の線である。ひし形のプロットは綿100%のバスタオルの場合であり、四角形のプロットは綿35%,ポリエステル65%の混紡のワイシャツの場合であり、三角形のプロットはポリエステル100%のジャージの場合であり、円形のプロットは綿100%の薄手の布の場合である。布質が異なると分布が異なることが分かる。傾向的には含水量が多い綿の場合は、DI>0,DV>0であり、含水量が多い化繊の場合は、DI<0,DV>0、含水量が少ない化繊の場合はDI<0,DV<0、含水量が少ない綿の場合はDI>0,DV<0のように分布される。そこで、図中の太い実線のように領域を分けることで布質を判別し、それ以降の運転を布質に合わせて運転制御する。この運転制御は第一の実施形態と同様に行われる。   The cloth quality determination unit 55 obtains the cloth quality from the vibration accumulated value distance DV and the current accumulated distance DI. FIG. 12 shows these two relationships. The horizontal axis indicates the current integrated distance DI, and the vertical axis indicates the vibration integrated value distance DV. The lines indicated by thick broken lines in the figure are lines with DI = 0 and DV = 0. The diamond plot is for a 100% cotton bath towel, the square plot is for a blended shirt of 35% cotton and 65% polyester, and the triangle plot is for a 100% polyester jersey, round These plots are for a thin cloth made of 100% cotton. It can be seen that the distribution differs depending on the cloth quality. In the case of cotton having a high water content, DI> 0, DV> 0. In the case of a synthetic fiber having a high water content, DI <0, DV> 0. In the case of a synthetic fiber having a low water content, DI <0. In the case of 0, DV <0 and cotton having a low water content, the distribution is such that DI> 0, DV <0. Therefore, the cloth quality is determined by dividing the area as shown by the thick solid line in the figure, and the subsequent operation is controlled according to the cloth quality. This operation control is performed similarly to the first embodiment.

このように第1の実施形態同様に乾布時の電流積算値mと湿布時の電流積算値Iと振動積算値Vにより布質を判別した。しかし第一の実施形態は繊維の判定(推定)部における湿布重量は、振動積算値Vから推定した値を利用しており、二重の推定を行っており、判定誤差が拡大してしまう。しかし、本実施形態では推定した2つの値で作られる領域で判定することで判定誤差を小さくすることができる。   As described above, the cloth quality is determined based on the current integrated value m during dry cloth, the current integrated value I during poultice, and the vibration integrated value V as in the first embodiment. However, in the first embodiment, the weight of the compress in the determination (estimation) portion of the fiber uses a value estimated from the vibration integrated value V, and double estimation is performed, so that the determination error increases. However, in this embodiment, it is possible to reduce the determination error by making a determination based on the area formed by the estimated two values.

また、本実施形態で設定した基準振動ラインや基準電流ラインはワイシャツ寄りに設定した。どちらの基準ラインも任意に設定しても構わないが、布質を判断して、省エネ性を向上させる制御を考えた時には、ワイシャツ寄りに設定した方が望ましい。ワイシャツのような含水量が少ない化繊の場合、水を少なくでき、運転時間も短くできるため、ワイシャツの特徴を抽出しやすいような区分けをするために、ワイシャツ寄りに基準ラインを設けることが望ましい。   Further, the reference vibration line and the reference current line set in this embodiment are set closer to the shirt. Either reference line may be set arbitrarily, but it is desirable to set it closer to the shirt when considering the quality of the fabric and considering the control to improve energy saving. In the case of a synthetic fiber having a low water content such as a shirt, water can be reduced and the operation time can be shortened. Therefore, it is desirable to provide a reference line near the shirt in order to classify the characteristics of the shirt.

また、振動積算値Vではなく、洗濯槽6内部の衣類の重さを検知する重量検知手段により湿布の重量を検知し、含水量の多い,少ないを判断してもよい。   Further, instead of the vibration integrated value V, the weight of the poultice may be detected by weight detection means for detecting the weight of the clothes in the washing tub 6 to determine whether the moisture content is large or small.

続いて、第3の実施形態について図13,図14を用いて説明する。本実施形態はドラム式洗濯乾燥機の例である。図13はドラム式洗濯乾燥機の外観図であり、図14は内部の構造を示すために筐体の一部を切断して示した側面図である。   Next, a third embodiment will be described with reference to FIGS. This embodiment is an example of a drum type washing and drying machine. FIG. 13 is an external view of a drum-type washing / drying machine, and FIG. 14 is a side view in which a part of the casing is cut to show the internal structure.

