JP5500475B2 - Two-fluid nozzle - Google Patents

Two-fluid nozzle Download PDF

Info

Publication number
JP5500475B2
JP5500475B2 JP2009113971A JP2009113971A JP5500475B2 JP 5500475 B2 JP5500475 B2 JP 5500475B2 JP 2009113971 A JP2009113971 A JP 2009113971A JP 2009113971 A JP2009113971 A JP 2009113971A JP 5500475 B2 JP5500475 B2 JP 5500475B2
Authority
JP
Japan
Prior art keywords
liquid
nozzle
liquid film
film forming
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009113971A
Other languages
Japanese (ja)
Other versions
JP2010247133A (en
Inventor
勇治 山口
隆夫 大村
Original Assignee
日本電磁測器株式会社
株式会社大村製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電磁測器株式会社, 株式会社大村製作所 filed Critical 日本電磁測器株式会社
Priority to JP2009113971A priority Critical patent/JP5500475B2/en
Publication of JP2010247133A publication Critical patent/JP2010247133A/en
Application granted granted Critical
Publication of JP5500475B2 publication Critical patent/JP5500475B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nozzles (AREA)

Description

本発明は、気流の作用により液体を微粒化する二流体ノズルに関するもので、さらに詳しくは、特に気体の供給圧力が低い場合においても微細な霧を発生でき、また、液が詰まりにくい新規な二流体ノズルに関するものである。  The present invention relates to a two-fluid nozzle that atomizes a liquid by the action of an air current. More specifically, the present invention relates to a novel two-fluid nozzle that can generate a fine mist even when the gas supply pressure is low, and that does not clog the liquid. The present invention relates to a fluid nozzle.

気体の運動エネルギーにより液体を微粒化する二流体ノズルは、塗料の塗布、水や水溶性薬剤の散布、燃料噴霧など、さまざまな用途に使用されている。図7は、最も典型的な二流体ノズルの構造を示す図である。これは特許文献1に示された「二流体ノズル」である。液体ノズル11が気体ノズル12と同軸に配設され、液体ノズルから液柱状に流出する液体は、液体ノズル出口11aと気体ノズル出口12aとの間の環状開口16から噴出する環状噴流の力学的作用によって微粒化される。また、図8は特許文献2に示された「ノズル」で、環状噴流に旋回を与える手段として気体旋回羽根18が配設されている。気体の旋回は、液体の微粒化を促進するとともに、噴霧の空間的な拡がりを増大させる効果がある。  The two-fluid nozzle that atomizes the liquid by the kinetic energy of gas is used for various applications such as coating of paint, spraying of water and water-soluble drugs, and fuel spraying. FIG. 7 is a diagram showing the structure of the most typical two-fluid nozzle. This is the “two-fluid nozzle” disclosed in Patent Document 1. The liquid nozzle 11 is arranged coaxially with the gas nozzle 12, and the liquid flowing out from the liquid nozzle in a liquid column shape is a mechanical action of an annular jet ejected from the annular opening 16 between the liquid nozzle outlet 11 a and the gas nozzle outlet 12 a. Is atomized. FIG. 8 shows a “nozzle” disclosed in Patent Document 2, in which gas swirl vanes 18 are arranged as means for swirling the annular jet. The swirling of the gas has the effect of promoting atomization of the liquid and increasing the spatial spread of the spray.

液体を高圧に加圧し、微細孔から噴射する一流体微粒化ノズルに比べ、二流体ノズルは広い液流量範囲にわたり容易に細かい霧を発生できるという特徴がある。気体には通常、数気圧以上に加圧された圧縮空気が使用される。圧縮性がほとんどない液体に比べ、気体を圧縮するに要するエネルギーは非常に大きいことから、近年、地球温暖化対策としてCO2削減が進められている中、従来の数分の1以下の低圧の気体でも良好な微粒化が得られる二流体ノズルが望まれていた。  Compared with a one-fluid atomizing nozzle that pressurizes liquid to high pressure and ejects it from a fine hole, the two-fluid nozzle has a feature that it can easily generate fine mist over a wide liquid flow rate range. As the gas, compressed air pressurized to several atmospheric pressure or more is usually used. Compared to liquids with little compressibility, the energy required to compress the gas is very large. In recent years, CO2 reduction has been promoted as a measure against global warming. However, a two-fluid nozzle that can obtain good atomization has been desired.

【0004】
上述の液柱微粒化方式の二流体ノズルにおいては、気体の圧力や流量が同一の場合、液体ノズルの出口径が小さいほど、すなわち液柱の径が小さいほど、微粒化が促進されることが知られているが、液体ノズルが詰まりやすくなるという問題がある。また、液体ノズル出口径が小さくなった分、噴霧量が小さくなる。噴霧量が減らないようにするには、液体の液体ノズル出口からの流出速度を増大させなければならず、液体と気流との相対速度が減ることになり、微粒化は劣化することになる。したがって、良好な微粒化が行える噴霧量の上限が制約されるという問題もある。液体ノズルの出口の大きさは、小さいものでも1mm程度で、直径10ミクロン台の粒子に微粒化するには、微粒化用気体として数気圧の圧縮気体の使用が不可欠であった。
【先行技術文献】
【特許文献1】 特開2005−103366号公報 「二流体ノズル」 平成17年4月21日公開
【特許文献2】 特開2002−224592号公報 「ノズル」 2002年8月13日公開
[0004]
In the above-described liquid column atomization type two-fluid nozzle, when the gas pressure and flow rate are the same, the smaller the outlet diameter of the liquid nozzle, that is, the smaller the diameter of the liquid column, the more the atomization is promoted. As is known, there is a problem that the liquid nozzle is easily clogged. In addition, the amount of spray is reduced by the amount the liquid nozzle outlet diameter is reduced. In order not to reduce the spray amount, the outflow speed of the liquid from the liquid nozzle outlet must be increased, the relative speed between the liquid and the airflow is decreased, and the atomization is deteriorated. Therefore, there is also a problem that the upper limit of the spray amount that can achieve good atomization is restricted. The size of the outlet of the liquid nozzle is about 1 mm even if it is small, and in order to atomize into particles having a diameter of about 10 microns, it is indispensable to use a compressed gas of several atmospheres as the atomizing gas.
[Prior art documents]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2005-103366 “Two Fluid Nozzle” Published on April 21, 2005 [Patent Document 2] Japanese Patent Application Laid-Open No. 2002-224592 “Nozzle” published on August 13, 2002

