JP5499569B2 - Tire noise reduction device and pneumatic tire provided with the same - Google Patents

Tire noise reduction device and pneumatic tire provided with the same Download PDF

Info

Publication number
JP5499569B2
JP5499569B2 JP2009199367A JP2009199367A JP5499569B2 JP 5499569 B2 JP5499569 B2 JP 5499569B2 JP 2009199367 A JP2009199367 A JP 2009199367A JP 2009199367 A JP2009199367 A JP 2009199367A JP 5499569 B2 JP5499569 B2 JP 5499569B2
Authority
JP
Japan
Prior art keywords
sound absorbing
tire
noise reduction
reduction device
absorbing materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009199367A
Other languages
Japanese (ja)
Other versions
JP2011051371A (en
Inventor
丹野  篤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2009199367A priority Critical patent/JP5499569B2/en
Publication of JP2011051371A publication Critical patent/JP2011051371A/en
Application granted granted Critical
Publication of JP5499569B2 publication Critical patent/JP5499569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、空気入りタイヤで発生する空洞共鳴音を低減するための装置及びそれを備えた空気入りタイヤに関し、さらに詳しくは、複数個の多孔質材料からなる吸音材を空気入りタイヤのトレッド部の内面にタイヤ周方向に沿って間欠的に配置し、吸音材の周上の個数を少なくした場合であっても、車体振動の発生を効果的に低減することを可能にしたタイヤ騒音低減装置及びそれを備えた空気入りタイヤに関する。   The present invention relates to an apparatus for reducing cavity resonance generated in a pneumatic tire and a pneumatic tire including the same, and more specifically, a sound absorbing material made of a plurality of porous materials is used as a tread portion of the pneumatic tire. Tire noise reduction device which can be arranged on the inner surface of the tire intermittently along the tire circumferential direction and can effectively reduce the occurrence of body vibration even when the number of sound absorbing materials on the circumference is reduced And a pneumatic tire including the same.

空気入りタイヤにおいて、騒音を発生させる原因の一つにタイヤ内部に充填された空気の振動による空洞共鳴音がある。この空洞共鳴音は、タイヤを転動させたときにトレッド部が路面の凹凸によって振動し、トレッド部の振動がタイヤ内部の空気を振動させることによって生じるものである。   In a pneumatic tire, one of the causes for generating noise is cavity resonance sound caused by vibration of air filled in the tire. The cavity resonance sound is generated when the tread portion vibrates due to road surface irregularities when the tire rolls, and the vibration of the tread portion vibrates the air inside the tire.

このような空洞共鳴現象による騒音を低減する手法として、多孔質材料からなる吸音材を空気入りタイヤのトレッド部の内面に設置することが提案されている(例えば、特許文献1参照)。ここで、帯状の吸音材を空気入りタイヤのトレッド部の内面に全周にわたって連続的に配置した場合、特に吸音材のタイヤ周方向の両端部同士を接続した部分に、タイヤ回転毎に吸音材の圧縮と伸長により生じる応力が反復的に作用するため、その部分が応力集中により破壊し易いという欠点がある。また、吸音材をタイヤ周方向に分割し、分割された複数個の吸音材をトレッド部の内面に間欠的に配置した場合、吸音材に生じる応力が小さくなるため、タイヤ騒音低減装置の耐久性を向上することが可能である。   As a technique for reducing noise due to such a cavity resonance phenomenon, it has been proposed to install a sound absorbing material made of a porous material on the inner surface of a tread portion of a pneumatic tire (see, for example, Patent Document 1). Here, when the band-shaped sound absorbing material is continuously arranged over the entire circumference on the inner surface of the tread portion of the pneumatic tire, the sound absorbing material is particularly at each tire rotation at a portion where both ends of the sound absorbing material in the tire circumferential direction are connected to each other. Since the stress generated by the compression and expansion of the material acts repeatedly, there is a drawback that the portion is easily broken due to the stress concentration. In addition, when the sound absorbing material is divided in the tire circumferential direction and a plurality of divided sound absorbing materials are intermittently arranged on the inner surface of the tread portion, the stress generated in the sound absorbing material is reduced, so that the durability of the tire noise reduction device is reduced. It is possible to improve.

しかしながら、吸音材の分割数が少ない場合、即ち、吸音材の周上の個数が少ない場合、間欠的に配置された吸音材の影響により、走行時に車体に振動が発生し易いという問題がある。また、吸音材の分割数を多くした場合、即ち、吸音材の周上の個数を多くした場合、車体振動は少なくなるものの、タイヤ騒音低減装置の製造コストが増大するという問題がある。そのため、吸音材の周上の個数は可及的に少なくすることが望まれている。   However, when the number of divided sound absorbing materials is small, that is, when the number of sound absorbing materials on the circumference is small, there is a problem that vibrations are likely to occur in the vehicle body during traveling due to the influence of the sound absorbing material arranged intermittently. Further, when the number of the sound absorbing materials is increased, that is, when the number of the sound absorbing materials is increased, there is a problem that although the vehicle body vibration is reduced, the manufacturing cost of the tire noise reducing device is increased. For this reason, it is desired to reduce the number of sound absorbing materials on the circumference as much as possible.