外郭を構成する筐体61は、ベース61hの上に取り付けられており、左右の側板61a,61b,前面カバー61c,背面カバー61d,上面カバー61e,下部前面カバー61fで構成されている。左右の側板61a,61bは、コの字型の上補強材(図示せず),前補強材(図示せず),後補強材(図示せず)で結合されており、ベース61hを含めて箱状の筐体61を形成し、筐体として十分な強度を有している。また、ベース61hの四隅には洗濯機全体を支持する脚74が設けられている。   The casing 61 constituting the outer shell is mounted on a base 61h, and includes left and right side plates 61a and 61b, a front cover 61c, a rear cover 61d, an upper cover 61e, and a lower front cover 61f. The left and right side plates 61a and 61b are joined by a U-shaped upper reinforcing material (not shown), a front reinforcing material (not shown), and a rear reinforcing material (not shown), and include a base 61h. A box-shaped casing 61 is formed and has sufficient strength as a casing. In addition, legs 74 that support the entire washing machine are provided at the four corners of the base 61h.

ドア62は前面カバー61cの略中央に設けた衣類を出し入れするための投入口を塞ぐためのもので、前補強材に設けたヒンジで開閉可能に支持されている。ドア開放ボタン62aを押すことでロック機構(図示せず)が外れてドアが開き、ドアを前面カバー61cに押し付けることでロックされて閉じる。前補強材は、後述する外槽の開口部と同心に、衣類を出し入れするための円形の開口部を有している。   The door 62 is for closing a slot for putting in and taking out clothes provided in the approximate center of the front cover 61c, and is supported by a hinge provided in the front reinforcing member so as to be opened and closed. When the door release button 62a is pressed, the lock mechanism (not shown) is released to open the door, and when the door is pressed against the front cover 61c, the door is locked and closed. The front reinforcing member has a circular opening for putting clothes in and out concentrically with an opening of the outer tub described later.

筐体61の上部中央に設けた操作・表示パネル63は、電源スイッチ64,操作ボタン65,表示器66を備える。操作・表示パネル63は筐体61下部に設けたメイン制御装置67に電気的に接続している。   An operation / display panel 63 provided at the upper center of the housing 61 includes a power switch 64, operation buttons 65, and a display 66. The operation / display panel 63 is electrically connected to a main control device 67 provided at the bottom of the housing 61.

図14に示すドラム68は回転可能に支持されており、その外周壁および底壁に通水および通風のための多数の貫通孔を有し、前側端面に衣類を出し入れするための開口部68aを設けてある。開口部68aの外側にはドラム68と一体の流体バランサ68cを備えている。外周壁の内側には軸方向に延びるリフタ68bが複数個設けてあり、洗濯,乾燥時にドラム68を回転すると、衣類はリフタ68bと遠心力で外周壁に沿って持ち上がり、重力で落下するような動きを繰り返す。ドラム68の回転中心軸は、水平または開口部68a側が高くなるように傾斜している。   The drum 68 shown in FIG. 14 is rotatably supported, has a plurality of through holes for water flow and ventilation on its outer peripheral wall and bottom wall, and has an opening 68a for putting clothes in and out on the front end face. It is provided. A fluid balancer 68c integral with the drum 68 is provided outside the opening 68a. A plurality of lifters 68b extending in the axial direction are provided inside the outer peripheral wall, and when the drum 68 is rotated during washing and drying, the clothes are lifted along the outer peripheral wall by the lifter 68b and centrifugal force and fall by gravity. Repeat the movement. The rotation center axis of the drum 68 is inclined so that the horizontal or opening 68a side becomes higher.

円筒状の外槽70は、ドラム68を同軸上に内包し、前面は開口し、後側端面の外側中央にモータ69を取り付ける。モータ69の回転軸は、外槽70を貫通し、ドラム68と結合している。前面の開口部には外槽カバー70aを設け、外槽内への貯水を可能としている。外槽カバー70aの前側中央には、衣類を出し入れするための開口部70bを有している。   The cylindrical outer tub 70 contains the drum 68 coaxially, the front surface is open, and a motor 69 is attached to the outer center of the rear end surface. The rotating shaft of the motor 69 passes through the outer tub 70 and is coupled to the drum 68. An outer tub cover 70a is provided at the opening on the front surface to enable water storage in the outer tub. In the center of the front side of the outer tub cover 70a, there is an opening 70b for putting clothes in and out.