特開2005−103366号公報 「二流体ノズル」 平成17年4月21日公開  JP-A-2005-103366 “Two-fluid nozzle” Released on April 21, 2005 特開2002−22459号公報 「ノズル」 2002年8月13日公開  JP 2002-22459 A “Nozzle” Published on August 13, 2002

従来の二流体ノズルにおいては、液体ノズルの詰まりの問題から、液体ノズルの出口径は小さくすることが困難で、そのため非常に良好な微粒化を行うためには高圧の圧縮気体の使用が不可欠であった。高圧の圧縮気体の製造は、大きなエネルギーを必要とし、CO2排出削減の観点だけでなく、噴霧装置の気体圧縮機の運転コストが高くなるという問題があった。また、圧縮機の初期コストも高いという問題があった。従来の二流体ノズルにおいては、特に微粒化用気体の圧力が低い場合の微粒化性能の向上の点で解決すべき課題がある。  In the conventional two-fluid nozzle, it is difficult to reduce the outlet diameter of the liquid nozzle due to the problem of clogging of the liquid nozzle, so the use of high-pressure compressed gas is indispensable for very good atomization. there were. The production of high-pressure compressed gas requires a large amount of energy, and there is a problem in that not only the viewpoint of reducing CO2 emission but also the operating cost of the gas compressor of the spray device is increased. There is also a problem that the initial cost of the compressor is high. In the conventional two-fluid nozzle, there is a problem to be solved in terms of improving atomization performance particularly when the pressure of the atomizing gas is low.

本発明の課題は、従来の二流体ノズルよりも微粒化性能が各段にすぐれ、詰まりの問題から開放される新規な二流体ノズルを提供することにある。  An object of the present invention is to provide a novel two-fluid nozzle that has better atomization performance than each conventional two-fluid nozzle and is free from the problem of clogging.

本発明の二流体ノズルは、気体ノズル、液膜形成ノズル、液体分配ノズル、および基部からなり、前記液膜形成ノズルは、前記気体ノズルと同軸に配設され、その内周壁面は回転対形の液膜形成面を形成し、前記液体分配ノズルは、外周部には中心軸と捩れの位置にある複数の螺旋状流路が配設され、内部には液体流路、およびその液体流路に連通し、放射状に延びて前記螺旋状流路に開口する液体分配流路が配設され、気体の一部は前記気体ノズルの出口と前記液膜形成ノズルの出口との間に形成される環状開口から環状噴流となって噴出し、前記気体の残部は前記螺旋状流路に流入し、前記液体流路を通って液体分配流路の開口から前記螺旋状流路に流出した液体を吹き飛ばしたのち前記液膜形成面に沿う旋回気流を生じ、吹き飛ばされた液体は、前記液膜形成面に沿って広がり、前記旋回気流の作用により液膜形成面上に液膜を形成し、前記液膜形成ノズルの出口から環状の液膜となって流出し、この環状液膜が、内周側からは前記液膜形成面に沿って旋回し、前記液膜形成ノズル出口から噴出する旋回噴流と、外周側からは前記環状噴流により挟まれて微粒化されるようにした。Two-fluid nozzles of the present invention, the gas nozzle, the liquid film forming nozzle, becomes liquid dispensing nozzle, and from the base, the liquid film forming nozzle is arranged in the gas nozzle and coaxial, the inner peripheral wall rotary symmetric The liquid distribution nozzle is provided with a plurality of spiral flow paths located at the outer periphery of the central axis and twisted with respect to the central axis. A liquid distribution channel that communicates with the channel and extends radially and opens into the spiral channel is disposed, and a part of the gas is formed between the outlet of the gas nozzle and the outlet of the liquid film forming nozzle. The remaining part of the gas flows into the spiral flow path, and the liquid flowing out from the opening of the liquid distribution flow path into the spiral flow path through the liquid flow path. After blowing off, a swirling airflow is generated along the liquid film forming surface, and blown away. The liquid spreads along the liquid film forming surface, forms a liquid film on the liquid film forming surface by the action of the swirling airflow, and flows out as an annular liquid film from the outlet of the liquid film forming nozzle, The annular liquid film swirls along the liquid film forming surface from the inner peripheral side, and is atomized by being sandwiched by the annular jet from the outer peripheral side and the swirling jet ejected from the liquid film forming nozzle outlet. I did it.

また、本発明の二流体ノズルは、前記環状開口から噴出する環状噴流に旋回を与える手段を、前記液膜形成ノズルの液膜形成ノズル外壁面と気体ノズルの内壁面とで形成される気体流路に配設した。  In the two-fluid nozzle of the present invention, the gas flow formed by the liquid film forming nozzle outer wall surface of the liquid film forming nozzle and the inner wall surface of the gas nozzle is provided as means for turning the annular jet ejected from the annular opening. Arranged on the road.

また、本発明の二流体ノズルは、前記液体分配ノズルは先端に、前記液膜形成ノズルと同軸に回転対形のセンターボディーを備え、前記液膜形成ノズルの液膜形成面の直径が出口に向かって拡大するようにした。Moreover, two-fluid nozzles of the present invention, the liquid dispensing nozzle at the tip, the liquid film forming nozzle coaxial to a rotary symmetric shape of the center body, the diameter of the liquid film forming surface of the liquid film forming nozzle outlet I tried to expand towards.

本明細書における螺旋状流路という用語は、その流路における気体の流れの方向が中心軸に対して幾何学的に“ねじれの位置にある”流路を指すもので、液膜形成ノズルの内周壁面との組み合わせによって液膜形成ノズルの内周壁面で囲まれる空間に気体の旋回流れを形成する流路を形成できる流路形状をすべて含むものであって、直線的な流路のものも、もちろん含まれる。  The term spiral channel in this specification refers to a channel in which the direction of gas flow in the channel is geometrically “twisted” with respect to the central axis. It includes all flow channel shapes that can form a flow path that forms a swirling flow of gas in the space surrounded by the inner peripheral wall surface of the liquid film forming nozzle in combination with the inner peripheral wall surface, and has a linear flow path Of course included.

