JP5500285B1 - Power supply equipment for switchgear and on-site power generation method at switchgear - Google Patents

Power supply equipment for switchgear and on-site power generation method at switchgear Download PDF

Info

Publication number
JP5500285B1
JP5500285B1 JP2013055986A JP2013055986A JP5500285B1 JP 5500285 B1 JP5500285 B1 JP 5500285B1 JP 2013055986 A JP2013055986 A JP 2013055986A JP 2013055986 A JP2013055986 A JP 2013055986A JP 5500285 B1 JP5500285 B1 JP 5500285B1
Authority
JP
Japan
Prior art keywords
power
power supply
station
switching station
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013055986A
Other languages
Japanese (ja)
Other versions
JP2014183642A (en
Inventor
▲寛▼資 三谷
雅靖 竹内
洸平 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2013055986A priority Critical patent/JP5500285B1/en
Application granted granted Critical
Publication of JP5500285B1 publication Critical patent/JP5500285B1/en
Publication of JP2014183642A publication Critical patent/JP2014183642A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

【課題】設備の簡素化を図ることができる開閉所の電源設備を提供する。
【解決手段】開閉所20の電源設備は、開閉所母線21に対して設置される計器用変圧器30の出力から、所内電源装置33にて開閉所20の各種電気機器(保護継電器28等)の動作電源を含む例えば100〜200V系の所内電源を生成するように構成される。
【選択図】図1
To provide a power supply facility for a switching station capable of simplifying the facility.
The power supply equipment of the switching station 20 includes various electrical devices (protective relay 28, etc.) of the switching station 20 from the output of the instrument transformer 30 installed on the switching station bus 21 by the on-site power supply device 33. For example, it is configured to generate an in-house power source of 100 to 200V system including the operating power source.
[Selection] Figure 1

Description

本発明は、開閉所の所内電源を生成する開閉所の電源設備、及び開閉所におけるその所内電源生成方法に関する。   The present invention relates to a power supply facility of a switching station that generates an in-house power source of the switching station, and an in-house power generation method in the switching station.

近年、太陽光や風力等の再生可能エネルギーを用いるメガソーラやウインドファームといった大規模な発電所の建設が進んできている。このような大規模発電所は、既設の66kV又は77kVクラスの送電系統と連系することが多い状況である。   In recent years, construction of large-scale power plants such as mega solar and wind farms using renewable energy such as sunlight and wind power has been advanced. Such large-scale power plants are often connected to existing 66 kV or 77 kV class power transmission systems.

また、上記の発電所の設置者は、分界点の関係等から、発電所から系統連系点までの連系線とガス絶縁開閉装置(GIS)等の開閉所とを設置する必要があり、この開閉所は連系点付近に設置することとなる。   In addition, the installer of the above power plant needs to install a connection line from the power plant to the grid connection point and a switch station such as a gas insulated switchgear (GIS) due to the relationship between the demarcation points, This switchgear will be installed near the connection point.

因みに、従来からある大規模発電所としての例えば水力発電所と開閉所と送電系統との接続構成が特許文献1等にて開示されている。   Incidentally, for example, Patent Document 1 discloses a connection configuration of, for example, a hydropower station, a switching station, and a power transmission system as a conventional large-scale power station.

特開2008−113535号公報JP 2008-113535 A

ところで、GIS等の開閉所に備えられる各種電気機器は、その動作電源として100〜200V系の低圧電源が必要である。
上記のメガソーラ等の発電所においては、100〜200V系電源の生成は比較的容易である。しかしながら、このメガソーラ等の発電所は僻地に建設されることが多く、発電所の受電所から系統連系点(系統送電線との接続点)までは数十kmの距離を有することが多いため、発電所で得られた100〜200V系電源を数十km離れた連系点付近に設置する開閉所まで送電するのは現実的でない。
By the way, various electric devices provided in switching stations such as GIS require a low voltage power source of 100 to 200 V as an operating power source.
In a power plant such as the above-mentioned mega solar, it is relatively easy to generate a 100 to 200 V power source. However, this power plant such as mega solar is often constructed in remote areas, and the distance from the power station to the grid connection point (connection point with the grid transmission line) is often several tens of kilometers. In addition, it is not realistic to transmit the 100-200V system power source obtained at the power plant to the switching station installed near the interconnection point several tens of kilometers away.