開口部10bと前補強材(図示せず)に設けた開口部は、ゴム製のベローズ71で接続しており、ドア62を閉じることで外槽70を水封する。外槽70の底面最下部には、排水口70dが設けてあり、排水ホース72が接続している。排水ホース72の途中には排水弁(図示せず)が設けてあり、排水弁を閉じて給水することで外槽70に水を溜め、排水弁を開いて外槽70内の水を機外へ排出する。   The opening provided in the opening 10b and the front reinforcing material (not shown) is connected by a rubber bellows 71, and the outer tub 70 is sealed with water by closing the door 62. A drain outlet 70d is provided at the bottom bottom of the outer tub 70, and a drain hose 72 is connected thereto. A drain valve (not shown) is provided in the middle of the drain hose 72. By closing the drain valve and supplying water, water is stored in the outer tank 70, and the drain valve is opened to drain the water in the outer tank 70 outside the machine. To discharge.

外槽70は、下側をベース61hに固定されたサスペンション73(コイルばねとダンパで構成)で防振支持されている。また、外槽70の上側は上部補強部材に取り付けた補助ばね(図示せず)で支持されており、外槽70の前後方向へ倒れを防ぐ。洗剤容器は筐体61内の上部左側に設けており、その前部の開口から引き出し式の洗剤トレイ75を装着する。洗剤容器の後ろ側には、給水弁(図示せず)や風呂水給水ポンプ,水位センサなど給水に関連する部品を設けてある。洗剤容器は、外槽70に接続されている。給水弁は多連弁で、洗剤容器,水冷除湿機構を備えた乾燥ダクト78へ給水する。カバー61eには、水道栓からの給水ホース接続口76,風呂の残り湯の吸水ホース接続口77が設けてある。   The outer tub 70 is supported in an anti-vibration manner by a suspension 73 (consisting of a coil spring and a damper) whose lower side is fixed to the base 61h. The upper side of the outer tub 70 is supported by an auxiliary spring (not shown) attached to the upper reinforcing member, and prevents the outer tub 70 from falling in the front-rear direction. The detergent container is provided on the upper left side in the housing 61, and a drawer-type detergent tray 75 is attached from the front opening. On the back side of the detergent container, water-related parts such as a water supply valve (not shown), a bath water supply pump, and a water level sensor are provided. The detergent container is connected to the outer tub 70. The water supply valve is a multiple valve and supplies water to a drying duct 78 having a detergent container and a water-cooled dehumidifying mechanism. The cover 61e is provided with a water supply hose connection port 76 from the water tap and a water absorption hose connection port 77 for remaining hot water in the bath.

乾燥ダクト78は筐体61の背面内側に縦方向に設置され、ダクト下部は外槽70の背面下方に設けた吸気口70cにゴム製の蛇腹管A78aで接続される。乾燥ダクト78内には、水冷除湿機構を内蔵しており、給水弁から水冷除湿機構へ冷却水を供給する。冷却水は乾燥ダクト78の壁面を伝わって流下し吸気口70cから外槽70に入り排水口70dから排出される。   The drying duct 78 is installed vertically inside the back surface of the housing 61, and the lower portion of the duct is connected to an intake port 70c provided below the back surface of the outer tub 70 through a rubber bellows tube A78a. A water-cooled dehumidifying mechanism is built in the drying duct 78, and cooling water is supplied from the water supply valve to the water-cooled dehumidifying mechanism. The cooling water flows down along the wall surface of the drying duct 78, enters the outer tank 70 from the intake port 70c, and is discharged from the drain port 70d.

乾燥ダクト78の上部は、筐体1内の上部前方右側に設置した乾燥フィルタ80に接続している。乾燥フィルタ80はダクト78内に挿入されており、引き出すことが可能である。乾燥フィルタ80はメッシュ式のフィルタであり、このフィルタを通過することで糸くずが除去される。乾燥フィルタ80の掃除は、乾燥フィルタ80を引き出してメッシュ式のフィルタを取り出して行う。また、乾燥フィルタ80の挿入部の下面には開口部が設けてあり、この開口部は送風ユニット82の吸気口と繋がっており、送風ユニット82に空気が吸い込まれる。   The upper part of the drying duct 78 is connected to a drying filter 80 installed on the upper front right side in the housing 1. The drying filter 80 is inserted into the duct 78 and can be pulled out. The drying filter 80 is a mesh type filter, and lint is removed by passing through the filter. Cleaning of the dry filter 80 is performed by pulling out the dry filter 80 and taking out a mesh-type filter. Further, an opening is provided on the lower surface of the insertion portion of the drying filter 80, and this opening is connected to the air inlet of the air blowing unit 82, and air is sucked into the air blowing unit 82.