特許第4148977号公報Japanese Patent No. 4148777

本発明の目的は、複数個の多孔質材料からなる吸音材を空気入りタイヤのトレッド部の内面にタイヤ周方向に沿って間欠的に配置し、吸音材の周上の個数を少なくした場合であっても、車体振動の発生を効果的に低減することを可能にしたタイヤ騒音低減装置及びそれを備えた空気入りタイヤを提供することにある。   An object of the present invention is when a sound absorbing material made of a plurality of porous materials is intermittently arranged along the tire circumferential direction on the inner surface of a tread portion of a pneumatic tire, and the number of sound absorbing materials on the circumference is reduced. Even if it exists, it is providing the tire noise reduction apparatus which enabled it to reduce generation | occurrence | production of a vehicle body vibration effectively, and a pneumatic tire provided with the same.

上記目的を解決するための本発明のタイヤ騒音低減装置は、タイヤ周方向に不等長を有するN個(3≦N≦9)の多孔質材料からなる吸音材を備え、これらN個の吸音材を空気入りタイヤのトレッド部の内面にタイヤ周方向に沿って間欠的に配置するようにしたタイヤ騒音低減装置であって、下記(1)式から求められるN次成分の質量アンバランス指数CN が、前記N個の吸音材の長さ及び間隔を平均化した場合のN次成分の質量アンバランス指数CN ’に対して、CN <CN ’×0.9の関係を満たすことを特徴とするものである。 In order to solve the above-described object, a tire noise reduction device of the present invention includes a sound absorbing material made of N (3 ≦ N ≦ 9) porous materials having unequal lengths in the tire circumferential direction, and these N sound absorbing materials. A tire noise reduction device in which a material is intermittently disposed along the tire circumferential direction on the inner surface of a tread portion of a pneumatic tire, and an N-order component mass unbalance index C obtained from the following equation (1) N satisfies the relationship of C N <C N ′ × 0.9 with respect to the mass unbalance index C N ′ of the N-order component when the lengths and intervals of the N sound absorbing materials are averaged. It is characterized by.

Figure 0005499569
但し、nは次数(1≦n≦N)であり、θは周上の位相であり、x(θ)は微小角における相対線密度であり、吸音材がある部分の相対線密度を1とし、吸音材がない部分の相対線密度を0とする。
Figure 0005499569
Where n is the order (1 ≦ n ≦ N), θ is the phase on the circumference, x (θ) is the relative linear density at a minute angle, and the relative linear density of the portion where the sound absorbing material is present is 1. The relative linear density of the portion where there is no sound absorbing material is zero.

また、上記目的を解決するための本発明の空気入りタイヤは、上記タイヤ騒音低減装置を空洞部内に備えたことを特徴とするものである。   Moreover, the pneumatic tire of the present invention for solving the above object is characterized in that the tire noise reduction device is provided in the cavity.

本発明では、不等長を有するN個の吸音材を空気入りタイヤのトレッド部の内面にタイヤ周方向に沿って間欠的に配置するにあたって、フーリエ級数展開を利用して次数成分の質量アンバランス指数Cn を求めている。そして、N次成分の質量アンバランス指数CN が、N個の吸音材の長さ及び間隔を平均化した場合(仮想モデル)のN次成分の質量アンバランス指数CN ’に対して、CN <CN ’×0.9の関係を満たすようにしたので、吸音材の周上の個数を少なくした場合であっても、車体振動の発生を効果的に低減することができる。 In the present invention, when the N sound absorbing materials having unequal lengths are intermittently disposed along the tire circumferential direction on the inner surface of the tread portion of the pneumatic tire, the mass imbalance of the order component is obtained using Fourier series expansion. An index C n is obtained. Then, the mass unbalance index C N of the Nth order component is equal to the mass unbalance index C N ′ of the Nth order component when the lengths and intervals of the N sound absorbing materials are averaged (virtual model). Since the relationship of N <C N ′ × 0.9 is satisfied, the occurrence of vehicle body vibration can be effectively reduced even when the number of sound absorbing materials on the circumference is reduced.

本発明において、タイヤ騒音低減装置は、N個の吸音材を固定するバンド部材を備え、該バンド部材の弾性復元力に基づいてN個の吸音材を空気入りタイヤのトレッド部の内面にタイヤ周方向に沿って間欠的に装着するような構造とすることが好ましい。これにより、N個の吸音材をトレッド部の内面におけるタイヤ周方向の適切な位置に簡単に配置することができる。   In the present invention, the tire noise reduction device includes a band member for fixing N sound absorbing materials, and the N sound absorbing materials are arranged on the inner surface of the tread portion of the pneumatic tire based on the elastic restoring force of the band members. A structure that is intermittently mounted along the direction is preferable. Thereby, N sound-absorbing materials can be easily disposed at appropriate positions in the tire circumferential direction on the inner surface of the tread portion.