そこで、開閉所内で100〜200V系電源を生成する電源設備を設置することになるが、開閉所で扱う電圧は66kV又は77kVであり、該電圧から100〜200V系電源を生成するには、例えば66kV/6.6kVの特別高圧変圧器を一段目に、6.6kV/210Vの高圧変圧器を2段目に設置し、所望電圧まで段階的に降圧させることになる。   Therefore, a power supply facility that generates a 100 to 200 V system power supply is installed in the switch station, and the voltage handled in the switch station is 66 kV or 77 kV. To generate a 100 to 200 V system power supply from the voltage, for example, The extra high voltage transformer of 66 kV / 6.6 kV is installed in the first stage and the high voltage transformer of 6.6 kV / 210 V is installed in the second stage, and the voltage is stepped down to a desired voltage.

しかしながら、特別高圧変圧器や高圧変圧器は重量が非常に重いため、開閉所(開閉所の電源設備)の設置施工時の搬入や据付が大変で時間(工期)を要し、また特別高圧変圧器等はその後のメンテナンスが大変でもあり、これらのことから開閉所(開閉所の電源設備)の建設費やその後の維持費が高価となることが懸念される。また、特別高圧変圧器や高圧変圧器の常時損失も省エネの観点から気になるところである。   However, special high-voltage transformers and high-voltage transformers are very heavy, so it is difficult to carry in and install the switchgear (switching station power supply equipment), and it takes time (construction period). The maintenance of the appliances and the like is also difficult, and there is a concern that the construction cost of the switchgear (the power supply equipment of the switchgear) and the subsequent maintenance cost will be expensive. Moreover, the constant loss of special high-voltage transformers and high-voltage transformers is also a concern from the viewpoint of energy saving.

本発明は、上記課題を解決するためになされたものであって、その目的は、設備の簡素化を図ることができる開閉所の電源設備、及び開閉所における所内電源生成方法を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a power supply facility for a switching station and a method for generating an in-house power source at the switching station, which can simplify the facility. is there.

上記課題を解決する開閉所の電源設備は、発電所の受電所と66kV又は77kVクラスの送電系統との間に設置されて両者間の連系及び切り離しを行う開閉所において、該開閉所の各種電気機器の動作電源を含む100〜200V系の所内電源を生成する電源設備であって、開閉所母線に対して設置され計器として用いられる変圧器と、前記開閉所母線に対してさらに設置される計器用変器と、該計器用変器の出力に基づいて前記所内電源を生成する所内電源装置とを含んで構成され、前記計器用変器は、1〜30kVAクラスの計器用変圧器にて構成され、前記計器として用いられる変圧器とは異なり前記動作電源を含む前記所内電源を生成すべく用いられる。 A power supply facility for a switching station that solves the above problems is installed between a power receiving station of a power plant and a 66 kV or 77 kV class power transmission system, and performs connection and disconnection between the two. A power supply facility for generating a 100-200V in- house power source including an operating power source for an electric device, which is further installed on a switching station bus and a transformer used as an instrument installed on the switching station bus. and instrument strange voltage divider is configured to include a plant power supply for generating the plant power based on the output of the regimen dexterity variable voltage divider, the variable pressure device for instruments, transformers for instruments 1~30kVA class It is constituted by a vessel, used to produce the plant power supply including the operating power unlike a transformer used as the instrument.

この構成によれば、開閉所の電源設備は、開閉所母線に対して設置される計器用変器の出力から、所内電源装置にて開閉所の各種電気機器の動作電源を含む所内電源を生成するように構成される。つまり、所内電源装置の前段設備として特別高圧変圧器や高圧変圧器と比べて十分に軽量な計器用変器を用いて構成することで、開閉所の電源設備を簡素に構成することが可能となる。 According to this configuration, switchyard power equipment, from the output of the variable voltage divider meter to be placed against switchyard bus, the plant power supply including an operation power supply for various electric devices of switchyard at house power supply Configured to generate. That is, by constituting with a sufficiently lightweight strange voltage divider meter compared to the extra high voltage transformers and high voltage transformer as a prelude equipment plant power supply, it can be configured to simplify the power supply equipment of the switchyard It becomes.

の構成によれば、所内電源装置の前段設備として用いる1〜30kVAクラスの計器用変器の出力は所内電源装置での電源生成に好適なため、開閉所の電源設備において高効率な電源生成が可能となる。 According to the configuration of this, since the output of the variable voltage divider meter of 1~30kVA class used as a prelude facilities house power supply suitable for power generation in the plant power supply, high efficiency power supply in the power supply equipment of the switchyard Generation is possible.