送風ユニット82は、駆動用のモータ82a,ファン(図示せず),ファンケース82bで構成されている。ファンケース82bにはヒータ83が内蔵されており、ファン羽根車から送られる空気を加熱する。送風ユニット82の吐出口は温風ダクト84に接続する。温風ダクト84は、ゴム製の蛇腹管B84aを介して外槽カバー70aに設けた温風吹き出し口85に接続している。本実施形態では、送風ユニット82が筐体1内の上部右側に設けてあるので、温風吹き出し口85は外槽カバー70aの右斜め上の位置に設け、温風吹き出し口85までの距離を極力短くするようにしてある。   The blower unit 82 includes a driving motor 82a, a fan (not shown), and a fan case 82b. The fan case 82b incorporates a heater 83 to heat the air sent from the fan impeller. The outlet of the blower unit 82 is connected to the hot air duct 84. The hot air duct 84 is connected to a hot air outlet 85 provided in the outer tank cover 70a through a rubber bellows tube B84a. In the present embodiment, since the blower unit 82 is provided on the upper right side in the housing 1, the hot air outlet 85 is provided at a position on the upper right side of the outer tank cover 70 a, and the distance to the hot air outlet 85 is set. I try to keep it as short as possible.

脱水運転時および乾燥運転時の風の流れは次のようになる。ファンを回転させ、ヒータ83に向けて空気を送りだす(矢印91)。ヒータ83に通電し、空気を温め温風にし、温風ダクト84へ送る。温風吹き出し口85からドラム68内に高速の温風が吹き込み(矢印92)、湿った衣類に当たり、衣類を温め衣類から水分が蒸発する。高温高湿となった空気は、ドラム68に設けた貫通孔から外槽70に流れ、吸気口70cから乾燥ダクト78に吸い込まれ、乾燥ダクト78を下から上へ流れる(矢印93)。乾燥ダクト78の壁面には、水冷除湿機構からの冷却水が流れ落ちており、高温高湿の空気は冷却水と接触することで冷却除湿され、乾いた低温空気となり、フィルタ80を通り糸屑が取り除かれ、送風ユニット82に吸い込まれる(矢印94)。そして、ヒータ83で再度加熱され、ドラム68内に吹き込むように循環する。   The flow of wind during dehydration and drying is as follows. The fan is rotated to send air toward the heater 83 (arrow 91). The heater 83 is energized to warm the air to warm air and send it to the warm air duct 84. High-speed hot air blows into the drum 68 from the hot air outlet 85 (arrow 92), hits the wet clothing, warms the clothing, and moisture evaporates from the clothing. The air that has become hot and humid flows from the through hole provided in the drum 68 to the outer tub 70, is sucked into the drying duct 78 from the intake port 70c, and flows through the drying duct 78 from the bottom to the top (arrow 93). Cooling water from the water cooling and dehumidifying mechanism flows down on the wall surface of the drying duct 78, and the high-temperature and high-humidity air is cooled and dehumidified by coming into contact with the cooling water to become dry low-temperature air. It is removed and sucked into the blower unit 82 (arrow 94). Then, it is heated again by the heater 83 and circulates so as to blow into the drum 68.

ダクト78のファンの吸い込み側に温度センサA95が、ヒータ83の下流に温度センサB96が設けられる。これら温度センサ95,96により乾燥運転が制御される。   A temperature sensor A 95 is provided on the fan suction side of the duct 78, and a temperature sensor B 96 is provided downstream of the heater 83. These temperature sensors 95 and 96 control the drying operation.

また、モータ69にはその回転を検出するホール素子あるいはフォトインタラプタなどで構成される回転検出器97を設ける。   The motor 69 is provided with a rotation detector 97 constituted by a Hall element or a photo interrupter for detecting the rotation.

また、外槽70の動きを検出する加速度センサ98を外槽70の下部の胴部外周に固定する。この加速度センサ98はMEMS技術で作られたチップ状のセンサであり、上下方向,径方向,周方向の3方向を検出できるものである。   In addition, an acceleration sensor 98 that detects the movement of the outer tub 70 is fixed to the outer periphery of the lower portion of the outer tub 70. This acceleration sensor 98 is a chip-shaped sensor made by the MEMS technology, and can detect three directions of the vertical direction, the radial direction, and the circumferential direction.

また、制御装置67にはモータへ供給する電流値を検知するモータ電流検出器99を設ける。この制御装置26の内部の構成は第1の実施形態と同じであり、説明を省略する。   Further, the control device 67 is provided with a motor current detector 99 for detecting a current value supplied to the motor. The internal configuration of the control device 26 is the same as that in the first embodiment, and a description thereof will be omitted.

このようなドラム式洗濯乾燥機において、図15のように運転制御する。図16は布量・布質判定部のブロック図を示す。   In such a drum type washing and drying machine, operation control is performed as shown in FIG. FIG. 16 is a block diagram of the cloth amount / cloth quality determination unit.