本発明によれば、気体ノズル、液膜形成ノズル、液体分配ノズル、および基部からなり、前記液膜形成ノズルは、前記気体ノズルと同軸に配設され、その内周壁面は回転対形の液膜形成面を形成し、前記液体分配ノズルは、外周部には中心軸と捩れの位置にある複数の螺旋状流路が配設され、内部には液体流路、およびその液体流路に連通し、放射状に延びて前記螺旋状流路に開口する液体分配流路が配設され、気体の一部は前記気体ノズルの出口と前記液膜形成ノズルの出口との間に形成される環状開口から環状噴流となって噴出し、前記気体の残部は前記螺旋状流路に流入し、前記液体流路を通って液体分配流路の開口から前記螺旋状流路に流出した液体を吹き飛ばしたのち前記液膜形成面に沿う旋回気流を生じ、吹き飛ばされた液体は、前記液膜形成面に沿って広がり、前記旋回気流の作用により液膜形成面上に液膜を形成し、前記液膜形成ノズルの出口から環状の液膜となって流出し、この環状液膜が、内周側からは前記液膜形成面に沿って旋回し、前記液膜形成ノズル出口から噴出する旋回噴流と、外周側からは前記環状噴流により挟まれて微粒化されるようにしたので、液体は気流によって吹き飛ばされ、一部は微細な粒子となり、残りの粗大粒子や液塊は、旋回気流から受ける気体力と遠心力とを受けて液膜形成面上に傾斜した方向から衝突し、周方向の厚さの一様性が高い、非常に薄い環状液膜となって拡げられ、さらにその薄い液膜は内周側と外周側とが気体噴流に挟まれて、強いせん断作用を受けるので、液柱を外周部で接して流れる環状噴流によって微粒化する従来の二流体ノズルに比べ、格段に微細な粒子に微粒化される。また、上記の形態では、液体分配流路は、気体が流れる螺旋状流路に開口しており、そこでの気体の圧力、より正確には静圧は、その気体の速度エネルギーに相当するだけ低くなっているので、気体の流速が小さい螺旋状流路の上流、あるいは下流の空間に開口している場合に比べて流出しやすいという利点がある。液膜形成ノズルは、断面中心部は旋回気流が流れていて、ノズルの断面全体に液体が充満していないので、その出口の大きさは噴霧液量とは直接関係なく大きく設定できるので、液体が液体ノズルの断面全体に充満している従来の液柱微粒化方式の二流体ノズルと異なり、噴霧液量が少ない場合にも詰まりの問題を解決できる二流体ノズルを実現できる。According to the present invention, the gas nozzle, the liquid film forming nozzle, the liquid dispensing nozzle, and made from the base, the liquid film forming nozzle, the disposed gas nozzle coaxially, inner peripheral wall surface rotation symmetric form of the A liquid film forming surface is formed, and the liquid distribution nozzle is provided with a plurality of spiral flow paths at a position twisted with respect to the central axis on the outer peripheral portion, and a liquid flow path and a liquid flow path in the liquid distribution nozzle. A liquid distribution channel that communicates and extends radially and opens into the spiral channel is disposed, and a part of the gas is formed between the outlet of the gas nozzle and the outlet of the liquid film forming nozzle. An annular jet is ejected from the opening, and the remaining part of the gas flows into the spiral channel, and blows away the liquid flowing out from the opening of the liquid distribution channel to the spiral channel through the liquid channel. Later, a swirling air flow is generated along the liquid film forming surface and blown away. The liquid film forming surface spreads along the liquid film forming surface, forms a liquid film on the liquid film forming surface by the action of the swirling airflow, and flows out as an annular liquid film from the outlet of the liquid film forming nozzle. The film swirls along the liquid film forming surface from the inner peripheral side and is atomized by being swung between the swirling jet ejected from the liquid film forming nozzle outlet and the annular jet from the outer peripheral side. Therefore, the liquid is blown away by the air flow, and some of the particles become fine particles, and the remaining coarse particles and liquid mass collide from the direction inclined on the liquid film formation surface by receiving the gas force and centrifugal force received from the swirling air flow. However, it is spread as a very thin annular liquid film with high uniformity in the thickness in the circumferential direction, and the thin liquid film is sandwiched between the inner and outer peripheral sides by a gas jet and has a strong shearing action. As a result, the fine particles are generated by the annular jet flowing in contact with the liquid column at the outer periphery Compared to conventional two-fluid nozzle which is atomized into much finer particles. Further, in the above-described embodiment, the liquid distribution channel is opened to the spiral channel through which the gas flows, and the gas pressure, more precisely, the static pressure there is as low as corresponding to the velocity energy of the gas. Therefore, there is an advantage that the gas flows out more easily than the case where the gas flow velocity is small in the space upstream or downstream of the spiral flow path. The liquid film forming nozzle has a swirling airflow in the center of the cross section, and the entire cross section of the nozzle is not filled with liquid, so the size of the outlet can be set large regardless of the amount of spray liquid. Unlike the conventional liquid column atomization type two-fluid nozzle that fills the entire cross section of the liquid nozzle, a two-fluid nozzle that can solve the clogging problem even when the amount of spray liquid is small can be realized.

本発明によれば、前記環状開口から噴出する環状噴流に旋回を与える手段を、前記液膜形成ノズルの液膜形成ノズル外壁面と気体ノズルの内壁面とで形成される気体流路に配設したので、旋回気流の作用により環状液膜の微粒化が一層促進される効果が生まれた。また、噴霧の広がりを大きくする効果がある。液膜形成ノズル内の気体の旋回と環状噴流の旋回の方向を逆にすると、環状液膜に作用する気体のせん断作用が強まり、微粒化が促進される。  According to the present invention, the means for turning the annular jet ejected from the annular opening is disposed in the gas flow path formed by the outer wall surface of the liquid film forming nozzle and the inner wall surface of the gas nozzle. Therefore, the effect of further promoting the atomization of the annular liquid film was produced by the action of the swirling airflow. In addition, there is an effect of increasing the spread of the spray. If the direction of the swirling of the gas in the liquid film forming nozzle and the swirling direction of the annular jet are reversed, the shearing action of the gas acting on the annular liquid film is strengthened and atomization is promoted.