また上記の開閉所の電源設備において、開閉所は、再生可能エネルギーによる発電を行う発電所に対して設置されるものである。
この構成によれば、太陽光等の再生可能エネルギーを用いる発電所と対で設置される開閉所の電源設備を簡素に構成することが可能となる。
Moreover, in the power supply equipment for the switchgear described above, the switchgear is installed at a power plant that generates power using renewable energy.
According to this configuration, it is possible to simply configure the power supply equipment of the switching station installed in a pair with the power plant that uses renewable energy such as sunlight.

また上記課題を解決する開閉所における所内電源生成方法としては、発電所の受電所と66kV又は77kVクラスの送電系統との間に設置されて両者間の連系及び切り離しを行う開閉所において、該開閉所の各種電気機器の動作電源を含む100〜200V系の所内電源を生成するその所内電源生成方法であって、計器として用いられる変圧器を設置した開閉所母線に対してさらに設置した計器用変器を、1〜30kVAクラスの計器用変圧器にて構成し、前記計器として用いられる変圧器とは異なり前記動作電源を含む前記所内電源を生成すべく用いて、該計器用変器の出力に基づいて所内電源装置にて前記所内電源が生成される。 Further, as a method of generating power in the switch station that solves the above-mentioned problem, in the switch station that is installed between the power receiving station of the power plant and the 66 kV or 77 kV class power transmission system and interconnects and disconnects between the two, An in-house power generation method for generating a 100 to 200 V in- house power source including operating power supplies of various electrical equipment in a switch station, for an instrument further installed on a switch station bus line in which a transformer used as an instrument is installed the variable voltage divider, constituted by a voltage transformer of 1~30kVA class, using to produce the plant power supply including the operating power unlike a transformer used as the instrument, the regimen dexterity variable voltage divider Based on the output, the in-house power supply is generated by the in-house power supply device.

この構成によれば、上記と同様に、所内電源装置の前段設備に軽量な計器用変器を用いることで、開閉所の電源設備を簡素に構成することが可能となる。また、所内電源装置の前段設備として用いる1〜30kVAクラスの計器用変圧器の出力は所内電源装置での電源生成に好適なため、開閉所の電源設備において高効率な電源生成が可能となる。 According to this arrangement, in the same manner as described above, by using a lightweight variable voltage divider meter upstream equipment plant power supply, it is possible to configure simpler power equipment switchyard. Further, since the output of the 1-30 kVA class instrument transformer used as the pre-stage equipment of the in-house power supply apparatus is suitable for generating power in the in-house power supply apparatus, high-efficiency power generation is possible in the power supply equipment in the switching station.

本発明の開閉所の電源設備及び開閉所における所内電源生成方法によれば、設備の簡素化を図ることができる。   According to the power supply facility of the switch station and the in-house power generation method in the switch station of the present invention, the facility can be simplified.

一実施形態における開閉所の電源設備を含む開閉所と発電所の受電所との接続構成図である。It is a connection block diagram of the switch station including the power supply equipment of the switch station and the power receiving station of the power plant in one embodiment. 比較例における開閉所の電源設備を含む開閉所と発電所の受電所との接続構成図である。It is a connection block diagram of the switching station containing the power supply equipment of the switching station in a comparative example, and the power receiving station of a power plant.

以下、図面を用いて一実施形態について説明する。
図1に示すように、メガソーラ等の発電所10の受電所11において、複数のソーラパネル群にて発電した直流の発電電力が直交変換され交流電力として受電所母線12に供給される。受電所母線12上には、主要機器として、ガス遮断器(GCB)13、R66/6.6kVの特別高圧変圧器(TR)14、ガス遮断器15及び断路器(DS)16がこの順で設置されている。また、受電所母線12には、ガス遮断器13と特別高圧変圧器14との間に計器用変圧器(VT)17が接続され、断路器16と受電所11の出力端11aとの間に接地形計器用変圧器(EVT)18が接続されている。受電所11の出力端11aは、連系線19を介して開閉所20の入力端20aと接続されている。
Hereinafter, an embodiment will be described with reference to the drawings.
As shown in FIG. 1, in a power receiving station 11 of a power plant 10 such as a mega solar, DC generated power generated by a plurality of solar panel groups is orthogonally converted and supplied to a power receiving station bus 12 as AC power. On the power receiving bus 12, the main components are a gas circuit breaker (GCB) 13, an R66 / 6.6 kV special high voltage transformer (TR) 14, a gas circuit breaker 15 and a disconnecting device (DS) 16 in this order. is set up. In addition, a power transformer bus (VT) 17 is connected to the power receiving bus 12 between the gas circuit breaker 13 and the extra high voltage transformer 14, and between the disconnector 16 and the output end 11 a of the power receiving station 11. A grounded instrument transformer (EVT) 18 is connected. The output end 11 a of the power receiving station 11 is connected to the input end 20 a of the switchgear station 20 via the interconnection line 19.

因みに、メガソーラ等の発電所10は僻地に建設されることが多く、また開閉所20は分界点の関係等から送電系統Lとの連系点P付近に設置されるため、発電所10の受電所11から連系点P付近に設置の開閉所20までを繋ぐ連系線19は数十kmの長さとなることがある。   Incidentally, the power plant 10 such as a mega solar is often constructed in remote areas, and the switch station 20 is installed near the connection point P with the power transmission system L due to the demarcation point, etc. The interconnection line 19 that connects the station 11 to the switch station 20 installed near the interconnection point P may be several tens of kilometers long.

開閉所20において、入力端20aに接続される開閉所母線21上には、ガス絶縁開閉装置(GIS)22が設置されている。ガス絶縁開閉装置22は、主要機器として、開閉所20の入力端20a側からガス遮断器23及び断路器24がこの順で設置され、開閉所20の出力端、即ち送電系統Lとの連系点Pと接続されている。送電系統Lは、既設の例えば66kV又は77kVクラスの系統である。   In the switch station 20, a gas insulated switchgear (GIS) 22 is installed on a switch bus 21 connected to the input terminal 20a. The gas-insulated switchgear 22 includes, as main equipment, a gas circuit breaker 23 and a disconnecting switch 24 in this order from the input end 20a side of the switchgear 20, and is connected to the output end of the switchgear 20, ie, the power transmission system L. Connected to point P. The power transmission system L is an existing system of, for example, 66 kV or 77 kV class.

また、ガス絶縁開閉装置22においては、ガス遮断器23の前段に計器用変圧変流器(VCT)25が設置され、断路器24の後段に計器用変流器(CT)26が設置されている。また、計器用変圧変流器25の更に前段の母線21には、接地形計器用変圧器27が接続されている。更に、計器用変流器26と接地形計器用変圧器27の二次側との間には、保護継電器(保護Ry)28が接続されている。   Further, in the gas insulated switchgear 22, an instrumental current transformer (VCT) 25 is installed before the gas circuit breaker 23, and an instrumental current transformer (CT) 26 is installed after the disconnector 24. Yes. Further, a grounded-type instrument transformer 27 is connected to the bus 21 in the previous stage of the instrument transformer current transformer 25. Further, a protective relay (protection Ry) 28 is connected between the current transformer 26 for the instrument and the secondary side of the grounded instrument transformer 27.

また、ガス絶縁開閉装置22の前段の母線21には、計器用変圧器30が接続されている。この計器用変圧器30は、コンデンサ形計器用変圧器(CVT)や、計器用出力及び電圧出力の各出力が可能な計器用変圧器等であり、3kVA、25kVA等、1〜30kVAクラスの計器用変圧器にて構成されている。計器用変圧器30の出力側には、それぞれブレーカ31,32を介して所内電源装置33とバッテリ装置(BATT)34とが接続されている。   An instrument transformer 30 is connected to the bus 21 at the front stage of the gas-insulated switchgear 22. The instrument transformer 30 is a capacitor-type instrument transformer (CVT), an instrument transformer capable of outputting each of an instrument output and a voltage output, and is an instrument of 1 to 30 kVA class such as 3 kVA and 25 kVA. It is made up of transformers. An in-house power supply device 33 and a battery device (BATT) 34 are connected to the output side of the instrument transformer 30 via breakers 31 and 32, respectively.

所内電源装置33は、計器用変圧器30の出力電圧に基づいて100〜200V系の低圧電源を生成する。所内電源装置33は、自身で生成した100〜200V系電源を開閉所20内の各種機器、例えば保護継電器28等に動作電源として供給する。このように本実施形態の開閉所20の電源設備は、計器用変圧器30と所内電源装置33とを含んで構成されている。   The in-house power supply device 33 generates a 100 to 200 V low-voltage power supply based on the output voltage of the instrument transformer 30. The in-house power supply device 33 supplies the 100-200V system power generated by itself to various devices in the switchgear station 20 such as the protective relay 28 as an operating power source. As described above, the power supply facility of the switchgear station 20 according to the present embodiment includes the instrument transformer 30 and the in-house power supply device 33.