図15に示すように、洗濯・乾燥がスタートしたら(S51)、乾布の布量センシングを行う(S52)。このときドラムを毎分50回転の速度から毎分200回転の速度まで勢いよく上昇させる。このときのモータ電流検出装置99の出力から電流値算出部100によりモータ電流積算値mを算出する。乾布重量演算部101により乾布の重量を求める。この重量の結果から、表示器66に衣類の重量に合った洗剤量を表示し、洗濯水を供給し(S53)、前洗いを行う(S54)。前洗いは洗剤液を衣類にしみ込ませる工程であり、衣類がドラム内壁に張り付かない速度である毎分40回転の速度でドラムを正転・逆転させる。15秒間回転し、10秒間停止し、反対方向にも同様に15秒間回転し、10秒間停止させる動作を2分程度繰り返して前洗いを終了する。前洗いにより衣類に洗剤液がしみ込んだ状態で、布質センシングを行う(S55)。   As shown in FIG. 15, when washing / drying starts (S51), dry cloth amount sensing is performed (S52). At this time, the drum is vigorously raised from a speed of 50 revolutions per minute to a speed of 200 revolutions per minute. The motor current integrated value m is calculated by the current value calculation unit 100 from the output of the motor current detection device 99 at this time. The dry cloth weight calculation unit 101 calculates the weight of the dry cloth. From the result of this weight, the amount of detergent corresponding to the weight of the clothing is displayed on the display 66, washing water is supplied (S53), and pre-washing is performed (S54). Pre-washing is a process in which a detergent solution is soaked into clothes, and the drum is rotated forward and reverse at a speed of 40 revolutions per minute, which is a speed at which clothes do not stick to the inner wall of the drum. Rotate for 15 seconds, stop for 10 seconds, rotate in the opposite direction for 15 seconds in the same manner, and repeat the operation of stopping for 10 seconds for about 2 minutes to complete the pre-washing. Cloth quality sensing is performed in a state in which the detergent liquid has soaked into the clothes by pre-washing (S55).

布質センシングは前洗いと同様に、衣類がドラム内壁に張り付かない速度である毎分40回転の速度でドラムを正転・反転させながら行う。その動きは前洗いより周期が短く、10秒間回転し、10秒間停止させ、逆方向にも10秒間回転し、10秒間停止させる運転を3回行う。この動作の最中の加速度センサ98の出力から判定する。この布質センシングの動作により、ドラム内の衣類はドラムの回転とともにリフタによって持ち上げられ、ある高さまで上がると衣類は落下する動きを繰り返す。この落下時の衝撃を受けて外槽が振動し、この振動を加速度センサが検知する。図16に示すように加速度センサ98の出力を振動積算値算出部(V)102により振動積算値Vに変換する。振動積算値Vは時々刻々と変化する加速度センサ出力を積算することで得る。この振動積算値Vと乾布重量の関係を図17に示す。図中のひし形のプロットはバスタオルの場合であり、四角形のプロットは綿35%,ポリエステル65%の混紡のワイシャツの場合である。バスタオルの方がワイシャツより高い値を示していることが分かる。バスタオルの方が水を多く含み、乾布の状態では同じ重さでも、湿布の状態では重たくなり、運転時の落下の衝撃が大きくなる。衝撃が大きければ、加速度も大きくなり、振動積算値Vも大きくなる。振動積算値Vが大きければ含水量が多い布質であると判断できるが、その判定値は一意的に決められず、乾布重量によって、異ならせる方が望ましい。そこで、乾布重量演算部101の結果と合わせて含水量判定部103で含水量が多い布質,含水量が少ない布質、さらに含水量が中間程度の布質であるかどうか3段階で判断し、布質センシングを終了する。   As with pre-washing, cloth quality sensing is performed while the drum is rotated forward and reverse at a speed of 40 revolutions per minute, which is the speed at which clothing does not stick to the inner wall of the drum. The movement is shorter than the pre-washing, rotates 10 seconds, stops for 10 seconds, rotates in the opposite direction for 10 seconds, and stops for 10 seconds three times. This is determined from the output of the acceleration sensor 98 during this operation. By the cloth quality sensing operation, the clothes in the drum are lifted by the lifter as the drum rotates, and when the cloth rises to a certain height, the clothes are repeatedly dropped. The outer tank vibrates in response to the impact at the time of dropping, and the acceleration sensor detects this vibration. As shown in FIG. 16, the output of the acceleration sensor 98 is converted into a vibration integrated value V by a vibration integrated value calculation unit (V) 102. The vibration integrated value V is obtained by integrating acceleration sensor outputs that change from moment to moment. The relationship between the vibration integrated value V and the dry cloth weight is shown in FIG. The rhombus plot in the figure is for a bath towel, and the square plot is for a blended shirt of 35% cotton and 65% polyester. It can be seen that the bath towel shows a higher value than the shirt. Bath towels contain more water, and even if they are the same weight in the dry cloth state, they become heavier in the poultry state, and the impact of dropping during operation increases. If the impact is large, the acceleration increases and the vibration integrated value V also increases. If the vibration integrated value V is large, it can be determined that the fabric has a high water content. However, the determination value is not uniquely determined, and it is desirable to vary the value depending on the dry cloth weight. Therefore, in combination with the result of the dry cloth weight calculation unit 101, the water content determination unit 103 determines whether the fabric has a high water content, a low water content, and whether the water content is intermediate. Finish the fabric sensing.