吸音材の間隔はそれぞれ吸音材の厚さよりも大きくし、吸音材の間隔の総和は空気入りタイヤのトレッド部の内周長の10%より小さくすることが好ましい。このように吸音材の個々の間隔を吸音材の厚さよりも大きくすることにより、耐久性を確保することができ、また、吸音材の間隔の総和をトレッド部の内周長の10%より小さくすることにより、1次成分の質量アンバランス指数C1 の増加を防止することができる。 It is preferable that the interval between the sound absorbing materials is larger than the thickness of the sound absorbing material, and the sum of the intervals between the sound absorbing materials is smaller than 10% of the inner peripheral length of the tread portion of the pneumatic tire. Thus, durability can be ensured by making the individual intervals of the sound absorbing material larger than the thickness of the sound absorbing material, and the total interval of the sound absorbing materials is smaller than 10% of the inner peripheral length of the tread portion. By doing so, an increase in the mass unbalance index C 1 of the primary component can be prevented.

更に本発明において、N次よりも低い次数の成分の質量アンバランス指数C1 〜CN-1 はそれぞれCN ’×0.5の値よりも小さいことが好ましい。これにより、車体振動の発生を更に効果的に低減することができる。 Furthermore, in the present invention, it is preferable that the mass unbalance indices C 1 to C N-1 of the components of order lower than the Nth order are each smaller than the value of C N '× 0.5. Thereby, generation | occurrence | production of a vehicle body vibration can be reduced more effectively.

本発明の実施形態からなる空気入りタイヤを示す斜視断面図である。1 is a perspective sectional view showing a pneumatic tire according to an embodiment of the present invention. 本発明の実施形態からなるタイヤ騒音低減装置を示す斜視図である。1 is a perspective view showing a tire noise reduction device according to an embodiment of the present invention. 本発明の実施形態からなるタイヤ騒音低減装置を示す側面図である。1 is a side view showing a tire noise reduction device according to an embodiment of the present invention. 図3のタイヤ騒音低減装置の次数成分の質量アンバランス指数を示すグラフである。It is a graph which shows the mass unbalance index of the order component of the tire noise reduction apparatus of FIG. 比較対象となるタイヤ騒音低減装置(仮想モデル)を示す側面図である。It is a side view which shows the tire noise reduction apparatus (virtual model) used as a comparison object. 図5のタイヤ騒音低減装置の次数成分の質量アンバランス指数を示すグラフである。It is a graph which shows the mass unbalance index of the order component of the tire noise reduction apparatus of FIG.

以下、本発明の構成について添付の図面を参照しながら詳細に説明する。図1は本発明の実施形態からなる空気入りタイヤを示し、図2及び図3は本発明の実施形態からなるタイヤ騒音低減装置を示すものである。図1において、空気入りタイヤは、トレッド部1と、左右一対のビード部2と、これらトレッド部1とビード部2とを互いに連接するサイドウォール部3とを備えている。そして、トレッド部1の内面には図2示すリング状のタイヤ騒音低減装置4が装着されている。   Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a pneumatic tire according to an embodiment of the present invention, and FIGS. 2 and 3 show a tire noise reduction device according to an embodiment of the present invention. In FIG. 1, the pneumatic tire includes a tread portion 1, a pair of left and right bead portions 2, and a sidewall portion 3 that connects the tread portion 1 and the bead portion 2 to each other. And the ring-shaped tire noise reduction apparatus 4 shown in FIG.

タイヤ騒音低減装置4は、タイヤ周方向に沿って間欠的に配置された多孔質材料からなるN個(3≦N≦9、好ましくは、3≦N≦5)の吸音材5と、これら吸音材5を固定するバンド部材6とを備えている。吸音材5の多孔質材料としては発泡ポリウレタンを用いると良い。一方、バンド部材6の構成材料には、ポリプロピレン等の熱可塑性樹脂を用いることができる。このバンド部材6はタイヤ周方向に連続的に延在するように環状に成形され、それ自身の弾性復元力に基づいて吸音材5をタイヤ内面に保持するようになっている。そのため、N個の吸音材5をトレッド部1の内面におけるタイヤ周方向の適切な位置に簡単に配置することができる。このように構成される騒音低減装置4は、通常の空気入りタイヤに対して着脱自在であり、その着脱作業が容易である。なお、バンド部材6を使用しない場合、吸音材5をタイヤ内面に直接貼り付けても良い。   The tire noise reduction device 4 includes N (3 ≦ N ≦ 9, preferably 3 ≦ N ≦ 5) sound absorbing materials 5 made of a porous material intermittently disposed along the tire circumferential direction, and these sound absorbing materials. And a band member 6 for fixing the material 5. As the porous material of the sound absorbing material 5, foamed polyurethane may be used. On the other hand, a thermoplastic resin such as polypropylene can be used as the constituent material of the band member 6. The band member 6 is formed in an annular shape so as to continuously extend in the tire circumferential direction, and holds the sound absorbing material 5 on the tire inner surface based on its own elastic restoring force. Therefore, the N sound absorbing materials 5 can be easily arranged at appropriate positions in the tire circumferential direction on the inner surface of the tread portion 1. The noise reduction device 4 configured as described above is detachable from a normal pneumatic tire, and the attachment / detachment work is easy. If the band member 6 is not used, the sound absorbing material 5 may be directly attached to the tire inner surface.