また、本発明によれば、前記液体分配ノズルは先端に、前記液膜形成ノズルと同軸に回転対形のセンターボディーを備え、前記液膜形成ノズルの液膜形成面の直径が出口に向かって拡大するようにしているので、このセンターボディーの存在によって液膜形成ノズル内の気流の旋回の安定化が図られ、液膜の周方向の一様性が向上し、微粒化が促進され、先広がりの液膜形成面により液膜形成ノズルの出口の周長が大きくなるので、噴霧量が多い場合でも液膜の厚さが増大するのを抑えることができ、微粒化性能を維持できるという利点がある。センターボディーの径の軸方向変化と液膜形成ノズルの内周面、すなわち液膜形成面の直径の軸方向変化を適切にすれば、環状流路内の気体の旋回が弱まるのを抑制することができ、その結果、周方向の液膜の一様性が確保され、良好な微粒化性能が得られる。Further, according to the present invention, the liquid dispensing nozzle at the distal end, provided with the liquid film forming nozzle and the rotational symmetry shaped center body coaxially, the diameter of the liquid film forming surface of the liquid film forming nozzle towards the outlet The presence of this center body stabilizes the swirling of the airflow in the liquid film forming nozzle, improves the uniformity of the circumferential direction of the liquid film, and promotes atomization. Since the circumference of the outlet of the liquid film forming nozzle is increased by the liquid film forming surface that spreads forward, the increase in the thickness of the liquid film can be suppressed even when the spray amount is large, and the atomization performance can be maintained. There are advantages. Appropriate changes in the axial direction of the diameter of the center body and the inner peripheral surface of the liquid film forming nozzle, that is, the axial direction change of the diameter of the liquid film forming surface, suppress the weakening of the swirling of the gas in the annular channel. As a result, the uniformity of the liquid film in the circumferential direction is ensured, and good atomization performance is obtained.

発明を実施するために最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

本発明を実施するために最良の形態のひとつを図1に示す。図1のAは二流体ノズルの中心軸を含む断面での断面図、Bは液体分配ノズルの外形図、Cは液体分配ノズルの液体分配流路における断面図、Dは螺旋流路における液体供給孔の概略の位置を示す図である。この二流体ノズル1は、気体ノズル12、液膜形成ノズル13、液体供給器14と基部15で構成されている。基部15には気体流入路15a、液体流入路15bが配設され、それぞれの入り口には配管継ぎ手をねじ込むネジが配設されている。気体ノズル12は基部15に繋がり、液膜形成ノズル13は、気体ノズル12と同軸に配設され、内周に回転対形の液膜形成面13bを形成し、液体供給器14は内部に前記液体流入路に連通する液体流路14aが配設され、外周部には中心軸と捩れの位置にある複数の螺旋状流路14bが配設され、液体流路14aには放射状に延びて前記螺旋状流路14bに開口する液体分配流路14cが連通して配設され、液体流入路15bから流入した液体は、液体流路14a、液体分配流路14cを通って螺旋状流路14bに流出し、気体流入路15から流入した気体は、一部は気体ノズル12の内壁面12bと液膜形成ノズル13の液膜形成ノズル外壁面13cとで形成される気体流路17を通り、旋回を与える手段として配設した軸流方式の気流旋回羽根18により旋回を与えられて気体ノズル12の出口12aと液膜形成ノズル13の出口13aとの間に形成される環状開口16から噴出し、前記気体の残部は螺旋状流路14bに流入し、液体分配流路14cの開口14dから流出した液体を液膜形成面13bに衝突させ、この液体は液膜形成面上を流れ、液膜形成ノズルの出口13aから環状の液膜となって流出し、この環状液膜が、内周側からは螺旋状流路14bから流出し、液膜形成ノズル13の液膜形成面13bに沿って旋回流となって液膜形成ノズル出口13aから噴出する気体の流れにより、外周側からは環状開口16から噴出する気体の流れにより挟まれて微粒化される。One of the best modes for carrying out the present invention is shown in FIG. 1A is a cross-sectional view of a cross section including the central axis of a two-fluid nozzle, B is an external view of a liquid distribution nozzle, C is a cross-sectional view of a liquid distribution flow path of the liquid distribution nozzle, and D is a liquid supply in a spiral flow path. It is a figure which shows the approximate position of a hole. The two-fluid nozzle 1 includes a gas nozzle 12, a liquid film forming nozzle 13, a liquid supplier 14 and a base 15. The base 15 is provided with a gas inflow passage 15a and a liquid inflow passage 15b, and a screw for screwing a pipe joint is provided at each entrance. Gas nozzle 12 is connected to the base 15, liquid film forming nozzle 13 is disposed in the gas nozzle 12 and coaxial, to form a rotational symmetric shape on the inner peripheral liquid film forming surface 13b, the liquid supply unit 14 therein A liquid flow path 14a communicating with the liquid inflow path is disposed, and a plurality of spiral flow paths 14b that are twisted with respect to the central axis are disposed on the outer periphery, and the liquid flow path 14a extends radially. A liquid distribution channel 14c that opens to the spiral channel 14b is provided in communication, and the liquid that has flowed in from the liquid inflow channel 15b passes through the liquid channel 14a and the liquid distribution channel 14c, and the spiral channel 14b. A part of the gas flowing out from the gas inflow passage 15 a passes through the gas flow path 17 formed by the inner wall surface 12 b of the gas nozzle 12 and the liquid film formation nozzle outer wall surface 13 c of the liquid film formation nozzle 13. , Axial flow system arranged as a means to give swirl The airflow swirl vanes 18 are swirled to eject from an annular opening 16 formed between the outlet 12a of the gas nozzle 12 and the outlet 13a of the liquid film forming nozzle 13, and the remainder of the gas is a spiral channel 14b. The liquid flowing into the liquid distribution flow path 14c and the liquid flowing out from the opening 14d of the liquid distribution flow path 14c collide with the liquid film forming surface 13b. The liquid flows on the liquid film forming surface, and the liquid film forming nozzle 13 The annular liquid film flows out from the spiral flow path 14b from the inner peripheral side, and turns into a swirl flow along the liquid film forming surface 13b of the liquid film forming nozzle 13 to form a liquid film forming nozzle outlet 13a. By the gas flow ejected from the outer peripheral side, it is sandwiched by the gas flow ejected from the annular opening 16 and atomized.