布質センシングの後に本洗いに移行するが、布質センシングの結果に適した運転を行う。基本的には、含水量が中間程度の布質を基準に洗濯乾燥機の基準動作パターンが決められているが、含水量に応じて動作パターンを変化させる運転制御となる。   After the fabric sensing, the main wash will be performed, but the operation suitable for the result of the fabric sensing is performed. Basically, the reference operation pattern of the washing / drying machine is determined based on the cloth having an intermediate water content, but the operation control changes the operation pattern according to the water content.

含水量が中間程度の布質の場合(S56)、本洗いの回転数を毎分40回転の速度で運転する(S57)。続いてすすぎ(S58),脱水(S59),乾燥(S60)に移行するが、標準的な水量,時間で運転制御を行い、標準的な乾燥度に達したら洗濯乾燥を終了させる(S61)。   In the case of a fabric having a medium water content (S56), the number of rotations of the main washing is operated at a speed of 40 rotations per minute (S57). Subsequently, the process proceeds to rinsing (S58), dehydration (S59), and drying (S60). Operation control is performed with a standard amount of water and time, and when the standard dryness is reached, washing and drying are terminated (S61).

このような標準的な動作に対して、含水量が多い布質の場合(S62)、運転パターンを変化させる。本洗いにおいては、衣類が重たくなっているため、標準的なドラムの回転速度では衣類を持ち上げても高いところまで行く前に落下してしまう。落下距離が短いと衝撃が小さく、洗浄力が低下してしまう。それを防ぐため、回転数を少し高めて毎分45回転の速度で運転する(S63)。   In contrast to such a standard operation, in the case of a fabric having a high water content (S62), the operation pattern is changed. In the main washing, since the clothes are heavy, even if the clothes are lifted up at the standard drum rotation speed, they fall before reaching a high place. If the fall distance is short, the impact is small and the cleaning power is reduced. In order to prevent this, the engine is operated at a speed of 45 revolutions per minute with a slightly increased rotational speed (S63).

続いてすすぎに移行するが(S64)、水を多く含むことができる布質のため、衣類に満遍なく水を与えるには水量も必要になり、水量を多くする。   Subsequently, the process shifts to rinsing (S64). However, because of the cloth quality that can contain a large amount of water, the amount of water is also required to uniformly supply water to clothing, and the amount of water is increased.

続いて脱水に移行するが(S65)、衣類に水を多く含んでいるため、一気に回転速度を上げると、起動途中でも多量の水が抜け、排水能力を上回り、外槽内に水がたまる場合がある。それを防ぐために、脱水起動は時間をかけてゆっくりと回転速度を上昇させる。また、定常回転でも長時間脱水する。   Next, the process moves to dehydration (S65), but the clothes contain a lot of water, so if you increase the rotation speed at once, a large amount of water will escape even during startup, exceeding the drainage capacity, and water will accumulate in the outer tub There is. To prevent this, dehydration activation slowly increases the rotational speed over time. Moreover, it dehydrates for a long time even in steady rotation.

続いて、乾燥工程に移行するが(S66)、水を多く含む衣類は厚手の衣類であり、乾きむらが発生しやすい。そのため、乾燥を終了する時期を通常よりも遅らせる設定とし、乾きむらを発生しないようにする。   Then, although it transfers to a drying process (S66), the clothing containing a lot of water is a thick clothing, and uneven drying tends to occur. For this reason, the timing for ending the drying is set to be delayed from the usual time so as not to cause uneven drying.

逆に含水量が少ない布質の場合(S67)、本洗いでは(S68)標準的な回転速度で回転させても持ち上げていく途中で落下することはないが、衣類が軽いためドラムの回転の勢いで真下に落下せずに、横に飛ばされるような動きになり、洗浄力が低下してしまう。それを防ぐために、回転数を少し低下させて毎分35回転の速度で運転する。   On the other hand, if the fabric has a low water content (S67), the main wash (S68) will not fall during the lifting even if it is rotated at the standard rotation speed, but the clothes are light and the drum will not rotate. Instead of falling directly below the momentum, it will be moved to the side and the cleaning power will be reduced. To prevent this, the engine is operated at a speed of 35 revolutions per minute with a slight reduction in the number of revolutions.