図3に示すように、N個の吸音材5はタイヤ周方向の長さが不等長になっている。不等長とは、全ての吸音材5が同一の長さを有していないことを意味する。従って、N個の吸音材5の中に同じ長さを有するものが含まれていても良い。勿論、全ての吸音材5が互いに異なる長さを有していることが好ましい。図3においては、4個の吸音材5の長さLa,Lb,Lc,Ldが互いに異なる値に設定されている。吸音材5は基本的には平面視で正方形や長方形のものが想定されるが、例えば、平面視で台形や平行四辺形のものであっても良い。台形や平行四辺形の場合、吸音材5の長さは平面視での吸音材5の面積とタイヤ幅方向の寸法とから算出される平均長さとする。   As shown in FIG. 3, the N sound absorbing materials 5 have unequal lengths in the tire circumferential direction. The unequal length means that all the sound absorbing materials 5 do not have the same length. Accordingly, the N sound absorbing materials 5 may include those having the same length. Of course, it is preferable that all the sound absorbing materials 5 have different lengths. In FIG. 3, the lengths La, Lb, Lc and Ld of the four sound absorbing materials 5 are set to different values. The sound-absorbing material 5 is basically assumed to be square or rectangular in plan view, but may be trapezoidal or parallelogram-shaped in plan view, for example. In the case of a trapezoid or parallelogram, the length of the sound absorbing material 5 is an average length calculated from the area of the sound absorbing material 5 in plan view and the dimensions in the tire width direction.

また、N個の吸音材5の間隔(タイヤ周方向の長さ)も不等長になっている。これら間隔は互いに等しい値に設定されていても良い。図3においては、4個の吸音材5の間隔Ta,Tb,Tc,Tdが互いに異なる値に設定されている。   Further, the interval (length in the tire circumferential direction) between the N sound absorbing materials 5 is also unequal. These intervals may be set to equal values. In FIG. 3, the intervals Ta, Tb, Tc, and Td of the four sound absorbing materials 5 are set to different values.

上述したタイヤ騒音低減装置4において、フーリエ級数展開を利用して下記(1)式に基づいて次数成分の質量アンバランス指数Cn を求めたとき、N次成分の質量アンバランス指数CN は、N個の吸音材5の長さ及び間隔を平均化した場合のN次成分の質量アンバランス指数CN ’に対して、CN <CN ’×0.9の関係を満たすようになっている。 In the tire noise reduction device 4 described above, when the mass unbalance index C n of the order component is obtained based on the following formula (1) using Fourier series expansion, the mass unbalance index C N of the Nth order component is For the mass unbalance index C N ′ of the N-order component when the lengths and intervals of the N sound absorbing materials 5 are averaged, the relationship of C N <C N ′ × 0.9 is satisfied. Yes.

Figure 0005499569
但し、nは次数(1≦n≦N)であり、θは周上の位相であり、x(θ)は微小角における相対線密度であり、吸音材がある部分の相対線密度を1とし、吸音材がない部分の相対線密度を0とする。
Figure 0005499569
Where n is the order (1 ≦ n ≦ N), θ is the phase on the circumference, x (θ) is the relative linear density at a minute angle, and the relative linear density of the portion where the sound absorbing material is present is 1. The relative linear density of the portion where there is no sound absorbing material is zero.

図4は本発明の実施形態からなるタイヤ騒音低減装置の次数成分の質量アンバランス指数を示すグラフである。図4に示すように、吸音材がある部分ではx(θ)=1とし、吸音材がない部分ではx(θ)=0として、タイヤ1周にわたって相対線密度を積分することにより、次数成分の質量アンバランス指数Cn を求めることができる。図3のタイヤ騒音低減装置4では、周上に4個の吸音材5を間欠的に配置しているため、4次成分の質量アンバランス指数C4 の値が相対的に大きくなっている。なお、図4の縦軸の数値は後述する仮想モデルにおける4次成分の質量アンバランス指数C4 ’を100とする指数値である。 FIG. 4 is a graph showing the mass unbalance index of the order component of the tire noise reduction device according to the embodiment of the present invention. As shown in FIG. 4, the order component is obtained by integrating the relative linear density over one circumference of the tire with x (θ) = 1 in the portion with the sound absorbing material and x (θ) = 0 in the portion without the sound absorbing material. Mass unbalance index C n can be obtained. In the tire noise reduction device 4 of FIG. 3, since the four sound absorbing materials 5 are intermittently arranged on the circumference, the value of the mass unbalance index C 4 of the quaternary component is relatively large. The numerical value on the vertical axis in FIG. 4 is an index value where the mass unbalance index C 4 ′ of the fourth-order component in the virtual model described later is 100.