このような電源設備を含む開閉所20の動作について、直流の発電電力が変換されて三相交流電力として受電所11に入力されると、該受電所11は特別高圧変圧器14にてその交流電力を系統Lと同等の電圧まで昇圧し、昇圧した交流電力を連系線19を介して開閉所20に送出する。そして、開閉所20は、通常時では系統Lと連系(接続)し、受電所11からの交流電力を系統Lに送出する。   Regarding the operation of the switchgear station 20 including such a power supply facility, when DC generated power is converted and input to the power receiving station 11 as three-phase AC power, the power receiving station 11 is connected to the AC by the special high voltage transformer 14. The power is boosted to a voltage equivalent to that of the system L, and the boosted AC power is sent to the switching station 20 via the interconnection line 19. The switching station 20 is normally connected (connected) to the system L and sends AC power from the power receiving station 11 to the system L.

一方、落雷や地絡事故等により系統Lに異常電流が生じると、開閉所20の計器用変流器26がその異常電流を検出し、該検出に基づいて保護継電器28が作動する。保護継電器28は、所内電源装置33からの動作電源の供給に基づいてガス遮断器23を作動させ、発電所10側と系統L側とを切り離すようになっている。   On the other hand, when an abnormal current is generated in the system L due to a lightning strike, a ground fault, or the like, the instrument current transformer 26 in the switch station 20 detects the abnormal current, and the protective relay 28 is activated based on the detection. The protective relay 28 operates the gas circuit breaker 23 based on the supply of operating power from the in-house power supply device 33, and disconnects the power plant 10 side and the system L side.

ここで、図2に比較例を示す。比較例における開閉所50の電源設備は、開閉所母線21の系統電圧から特別高圧変圧器51と高圧変圧器52との2段階で降圧した電圧を受けて所内電源装置33は100〜200V系電源を生成する構成である。ガス絶縁開閉装置22と特別高圧変圧器51とは断路器53を介した直結構造となっている。このような開閉所50の電源設備では、先ず特別高圧変圧器51や高圧変圧器52が非常に重量物であるため、その設置施工時の搬入や据付が大変で時間(工期)を要する。また、特別高圧変圧器51等は、その後のメンテナンスが大変である。従って、これらのことから、開閉所50(開閉所50の電源設備)の建設費やその後の維持費が高価となってしまうことが懸念される。また、特別高圧変圧器51や高圧変圧器52の常時損失が生じるため、省エネの観点からも避けたいところである。   Here, a comparative example is shown in FIG. The power supply equipment of the switching station 50 in the comparative example receives the voltage stepped down from the system voltage of the switching station bus 21 in two stages of the special high voltage transformer 51 and the high voltage transformer 52, and the on-site power supply 33 has a 100 to 200 V system power supply. It is the structure which produces | generates. The gas insulated switchgear 22 and the special high voltage transformer 51 have a direct connection structure via a disconnector 53. In such a power supply facility of the switching station 50, since the special high-voltage transformer 51 and the high-voltage transformer 52 are very heavy, first, installation and installation at the time of installation and installation are difficult and time (construction period) is required. Further, the special high voltage transformer 51 and the like are difficult to maintain thereafter. Accordingly, there is a concern that the construction cost of the switchgear 50 (the power supply facility of the switchgear 50) and the subsequent maintenance cost become expensive. Moreover, since the special high-voltage transformer 51 and the high-voltage transformer 52 are constantly lost, it is desirable to avoid them from the viewpoint of energy saving.

これに対し、本実施形態の開閉所20の電源設備は、計器用変圧器30の出力から所内電源装置33にて100〜200V系電源を生成する構成としている。つまり、比較例で用いられる特別高圧変圧器51や高圧変圧器52と比べて本実施形態の開閉所20の電源設備に用いる計器用変圧器30は十分に軽量であるため、その設置施工時の搬入や据付を短時間(短工期)で行うことが可能である。また、計器用変圧器30は、その後のメンテナンスも容易である。これらのことから、本実施形態の開閉所20(開閉所20の電源設備)は、建設費やその後の維持費を抑えることが可能である。また、計器用変圧器30は常時損失も小さいことから、省エネ化に貢献できる。   On the other hand, the power supply equipment of the switchgear station 20 of this embodiment is configured to generate a 100 to 200 V system power supply by the in-house power supply device 33 from the output of the instrument transformer 30. That is, since the instrument transformer 30 used for the power supply equipment of the switching station 20 of the present embodiment is sufficiently light compared to the special high voltage transformer 51 and the high voltage transformer 52 used in the comparative example, It is possible to carry in and install in a short time (short construction period). Further, the instrument transformer 30 can be easily maintained thereafter. From these things, the switchgear 20 (power supply equipment of the switchgear 20) of this embodiment can hold down a construction cost and a subsequent maintenance cost. In addition, since the instrument transformer 30 always has a small loss, it can contribute to energy saving.