続いてすすぎに移行するが(S69)、含水量が少ない衣類のため、少ない水量でも衣類に満遍なく水を供給することができるため、水量を少なくし、節水する。   Subsequently, although the process proceeds to rinsing (S69), since the water content is low, water can be supplied evenly even with a small amount of water, so the water amount is reduced and water is saved.

続いて脱水に移行するが(S70)、衣類に水を多く含んでいないため、一気に回転速度を上げても、起動途中でも多量の水が抜けることもなく、排水能力を上回ることもなく、外槽内に水が溜まることもない。よって時短のために短時間で所定の回転数まで上昇させる。また、もともと多く水を含んでいないため定常回転でも短時間脱水する。   Subsequently, the process proceeds to dehydration (S70). However, since the clothes do not contain a lot of water, even if the rotational speed is increased at once, a large amount of water does not escape even during startup, and the drainage capacity is not exceeded. Water does not collect in the tank. Therefore, it is increased to a predetermined number of revolutions in a short time for a short time. In addition, since it does not contain much water, it dehydrates for a short time even during steady rotation.

続いて乾燥工程に移行するが(S71)、水を多く含まない衣類は薄手の衣類であり、しわが発生しやすい。そのため、乾燥度を低めに設定し、乾燥を少し早く終了させしわつきを低減させる。   Subsequently, the process proceeds to the drying process (S71), but the clothes that do not contain much water are thin clothes, and wrinkles are likely to occur. Therefore, the drying degree is set low, and drying is finished a little earlier to reduce wrinkles.

以上のように、衣類を湿らせた状態で運転し、そのときの外槽の振動を計測し、その振動から布質を判定することができ、その判定結果に応じて、本洗い,すすぎ,脱水又は乾燥の運転を変化させることができる。なお、本発明は乾燥機能を有さない洗濯機に対しても適用可能である。   As described above, it is possible to operate with the clothes moistened, measure the vibration of the outer tub at that time, and determine the cloth quality from the vibration. According to the determination result, the main washing, rinsing, The operation of dehydration or drying can be changed. In addition, this invention is applicable also to the washing machine which does not have a drying function.

1 筺体
4 外槽
6 洗濯槽
7 回転翼
9 モータ(駆動装置)
25 加速度センサ
26 制御装置
27 モータ電流検出器
31 マイコン
38 布量・布質判定部
39 電流積算値算出部(m)
41 振動積算値算出部(V)
43 含水量判定部
44 電流積算値算出部(I)
45 繊維判定部
51 基準振動値算出部(V0)
52 基準電流値算出部(I0)
53 振動積算値距離演算部
54 電流積算値距離演算部
55 布質判定部
DESCRIPTION OF SYMBOLS 1 Housing 4 Outer tub 6 Washing tub 7 Rotating blade 9 Motor (drive device)
25 Acceleration sensor 26 Control device 27 Motor current detector 31 Microcomputer 38 Cloth amount / cloth quality determination unit 39 Current integrated value calculation unit (m)
41 Vibration integrated value calculation unit (V)
43 Water content determination unit 44 Current integrated value calculation unit (I)
45 Fiber determination unit 51 Reference vibration value calculation unit (V0)
52 Reference current value calculation unit (I0)
53 Vibration integrated value distance calculation unit 54 Current integrated value distance calculation unit 55 Cloth quality determination unit

Claims (1)