図1の形態において、液膜形成ノズル13の液膜形成面13bは、その直径が出口に向けて増大しており、液膜形成ノズルの出口の周長が大きくなるので、噴霧量が多い場合でも液膜の厚さが増大するのを抑えることができ、微粒化性能を維持できる。また、センターボディーも、液膜形成ノズルの拡大に適合して直径が出口に向けて増大しているので、液膜形成ノズル内の気流の流速が低下せず、また、旋回の安定化も図られ、液膜の周方向の一様性が向上し、微粒化が促進される。また、詰まりについても、液膜形成ノズルの液膜形成面とセンターボディー外周面との間の環状流路は、隙間を大きくすることができ、詰まりの問題を回避できる。もちろん、液膜形成ノズルは、薄肉の円筒でもよく、薄肉のパイプを利用すれば低コストで製造できる。  In the form of FIG. 1, the liquid film forming surface 13 b of the liquid film forming nozzle 13 has a diameter that increases toward the outlet, and the peripheral length of the outlet of the liquid film forming nozzle increases, so that the spray amount is large. However, the increase in the thickness of the liquid film can be suppressed, and the atomization performance can be maintained. The center body also adapts to the expansion of the liquid film forming nozzle, and its diameter increases toward the outlet, so that the flow velocity of the air current in the liquid film forming nozzle does not decrease and the rotation is stabilized. Therefore, the uniformity in the circumferential direction of the liquid film is improved and atomization is promoted. In addition, as for clogging, the annular flow path between the liquid film forming surface of the liquid film forming nozzle and the outer peripheral surface of the center body can increase the gap, thereby avoiding the problem of clogging. Of course, the liquid film forming nozzle may be a thin cylinder, and can be manufactured at low cost by using a thin pipe.

液膜形成ノズル13の先端は、微粒化の点からは図1に示すように薄肉になっていることが好ましい。また、液体供給器の先端が中心軸に沿って液膜形成ノズルの出口近傍までセンターボディーとして延びている形状は、液膜形成ノズルの内周壁面に沿って形成される環状空間内における気流の旋回流れを安定化させるのに有効であるばかりでなく、液膜形成ノズル出口での気体の流出速度を大きくすることができるので、微粒化促進にも効果がある。旋回流れによって心軸近傍には負圧の領域ができ、その負圧によって気体が液膜形成ノズルの出口13aから前記環状空間内に逆流するのを抑止する効果もある。  The tip of the liquid film forming nozzle 13 is preferably thin as shown in FIG. 1 from the viewpoint of atomization. In addition, the shape of the tip of the liquid supplier extending as the center body along the central axis to the vicinity of the outlet of the liquid film forming nozzle is the air flow in the annular space formed along the inner peripheral wall surface of the liquid film forming nozzle. Not only is this effective in stabilizing the swirling flow, but also the gas outflow speed at the outlet of the liquid film forming nozzle can be increased, which is effective in promoting atomization. Due to the swirling flow, a negative pressure region is formed in the vicinity of the mandrel, and the negative pressure also has an effect of preventing the gas from flowing backward from the outlet 13a of the liquid film forming nozzle into the annular space.

図1のDを用いて、螺旋状流路14bの液体分配流路14cの開口14dにおいて流出する液体に作用する気体の圧力について説明する。なお、簡単のため螺旋状流路における気体の流れのエネルギー損失はないとする。液体分配流路の開口14dにおいて液体に作用する圧力は、そこでの流体の静圧であるが、静圧はベルヌーイの定理により、その速度のエネルギーに相当する動圧分だけ入り口および出口における全圧よりも低い。すなわち、液体の流出口を螺旋流路の途中に配設したほうが、液膜形成ノズルの内周面で形成される空間に配設した場合よりも液体に作用する気体の圧力は小さい。螺旋流路内を流れる気体の動圧は、流速の2乗に比例して増大するので、気体の速度が大きいほど、液体に作用する圧力は小さくなり、液を供給するに要する圧力が小さくてもすむことになる。液膜形成ノズル、気体ノズル、螺旋状流路などを最適に設計することによって液体と気体とが二流体ノズル内で混合する本発明の環状液膜微粒化方式二流体ノズルにおいても、液面と液流出口との高度差や気体の供給圧によっては、液体を自吸できるようにすることが可能となる。なお、液体分配流路は、その出口を軸に対して気体の流れの方向に傾斜させて配設するのが好ましい。  The gas pressure acting on the liquid flowing out from the opening 14d of the liquid distribution channel 14c of the spiral channel 14b will be described with reference to FIG. For simplicity, it is assumed that there is no energy loss of the gas flow in the spiral channel. The pressure acting on the liquid at the opening 14d of the liquid distribution channel is the static pressure of the fluid there. The static pressure is the total pressure at the inlet and outlet by the dynamic pressure corresponding to the energy of the velocity according to Bernoulli's theorem. Lower than. That is, the pressure of the gas acting on the liquid is smaller when the liquid outlet is disposed in the middle of the spiral flow path than when the liquid outlet is disposed in the space formed on the inner peripheral surface of the liquid film forming nozzle. Since the dynamic pressure of the gas flowing in the spiral flow path increases in proportion to the square of the flow velocity, the larger the gas velocity, the smaller the pressure acting on the liquid and the smaller the pressure required to supply the liquid. I'm sorry. Even in the annular liquid film atomization type two-fluid nozzle of the present invention in which the liquid and the gas are mixed in the two-fluid nozzle by optimally designing the liquid film forming nozzle, the gas nozzle, the spiral flow path, etc. Depending on the altitude difference from the liquid outlet and the gas supply pressure, the liquid can be self-primed. Note that the liquid distribution channel is preferably disposed with its outlet inclined with respect to the axis in the direction of gas flow.

本発明を実施するために最良の形態の別のものを図2に示す。液膜形成ノズルは、先細形状で、先端のセンターボディーも、それに適した先細形状になっている。この形態は、液膜形成ノズルの開口を小さくできるので使用空気量を削減できる利点がある。一方、内部の気体の圧力が高くなり、液体が戻されやすくなるという短所がある。その問題は、図3の形態のようにセンターボディーを短くし、開口面積を大きくすることで緩和できる。  Another best mode for carrying out the present invention is shown in FIG. The liquid film forming nozzle has a tapered shape, and the center body at the tip also has a tapered shape suitable for it. This form has an advantage that the amount of air used can be reduced because the opening of the liquid film forming nozzle can be made small. On the other hand, there is a disadvantage that the pressure of the internal gas increases and the liquid is easily returned. This problem can be alleviated by shortening the center body and increasing the opening area as shown in FIG.