次に、本実施形態の特徴的な効果を記載する。
(1)開閉所20の電源設備は、開閉所母線21に対して設置される計器用変圧器30の出力から、所内電源装置33にて開閉所20の各種電気機器(保護継電器28等)の動作電源を含む100〜200V系の所内電源を生成するように構成されている。つまり、所内電源装置33の前段設備として、比較例にある特別高圧変圧器51や高圧変圧器52と比べて十分に軽量な計器用変圧器30を用いて構成することで、開閉所20の電源設備を簡素に、ひいては開閉所20そのものも簡素に構成することができる。これにより、開閉所20(開閉所20の電源設備)の設置施工時の搬入や据付を短時間(短工期)で行うことができ、コスト抑制に貢献することができる。また、計器用変圧器30はその後のメンテナンスも容易であることからも、コスト抑制に貢献できる。また、計器用変圧器30は常時損失も小さいことから、省エネ化にも貢献できる。
Next, characteristic effects of the present embodiment will be described.
(1) The power supply equipment of the switching station 20 is connected to various electrical devices (such as the protective relay 28) of the switching station 20 from the output of the instrument transformer 30 installed on the switching station bus 21 by the on-site power supply 33. It is configured to generate a 100 to 200 V in-house power source including an operating power source. In other words, the power supply of the switching station 20 is configured by using the instrument transformer 30 that is sufficiently lighter than the special high-voltage transformer 51 and the high-voltage transformer 52 in the comparative example as the pre-stage equipment of the on-site power supply device 33. The facility can be simplified, and the switch station 20 itself can also be configured simply. Thereby, the carrying-in and installation at the time of installation construction of the switchgear 20 (the power supply equipment of the switchgear 20) can be performed in a short time (short construction period), and it can contribute to cost control. In addition, since the instrument transformer 30 can be easily maintained thereafter, it can contribute to cost reduction. Moreover, since the instrument transformer 30 always has a small loss, it can contribute to energy saving.

(2)所内電源装置33の前段設備として用いる1〜30kVAクラスの計器用変圧器30の出力は所内電源装置33での電源生成に好適なため、開閉所20の電源設備において高効率な電源生成を行うことができる。   (2) Since the output of the 1-30 kVA class instrument transformer 30 used as the pre-stage equipment of the on-site power supply device 33 is suitable for generating power on the on-site power supply device 33, highly efficient power generation in the power supply equipment of the switching station 20 It can be performed.

尚、上記実施形態は、以下のように変更してもよい。
・所内電源装置33の前段設備として用いる計器用変成器として、コンデンサ形計器用変圧器(CVT)や、計器用出力及び電圧出力の各出力が可能な計器用変圧器等の計器用変圧器30を用いたが、これ以外の計器用変成器を用いて構成してもよい。
In addition, you may change the said embodiment as follows.
-An instrument transformer 30 such as a capacitor-type instrument transformer (CVT) or an instrument transformer capable of outputting each of an output for a meter and a voltage output as a transformer for an instrument used as a pre-stage facility of the in-house power supply device 33 However, other instrument transformers may be used.

・所内電源装置33にて生成した所内電源を保護継電器28の動作電源として用いたが、開閉所20内のその他の電気機器に用いてもよい。また、所内電源装置33にて生成した所内電源は100〜200V系電源であったが、用途に合わせてその他の電圧の所内電源を生成してもよい。   The on-site power generated by the on-site power supply device 33 is used as the operating power supply for the protective relay 28, but may be used for other electrical equipment in the switch station 20. Moreover, although the in-house power supply produced | generated in the in-house power supply apparatus 33 was a 100-200V type | system | group power supply, you may produce | generate the in-house power supply of another voltage according to a use.

・発電所10は太陽光発電所であり、これと対で設置される開閉所20の電源設備に適用したが、その他の発電所と対で設置される開閉所の電源設備に適用してもよい。
・開閉所20及び受電所11の構成は一例であり、その構成を適宜変更してもよい。例えばガス絶縁開閉装置22を用いた開閉所20であったが、これ以外の開閉装置を用いる構成としてもよい。
-The power plant 10 is a solar power plant and applied to the power supply equipment of the switch station 20 installed in pairs with this, but even if applied to the power supply equipment of the switch station installed in pairs with other power plants Good.
-The structure of the switching station 20 and the power receiving station 11 is an example, and you may change the structure suitably. For example, the switchgear 20 using the gas insulated switchgear 22 is used, but a configuration using a switchgear other than this may be used.

次に、上記実施形態及び別例から把握できる技術的思想を以下に追記する。
(イ) 〜30kVAクラスの計器用変成器の出力に基づいて所内電源が生成されるものであることを特徴とする。
Next, a technical idea that can be grasped from the above embodiment and another example will be added below.
(B) 1 that it characterized plant power based on the output of the instrument transformer in ~30kVA class and is generated.

(ロ) 請求項4又は上記(イ)に記載の開閉所における所内電源生成方法において、
再生可能エネルギーによる発電を行う発電所に対して設置される開閉所の所内電源が生成されるものであることを特徴とする開閉所における所内電源生成方法。
(B) In the on-site power generation method in the switching station according to claim 4 or (a),
An on-site power generation method for a switching station, wherein an on-site power source of a switching station installed for a power station that generates power using renewable energy is generated.

(ハ) 発電所の受電所と送電系統との間に設置されて両者間の連系及び切り離しを行う開閉所であって、
開閉所母線に対して設置される計器用変成器と、該計器用変成器の出力に基づいて、開閉所の各種電気機器の動作電源を含む所内電源を生成する所内電源装置とを含んで構成された電源設備を備えたことを特徴とする開閉所。
(C) A switching station that is installed between the power receiving station and the transmission system of the power plant and that connects and disconnects the two.
An instrument transformer installed on the switching station bus, and an on-site power supply device that generates an on-site power source including an operating power source for various electrical devices in the switching station based on the output of the instrument transformer Switchgear characterized by having an improved power supply facility.

L…送電系統、10…発電所、11…受電所、20…開閉所、21…開閉所母線、30…計器用変圧器(計器用変成器)、33…所内電源装置。   L ... power transmission system, 10 ... power plant, 11 ... power receiving station, 20 ... switching station, 21 ... switching station bus, 30 ... instrument transformer (instrument transformer), 33 ... in-house power supply.

Claims (3)

発電所の受電所と66kV又は77kVクラスの送電系統との間に設置されて両者間の連系及び切り離しを行う開閉所において、該開閉所の各種電気機器の動作電源を含む100〜200V系の所内電源を生成する電源設備であって、
開閉所母線に対して設置され計器として用いられる変圧器と、前記開閉所母線に対してさらに設置される計器用変器と、該計器用変器の出力に基づいて前記所内電源を生成する所内電源装置とを含んで構成され、
前記計器用変器は、1〜30kVAクラスの計器用変圧器にて構成され、前記計器として用いられる変圧器とは異なり前記動作電源を含む前記所内電源を生成すべく用いられることを特徴とする開閉所の電源設備。
In a switching station installed between a power station receiving station and a 66 kV or 77 kV class power transmission system for connection and disconnection between the two, a 100-200V system including operation power sources of various electrical devices in the switching station A power supply facility for generating in-house power,
Generator and transformer is used as installed instruments, and variable voltage divider meter further installed to the switching station bus, the plant power based on the output of the regimen dexterity variable voltage divider against the switchyard busbar And a power supply unit in the station,
The variable pressure unit meter includes a feature that is constituted by a voltage transformer of 1~30kVA classes used to produce the plant power supply including the operating power unlike a transformer used as the instrument The power supply equipment of the switching station.
請求項1に記載の開閉所の電源設備において、
開閉所は、再生可能エネルギーによる発電を行う発電所に対して設置されるものであることを特徴とする開閉所の電源設備。
In the switching station power supply facility according to claim 1 ,
The switching station is installed at a power station that generates power using renewable energy.
発電所の受電所と66kV又は77kVクラスの送電系統との間に設置されて両者間の連系及び切り離しを行う開閉所において、該開閉所の各種電気機器の動作電源を含む100〜200V系の所内電源を生成するその所内電源生成方法であって、
計器として用いられる変圧器を設置した開閉所母線に対してさらに設置した計器用変器を、1〜30kVAクラスの計器用変圧器にて構成し、前記計器として用いられる変圧器とは異なり前記動作電源を含む前記所内電源を生成すべく用いて、該計器用変器の出力に基づいて所内電源装置にて前記所内電源を生成するようにしたことを特徴とする開閉所における所内電源生成方法。
In a switching station installed between a power station receiving station and a 66 kV or 77 kV class power transmission system for connection and disconnection between the two, a 100-200V system including operation power sources of various electrical devices in the switching station An in-house power generation method for generating in-house power,
Further installed with varying pressure vessel meter with respect to the installation the switchyard bus a transformer used as an instrument, constituted by a voltage transformer of 1~30kVA class, unlike the transformer to be used as the instrument the using to produce the plant power supply including an operation power supply, plant power generation in switchyard, characterized in that so as to generate the plant power at house power supply based on the output of the regimen dexterity variable voltage divider Method.
JP2013055986A 2013-03-19 2013-03-19 Power supply equipment for switchgear and on-site power generation method at switchgear Active JP5500285B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013055986A JP5500285B1 (en) 2013-03-19 2013-03-19 Power supply equipment for switchgear and on-site power generation method at switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013055986A JP5500285B1 (en) 2013-03-19 2013-03-19 Power supply equipment for switchgear and on-site power generation method at switchgear