衣類を収容する洗濯兼脱水槽と、前記洗濯兼脱水槽を内包する外槽と、前記洗濯兼脱水槽を回転駆動する駆動装置と、前記外槽の振動量を検知する振動検知手段と、前記洗濯兼脱水槽を駆動するときの回転負荷量を検知する負荷検知手段と、前記外槽を覆う筺体を有し、本洗い、すすぎ、脱水の運転を有する濯機において、
前記洗濯兼脱水槽内部に水を供給し、前記洗濯兼脱水槽内部の衣類を湿らせた後、前記本洗いの前に、前記洗濯兼脱水槽又はその底部にある回転翼が回転又は停止するように前記駆動装置を操作した場合に、前記振動検知手段で検知した振動量及び前記負荷検知手段で検知した回転負荷量に基づいて、含水量の多い衣類か否か及び化繊の多い衣類か否かを判定し、含水量の多い衣類でかつ化繊の多い衣類であるときに、含水量の少ない衣類でかつ化繊の少ない衣類のときと比べて、すすぎ水量を多くし、脱水時間を短くすることを特徴とする洗濯乾燥機。
And washing and dewatering tank for accommodating clothes, and an outer tank enclosing the washing and dewatering tank, a drive device for rotating the washing and dewatering tank, a vibration detection unit detecting vibration of the outer tub, the a load detecting means for detecting a rotational load when driving the washing and dewatering tank, having a housing that covers the outer tub, the washing, rinsing, the washing machines with the operation of the dehydration,
After supplying water to the inside of the washing / dehydrating tub and moistening the clothes inside the washing / dehydrating tub, before the main washing, the washing / dehydrating tub or the rotating blades at the bottom thereof rotate or stop. When the drive device is operated as described above, based on the vibration amount detected by the vibration detection means and the rotational load amount detected by the load detection means, it is determined whether the clothes have a high moisture content or not. When garments with a high water content and clothes with a large amount of synthetic fiber are used, the amount of rinsing water is increased and the dehydration time is shortened compared with clothes with a low water content and clothes with a small amount of fiber. A washing dryer characterized by.
JP2010111611A 2010-05-14 2010-05-14 Washing and drying machine Active JP5501091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010111611A JP5501091B2 (en) 2010-05-14 2010-05-14 Washing and drying machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010111611A JP5501091B2 (en) 2010-05-14 2010-05-14 Washing and drying machine

Publications (2)

Publication Number Publication Date
JP2011239799A JP2011239799A (en) 2011-12-01
JP5501091B2 true JP5501091B2 (en) 2014-05-21

Family

ID=45407110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010111611A Active JP5501091B2 (en) 2010-05-14 2010-05-14 Washing and drying machine

Country Status (1)

Country Link
JP (1) JP5501091B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017023614A (en) * 2015-07-28 2017-02-02 パナソニックIpマネジメント株式会社 Drum type washing machine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101919793B1 (en) * 2012-09-24 2018-11-19 엘지전자 주식회사 Method for Controlling a Laundry Treating Apparatus
KR102711366B1 (en) * 2019-07-19 2024-09-26 엘지전자 주식회사 Apparatus for treating laundry and method for operating the same
CN112342738B (en) * 2019-07-22 2024-06-18 青岛海尔洗衣机有限公司 Control method of washing machine
CN112899985B (en) * 2019-11-19 2023-09-19 海信冰箱有限公司 washing machine
KR20230086261A (en) * 2021-12-08 2023-06-15 엘지전자 주식회사 Control Method for Laundry Treatment Apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631089A (en) * 1992-07-17 1994-02-08 Sanyo Electric Co Ltd Washing machine
JP3131531B2 (en) * 1993-10-26 2001-02-05 株式会社東芝 Washing machine
JP3367762B2 (en) * 1994-09-14 2003-01-20 シャープ株式会社 Drum type washer / dryer
JPH09239187A (en) * 1996-03-13 1997-09-16 Toshiba Corp Washing machine
JP3399752B2 (en) * 1996-09-09 2003-04-21 シャープ株式会社 Fully automatic washing machine
JP2001120883A (en) * 1999-10-27 2001-05-08 Sanyo Electric Co Ltd Washing machine
JP2009189537A (en) * 2008-02-14 2009-08-27 Panasonic Corp Washing machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017023614A (en) * 2015-07-28 2017-02-02 パナソニックIpマネジメント株式会社 Drum type washing machine

Also Published As

Publication number Publication date
JP2011239799A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5501091B2 (en) Washing and drying machine
KR102216407B1 (en) Controlling method of the washing machine
KR101138139B1 (en) A condensing type dryer and method of controlling the same
JP2008194090A (en) Washing machine
JP2007319184A (en) Drum type washing machine
JP2012157417A (en) Washing machine
JP6663827B2 (en) Washing machine
JP2008006179A (en) Drum type washing machine
TW201219618A (en) may not damage the vibration performance due to the increasing of the shaking of the external sink and generation of noise
WO2013011605A1 (en) Drum washing machine
JP6151094B2 (en) Washing machine
JP2012143513A (en) Washing machine
JP4718509B2 (en) Drum washing machine
JP2009050339A (en) Drier and washing-drying machine
JP2013180161A (en) Washing machine
JP2013009780A (en) Washing machine
JP5879485B2 (en) Drum type washing machine and its program
JP5645499B2 (en) Washing machine
JP3983605B2 (en) Washing machine
JP4803610B2 (en) Drum washing machine
JP2010259603A (en) Washing and drying machine
JP5608353B2 (en) Drum type washer / dryer
JP2013188332A (en) Washing machine
JPH10201989A (en) Wash quantity determining method for electric washing machine
JP2020039752A (en) Washing and drying machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140311

R150 Certificate of patent or registration of utility model

Ref document number: 5501091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350