本発明を実施するために最良の形態のさらに別のものを図4に示す。この実施形態例では、前記気体ノズル12の内周壁と液膜形成ノズル13の外周壁面とで形成される気体流路17に半径流方式の気流旋回羽根18を配設し、ここを通って気体ノズル12の出口と前記液膜形成ノズル13の出口13aとの間に形成される環状開口16から噴出する気体の流れに強い旋回を与えるようにしている。気流旋回羽根は、軸流方式、半径流方式に限らず斜流方式でもよい。環状開口からの気流に旋回を与えることによって、環状液膜の微粒化を促進することができだけでなく、その旋回の強さを変えることによって噴霧の広がりを変化させることができるという利点がある。  FIG. 4 shows still another best mode for carrying out the present invention. In this embodiment, a radial flow type airflow swirl vane 18 is disposed in a gas flow path 17 formed by the inner peripheral wall of the gas nozzle 12 and the outer peripheral wall surface of the liquid film forming nozzle 13, and gas is passed through this. A strong swirl is given to the flow of the gas ejected from the annular opening 16 formed between the outlet of the nozzle 12 and the outlet 13a of the liquid film forming nozzle 13. The airflow swirl blade is not limited to the axial flow method and the radial flow method, and may be a mixed flow method. By giving swirl to the airflow from the annular opening, not only can atomization of the annular liquid film be promoted, but also the spray spread can be changed by changing the strength of the swirl. .

本発明を実施するために最良の形態の別のものを図5に示す。この実施例では、液膜形成ノズル13の出口13aを気体ノズルの出口12aよりも適宜突き出すように配設している。このようにしておくと、気体ノズルから噴出する気体の流れにより負圧が生じ、液膜形成ノズル内の圧力を下げる方向に作用し、液分配流路開口に作用する気体の圧力を下げる上で好都合である。  Another best mode for carrying out the present invention is shown in FIG. In this embodiment, the outlet 13a of the liquid film forming nozzle 13 is disposed so as to protrude more appropriately than the outlet 12a of the gas nozzle. By doing so, a negative pressure is generated by the flow of gas ejected from the gas nozzle, acting in a direction to lower the pressure in the liquid film forming nozzle, and reducing the pressure of the gas acting on the liquid distribution channel opening. Convenient.

本発明の二流体ノズルを用いた噴霧装置の実施例1を図6に示す。噴霧装置2は、空気ポンプ21、液体容器22、本発明による二流体ノズル1、微粒化用気体配管23、液体配管24、加圧用気体配管25とからなり、気体ポンプ21からの気体は微粒化用気体配管23を通して本発明による二流体ノズル1に供給され、前記液体容器22は気密性の容器で、前記気体ポンプ21の吐出口とは加圧用気体配管25により連通し、前記気体ポンプから吐出される気体の圧力を利用して前記液体容器内の液体を前記液体供給配管を通して前記二流体ノズルに供給するようになっている。この構成は、液送ポンプが不要な、簡易な噴霧装置を提供することを目的としている。この実施例では、微粒化用気体配管を二系統に分岐し、その一方に遮断バルブ26を配設し、空気ポンプ始動後、液体が前記二流体ノズルに到達したのち前記遮断バルブを開にする点に特徴がある。  Example 1 of the spraying apparatus using the two-fluid nozzle of the present invention is shown in FIG. The spraying device 2 includes an air pump 21, a liquid container 22, a two-fluid nozzle 1 according to the present invention, a atomizing gas pipe 23, a liquid pipe 24, and a pressurizing gas pipe 25, and the gas from the gas pump 21 is atomized. The gas container 23 is supplied to the two-fluid nozzle 1 according to the present invention, the liquid container 22 is an airtight container, and communicates with the discharge port of the gas pump 21 through the pressurizing gas pipe 25 and is discharged from the gas pump. The liquid in the liquid container is supplied to the two-fluid nozzle through the liquid supply pipe using the pressure of the gas that is generated. This configuration is intended to provide a simple spraying device that does not require a liquid feed pump. In this embodiment, the atomizing gas pipe is branched into two systems, and a shutoff valve 26 is provided on one of them, and after the air pump is started, the shutoff valve is opened after the liquid reaches the two-fluid nozzle. There is a feature in point.

一般に、二流体ノズルを採用した噴霧装置においては、二流体ノズルには、まず空気が流入し、次に液体が流入することが望ましい。供給の順番が逆になると、液体は微粒化されないまま噴出してしまい、不都合である。本発明の二流体ノズルでは、前述のように螺旋状流路に流入する気体の静圧が下がることを利用して螺旋状溝に開口する液体分配流路の開口から液体が流出されやすくしているが、それでもノズル内で液体と気体が混合するような構造になっている以上、液体と気体とが大気に出るまで混合しない、図7、図8に示した外部混合型の二流体ノズルと異なり、液体が気体の圧力に曝されるために液体供給配管に押し戻される方向の力を受けることは避けられず、液送上の問題がある。液送ポンプを用いない上記の噴霧装置では、二流体ノズル1が液体容器内の液面より少し高くなると液体を供給できなかったり、供給が間欠的になったりという問題がある。また、供給できたとしても、液体容器と二流体ノズルとの距離がある場合には、最初の使用時には液体配管中には液体が充填されていないので、液体が二流体ノズルに到着し、噴霧が始まるまでに時間がかかるという問題が起きることがある。本実施例では、空気ポンプの始動時には、遮断バルブが閉じられているので空気ポンプからの空気の一部は、二流体ノズルに供給されるが、遮断バルブが開のときに比べ液体容器内により多くの空気を送ることができ、遮断バルブによる流路抵抗の増加により液体容器内の圧力も高くなるので液体容器内の液体は速い速度で液体配管内を流れ、二流体ノズルに短時間で流入することができ、微粒化が早く始まる。直ちに、前記遮断弁を開にすれば、より多くの空気が二流体ノズルに供給され、微粒化が促進される。  In general, in a spray device that employs a two-fluid nozzle, it is desirable that air flows into the two-fluid nozzle first, and then liquid flows into the nozzle. If the order of supply is reversed, the liquid is ejected without being atomized, which is inconvenient. In the two-fluid nozzle of the present invention, the liquid can easily flow out from the opening of the liquid distribution channel that opens in the spiral groove by utilizing the decrease in the static pressure of the gas flowing into the spiral channel as described above. However, as long as the structure is such that the liquid and the gas are mixed in the nozzle, the liquid and the gas are not mixed until they reach the atmosphere. In contrast, since the liquid is exposed to the pressure of the gas, it is inevitable to receive a force in the direction in which the liquid is pushed back to the liquid supply pipe. In the above-described spraying apparatus that does not use the liquid feed pump, there is a problem that when the two-fluid nozzle 1 is slightly higher than the liquid level in the liquid container, the liquid cannot be supplied or the supply is intermittent. Even if it can be supplied, if there is a distance between the liquid container and the two-fluid nozzle, the liquid pipe is not filled with liquid at the first use, so the liquid arrives at the two-fluid nozzle and sprays. There may be a problem that it takes time to start. In this embodiment, since the shutoff valve is closed when the air pump is started, a part of the air from the air pump is supplied to the two-fluid nozzle, but it is more in the liquid container than when the shutoff valve is open. A large amount of air can be sent, and the pressure in the liquid container increases due to the increase in flow resistance by the shutoff valve, so the liquid in the liquid container flows through the liquid pipe at a high speed and flows into the two-fluid nozzle in a short time. Atomization starts early. If the shut-off valve is opened immediately, more air is supplied to the two-fluid nozzle and atomization is promoted.