ここで、比較対象となるタイヤ騒音低減装置について説明する。図5は比較対象となるタイヤ騒音低減装置(仮想モデル)を示すものである。このタイヤ騒音低減装置4は、N個の吸音材5の長さ及び間隔を平均化したものである。つまり、図5において、4個の吸音材5の長さLa’,Lb’,Lc’,Ld’は互いに等しい値に設定され、その値は長さLa,Lb,Lc,Ldの平均値と等価である。また、4個の吸音材5の間隔Ta’,Tb’,Tc’,Td’は互いに等しい値に設定され、その値は間隔Ta,Tb,Tc,Tdの平均値と等価である。   Here, a tire noise reduction device to be compared will be described. FIG. 5 shows a tire noise reduction device (virtual model) to be compared. The tire noise reduction device 4 is obtained by averaging the lengths and intervals of N sound absorbing materials 5. That is, in FIG. 5, the lengths La ′, Lb ′, Lc ′, and Ld ′ of the four sound absorbing materials 5 are set to equal values, and the values are the average values of the lengths La, Lb, Lc, and Ld. Is equivalent. Further, the intervals Ta ′, Tb ′, Tc ′, Td ′ of the four sound absorbing materials 5 are set to the same value, and the values are equivalent to the average values of the intervals Ta, Tb, Tc, Td.

図6は図5タイヤ騒音低減装置の次数成分の質量アンバランス指数を示すグラフである。図5のタイヤ騒音低減装置4では、周上に等長を有する4個の吸音材5を等間隔に配置しているため、4次成分の質量アンバランス指数C4 の値と8次成分の質量アンバランス指数C8 の値が極端に大きくなっている。つまり、均等物を均等間隔で配置した場合、特定の次数成分に基づく質量アンバランスが大きくなる。なお、図6の縦軸の数値は4次成分の質量アンバランス指数C4 ’を100とする指数値である。 FIG. 6 is a graph showing the mass unbalance index of the order component of the tire noise reduction device of FIG. In the tire noise reduction device 4 of FIG. 5, since the four sound absorbing materials 5 having the same length on the circumference are arranged at equal intervals, the value of the mass unbalance index C 4 of the fourth order component and the value of the eighth order component are obtained. The value of the mass unbalance index C 8 is extremely large. That is, when equal objects are arranged at equal intervals, mass imbalance based on a specific order component is increased. The values of the vertical axis of FIG. 6 is an exponential value to 100 mass unbalance index C 4 'of the fourth-order components.

上述した図4と図6との対比から判るように、本実施形態では、不等長を有するN個の吸音材5を空気入りタイヤのトレッド部1の内面にタイヤ周方向に沿って間欠的に配置するにあたって、N次成分の質量アンバランス指数CN が、N個の吸音材の長さ及び間隔を平均化した場合(仮想モデル)のN次成分の質量アンバランス指数CN ’に対して、CN <CN ’×0.9の関係を満たしている。より具体的には、不等長を有する4個の吸音材5を空気入りタイヤのトレッド部1の内面にタイヤ周方向に沿って間欠的に配置するにあたって、4次成分の質量アンバランス指数C4 が、4個の吸音材の長さ及び間隔を平均化した場合(仮想モデル)の4次成分の質量アンバランス指数C4 ’に対して、C4 <C4 ’×0.9の関係を満たしている。 As can be seen from the comparison between FIG. 4 and FIG. 6 described above, in this embodiment, N sound absorbing materials 5 having unequal lengths are intermittently provided on the inner surface of the tread portion 1 of the pneumatic tire along the tire circumferential direction. In the arrangement, the mass unbalance index C N of the Nth order component is equal to the mass unbalance index C N ′ of the Nth order component when the lengths and intervals of the N sound absorbing materials are averaged (virtual model). Thus, the relationship of C N <C N '× 0.9 is satisfied. More specifically, when the four sound absorbing materials 5 having unequal lengths are intermittently disposed along the tire circumferential direction on the inner surface of the tread portion 1 of the pneumatic tire, the mass unbalance index C of the quaternary component. 4 is the relationship of C 4 <C 4 ′ × 0.9 with respect to the mass unbalance index C 4 ′ of the fourth-order component when the lengths and intervals of the four sound absorbing materials are averaged (virtual model) Meet.

本発明者の実験結果に基づく知見によれば、吸音材5の周上の個数を少なくした場合(3≦N≦9、好ましくは、3≦N≦5)に、上記関係を満足することにより、車体振動の発生を効果的に低減することが可能になる。   According to the knowledge based on the experiment results of the present inventors, when the number of the sound absorbing material 5 on the circumference is reduced (3 ≦ N ≦ 9, preferably 3 ≦ N ≦ 5), the above relationship is satisfied. Thus, it is possible to effectively reduce the occurrence of vehicle body vibration.