Publications (2)

Publication Number Publication Date
JP5500285B1 true JP5500285B1 (en) 2014-05-21
JP2014183642A JP2014183642A (en) 2014-09-29

Family

ID=50941736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013055986A Active JP5500285B1 (en) 2013-03-19 2013-03-19 Power supply equipment for switchgear and on-site power generation method at switchgear

Country Status (1)

Country Link
JP (1) JP5500285B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3056489U (en) * 1998-08-06 1999-02-16 大川電設株式会社 Power control device
JPH11306931A (en) * 1998-04-23 1999-11-05 Hitachi Ltd Electricity receiving/distributing facility system
JP2001197618A (en) * 2000-01-11 2001-07-19 Toko Electric Corp Switch and cabinet
JP2007028709A (en) * 2005-07-12 2007-02-01 Chugoku Electric Power Co Inc:The Electric power station equipment integrating system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11306931A (en) * 1998-04-23 1999-11-05 Hitachi Ltd Electricity receiving/distributing facility system
JP3056489U (en) * 1998-08-06 1999-02-16 大川電設株式会社 Power control device
JP2001197618A (en) * 2000-01-11 2001-07-19 Toko Electric Corp Switch and cabinet
JP2007028709A (en) * 2005-07-12 2007-02-01 Chugoku Electric Power Co Inc:The Electric power station equipment integrating system

Also Published As

Publication number Publication date
JP2014183642A (en) 2014-09-29

Similar Documents

Publication Publication Date Title
Kirby et al. HVDC transmission for large offshore windfarms
Strobl et al. Arc faults in photovoltaic systems
Halder Comparative study of HVDC and HVAC for a bulk power transmission
JP2010213384A (en) Distributed power supply system
KR101742600B1 (en) Distributing borad with uninterruptible function
US20110221274A1 (en) Photovoltaic Grounding
JP5500285B1 (en) Power supply equipment for switchgear and on-site power generation method at switchgear
JP2014168346A (en) Single-phase three-wire power supply system
WO2017037640A1 (en) Enhancing collection of electrical power in an energy collection system
KR101737970B1 (en) Hybrid distributing board
CN203839980U (en) Photovoltaic power station grid-connected system
CN204258112U (en) A kind of combined transformer
Wu et al. Impact of power converters' efficiency on building-integrated microgrid
KR102010348B1 (en) Integrated power electric switchgear for micro grid
Agrawal et al. Deployment of microgrids in the developed countries: an appraisal
CN105372592A (en) Load testing device
Naidji et al. Feasibility study of solar photovoltaic integration on distribution networks: Case study: Djanet's isolated distribution network, Algeria
Prieto et al. The Rómulo project, Spanish Peninsula-Mallorca (243 km, 250 kV, 2x200 MW): first Spanish HVDC Link
CN205992745U (en) A kind of intelligent compact photovoltaic generation preassembled transformer station
CN205429545U (en) Indoor metal armored movable -type flat top type cubical switchboard
CN203911500U (en) Wind power plant grid-connected network topology structure
Koshcheev et al. Operation experience of solar power plants connected to the Russian distributed grid
Van Duong A proposal to mitigate over-voltage issue within period of 2017-2020 and a vision to 2025 in central vietnam
CN203406624U (en) Photovoltaic generator based on distributed power supply access cabinet
CN216851313U (en) Wind-powered electricity generation field current collection circuit of circuit breaker converges system on area post

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5500285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250