本発明による微粒化ノズルは液体を霧状に微粒化する装置に広く適用できる。例えば、塗装機、加湿装置、薬剤散布装置、冷凍乾燥法による粉末製造装置などに使用できる。また、新しい分野としては霧(ミスト)による除菌や臭気除去、霧による冷房機の効率向上(室外機の空気冷却)、霧による消火装置、霧による日射量の軽減などに適用が見込まれる。  The atomization nozzle according to the present invention can be widely applied to an apparatus for atomizing a liquid into a mist. For example, it can be used for a coating machine, a humidifying device, a chemical spraying device, a powder production device using a freeze drying method, and the like. Also, new fields are expected to be applied to sterilization and odor removal by mist, improving the efficiency of air conditioners by mist (air cooling of outdoor units), fire extinguishing devices by mist, and reducing the amount of solar radiation by mist.

本発明の二流体ノズルの一実施形態例を示す図である。It is a figure which shows one embodiment of the two-fluid nozzle of this invention. 本発明の二流体ノズルの別の一実施形態例を示す図である。It is a figure which shows another one Example of embodiment of the two-fluid nozzle of this invention. 図2に示す一実施形態例の変形を示す図である。FIG. 3 is a diagram showing a modification of the embodiment shown in FIG. 2. 本発明の二流体ノズルの別の一実施形態例を示す図である。It is a figure which shows another one Example of embodiment of the two-fluid nozzle of this invention. 図4に示す本発明の二流体ノズルの変形例を示す図である。It is a figure which shows the modification of the two-fluid nozzle of this invention shown in FIG. 本発明の二流体ノズルを用いた噴霧装置の一実施例を示す図である。It is a figure which shows one Example of the spraying apparatus using the two-fluid nozzle of this invention. 従来の二流体ノズルの代表的な形態を示す図である。It is a figure which shows the typical form of the conventional two fluid nozzle. 従来の二流体ノズルの別の代表的な形態を示す図である。It is a figure which shows another typical form of the conventional two-fluid nozzle.

1 二流体ノズル
2 噴霧装置
11 液体ノズル
11a 液体ノズル出口
12 気体ノズル
12a 気体ノズル出口
12b 気体ノズル内壁面
13 液膜形成ノズル
13b 液膜形成面
13c 液膜形成ノズル外壁面
14 液体供給器
14a 液体流路
14b 螺旋状流路
14c 液体分配流路
14d 開口
15 基部
15a 気体流入路
15b 液体流入路
16 環状開口
17 気体流路
18 気体旋回羽根
21 空気ポンプ
22 液体容器
23 微粒化用気体配管
24 液体配管
25 加圧用気体配管
DESCRIPTION OF SYMBOLS 1 Two-fluid nozzle 2 Spraying device 11 Liquid nozzle 11a Liquid nozzle exit 12 Gas nozzle 12a Gas nozzle exit 12b Gas nozzle inner wall surface 13 Liquid film formation nozzle 13b Liquid film formation surface 13c Liquid film formation nozzle outer wall surface 14 Liquid supply 14a Liquid flow Passage 14b spiral passage 14c liquid distribution passage 14d opening 15 base 15a gas inflow passage 15b liquid inflow passage 16 annular opening 17 gas passage 18 gas swirl vane 21 air pump 22 liquid container 23 atomization gas piping 24 liquid piping 25 Gas piping for pressurization

Claims (3)

気体ノズル、液膜形成ノズル、液体分配ノズル、および基部からなり、前記液膜形成ノズルは、前記気体ノズルと同軸に配設され、その内周壁面は回転対形の液膜形成面を形成し、前記液体分配ノズルは、外周部には中心軸と捩れの位置にある複数の螺旋状流路が配設され、内部には液体流路、およびその液体流路に連通し、放射状に延びて前記螺旋状流路に開口する液体分配流路が配設され、気体の一部は前記気体ノズルの出口と前記液膜形成ノズルの出口との間に形成される環状開口から環状噴流となって噴出し、前記気体の残部は前記螺旋状流路に流入し、前記液体流路を通って液体分配流路の開口から前記螺旋状流路に流出した液体を吹き飛ばしたのち前記液膜形成面に沿う旋回気流を生じ、吹き飛ばされた液体は、前記液膜形成面に沿って広がり、前記旋回気流の作用により液膜形成面上に液膜を形成し、前記液膜形成ノズルの出口から環状の液膜となって流出し、この環状液膜が、内周側からは前記液膜形成面に沿って旋回し、前記液膜形成ノズル出口から噴出する旋回噴流と、外周側からは前記環状噴流により挟まれて微粒化されることを特徴とする二流体ノズル。Gas nozzle, becomes liquid film forming nozzle, the liquid dispensing nozzle, and from the base, the liquid film forming nozzle is arranged in the gas nozzle and coaxial, the inner peripheral wall forming a liquid film forming surface of the universal type versus rotation The liquid distribution nozzle is provided with a plurality of spiral channels arranged at the outer periphery of the center axis and in a twisted position. The liquid channel is connected to the liquid channel and the liquid channel, and extends radially. A liquid distribution channel that opens to the spiral channel, and part of the gas becomes an annular jet from an annular opening formed between the outlet of the gas nozzle and the outlet of the liquid film forming nozzle. The remaining part of the gas flows into the spiral flow path, blows off the liquid flowing out from the opening of the liquid distribution flow path to the spiral flow path through the liquid flow path, and then forms the liquid film formation surface. A swirling airflow is generated along A liquid film is formed on the liquid film forming surface by the action of the swirling airflow, and flows out as an annular liquid film from the outlet of the liquid film forming nozzle. A two-fluid nozzle characterized in that it is swirled along the liquid film forming surface and is atomized by being swung between the swirling jet ejected from the liquid film forming nozzle outlet and the annular jet from the outer peripheral side. 前記環状開口から噴出する環状噴流に旋回を与える手段を、前記液膜形成ノズルの液膜形成ノズル外壁面と気体ノズルの内壁面とで形成される気体流路に配設したことを特徴とする請求項1に記載の二流体ノズル。  Means for turning the annular jet ejected from the annular opening is disposed in a gas flow path formed by the outer wall surface of the liquid film forming nozzle and the inner wall surface of the gas nozzle. The two-fluid nozzle according to claim 1. 前記液体分配ノズルは先端に、前記液膜形成ノズルと同軸に回転対形のセンターボディーを備え、前記液膜形成ノズルの液膜形成面の直径が出口に向かって拡大することを特徴とする請求項1または請求項2に記載の二流体ノズル。The liquid dispensing nozzle at the distal end, provided with the liquid film forming nozzle and the rotational symmetry shaped center body coaxially, the diameter of the liquid film forming surface of the liquid film forming nozzle is characterized in that the expanding towards the outlet The two-fluid nozzle of Claim 1 or Claim 2.
JP2009113971A 2009-04-14 2009-04-14 Two-fluid nozzle Expired - Fee Related JP5500475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009113971A JP5500475B2 (en) 2009-04-14 2009-04-14 Two-fluid nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009113971A JP5500475B2 (en) 2009-04-14 2009-04-14 Two-fluid nozzle