上記タイヤ騒音低減装置4において、吸音材5の間隔Ta〜Tdはそれぞれ吸音材5の厚さよりも大きくし、吸音材5の間隔Ta〜Tdの総和は空気入りタイヤのトレッド部1のタイヤ赤道位置での内周長の10%より小さくすると良い。吸音材5の個々の間隔Ta〜Tdが吸音材5の厚さよりも小さいと、隣り合う吸音材5,5同士が接触し易くなるため耐久性が低下する。なお、吸音材5の厚さとは吸音材5の端部での厚さを意味し、吸音材5の端部での厚さが変化している場合、その平均値とする。また、吸音材5の間隔Ta〜Tdの総和がトレッド部1の内周長の10%より大きいと、1次成分の質量アンバランス指数C1 が増加して乗心地が悪化することになる。特に、吸音材5の間隔Ta〜Tdの総和は空気入りタイヤのトレッド部1のタイヤ赤道位置での内周長の5%より小さくすることが望ましい。 In the tire noise reduction device 4, the intervals Ta to Td of the sound absorbing material 5 are respectively larger than the thickness of the sound absorbing material 5, and the sum of the intervals Ta to Td of the sound absorbing material 5 is the tire equator position of the tread portion 1 of the pneumatic tire. It is better to make it smaller than 10% of the inner peripheral length at. If the individual intervals Ta to Td of the sound absorbing material 5 are smaller than the thickness of the sound absorbing material 5, the adjacent sound absorbing materials 5 and 5 are likely to come into contact with each other, resulting in a decrease in durability. The thickness of the sound absorbing material 5 means the thickness at the end of the sound absorbing material 5, and when the thickness at the end of the sound absorbing material 5 is changed, the thickness is the average value. A sum of spacing Ta~Td of the noise absorbing member 5 is 10% larger than the inner circumferential length of the tread portion 1, so that the ride quality and mass imbalance index C 1 of the first-order component is increased to deteriorate. In particular, the sum of the intervals Ta to Td of the sound absorbing material 5 is desirably smaller than 5% of the inner peripheral length of the tread portion 1 of the pneumatic tire at the tire equator position.

更に、上記タイヤ騒音低減装置4において、図4に示すようにN次よりも低い次数の成分の質量アンバランス指数C1 〜CN-1 はそれぞれCN ’×0.5の値よりも小さいことが好ましい。つまり、質量アンバランス指数CN を小さくすることは必要条件であるが、車体振動の発生を更に効果的に低減するには、それと同時に、N次よりも低い次数の成分の質量アンバランス指数C1 〜CN-1 の増加を抑制することが必要である。 Further, in the tire noise reduction device 4, as shown in FIG. 4, the mass unbalance indexes C 1 to C N-1 of the components of the order lower than the N order are each smaller than the value of C N ′ × 0.5. It is preferable. In other words, it is a necessary condition to reduce the mass unbalance index C N , but at the same time, in order to more effectively reduce the occurrence of vehicle body vibration, the mass unbalance index C of the component of the order lower than the Nth order. It is necessary to suppress the increase of 1 to CN -1 .

4個の多孔質材料からなる吸音材と、これら4個の吸音材を固定するバンド部材とを備え、バンド部材の弾性復元力に基づいて4個の吸音材を空気入りタイヤのトレッド部の内面にタイヤ周方向に沿って間欠的に装着するようにしたタイヤ騒音低減装置において、吸音材の長さLa〜Ld及び間隔Ta〜Tdを表1のように設定した比較例1〜2及び実施例1〜3のタイヤ騒音低減装置を製作した。   A sound absorbing material composed of four porous materials and a band member for fixing the four sound absorbing materials, and the four sound absorbing materials are arranged on the inner surface of the tread portion of the pneumatic tire based on the elastic restoring force of the band member. In the tire noise reduction device that is mounted intermittently along the tire circumferential direction, the lengths La to Ld and the intervals Ta to Td of the sound absorbing material are set as shown in Table 1 and Comparative Examples 1-2 and Examples 1-3 tire noise reduction devices were manufactured.

比較例1〜2及び実施例1〜3において、吸音材の厚さは15mmとし、吸音材の合計長さ及び総重量は共通にした。また、質量アンバランス指数C1 〜C4 は表1の通りであり、これら質量アンバランス指数C1 〜C4 は仮想モデルに相当する比較例1の4次成分の質量アンバランス指数C4 を100として換算したものである。 In Comparative Examples 1-2 and Examples 1-3, the thickness of the sound absorbing material was 15 mm, and the total length and total weight of the sound absorbing material were the same. The mass unbalance indices C 1 to C 4 are as shown in Table 1. These mass unbalance indices C 1 to C 4 are the mass unbalance indices C 4 of the quaternary component of Comparative Example 1 corresponding to the virtual model. It is converted as 100.

これら比較例1〜2及び実施例1〜3のタイヤ騒音低減装置をそれぞれタイヤサイズ215/60R16の空気入りタイヤに装着し、その空気入りタイヤをリムサイズ16×7Jのホイールに組付けて排気量3000ccの試験車両に装着し、空気圧210kPaの条件で平滑なアスファルト路面を速度60km/hにて走行し、その際のキャビンのフロア振動(加速度)を測定し、0〜80Hzの振動エネルギーのオーバーオール値を求めた。フロア振動の評価結果は、比較例1を100とする指数にて示した。この指数値が小さいほどフロア振動が少ないことを意味する。   The tire noise reduction devices of Comparative Examples 1 and 2 and Examples 1 to 3 are respectively mounted on pneumatic tires having a tire size of 215 / 60R16, and the pneumatic tires are assembled to a wheel having a rim size of 16 × 7J to have a displacement of 3000 cc. The vehicle is run on a smooth asphalt road surface at an air pressure of 210 kPa at a speed of 60 km / h, the cabin floor vibration (acceleration) at that time is measured, and an overall value of vibration energy of 0 to 80 Hz is obtained. Asked. The evaluation result of the floor vibration is indicated by an index with Comparative Example 1 as 100. A smaller index value means less floor vibration.

Figure 0005499569
Figure 0005499569

この表1から判るように、実施例1〜3のタイヤ騒音低減装置は、4個の吸音材を不等長とし、4次成分の質量アンバランス指数C4 を吸音材の長さ及び間隔を平均化した場合(比較例1)の値の0.9倍よりも小さくしたので、フロア振動の低減することができた。一方、比較例2のタイヤ騒音低減装置は、4個の吸音材を不等長としているものの、4次成分の質量アンバランス指数C4 が吸音材の長さ及び間隔を平均化した場合(比較例1)の値の0.9倍よりも大きいため、逆にフロア振動が増大していた。 As can be seen from Table 1, in the tire noise reduction devices of Examples 1 to 3, the four sound absorbing materials are unequal in length, and the mass unbalance index C 4 of the fourth order component is set to the length and interval of the sound absorbing material. Since it was smaller than 0.9 times the value in the case of averaging (Comparative Example 1), the floor vibration could be reduced. On the other hand, although the tire noise reduction device of Comparative Example 2 has four sound absorbing materials of unequal length, the mass unbalance index C 4 of the fourth order component averages the length and interval of the sound absorbing materials (comparison) On the contrary, the floor vibration increased because it was larger than 0.9 times the value of Example 1).

1 トレッド部
2 ビード部
3 サイドウォール部
4 タイヤ騒音低減装置
5 吸音材
6 バンド部材
DESCRIPTION OF SYMBOLS 1 Tread part 2 Bead part 3 Side wall part 4 Tire noise reduction device 5 Sound absorption material 6 Band member

Claims (5)

タイヤ周方向に不等長を有するN個(3≦N≦9)の多孔質材料からなる吸音材を備え、これらN個の吸音材を空気入りタイヤのトレッド部の内面にタイヤ周方向に沿って間欠的に配置するようにしたタイヤ騒音低減装置であって、下記(1)式から求められるN次成分の質量アンバランス指数CN が、前記N個の吸音材の長さ及び間隔を平均化した場合のN次成分の質量アンバランス指数CN ’に対して、CN <CN ’×0.9の関係を満たすことを特徴とするタイヤ騒音低減装置。
Figure 0005499569
但し、nは次数(1≦n≦N)であり、θは周上の位相であり、x(θ)は微小角における相対線密度であり、吸音材がある部分の相対線密度を1とし、吸音材がない部分の相対線密度を0とする。
A sound-absorbing material composed of N (3 ≦ N ≦ 9) porous materials having unequal lengths in the tire circumferential direction is provided, and these N sound-absorbing materials are arranged along the tire circumferential direction on the inner surface of the tread portion of the pneumatic tire. The tire noise reduction device is arranged intermittently, and the mass unbalance index C N of the Nth order component obtained from the following equation (1) is an average of the lengths and intervals of the N sound absorbing materials. The tire noise reduction device satisfying the relationship of C N <C N ′ × 0.9 with respect to the mass unbalance index C N ′ of the N-order component in the case of conversion into the first order.
Figure 0005499569
Where n is the order (1 ≦ n ≦ N), θ is the phase on the circumference, x (θ) is the relative linear density at a minute angle, and the relative linear density of the portion where the sound absorbing material is present is 1. The relative linear density of the portion where there is no sound absorbing material is zero.
前記N個の吸音材を固定するバンド部材を備え、該バンド部材の弾性復元力に基づいて前記N個の吸音材を空気入りタイヤのトレッド部の内面にタイヤ周方向に沿って間欠的に装着するようにしたことを特徴とする請求項1に記載のタイヤ騒音低減装置。   A band member for fixing the N sound absorbing materials is provided, and the N sound absorbing materials are intermittently mounted along the tire circumferential direction on the inner surface of the tread portion of the pneumatic tire based on the elastic restoring force of the band member. The tire noise reduction device according to claim 1, wherein the tire noise reduction device is provided. 前記吸音材の間隔をそれぞれ前記吸音材の厚さよりも大きくし、前記吸音材の間隔の総和を空気入りタイヤのトレッド部の内周長の10%より小さくしたことを特徴とする請求項1又は請求項2に記載のタイヤ騒音低減装置。   The interval between the sound absorbing materials is made larger than the thickness of the sound absorbing material, respectively, and the sum of the intervals between the sound absorbing materials is made smaller than 10% of the inner peripheral length of the tread portion of the pneumatic tire. The tire noise reduction device according to claim 2. 前記N次よりも低い次数の成分の質量アンバランス指数C1 〜CN-1 がそれぞれCN ’×0.5の値よりも小さいことを特徴とする請求項1〜3のいずれかに記載のタイヤ騒音低減装置。 4. The mass unbalance index C 1 to C N−1 of the component having a lower order than the Nth order is smaller than a value of C N ′ × 0.5, respectively. Tire noise reduction device. 請求項1〜4のいずれかに記載のタイヤ騒音低減装置を空洞部内に備えたことを特徴とする空気入りタイヤ。   A pneumatic tire comprising the tire noise reduction device according to any one of claims 1 to 4 in a hollow portion.
JP2009199367A 2009-08-31 2009-08-31 Tire noise reduction device and pneumatic tire provided with the same Active JP5499569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009199367A JP5499569B2 (en) 2009-08-31 2009-08-31 Tire noise reduction device and pneumatic tire provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009199367A JP5499569B2 (en) 2009-08-31 2009-08-31 Tire noise reduction device and pneumatic tire provided with the same

Publications (2)

Publication Number Publication Date
JP2011051371A JP2011051371A (en) 2011-03-17
JP5499569B2 true JP5499569B2 (en) 2014-05-21

Family

ID=43940864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009199367A Active JP5499569B2 (en) 2009-08-31 2009-08-31 Tire noise reduction device and pneumatic tire provided with the same

Country Status (1)

Country Link
JP (1) JP5499569B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5519835B1 (en) 2013-06-18 2014-06-11 川崎重工業株式会社 Rotating body with wings
KR102351699B1 (en) * 2020-02-17 2022-01-17 한국타이어앤테크놀로지 주식회사 Tires with self generation and sound absorption
CN115257247A (en) * 2022-07-15 2022-11-01 山东玲珑轮胎股份有限公司 Low-cavity-noise tire

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304212A (en) * 1995-05-11 1996-11-22 Nissan Motor Co Ltd Instrument and method for measuring unbalanced amount of wheel and method for correcting unbalanced amount
US6609074B2 (en) * 2001-03-27 2003-08-19 The Goodyear Tire & Rubber Company Tire uniformity prediction using balance and low speed uniformity data
JP2002310839A (en) * 2001-04-18 2002-10-23 Bridgestone Corp Tire balance adjustment device, tire balance adjustment method and tire balance measurement method
JP4113088B2 (en) * 2003-10-17 2008-07-02 東洋ゴム工業株式会社 High-speed tire uniformity estimation method and tire selection method
JP4148987B2 (en) * 2005-02-16 2008-09-10 横浜ゴム株式会社 Low noise pneumatic tire
US7874329B2 (en) * 2005-02-16 2011-01-25 The Yokohama Rubber Co., Ltd. Low noise pneumatic tire
JP4466403B2 (en) * 2005-02-21 2010-05-26 横浜ゴム株式会社 Low noise pneumatic tire
JP2007256083A (en) * 2006-03-23 2007-10-04 Yokohama Rubber Co Ltd:The Tire-wheel assembly
JP4833783B2 (en) * 2006-09-26 2011-12-07 横浜ゴム株式会社 Tire noise reduction device and pneumatic tire

Also Published As

Publication number Publication date
JP2011051371A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
JP4992937B2 (en) Pneumatic tire
JP4960966B2 (en) Tire noise reduction device and pneumatic tire
CN108463357B (en) Pneumatic tire
JP5972149B2 (en) Non-pneumatic tire
JP6057756B2 (en) Pneumatic tire
JP5921364B2 (en) Non-pneumatic tire
JP2013071652A (en) Non-pneumatic tire
JP6227261B2 (en) Device attachment method to tire
WO2004074012A1 (en) Tire/wheel assembly body and interior body for noise reduction
JP5499569B2 (en) Tire noise reduction device and pneumatic tire provided with the same
CN108349306B (en) Pneumatic tire
JP6180313B2 (en) Non-pneumatic tire
JP5774406B2 (en) Non-pneumatic tire
CN212171834U (en) Damping mute wheel and movable equipment
CN212171835U (en) Damping mute wheel and movable equipment
JP2005212577A (en) Tire cavity resonance restricting device and pneumatic tire
KR102105055B1 (en) Pneumatic tire
JP6143660B2 (en) Non-pneumatic tire
JP6045401B2 (en) Non-pneumatic tire
JP2007168541A (en) Pneumatic tire
US7410222B2 (en) Tire-wheel assembly
JP2022164930A (en) Automobile pneumatic radial tire
CN212194932U (en) Damping mute wheel and movable equipment
CN212194931U (en) Damping mute wheel and movable equipment
CN111284272A (en) Damping mute wheel and movable equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5499569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250