Publications (2)

Publication Number Publication Date
JP2010247133A JP2010247133A (en) 2010-11-04
JP5500475B2 true JP5500475B2 (en) 2014-05-21

Family

ID=43310099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009113971A Expired - Fee Related JP5500475B2 (en) 2009-04-14 2009-04-14 Two-fluid nozzle

Country Status (1)

Country Link
JP (1) JP5500475B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3311770B1 (en) 2006-04-20 2023-06-21 Sonendo, Inc. Apparatus for treating root canals of teeth
US12114924B2 (en) 2006-08-24 2024-10-15 Pipstek, Llc Treatment system and method
US7980854B2 (en) 2006-08-24 2011-07-19 Medical Dental Advanced Technologies Group, L.L.C. Dental and medical treatments and procedures
IL219169A0 (en) 2012-04-15 2012-07-31 Yehuda Darshan Apparatus for cleaning tissues from root canal by spinning liquid jet
WO2014210220A2 (en) 2013-06-26 2014-12-31 Sonendo, Inc. Apparatus and methods for filling teeth and root canals
CN104587914B (en) * 2013-10-31 2016-08-17 中国中化股份有限公司 A kind of continuous way atomization gas-liquid, liquid film gas-liquid reactor
JP6482111B2 (en) * 2014-11-05 2019-03-13 有限会社クールテクノス Cleaning device
KR101732643B1 (en) * 2014-12-18 2017-05-24 (주)메가이엔씨 A Nozzle Assembly for Atomizing Liquid
KR101732648B1 (en) * 2014-12-26 2017-05-04 (주)메가이엔씨 A Nozzle Assembly for Atomizing Liquid
JP6331034B2 (en) 2015-06-09 2018-05-30 パナソニックIpマネジメント株式会社 Sanitization mist shower device
CN111203339A (en) * 2020-03-04 2020-05-29 北京南瑞怡和环保科技有限公司 Nozzle capable of realizing synergistic atomization of bubbles
USD997355S1 (en) 2020-10-07 2023-08-29 Sonendo, Inc. Dental treatment instrument
KR102618859B1 (en) * 2022-02-28 2023-12-29 주식회사 하이롬 Rotary spray nozzle system
CN118621882A (en) * 2023-03-10 2024-09-10 厦门松霖科技股份有限公司 Toilet bowl liquid feeding device and toilet bowl

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141693B1 (en) * 1971-05-24 1976-11-11
JPH02107363A (en) * 1988-10-17 1990-04-19 Mitsubishi Heavy Ind Ltd Air stream atomization type spray nozzle
JPH0725238Y2 (en) * 1989-08-23 1995-06-07 石川島播磨重工業株式会社 Liquid atomizer
JP3382573B2 (en) * 1999-11-24 2003-03-04 株式会社いけうち Two-fluid nozzle
JP3853295B2 (en) * 2003-01-29 2006-12-06 電気化学工業株式会社 Spraying method and apparatus

Also Published As

Publication number Publication date
JP2010247133A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5500475B2 (en) Two-fluid nozzle
US9168545B2 (en) Spray nozzle assembly with impingement post-diffuser
US10245602B2 (en) Atomizer nozzle
US7080793B2 (en) Apparatus comprising an atomizer and method for atomization
US10130960B2 (en) Swirl nozzle assemblies with high efficiency mechanical break up for generating mist sprays of uniform small droplets
US8028934B2 (en) Two-substance atomizing nozzle
EP2024100B1 (en) Full cone air assisted spray nozzle for continuous metal casting cooling
KR101363021B1 (en) Spray nozzle
CN201015755Y (en) Impact inner-mixing type air bubble atomizing nozzle
CN103769324B (en) Internal-mixing two phase flow nozzle
RU2011117643A (en) TWO-COMPONENT NOZZLE, NOZZLE BLOCK AND METHOD FOR SPRAYING FLUIDS
WO2008024032A1 (en) Liquid sprayer
JP5662655B2 (en) nozzle
JPH0994494A (en) Atomizer nozzle for internal mixed gas
CN110508412B (en) Nozzle combining pneumatic atomization and bubble atomization and application method
EP3408032B1 (en) Improved swirl nozzle assembly with high efficiency mechanical break up to generate mist sprays of uniform small droplets
CN108772218A (en) A kind of eddy current type cleaning injection apparatus
JP4394075B2 (en) Nozzle for atomizing liquid by gas and atomization method
CN110944756A (en) Two-fluid nozzle
JP3401267B2 (en) Media discharge nozzle
US20170370590A1 (en) Fuel nozzle
JP2008161834A (en) Nozzle and gas-liquid atomizer
JP2012066168A (en) Liquid atomizing device and liquid atomizing method
JP4266239B1 (en) Two-fluid atomizing nozzle
US10875054B2 (en) Coating system and method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120416

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140228

R150 Certificate of patent or registration of utility model

Ref document number: 5500475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees