JP5499510B2 - Co-drying preparation facility with GABA generator - Google Patents

Co-drying preparation facility with GABA generator Download PDF

Info

Publication number
JP5499510B2
JP5499510B2 JP2009094786A JP2009094786A JP5499510B2 JP 5499510 B2 JP5499510 B2 JP 5499510B2 JP 2009094786 A JP2009094786 A JP 2009094786A JP 2009094786 A JP2009094786 A JP 2009094786A JP 5499510 B2 JP5499510 B2 JP 5499510B2
Authority
JP
Japan
Prior art keywords
soot
gaba
aminobutyric acid
drying
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009094786A
Other languages
Japanese (ja)
Other versions
JP2010243119A5 (en
JP2010243119A (en
Inventor
英則 水野
厚清 劉
真也 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Corp
Original Assignee
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Corp filed Critical Satake Corp
Priority to JP2009094786A priority Critical patent/JP5499510B2/en
Publication of JP2010243119A publication Critical patent/JP2010243119A/en
Publication of JP2010243119A5 publication Critical patent/JP2010243119A5/ja
Application granted granted Critical
Publication of JP5499510B2 publication Critical patent/JP5499510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)
  • Cereal-Derived Products (AREA)

Description

本発明は、籾(もみ)米(以下、「籾」という。)などの穀物に含有する機能性成分であるγ−アミノ酪酸(通称、「ギャバ(GABA)」という。)を増加させることのできる施設に関するものである。 The present invention, rice (paddy) rice (hereinafter, referred to as "rice".) .Gamma.-aminobutyric acid are functional components contained in cereals such as (known as "GABA (GABA)".) Kotono increasing It is about facility that can do .

昨今、食品に含有された機能性成分の一つであるγ−アミノ酪酸が注目されている。γ−アミノ酪酸は人体の血上昇を抑制するなどの健康維持又は疾病予防に有効な物質として知られている。このγ−アミノ酪酸の含有量を増加(富化)させる方法としては、例えば、本出願人による特許文献1の方法が知られている。特許文献1の方法は、一般的な米麦用循環式乾燥機を用いて、原料玄米を機内循環させながら高湿空気を通風して玄米の緩慢な水分上昇を行い、この後に、貯留タンク内に数時間静置させることにより、玄米に胴割れを生じることなくγ−アミノ酪酸の含有量を大幅に富化させるものであった。 In recent years, γ-aminobutyric acid, which is one of functional components contained in foods, has attracted attention. γ- aminobutyric acid, Ru Tei known the human blood pressure rise as the active substance to the health or disease prevention, such as inhibiting. As a method for increasing (enriching) the content of γ-aminobutyric acid, for example, the method of Patent Document 1 by the present applicant is known. The method of Patent Document 1 uses a general rice-type circulating dryer for rice and wheat to circulate raw brown rice in the machine and ventilate high-humidity air to slowly increase the moisture in the brown rice . By allowing to stand for several hours, the content of γ-aminobutyric acid was greatly enriched without causing cracks in the brown rice.

特開2007−215504号公報JP 2007-215504 A

しかしながら、上記特許文献1の方法には玄米中のγ−アミノ酪酸を富化させる際の生産性に問題があった。すなわち、上記特許文献1の方法では、玄米を原料とするとともに一般的な米麦用循環式乾燥機を用いて、玄米に胴割れを生じないように0.2%/h以下の緩慢的な加水を行うため、その加湿に係る所要時間と、その後の貯留タンク内で静置させることによってγ−アミノ酪酸を富化させる所要時間(例えば10時間)とが掛かる。また、この他、前記循環式乾燥機において、玄米中のγ−アミノ酪酸の富化処理がバッチ式で行われるために、γ−アミノ酪酸が富化した玄米を連続的に大量生産することが困難であるという問題点があった。
そこで、本願発明は、上記問題点にかんがみ、玄米に亀裂を生じることなく、γ−アミノ酪酸が富化した玄米を連続的に大量生産して生産性を向上させることのできる施設を提供することを技術的課題としたものである。
However, the method of Patent Document 1 has a problem in productivity when enriching γ-aminobutyric acid in brown rice. That is, in the method of the above-mentioned Patent Document 1, a slow hydration of 0.2% / h or less is performed using brown rice as a raw material and a general rice wheat circulation dryer so as not to cause cracking of the brown rice. Therefore, the time required for the humidification and the time required for enriching γ-aminobutyric acid by allowing it to stand in the storage tank thereafter (for example, 10 hours) are required. In addition, because the enrichment of γ-aminobutyric acid in brown rice is performed in a batch manner in the circulating dryer, continuous mass production of brown rice enriched in γ-aminobutyric acid is possible. there is a problem that Ru difficult der.
In view of the above problems, the present invention provides a facility capable of continuously mass-producing brown rice enriched with γ-aminobutyric acid to improve productivity without causing cracks in brown rice. Is a technical issue.

本発明は、請求項1により、
収穫後の籾を荷受する荷受部(2)、粗選部(4)、乾燥部(11)、貯蔵部(19)、精選出荷部(23)及び前記各部の駆動の監視・制御を行う中央制御部(24)を有する共同乾燥調製施設(1)において、
加湿温風を通風して前記籾に含まれるγ−アミノ酪酸の含有量を富化させるギャバ生成部(12,15)を含
前記ギャバ生成部(12,15)は、上部に籾供給口(12b)を設ける一方、下部に排出操出バルブ(12c)を設けてなるギャバ生成タンク(12a)を有し、
前記排出操出バルブ(12c)の下方には切換弁(16a)が配設されるとともに、該切換弁(16a)の一方側が穀物還流装置(16)を介して前記ギャバ生成タンク(12a)の前記籾供給口(12b)、他方側が前記乾燥部(11)にそれぞれ接続されてなり、
前記籾供給口(12b)から前記ギャバ生成タンク(12a)内に所定量の籾を供給し、該籾の供給を停止した後、前記排出操出バルブ(12c)を駆動して前記籾を順次排出し、該排出した籾を前記穀物還流装置(16)を介して前記籾供給口(12b)から前記ギャバ生成タンク(12a)内に還流・循環させながら、当該ギャバ生成タンク(12a)内で前記籾に加湿温風を通風して前記籾に含まれるγ−アミノ酪酸の含有量を富化させる初期運転を行い、
前記初期運転の後、前記ギャバ生成タンク(12a)の前記排出操出バルブ(12c)を駆動してγ−アミノ酪酸の含有量を富化させた籾を順次排出し、当該籾を前記乾燥部(11)に供給するとともに、前記籾供給口(12b)から前記排出された籾の量だけ新たな籾を連続的に供給し、当該ギャバ生成タンク(12a)内で前記新たな籾に加湿温風を通風して前記ギャバ生成タンク(12a)内の1回の流下により前記新たな籾に含まれるγ−アミノ酪酸の含有量を富化させる連続運転に移行する、という技術的手段を講じるものである。
According to claim 1, the present invention provides
A receiving section (2) for receiving the harvested straw, a coarse selection section (4), a drying section (11), a storage section (19), a selective shipping section (23), and a center for monitoring and controlling the driving of each section In the joint drying preparation facility (1) having the control unit (24),
Humidified hot air ventilation to look contains GABA generator to enrich the content of γ- aminobutyric acid contained in the rice (12, 15) and,
The gap generating section (12, 15) has a gap generating tank (12a) provided with a straw supply port (12b) at the top and a discharge operation valve (12c) at the bottom,
A switching valve (16a) is disposed below the discharge operation valve (12c), and one side of the switching valve (16a) is connected to the gap generating tank (12a) via a grain recirculation device (16). The basket supply port (12b) and the other side are connected to the drying section (11), respectively.
A predetermined amount of soot is supplied from the soot supply port (12b) into the gap generating tank (12a), and the supply of the soot is stopped, and then the discharge operation valve (12c) is driven to sequentially supply the soot. The discharged soot is recirculated and circulated through the grain recirculation device (16) from the koji supply port (12b) into the gabba generating tank (12a), and is then returned in the gabber generating tank (12a). Performing an initial operation of enriching the content of γ-aminobutyric acid contained in the cocoon by passing humidified warm air through the cocoon,
After the initial operation, the discharge operation valve (12c) of the GABA generation tank (12a) is driven to sequentially discharge the soot enriched in the content of γ-aminobutyric acid, and the soot is discharged into the drying section. (11) and continuously supplying new soot by the amount of the soot discharged from the soot supply port (12b), and humidifying the new soot in the gap generating tank (12a) A technical measure is taken in which a transition is made to a continuous operation in which the content of γ-aminobutyric acid contained in the new soot is enriched by a single flow in the GABA generation tank (12a) through the ventilation. It is.

また、請求項2により、
前記ギャバ生成部(12)は、前記籾の張り込みを可能にした上部に前記籾供給口(12b)を有する前記ギャバ生成タンク(12a)と、該ギャバ生成タンク(12a)内に横設した多孔壁からなる複数の送風管(12d)と、該複数の送風管(12d)の周囲に平行に横設するとともに、前記送風管(12d)の多孔壁から噴出されて前記籾に通風して機外に排気する多孔壁からなる排気管(12e)と、前記送風管(12d)の供給側に接続する当該送風管(12d)に加湿温風を供給する加湿温風生成供給装置(13)と、前記排気管(12e)の排出側に接続して前記排風を吸引・排風する吸引ファン(14)と、前記ギャバ生成タンク(12a)の下部に設けて前記籾を順次排出する前記排出繰出バルブ(12c)とを有してなるものとするのがよい。
According to claim 2,
The GABA generator (12), and the GABA generation tank chromatic said rice supply port (12b) at the top that allow the paddy imposition (12a), and laterally disposed to the GABA generation tank (12a) in A plurality of air pipes (12d) each having a porous wall and a plurality of air pipes (12d) arranged in parallel around the air pipes (12d), and blown out from the porous wall of the air pipe (12d) and passed through the eaves. An exhaust pipe (12e) composed of a porous wall that exhausts outside the machine, and a humidified hot air generating and supplying device (13) for supplying humidified hot air to the blow pipe (12d) connected to the supply side of the blow pipe (12d) A suction fan (14) that is connected to a discharge side of the exhaust pipe (12e) and sucks and exhausts the exhaust air, and is provided at a lower portion of the gap generation tank (12a) to sequentially exhaust the soot. A discharge delivery valve ( 12c) Should be.

さらに、請求項3により、
前記連続運転は、前記荷受部(2)で荷受した籾を粗選部(4)を介して乾燥部(11)に供給し、該乾燥部(11)で仕上げ水分まで乾燥した後に貯蔵部(19)に一旦貯蔵した後、貯蔵部(19)から仕上げ乾燥籾を前記ギャバ生成部(12)に連続的に供給してγ−アミノ酪酸富化の処理を行ない、この後、前記乾燥部(11)に供給して再度仕上げ水分まで乾燥して貯蔵部(19)に貯蔵するようにするとよい。
Furthermore, according to claim 3,
In the continuous operation, the basket received in the cargo receiving part (2) is supplied to the drying part (11) through the coarse selection part (4), dried to the final moisture in the drying part (11), and then stored in the storage part ( 19), the finished dried soot is continuously supplied from the storage unit (19) to the GABA generating unit (12) to be enriched with γ-aminobutyric acid, and then the drying unit ( It is good to make it supply to 11), dry again to a finishing water | moisture content, and store in a storage part (19).

また、請求項4により、
前記連続運転は、前記荷受部(2)で荷受した籾を粗選部(4)を介して乾燥部(11)に供給し、該乾燥部(11)で半乾状態まで乾燥した後に貯蔵部(19)に一旦貯蔵した後、貯蔵部(19)から半乾状態の籾を前記ギャバ生成部(12)に連続的に供給してγ−アミノ酪酸富化の処理を行ない、この後、前記乾燥部(11)に供給して仕上げ水分まで乾燥して貯蔵部(19)に貯蔵するようにするとよい。
According to claim 4,
In the continuous operation, the storage unit that receives the soot received by the cargo receiving unit (2) to the drying unit (11) through the coarse selection unit (4), is dried to a semi-dry state by the drying unit (11). (19) Once stored in (19), the semi-dried rice cake is continuously supplied from the storage unit (19) to the GABA generating unit (12) to perform γ-aminobutyric acid enrichment, It is good to supply to a drying part (11), dry to a finishing water | moisture content, and to store in a storage part (19).

さらに、請求項5により、
前記連続運転は、前記荷受部(2)で荷受した生籾を粗選部(4)を介して生籾を通風貯留する生籾貯留通風タンク設備(8)に一旦貯留した後、前記生籾貯留通風タンク設備(8)から生状態の籾を前記ギャバ生成部(12)に連続的に供給してγ−アミノ酪酸富化の処理を行ない、この後、前記乾燥部(11)に供給して仕上げ水分まで乾燥して貯蔵部(19)に貯蔵するようにするとよい。
Furthermore, according to claim 5,
In the continuous operation, after the ginger received at the cargo receiving section (2) is temporarily stored in the ginger storage ventilation tank facility (8) for storing the ginger through the coarse selection section (4), the ginger is stored. Raw soot from the storage ventilation tank facility (8) is continuously supplied to the GABA generating section (12) to perform the γ-aminobutyric acid enrichment process, and then supplied to the drying section (11). It is good to dry to finish moisture and to store in a storage part (19).

また、請求項6により、
前記籾に通風する加湿温風は温度約70℃、湿度90%〜98%であり、前記加湿温風の通風時に前記ギャバ生成タンク(12a)内で籾が滞留する時間を、半乾状態の籾又は生状態の籾の場合は少なくとも2時間、仕上げ乾燥籾の場合は少なくとも4時間とするのがよい。
According to claim 6,
The humidified warm air passing through the soot has a temperature of about 70 ° C. and a humidity of 90% to 98%, and the time during which soot is retained in the GABA generation tank (12a) when the humidified warm air is vented is semi-dry. In the case of a cocoon or raw cocoon, it should be at least 2 hours , and in the case of a finished dry cocoon, it should be at least 4 hours.

本発明によれば、共同乾燥調製施設に、荷受籾に含まれるγ−アミノ酪酸の含有量を富化させるギャバ生成部を配設して、該ギャバ生成部に、荷受籾を仕上げ状態にした籾、又は半乾燥状態にした籾、更には、生状態の籾のいずれかを連続的に供給して加湿温風を通風して、γ−アミノ酪酸の富化処理した籾を効率よく連続的に大量生産して貯蔵することができる。このため、必要に応じて、γ−アミノ酪酸が富化した籾を籾摺・精選等の処理を行ってγ−アミノ酪酸を富化させた玄米(お米)を出荷することができるものである。よって、γ−アミノ酪酸が富化したお米商品を市迅速供給することができる。また、本発明によってγ−アミノ酪酸を富化させた籾は、そのまま家畜等の飼料としても使用することができる According to the present invention, the joint drying preparation facility is provided with a GABA generating section for enriching the content of γ-aminobutyric acid contained in the receiving container, and the GA receiving section is finished with the receiving container. rice, or rough rice having a semi-dry state, and further, either raw state paddy and air humidification warm air was continuously fed, continuous efficiently rice enriched process γ- aminobutyric acid Can be mass-produced and stored. For this reason, if necessary, γ- those amino butyric acid can be shipped the brown rice (rice) which was enriched carried out by γ- amino butyric acid treatment of hulling-selective, such as the rice enriched It is. Therefore, it is possible to quickly supply rice products γ- amino butyric acid is enriched in the market. Moreover, the straw enriched with γ-aminobutyric acid according to the present invention can be used as it is as feed for livestock .

本発明のγ−アミノ酪酸の富化穀物の製造設備((大規模穀物乾燥調製貯蔵施設(共同乾燥調製施設))を示す概略全体ブロック図である。It is a general | schematic whole block diagram which shows the manufacturing apparatus ((Large-scale grain drying preparation storage facility (joint drying preparation facility)) of the enriched grain of ( gamma) -aminobutyric acid of this invention. ギャバ生成装置の縦断面図である。(a)は正断面図であり、(b)は側断面図を表す。It is a longitudinal cross-sectional view of a GABA production | generation apparatus. (A) is a front sectional view, (b) represents a side sectional view. ギャバ生成装置の他の実施例を示した概略斜視図である。It is the schematic perspective view which showed the other Example of the gain production | generation apparatus. 本発明の実施例1、実施例2及び実施例3の生産工程のフロー図である。It is a flowchart of each production process of Example 1, Example 2 and Example 3 of the present invention. 本発明の実施例1、実施例2及び実施例3における加湿温風の通風条件等を示した一覧表である。It is the table | surface which showed the ventilation conditions etc. of the humidification warm air in Example 1, Example 2, and Example 3 of this invention.

以下、本発明のγ−アミノ酪酸の富化穀物の製造施設について説明する。図1は、本発明のγ−アミノ酪酸の富化穀物の製造設備1を示したブロック図であり、大規模穀物乾燥調製貯蔵施設(共同乾燥調製施設)1を基礎とするものである。前記大規模穀物乾燥調製貯蔵施設1は、収穫後の高水分籾を荷受する荷受ポッパー(荷受部)2を備え、該荷受ホッパー2の後工程に続いて、穀物を穀搬送する昇降機3、夾雑物を除去する粗選機(粗選部)4、荷受籾の量を測定する計量機5を備える。該計量機5の後工程には、昇降機6に続いて、切換弁7を介して一方側に生籾貯留通風タンク設備8を設け、他方側に昇降機9を設ける。前記生籾貯留通風タンク設備8は、複数の貯留タンク8aを備え、各貯留タンク8aは送風機8bからの送風を生籾に通風できる構成とする。また、前記各貯留タンク8aの上方には籾貯留タンク8aに供給する供給搬送コンベヤー8cを配設する一方、下方には貯留タンク8aから排出された籾を搬送する排出搬送コンベヤー8dを配設する。該排出搬送コンベヤー8dの後工程は前記昇降機9に連絡するHereinafter, the production facility for γ-aminobutyric acid- enriched grains according to the present invention will be described. FIG. 1 is a block diagram showing a production facility 1 for a γ-aminobutyric acid- enriched grain according to the present invention, which is based on a large-scale grain drying preparation storage facility (joint drying preparation facility) 1. The large grain dry preparations storage facilities 1 comprises a consignee Popper (goods receptacle) 2 to consignee the high moisture rice after harvest, the consignee following the step after the hopper 2, elevator 3 to lift grain transporting grain, roughing machine to remove contaminants (roughing section) 4, and a weighing machine 5 for measuring the weight of the consignee rice. In the subsequent process of the weighing machine 5, following the elevator 6, a ginger storage ventilation tank facility 8 is provided on one side via a switching valve 7, and an elevator 9 is provided on the other side. The ginger storage ventilation tank facility 8 includes a plurality of storage tanks 8a, and each of the storage tanks 8a is configured to allow ventilation from the blower 8b to the ginger. Also, while disposing the supply conveyance conveyor 8c for supplying paddy to each storage tank 8a said above each storage tank 8a, distribution and discharge conveying conveyor 8d for conveying the rice discharged from the storage tank 8a is downwardly Set up. The post-process of the discharge conveyor 8d communicates with the elevator 9.

前記昇降機9の後工程は、切換弁10を介して一方側に循環型穀物乾燥機(乾燥部)11を設け、他方側にはギャバ生成装置12を設ける。なお、循環型穀物乾燥機11の設置台数は、施設の処理能力を高めるため、複数台を配置するのが好ましい。 Wherein the step after the elevator 9, circulating grain dryer Meanwhile through the switching valve 10 side (dry portion) 11 is provided, on the other side provided with a GABA generator 12. It should be noted that it is preferable to arrange a plurality of circulation type grain dryers 11 in order to increase the processing capacity of the facility.

記ギャバ生成装置(ギャバ生成部)12は(図2参照)、任意の大容量の籾を入れることができるギャバ生成タンク12aをし、該ギャバ生成タンク12aは、上部に原料籾供給口12bを設ける一方、下部に排出繰出バルブ12cを設ける。また、前記ギャバ生成タンク12aは、内部に、多孔壁によって構成した送風管12dと、同じく多孔壁によって構成した排気管12eとをそれぞれ複数横設する。すなわち、複数の前記送風管12dを等間隔に並設するとともに複数の前記排気管12e前記送風管12dの列の下方位置に等間隔に並設して構成し、前記送風管12d及び排気管12上下方向に千鳥状に配設する。また、前記送風管12d及び排気管12eよりも下方位置には複数個の繰出バルブ12hを配設し、を前記排出繰出バルブ12cに繰り落とすようにしてある。 Before SL GABA generator (GABA generator) 12 have a (see FIG. 2), GABA generation tank 12a that can contain rice any large, the GABA generation tank 12a is raw rice supply port to the upper While 12b is provided, the discharge delivery valve 12c is provided in the lower part. In addition, the GABA generation tank 12a is inside, the blower tube 12d constituted by a porous wall, be multiple horizontal set respectively exhaust pipe 12e and a configuration by likewise perforated wall. That is, while juxtaposed the plurality of the blower tube 12 d at regular intervals, a plurality of the exhaust pipe 12e configured by parallel at equal intervals in the lower position of the column of the blast pipe 12d, the blower tube 12d and The exhaust pipes 12 are arranged in a staggered manner in the vertical direction. Further, said position below the blower tube 12d and the exhaust pipe 12e arranged several feeding valve 12h double, are so dropped repeatedly paddy to the discharge feeding valve 12c.

前記各送風管12dの送風供給側には、各送風管12d内に加湿温風を導入するための加湿温風供給風胴12fが設けてあり、該加湿温風供給風胴12fの上流側には加湿温風生成供給装置13が配設してある。そして、該加湿温風生成供給装置13は、加湿温風の供給流側から送風ファン13a、熱交換器13b、蒸気混合器13c及び除水器13dを順次配設して前記加湿温風供給風胴12fに加湿温風が供給できるように構成してある。 The air supply side of each of the air pipes 12d is provided with a humidified hot air supply wind tunnel 12f for introducing humidified hot air into each air pipe 12d, and upstream of the humidified hot air supply wind tunnel 12f. the humidification warm air generator supplying device 13 are disposed. The humidification warm air generator feeder 13, humidified hot air supply on the upstream side or we feed air fan 13a of the heat exchanger 13b, the humidified sequentially arranged steam mixer 13 c and dewatering unit 13d humidified warm air to the hot air-supplying air cylinder 12f is are form configured so that it can supply.

前記熱交換器13bは、送風ファン13aから送られた風(空気)を加熱するものであり、前記蒸気混合器13cは、加熱されて送られてきた空気に蒸気を添加して加湿するものである。そして、前記水器13dは、送られてくる加湿温風によって生成された結露水を排除するものである。 The heat exchanger 13b heats the air (air) sent from the blower fan 13a, and the steam mixer 13c adds the steam to the heated air and humidifies it. is there. Then, the dewatering unit 13d is intended to eliminate water condensation generated by the humidified hot air sent.

前記各排気管12eの排風側は、各排気管12e内からの排風を合流させてまとめて機外に排風するための排風胴12gが設けてあり、該排風胴12gの排風側には吸引ファン14が接続してある。 On the exhaust side of each exhaust pipe 12e, there is provided an exhaust cylinder 12g for merging the exhaust air from within each exhaust pipe 12e and exhausting it outside the machine. A suction fan 14 is connected to the exhaust side.

また、前記排出繰出バルブ12cの下流側には切換弁16aが配設してあり、該切換弁16aの一方側は、穀物還流装置16としての昇降機やエアー搬送装置を構成してを前記ギャバ生成タンク12aに還流するようにしてある。なお、該切換弁16aの他方側は、前記ギャバ生成タンク12aでγ−アミノ酪酸の富化作用を受けた籾を次工程に搬送する搬送路と接続している。 Further, the switching valve 16a on the downstream side of the discharge feeding valve 12c is Yes and disposed, one side of the switching valve 16a, the paddy constitute elevator and air conveying apparatus as grain recirculation apparatus 16 GABA The product tank 12a is refluxed. The other side of the switching valve 16a is connected to a transport path for transporting the soot that has been enriched with γ-aminobutyric acid in the gap generating tank 12a to the next step.

、ギャバ生成装置の他の実施例として、図3におけるギャバ生成装置15を説明する。該ギャバ生成装置15が前記ギャバ生成装置12と異なる構成点は、籾の流下路の点にあり、図3に示したように、上方から供給された籾を上下方にジグザグの層状に流下させる一対の穀物流下層15a,15aを間隔を介して並設した点にある。各穀物流下層15aは、側面を、穀物の流下スペースを設けて対向配設させた外部側の多孔壁15bと内部側の多孔壁15cとからなる一対の対向した側面部及び、他方の一対の対向した側面部からなるタンク側壁から構成する。また、前記のとおり各穀物流下層15aは、流下する穀物が撹拌されるように上下方向にわたってジグザグ状に構成する。このため、各穀物流下層15aの内部には、複数の傾斜板15dを上下方向に適宜間隔をおいて配設するとともに、これに合わせて前記内部側の各多孔壁15cの形状もジグザグ状に形成する。また、前記各穀物流下層15aの下部には、穀物を排出するための繰出バルブ15hをそれぞれ配設し、該繰出バルブ15hは、搬送手段(図示せず)を介して次工程に接続している。 In the following, another embodiment of formic catcher Bas generation equipment, that describes the GABA generator 15 in FIG. 3. Configuration point the GABA generating device 15 is different from the GABA generator 12 is in terms of rice falling path, as shown in FIG. 3, the layer-shaped di Guzagu paddy supplied from above the top downward direction lies in the juxtaposed through intervals pair of grain flow lower 15a to flow down, the 15a on. Each grain underflow layer 15a has a pair of opposed side surface parts composed of an outer porous wall 15b and an inner porous wall 15c that are arranged to face each other with a grain flowing space, and the other pair of grains. It is comprised from the tank side wall which consists of the opposing side part. In addition, as described above, each grain lower layer 15a is formed in a zigzag shape in the vertical direction so that the flowing grain is agitated. For this reason, a plurality of inclined plates 15d are arranged at appropriate intervals in the vertical direction inside each grain flowing layer 15a, and the shape of each inner porous wall 15c is also zigzag in accordance with this. Form. Further, the under end of each crop flow underlayer 15a is a feeding valve 15 h for discharging the grain disposed respectively該繰out valve 15 h, the next step via a conveying means (not shown) Connected to .

また、前記各穀物流下層15aにおける前外部側の多孔壁15b外方側に加湿温風供給風胴15eを構成する一方、前記各穀物流下層15aの内方側に、加湿温風供給風胴15eから供給されて各穀物流下層15aを通過した加熱温風の排風胴15fを構成する。該排風胴15fは、排出口側(図示せず)に、排風胴15f内の排風を機外に吸引するための吸引ファン(図示せず)が配管を介して接続してある。また、前記各加湿温風供給風胴15eの下部供給側は、配管15gを介して、前記ギャバ生成装置12(図2)で示したものと同じ加湿温風生成供給装置13と接続する。 Also, while configuring the humidified warm air-supplying air cylinder 15e to the each outer side of the porous wall 15 b of the front Symbol outer side of each grain flow underlayer 15a, the inward side of the grain flow underlayer 15a, humidification temperature An exhaust wind tunnel 15f of heated hot air that is supplied from the wind supply wind tunnel 15e and passes through each grain flow layer 15a is configured. The air exhaust cylinder 15f is connected to a discharge port side (not shown) via a pipe for a suction fan (not shown) for sucking the air exhaust in the air exhaust cylinder 15f outside the machine. Further, the lower supply side of each humidified hot air supply wind tunnel 15e is connected to the same humidified hot air generation supply device 13 as shown in the gap generation device 12 (FIG. 2) via a pipe 15g.

前記ギャバ生成装置12,15後工程は、切換弁16aを介して一方側を、昇降機17及び上部搬送供給コンベヤー18を介して、複数からなる穀物貯蔵サイロ(貯蔵部)19に接続し(図1参照)、他方側は、前記ギャバ生成装置12,15内に籾を還流するための昇降機16に接続してある。前記各穀物貯蔵サイロ19の下方には、穀物貯蔵サイロ19から排出された籾を搬出する下部搬出コンベヤー20を配設し、該下部搬出コンベヤー20の下流側は切換弁21に接続し、該切換弁21の一方側は昇降機22を介して前記ギャバ生成装置12,15の原料供給側に配管を介して接続してあり、他方側は籾摺精選工程(精選出荷部)23に配管を介して接続してある。 Each of the post-processes of the gear generators 12 and 15 is connected at one side to a plurality of grain storage silos (storage parts) 19 via an elevator 17 and an upper transport and supply conveyor 18 via a switching valve 16a ( see FIG. 1), the other side is connected to the elevator 16 to reflux the paddy to the GABA generator 12, 15. Wherein the lower portion of the grain storage silos 19, the lower carry-out conveyor 20 for unloading the paddy discharged each grain storage silos 1 9 or et disposed, downstream of the lower unloading conveyor 20 is connected to the switching valve 21 , piping on one side Yes connected via a pipe to the raw material supply side of the GABA generator 12, 15 via the elevator 22, the other side hulling Collection step (selective delivery portion) 23 of the switching valve 21 Connected through.

なお、前記γ−アミノ酪酸の富化穀物の製造設備1には、施設の全体的な運転制御を行う中央制御部24を構成し、前記貯留タンク8aからの生籾の排出命令や、前記各穀物貯蔵サイロ19からの半乾籾や本乾燥籾(乾燥仕上り籾)の排出命令などが行われるようになっている。そして、前記中央制御部24には、図4に基づいて後述する運転制御プログラムが内蔵してある。該運転制御プログラムは、生籾からγ−アミノ酪酸の富化を行う運転制御プログラム(実施例1)、半乾籾からγ−アミノ酪酸の富化を行う運転制御プログラム(実施例2)及び本乾燥籾からγ−アミノ酪酸の富化を行う運転制御プログラム(実施例3)からなる。 The γ-aminobutyric acid- enriched cereal production facility 1 comprises a central control unit 24 that performs overall operation control of the facility, and a ginger discharge command from each storage tank 8a , discharge instruction, and others, is made of semi-dry rice and the dried rice for each grain storage silos 1 nine al (dry finished rice). The central control unit 24 incorporates an operation control program which will be described later with reference to FIG. The operation control program, an operation control program for enrichment of the raw rice γ- aminobutyric acid (Example 1), the operation control program for enrichment of a semi-dry rice γ- aminobutyric acid (Example 2) and the operation control program for enrichment of the dried paddy γ- aminobutyric acid (example 3) Ru Tona.

次に、本発明のγ−アミノ酪酸の富化穀物の製造設備1の作用について、図4のフローを参照しながら、前記三つの実施例について説明する。 Next, the operation of the manufacturing equipment 1 enriched grain γ- aminobutyric acid of the present invention, with reference to a flowchart of FIG. 4, described above three embodiments.

実施例1(生籾からギャバ富化する運転制御プログラム):
荷受ホッパー2荷受された高水分籾(例えば水分24%)は、前記中央制御部24による管理のもと、粗選機4及び計量機5を経て貯留タンク8aに順次一次的に貯留されて、前記送風機8bからの送風によって通風される(ステップ1,ステップ2)
Example 1 (operation control program for enriching from ginger):
High moisture soot (for example, 24% moisture) received by the cargo receiving hopper 2 is sequentially and temporarily stored in the storage tank 8a through the coarse selector 4 and the weighing machine 5 under the control of the central control unit 24. The air is blown by the air blown from the blower 8b (Step 1, Step 2) .

次に、前記貯留タンク8aに一次貯留された生籾は、前記ギャバ生成装置12に順次供給し、ギャバ生成タンク12a内に堆積される。ギャバ生成タンク12a内に生籾が満量まで供給されたら、その時点で前記貯留タンク8aからの生籾搬送供給を一旦中止するとともに、ギャバ生成タンク12aの各繰出しバルブ12h及び排出繰出バルブ12cの各駆動を開始する。また、同じく、前記加湿温風生成供給装置13及び吸引ファン14駆動を開始する。これにより、前記加湿温風生成供給装置13で生成された加湿温風は、吸引ファン14の吸引作用によって、加湿温風供給風胴12fから各送風管12d内に供給された後に、各送風管12dを構成する多孔壁の各孔から噴風されて生籾の粒間を通風して生籾を加湿し後、前記各排気管12eを構成する多孔壁の各孔から各排気管12e内に吸入され排風胴12gを介して吸引ファン14から排風される。 Next, raw rice, which is stored the primary to the storage tank 8a sequentially supplied to the GABA generator 12, is deposited on GABA generation tank 12a. When Namamomi the GABA production tank 12a is supplied to the full amount, once with stops raw paddy conveying supply from the storage tank 8a at that time, GABA respective feed valves 12h and discharged feeding valve generation tank 12a Each drive of 12c is started. Further, similarly, it starts driving of the humidifying warm air generator supplying device 13 and the suction fan 14. As a result, the humidified warm air generated by the humidified warm air generating and supplying device 13 is supplied from the humidified warm air supply wind tunnel 12f into each of the blower tubes 12d by the suction action of the suction fan 14, and then each of the blower tubes. after being air jet from the holes of the multi-hole wall that make up the 12d between raw rice grain and air humidified raw rice, the exhaust pipes from the pores of the porous walls constituting the respective exhaust pipe 12e is sucked into the 12e, is the exhaust air from the suction fan 14 through the Haifudo 12g.

初期運転(還流制御運転):
前記ギャバ生成タンク12a内の生籾は、前記加湿温風によって加湿及び加温されながら排出繰出バルブ12cの駆動によって順次繰り出され、前記切換弁16a及び穀物還流装置16を介してギャバ生成タンク12a内に還流される。このとき、生籾のγ−アミノ酪酸の化条件として(図5の条件表参照)、前記ギャバ生成タンク12a内の生籾に通風する加湿温風温度約70℃で湿度90%〜98%とし、かつ、通風時間(タンク内滞留時間)を少なくとも2時間とするのがよい。このため、運転開始直後の初期運転においては、ギャバ生成タンク12a内の下部に堆積した生籾に少なくとも2時間の通風時間(タンク内滞留時間)を与えるため、ギャバ生成タンク12aの大きさ及び/又は繰出し速度等(流下速度)を考慮しながら、前記生籾を、穀物還流装置16を介してギャバ生成タンク12a内に任意時間還流・循環させる。
Initial operation (reflux control operation):
The ginger in the GABA generating tank 12a is sequentially fed by driving the discharge feeding valve 12c while being humidified and heated by the humidified hot air, and the GABA generating tank 12a is passed through the switching valve 16a and the grain recirculation device 16. Is refluxed in. At this time, (see condition table in FIG. 5) as a wealth Kajo matter of raw paddy γ- aminobutyric acid, wherein the GABA generate the temperature of the humidified warm air to ventilation raw paddy tank 12a about 70 ° C. at 90% humidity It is preferable to set it to ˜98% and to set the ventilation time (retention time in the tank) to at least 2 hours. For this reason, in the initial operation immediately after the start of operation, in order to give at least 2 hours of ventilation time (residence time in the tank) to the ginger accumulated in the lower part of the GABA generation tank 12a, the size of the GABA generation tank 12a and / or Alternatively, the ginger is circulated and circulated in the GABA generation tank 12a through the grain recirculation device 16 for an arbitrary time while taking into consideration the feeding speed and the like (flowing speed ).

γ−アミノ酪酸の化:
γ−アミノ酪酸は、籾内部の玄米に水を付加することで主に胚芽内に蓄積されたグルタミン酸が脱炭酸酵素によって転換・生成されるものでありγ−アミノ酪酸の生成に適した温度・湿度の空気による玄加湿により胚芽中富化(生成)され胚乳部に移行する
wealth of γ- amino butyric acid:
γ- amino butyric acid, by adding a water content in the rice inside the rice, mainly are those stored glutamate in the germ is converted, generated by decarboxylase, suitable for the production of γ- aminobutyric acid was in the germ is enriched (generated) by the by that brown rice of humidification to the air temperature and humidity, and the process proceeds to the endosperm part.

連続運転:
前記初期運転を終えると、続いて、連続運転を行う。すなわち前記初期運転によってギャバ生成タンク12aで2時間の循環通風を終え、このとき水分が約27%となった生籾(γ−アミノ酪酸が富化した籾)を排出繰出バルブ12cから順次排出し、事前に切換えた前記切換弁16aを介して前記循環型穀物乾燥機11に搬送供給し、乾燥運転を開始する。その一方で、ギャバ生成タンク12aへの新たな生籾の搬送供給を再開し、γ−アミノ酪酸の富化を終えて排出された分だけ貯留タンク8aから生籾原料をギャバ生成タンク12aに供給し、γ−アミノ酪酸が富化した生籾の生産を連続して行い1回の流下でγ−アミノ酪酸を富化させる。このとき、新たに供給された生籾原料が前記条件の加湿温風の通風を2時間受けることができるように各繰出しバルブ12hの駆動スピード調整され、これによって時間当たり約20トンのギャバ富化した生籾を製造することができる以上がステップ3
Continuous operation:
When the initial operation is completed, continuous operation is subsequently performed. That is, after the circulation-air for 2 hours at GABA produced tank 12a by the initial operation, sequentially raw paddy moisture at this time was about 27% (paddy of γ- aminobutyric acid-enriched) from the discharge unwinding valve 12c It is discharged and conveyed to the circulating grain dryer 11 through the switching valve 16a switched in advance, and the drying operation is started. Meanwhile, it resumes new raw paddy conveying feed to GABA generation tank 12a, by the amount discharged after enrichment of γ- aminobutyric acid storage tank 8a or al raw rice material GABA generation tank 12a the test feed, .gamma.-aminobutyric acid causes enrichment of .gamma.-aminobutyric acid in a falling once performed continuously producing raw rice enriched. At this time, adjusts the new driving speed of the feed valve 12 h as the air humidification warm air can receive 2 h of the supplied raw rice material is the condition, thereby, of about 20 ton time A gab enriched ginger can be produced ( step 3 above ) .

なお、本発明は籾を対象としているので、前記加湿温風の通風条件が「加湿温風を温度約70℃で湿度90%〜98%、かつ、通風時間(タンク内滞留時間)を少なくとも2時間」であっても玄米の場合における胴割れ及びその後工程での砕米が生じることなく、効率よくγ−アミノ酪酸が富化した生籾を大量に生産することができる。 In addition, since the present invention is directed to the soot, the ventilation condition of the humidified warm air is “the humidified warm air is about 70 ° C. and the humidity is 90% to 98%, and the ventilation time (retention time in the tank) is at least 2. even time ", without broken rice occurs in barrel cracking and subsequent steps in the case of brown rice, efficiently γ- amino butyric Ru can produce a large amount of raw rice enriched.

こうして、前記循環型穀物乾燥機11のタンク内にγ−アミノ酪酸の富化を終えた生籾が搬送されて所定量が張り込まれると、循環型穀物乾燥機11は乾燥運転を開始して、水分が約17%の、いわゆる半籾になるまで生籾を熱風通風しながら循環乾燥を行う(ステップ4)。 Thus, a predetermined amount raw rice is conveyed finishing the enrichment of γ- aminobutyric acid in the tank of the circulation type grain dryer 11 is Harikoma, recycling-Grain dryer 11 starts the drying operation Then, the ginger is circulated and dried with hot air until it becomes a so-called semi- dry rice cake having a water content of about 17% (step 4).

前記循環型穀物乾燥機11において乾燥が終わると、籾を該循環型穀物乾燥機11から排出し前記穀物貯蔵サイロ19に搬送して一旦貯留する(ステップ5)。そして、前記循環型穀物乾燥機11の空き状況をみながら、前記半乾籾を前記循環型穀物乾燥機11に搬送して水分約15%まで仕上げ乾燥を行い、仕上げ乾燥終了後は、再度、前記穀物貯蔵サイロ19に搬送して貯蔵する(ステップ6,ステップ7)。 When drying is completed in said circulating grain dryer 11, to discharge rice from the circulating grain dryer 11, temporarily stored in the transport to the grain storage silo 19 (Step 5). Then, while observing the availability of the circulation type grain dryer 11, the semi-dried rice cake is transported to the circulation type grain dryer 11 and finish-dried to a water content of about 15%. It is transported and stored in the grain storage silo 19 (steps 6 and 7).

上記実施例1のようにしてγ−アミノ酪酸を富化した籾について、籾摺りを行った玄米のγ−アミノ酪酸の含有量(GABA値)を測定したところ、通常の玄米では2.0mg/100gd.bであるものが、本実施例による玄米では18mg/100gd.b、それを無洗米処理した米粒では14mg/100gd.bの各含有量であり、γ−アミノ酪酸の含有量が増加していることが確認された。また、本実施例による玄米又は無洗米を炊飯した米飯は、食味が良好であるが、いわゆる籾臭については多少あった(図5参照)。 About the koji enriched with γ-aminobutyric acid as in Example 1 above, the content of γ-aminobutyric acid (GABA value) of brown rice subjected to mashing was measured, and 2.0 mg / 100 gd for normal brown rice . b is 18 mg / 100 gd. for brown rice according to this example . b, 14mg / 100gd in it the pre-washed rice processing and rice grains. It was each content of b, and it was confirmed that content of ( gamma) -aminobutyric acid is increasing. In addition, the cooked rice cooked with brown rice or non-washed rice according to the present example had good taste, but there was some so-called bad smell (see FIG. 5).

実施例2(半乾籾からγ−アミノ酪酸を富化する運転制御プログラム):
実施例2の説明において、前記実施例1と重複するステップの説明は省略する。荷受ホッパー2荷受された高水分籾(例えば水分24%)は、順次、循環型穀物乾燥機11に搬送されて張り込まれ、水分が約17%の半籾になるまで循環乾燥される(ステップ1、ステップ2)。次いで、乾燥が終了した半乾籾は、前記循環型穀物乾燥機11から排出・搬送され、前記穀物貯蔵サイロ19に貯留される。このようにして、前記荷受された全ての高水分籾を複数の循環型穀物乾燥機11によって半乾籾状態(水分約17%)まで乾燥し、前記穀物貯蔵サイロ19に一旦貯留する(ステップ3)。
Example 2 (Operation control program for enriching γ-aminobutyric acid from semi-dry rice cake):
In the description of the second embodiment, the description of the same steps as those in the first embodiment is omitted. High moisture rice which is consignee to consignee hopper 2 (e.g. moisture 24%) are sequentially are Harikoma is conveyed in circulating grain dryer 11 is circulated dried until the water content reached semi dry rice about 17% (Step 1, Step 2). Then, Han'inuimomi drying has been completed is discharged and conveyed from said circulating grain dryer 11, is stored in the grain storage silos 19. In this way, the dried consignee has been all high moisture rice by a plurality of circulating grain dryer 11 to the semi-dry paddy state (moisture content about 17%), once stored in the grain storage silo 19 (Step 3 ).

次いで、前記穀物貯蔵サイロ19に貯留した半乾籾を順次、ギャバ生成タンク12aに供給する。γ−アミノ酪酸を富化させる条件は、前記実施例1のステップ3と同じく、前記ギャバ生成タンク12a内の籾に通風する加湿温風を温度約70℃で湿度90%〜98%とし、かつ、通風時間(タンク内滞留時間)を少なくとも2時間とする(図5の条件表参照)。そして、前記実施例1と同様に初期運転(還流制御運転)とこれに続く連続運転とを行って、時間当たり20トンのγ−アミノ酪酸が富化した生籾を製造することができるステップ4)。 Then, sequentially supplied to the GABA generating tank 12a a semi dry rice were stored in the grain storage silos 19. The conditions for enriching γ-aminobutyric acid are the same as in Step 3 of Example 1, with the humidified warm air passing through the basket in the GABA generation tank 12a at a temperature of about 70 ° C. and a humidity of 90% to 98%, and The ventilation time (retention time in the tank) is at least 2 hours (see the condition table in FIG. 5). Then, as in Example 1, the initial operation (reflux control operation) and the subsequent continuous operation can be performed to produce ginger enriched with 20 tons of γ-aminobutyric acid per hour ( step) 4).

次いで、前記ステップ4でγ−アミノ酪酸の富化された籾(水分約20%)を順次複数の循環型穀物乾燥機11に搬送供給して仕上げ水分の約15%まで乾燥し、乾燥を終えた籾は前記穀物貯蔵サイロ19に貯留する(ステップ5、ステップ6) Then dried to about 15% of the finished moisture transported supplying enriched rice of γ- aminobutyric acid in step 4 (water content about 20%) in the circulating grain dryer 11 forward Tsugifuku number, dried The rice cake that has finished is stored in the grain storage silo 19 (steps 5 and 6).

上記実施例2のようにしてγ−アミノ酪酸が富化した籾について、籾摺りを行った玄米のγ−アミノ酪酸の含有量(GABA値)を測定したところ、通常の玄米では2.0mg/100gd.bであるものが、本実施例による玄米では18mg/100gd.b、それを無洗米処理にした米粒では14mg/100gd.bの各含有量であり、本実施例によりγ−アミノ酪酸の含有量が増加していることが確認された。また、本実施例による玄米又は無洗米を炊飯した米飯は、食味が良好であり、いわゆる籾臭については気にならない程度であった(図5参照)。 As for the koji enriched with γ-aminobutyric acid as in Example 2 above, the content of γ-aminobutyric acid (GABA value) of the brown rice subjected to mashing was measured, and 2.0 mg / 100 gd for normal brown rice. . b is 18 mg / 100 gd. for brown rice according to this example . b, 14mg / 100gd is a grain of rice, which made it to the non-bran rice processing. It was each content of b, and it was confirmed by this Example that content of (gamma) -aminobutyric acid is increasing. Moreover, the cooked rice which cooked the brown rice or the non-washed rice by a present Example had the favorable taste, and was a grade which is not worried about what is called a bad smell (refer FIG. 5).

なお、上記実施例2における前記加湿温風の通風条件(加湿温風を温度約70℃で湿度90%〜98%、かつ、通風時間(タンク内滞留時間)を少なくとも2時間)については、前記実施例1で述べたように、籾であるが故に胴割れが生じることなく、効率よくγ−アミノ酪酸を化することができたIn addition, regarding the ventilation conditions of the humidified warm air in Example 2 above (the humidified warm air has a temperature of about 70 ° C. and a humidity of 90% to 98%, and the ventilation time (retention time in the tank) is at least 2 hours) as described in example 1, a is but without cylinder cracking occurs because rice was efficiently γ- aminobutyric acid can be enriched.

実施例3(乾燥籾からギャバ富化する運転制御プログラム):
実施例3の説明において、前記実施例1及び実施例2と重複するステップの説明は省略する。荷受ホッパー2荷受された高水分籾(例えば水分24%)は、順次、循環型穀物乾燥機11に搬送されて張り込まれ、水分が約15%(仕上げ乾燥籾)になるまで循環乾燥される(ステップ1、ステップ2)
Example 3 (Operation control program for enriching from dried rice cake):
In the description of the third embodiment, the description of the same steps as those in the first and second embodiments is omitted. High moisture rice which is consignee to consignee hopper 2 (e.g. moisture 24%) are sequentially are Harikoma is conveyed in circulating grain dryer 11 is circulated dried to a moisture content of about 15% (final dry rice) (Step 1, Step 2) .

次いで、乾燥が終了した仕上げ乾燥籾、順次、ギャバ生成タンク12aに供給する。γ−アミノ酪酸を富化する条件は、前記ギャバ生成タンク12a内の籾に通風する加湿温風を温度約70℃で湿度90%〜98%とし、かつ、通風時間(籾のタンク内滞留時間)を少なくとも4時間とする(図5の条件表参照)。そして、前記実施例1と同様に初期運転(還流制御運転)と連続運転とを行って、時間当たり20トンのギャバ富化した生籾を製造することができるステップ3)。
なお、乾燥が終了した仕上げ乾燥籾は、一旦前記循環型穀物乾燥機11から排出・搬送して前記穀物貯蔵サイロ19に貯留しておくようにしてもよい。
Then, a finishing drying paddy drying is completed, sequentially supplied to the GABA generation tank 12a. conditions to enrich the γ- amino butyric acid, wherein the rice ventilation to humidify the warm air GABA in product tank 12a and a humidity of 90% to 98% at a temperature of about 70 ° C., and air time (the rice tank residence time ) For at least 4 hours (see the condition table in FIG. 5). Then, the initial operation (reflux control operation) and the continuous operation are performed in the same manner as in the first embodiment, and a ginger enriched with 20 tons per hour can be manufactured ( step 3).
The finished dry rice cake after drying may be temporarily discharged and transported from the circulation type grain dryer 11 and stored in the grain storage silo 19.

次いで、前記ステップ3でγ−アミノ酪酸が富化された籾(水分約18%に上昇)を順次複数の循環型穀物乾燥機11に搬送供給して仕上げ水分の約15%まで乾燥し、乾燥を終えた籾は前記穀物貯蔵サイロ19に貯留する(ステップ4、ステップ5) Then dried γ- aminobutyric acid in step 3 up to about 15 percent of the enriched rice finished moisture (water increases to about 18%) is transported supplied to the circulating grain dryer 11 forward Tsugifuku number The dried rice cake is stored in the grain storage silo 19 (steps 4 and 5).

上記実施例3においγ−アミノ酪酸が富化した籾について、籾摺りを行った玄米のγ−アミノ酪酸の含有量(GABA値)を測定したところ、通常の玄米では2.0mg/100gd.bであるものが、本実施例による玄米では18mg/100gd.b、それを無洗米処理にした精白米粒では14mg/100gd.bの各含有量であり、本実施例においてγ−アミノ酪酸の含有量が増加していることが確認された。また、本実施例による玄米又は無洗米を炊飯した米飯は、食味が良好であり、いわゆる籾臭については気にならない程度であった(図5参照)。 For rice which γ- aminobutyric acid Te Example 3 above smell enriched, it was measured for the content of γ- aminobutyric acid brown rice subjected to hulling (GABA value), the normal brown rice 2.0mg / 100gd. b is 18 mg / 100 gd. for brown rice according to this example . b, 14 mg / 100 gd. of polished rice grains obtained by washing it with no washing It was each content of b, and it was confirmed that the content of γ-aminobutyric acid is increased in this example . Moreover, the cooked rice which cooked the brown rice or the non-washed rice by a present Example had the favorable taste, and was a grade which is not worried about what is called a bad smell (refer FIG. 5).

なお、上記実施例3における加湿温風の通風条件(加湿温風を温度約70℃で湿度90%〜98%、かつ、通風時間(タンク内滞留時間)を少なくとも4時間)については、前記実施例1及び実施例2で述べたように、籾であるが故に胴割れが生じることなく、効率よくγ−アミノ酪酸が富化した籾を大量に生産することができたIn addition, the ventilation conditions of the humidified warm air in Example 3 (the humidified warm air is about 70 ° C. and the humidity is 90% to 98%, and the ventilation time (retention time in the tank) is at least 4 hours) are as described above. as described in example 1 and example 2, a is but without cylinder cracking occurs because rice efficiently γ- aminobutyric acid was able to produce a large amount of rice enriched.

前記実施例1、実施例2及び実施例3における大規模穀物乾燥調製貯蔵施設(共同乾燥調製施設)1においてγ−アミノ酪酸を化した大量の籾は穀物貯蔵サイロに備蓄されるものであり、需要に応じて籾摺り・精選等の処理を施して適宜出荷することができるものである。よって、γ−アミノ酪酸を富化したお米をスムーズかつ迅速に市場に供給することができる。また、本発明によるγ−アミノ酪酸が富化した籾は、そのまま家畜等の飼料としても使用することができる。 Example 1, a large amount of rice was turned into wealth γ- aminobutyric acid in Example extensive grain dry preparations storage facilities in 2 and Example 3 (co-dried preparation facility) 1 is intended to be stockpiled grain storage silos Depending on demand, it can be shipped as appropriate after being subjected to processing such as hulling and selection. Therefore, rice enriched with γ-aminobutyric acid can be supplied to the market smoothly and quickly. Moreover, the cocoon enriched with γ-aminobutyric acid according to the present invention can be used as it is as feed for livestock.

本発明における前記実施例1(生籾からギャバ富化)、実施例2(半乾籾からギャバ富化)及び実施例3(仕上げ乾燥籾からギャバ富化)に関しては、実施例2を採用するのがより好ましい。その理由として、実施例2は、荷受籾を一旦半乾燥して貯蔵可能にした後にγ−アミノ酪酸の富化処理をするので、共同乾燥調製施設の荷受工程において荷受待ち等の稼働ロスを最小限にできるほか、米飯品質において比較的籾臭が気にならない故である。 The example of the present invention 1 (raw rice from GABA enrichment), for example 2 (half dry rice from GABA enrichment) and Example 3 (GABA enriched from finishing drying rice), to adopt a second embodiment Is more preferable. The reason is that the second embodiment, after the storable and once semidry the consignee paddy γ- aminobutyric acid Tomikasho sense the to Runode, co dried preparation facility Te consignee step smell of such load受待Chi in addition to possible operating loss to a minimum, relatively rice odor is Iyue such not mind in the cooked rice quality.

なお、本発明は、前記実施例1、実施例2及び実施例3を適宜切換えて実施できるように中央制御部24において制御するようにすることもできる。これにより、収穫シーズン中の共同乾燥調製施設の荷受ピーク時期の実施形態と、荷受ピーク時期でない時期の実施形態を任意に切換えて、共同乾燥調製施設の稼働率を維持しつつ効率的にγ−アミノ酪酸が富化したお米を大量生産することが可能である。 The present invention can also be in Example 1, to control the central control unit 24 so as Example 2及 beauty Example 3 can be carried out appropriately switched. As a result, it is possible to arbitrarily switch between the embodiment at the peak receiving period of the joint drying preparation facility during the harvest season and the embodiment at a period other than the peak receiving period, and efficiently γ while maintaining the operating rate of the joint drying preparation facility. -Mass production of rice enriched with aminobutyric acid is possible.

昨今注目されているγ−アミノ酪酸が富化した米を効率的に大量生産し、市場に対して迅速な供給が可能になる。また、昨今のトウモロコシなどの輸入家畜飼料の価格の高騰化を背景に、トウモロコシなどの家畜飼料の一部に代わるものを日本国内において大量生産することができる。 In recent years attention has been and γ- amino butyric acid is efficient mass production of rice enriched, it is possible to quickly supplied to the market. In addition, with the recent increase in the price of imported livestock feed such as corn, a substitute for a part of livestock feed such as corn can be mass-produced in Japan.

1 ギャバ富化穀物の製造設備(大規模穀物乾燥調製貯蔵施設(共同乾燥調製施設))
2 荷受ホッパー(荷受部)
3 昇降機
4 粗選機(粗選部)
5 計量機
6 昇降機
7 切換弁
8 生籾貯留通風タンク設備
8a 貯留タンク
8b 排出搬送コンベヤー
8c 供給搬送コンベヤー
8d 送風機
9 昇降機
10 切換弁
11 循環型穀物乾燥機(乾燥部)
12 ギャバ生成装置(ギャバ生成部)
12a ギャバ生成タンク
12b 原料籾供給口
12c 排出繰出バルブ
12d 送風管
12e 排気管
12f 加湿温風供給風胴
12g 排風胴
12h 繰出バルブ
13 加湿温風生成供給装置
13a 送風ファン
13b 熱交換器
13c 蒸気混合器
13d 水器
14 吸引ファン
15 ギャバ生成装置(他の実施例)
15a 穀物流下層
15b 多孔壁(外側部)
15c 多孔壁(内側部)
15d 傾斜板
15e 加湿温風供給風胴
15f 排風胴
15g 配管
15h 繰出バルブ
16 穀物還流装置
16a 切換弁
17 昇降機
18 上部搬送供給コンベヤー
19 穀物貯蔵サイロ(貯蔵部)
20 下部搬出コンベヤー
21 切換弁
22 昇降機
23 籾摺精選工程(精選出荷部)
24 中央制御部
1 Gabba-enriched grain production facility (large-scale grain drying preparation storage facility (joint drying preparation facility))
2 Receiving hopper (receiving part)
3 Elevator 4 Coarse selector (Coarse selector)
DESCRIPTION OF SYMBOLS 5 Weighing machine 6 Elevator 7 Switching valve 8 Ginger storage ventilation tank equipment 8a Storage tank 8b Discharge conveyance conveyor 8c Supply conveyance conveyor 8d Blower 9 Elevator 10 Switching valve 11 Circulation type grain dryer (drying part)
12 Gabba generator (Gabba generator)
12a Gabba generation tank 12b Raw material supply port 12c Discharge feed valve 12d Blow pipe 12e Exhaust pipe 12f Humidified hot air supply wind tunnel 12g Exhaust wind drum
12h feeding valve 13 humidified warm air generator supplying device 13a blower fan 13b heat exchanger 13c steam mixer 13d dewatering device 14 suction fan 15 GABA generator (Other embodiments)
15a Grain flowing layer 15b Perforated wall (outer part)
15c porous wall (inner side)
15d Inclined plate 15e Humidification hot air supply wind tunnel 15f Exhaust wind drum 15g Piping 15h Feeding valve 16 Grain recirculation device 16a Switching valve 17 Elevator 18 Upper conveyance supply conveyor 19 Grain storage silo (storage part)
20 Lower carry-out conveyor 21 Switching valve 22 Elevator 23 Shackle selection process (selection shipping department)
24 Central control unit

Claims (7)

収穫後の籾を荷受する荷受部(2)、粗選部(4)、乾燥部(11)、貯蔵部(19)、精選出荷部(23)及び前記各部の駆動の監視・制御を行う中央制御部(24)を有する共同乾燥調製施設(1)において、
加湿温風を通風して前記籾に含まれるγ−アミノ酪酸の含有量を富化させるギャバ生成部(12,15)を含み、
前記ギャバ生成部(12,15)は、上部に籾供給口(12b)を設ける一方、下部に排出操出バルブ(12c)を設けてなるギャバ生成タンク(12a)を有し、
前記排出操出バルブ(12c)の下方には切換弁(16a)が配設されるとともに、該切換弁(16a)の一方側が穀物還流装置(16)を介して前記ギャバ生成タンク(12a)の前記籾供給口(12b)、他方側が前記乾燥部(11)にそれぞれ接続されてなり、
前記籾供給口(12b)から前記ギャバ生成タンク(12a)内に所定量の籾を供給し、該籾の供給を停止した後、前記排出操出バルブ(12c)を駆動して前記籾を順次排出し、該排出した籾を前記穀物還流装置(16)を介して前記籾供給口(12b)から前記ギャバ生成タンク(12a)内に還流・循環させながら、当該ギャバ生成タンク(12a)内で前記籾に加湿温風を通風して前記籾に含まれるγ−アミノ酪酸の含有量を富化させる初期運転を行い、
前記初期運転の後、前記ギャバ生成タンク(12a)の前記排出操出バルブ(12c)を駆動してγ−アミノ酪酸の含有量を富化させた籾を順次排出し、当該籾を前記乾燥部(11)に供給するとともに、前記籾供給口(12b)から前記排出された籾の量だけ新たな籾を連続的に供給し、当該ギャバ生成タンク(12a)内で前記新たな籾に加湿温風を通風して前記ギャバ生成タンク(12a)内の1回の流下により前記新たな籾に含まれるγ−アミノ酪酸の含有量を富化させる連続運転に移行する共同乾燥調製施設。
A receiving section (2) for receiving the harvested straw, a coarse selection section (4), a drying section (11), a storage section (19), a selective shipping section (23), and a center for monitoring and controlling the driving of each section In the joint drying preparation facility (1) having the control unit (24),
Humidified hot air ventilation to look contains GABA generator to enrich the content of γ- aminobutyric acid contained in the rice (12, 15) and,
The gap generating section (12, 15) has a gap generating tank (12a) provided with a straw supply port (12b) at the top and a discharge operation valve (12c) at the bottom,
A switching valve (16a) is disposed below the discharge operation valve (12c), and one side of the switching valve (16a) is connected to the gap generating tank (12a) via a grain recirculation device (16). The basket supply port (12b) and the other side are connected to the drying section (11), respectively.
A predetermined amount of soot is supplied from the soot supply port (12b) into the gap generating tank (12a), and the supply of the soot is stopped, and then the discharge operation valve (12c) is driven to sequentially supply the soot. The discharged soot is recirculated and circulated through the grain recirculation device (16) from the koji supply port (12b) into the gabba generating tank (12a), and is then returned in the gabber generating tank (12a). Performing an initial operation of enriching the content of γ-aminobutyric acid contained in the cocoon by passing humidified warm air through the cocoon,
After the initial operation, the discharge operation valve (12c) of the GABA generation tank (12a) is driven to sequentially discharge the soot enriched in the content of γ-aminobutyric acid, and the soot is discharged into the drying section. (11) and continuously supplying new soot by the amount of the soot discharged from the soot supply port (12b), and humidifying the new soot in the gap generating tank (12a) A joint drying preparation facility that moves to a continuous operation in which the content of γ-aminobutyric acid contained in the new soot is enriched by a single flow of air in the GABA generation tank (12a) through ventilation .
前記ギャバ生成部(12)は、前記籾の張り込みを可能にした上部に前記籾供給口(12b)を有する前記ギャバ生成タンク(12a)と、該ギャバ生成タンク(12a)内に横設した多孔壁からなる複数の送風管(12d)と、該複数の送風管(12d)の周囲に平行に横設するとともに、前記送風管(12d)の多孔壁から噴出されて前記籾に通風して機外に排気する多孔壁からなる排気管(12e)と、前記送風管(12d)の供給側に接続する当該送風管(12d)に加湿温風を供給する加湿温風生成供給装置(13)と、前記排気管(12e)の排出側に接続して前記排風を吸引・排風する吸引ファン(14)と、前記ギャバ生成タンク(12a)の下部に設けて前記籾を順次排出する前記排出繰出バルブ(12c)とを有してなる請求項1に記載の共同乾燥調製施設。 The GABA generator (12), and the GABA generation tank chromatic said rice supply port (12b) at the top that allow the paddy imposition (12a), and laterally disposed to the GABA generation tank (12a) in A plurality of air pipes (12d) each having a porous wall and a plurality of air pipes (12d) arranged in parallel around the air pipes (12d), and blown out from the porous wall of the air pipe (12d) and passed through the eaves. An exhaust pipe (12e) composed of a porous wall that exhausts outside the machine, and a humidified hot air generating and supplying device (13) for supplying humidified hot air to the blow pipe (12d) connected to the supply side of the blow pipe (12d) A suction fan (14) that is connected to a discharge side of the exhaust pipe (12e) and sucks and exhausts the exhaust air, and is provided at a lower portion of the gap generation tank (12a) to sequentially exhaust the soot. A discharge delivery valve ( 12c) The joint drying preparation facility according to claim 1. 前記連続運転は、前記荷受部(2)で荷受した籾を粗選部(4)を介して乾燥部(11)に供給し、該乾燥部(11)で仕上げ水分まで乾燥した後に貯蔵部(19)に一旦貯蔵した後、貯蔵部(19)から仕上げ乾燥籾を前記ギャバ生成部(12)に連続的に供給してγ−アミノ酪酸富化の処理を行ない、この後、前記乾燥部(11)に供給して再度仕上げ水分まで乾燥して貯蔵部(19)に貯蔵する請求項1又は2に記載の共同乾燥調製施設。 In the continuous operation, the basket received in the cargo receiving part (2) is supplied to the drying part (11) through the coarse selection part (4), dried to the final moisture in the drying part (11), and then stored in the storage part ( 19), the finished dried soot is continuously supplied from the storage unit (19) to the GABA generating unit (12) to be enriched with γ-aminobutyric acid, and then the drying unit ( The joint drying preparation facility according to claim 1 or 2, which is supplied to 11), dried again to a final moisture, and stored in the storage unit (19). 前記連続運転は、前記荷受部(2)で荷受した籾を粗選部(4)を介して乾燥部(11)に供給し、該乾燥部(11)で半乾状態まで乾燥した後に貯蔵部(19)に一旦貯蔵した後、貯蔵部(19)から半乾状態の籾を前記ギャバ生成部(12)に連続的に供給してγ−アミノ酪酸富化の処理を行ない、この後、前記乾燥部(11)に供給して仕上げ水分まで乾燥して貯蔵部(19)に貯蔵する請求項1又は2に記載の共同乾燥調製施設。 In the continuous operation, the storage unit that receives the soot received by the cargo receiving unit (2) to the drying unit (11) through the coarse selection unit (4), is dried to a semi-dry state by the drying unit (11). (19) Once stored in (19), the semi-dried rice cake is continuously supplied from the storage unit (19) to the GABA generating unit (12) to perform γ-aminobutyric acid enrichment, The joint drying preparation facility according to claim 1 or 2 , wherein the drying part (11) is supplied to the finished part to be dried and stored in the storage part (19). 前記連続運転は、前記荷受部(2)で荷受した生籾を粗選部(4)を介して生籾を通風貯留する生籾貯留通風タンク設備(8)に一旦貯留した後、前記生籾貯留通風タンク設備(8)から生状態の籾を前記ギャバ生成部(12)に連続的に供給してγ−アミノ酪酸富化の処理を行ない、この後、前記乾燥部(11)に供給して仕上げ水分まで乾燥して貯蔵部(19)に貯蔵する請求項1又は2に記載の共同乾燥調製施設。 In the continuous operation, after the ginger received at the cargo receiving section (2) is temporarily stored in the ginger storage ventilation tank facility (8) for storing the ginger through the coarse selection section (4), the ginger is stored. Raw soot from the storage ventilation tank facility (8) is continuously supplied to the GABA generating section (12) to perform the γ-aminobutyric acid enrichment process, and then supplied to the drying section (11). The joint drying preparation facility according to claim 1 or 2 , wherein the facility is dried to a final moisture and stored in the storage unit (19). 前記籾に通風する加湿温風は、温度約70℃、湿度90%〜98%であり、前記加湿温風の通風時に前記ギャバ生成タンク(12a)内で籾が滞留する時間を、半乾状態の籾又は生状態の籾の場合は少なくとも2時間、仕上げ乾燥籾の場合は少なくとも4時間とする請求項2乃至5のいずれかに記載の共同乾燥調製施設。 The humidified warm air passing through the soot has a temperature of about 70 ° C. and a humidity of 90% to 98%, and the time during which soot stays in the GABA generation tank (12a) when the humidified warm air is vented is semi-dry. The co-drying preparation facility according to any one of claims 2 to 5, wherein at least 2 hours are used in the case of cocoons or raw cocoons, and at least 4 hours in the case of finished dry cocoons . 前記中央制御部(24)は、仕上げ水分まで乾燥した籾からγ−アミノ酪酸を富化する処理、半乾状態の籾からγ−アミノ酪酸を富化する処理、及び生状態の籾からγ−アミノ酪酸を富化する処理を適宜切り換えて実施する請求項1乃至6のいずれかに記載の共同乾燥調製施設。   The central control unit (24) includes a process of enriching γ-aminobutyric acid from cocoons dried to finish moisture, a process of enriching γ-aminobutyric acid from semi-dried cocoons, and γ- from raw cocoons. The joint drying preparation facility according to any one of claims 1 to 6, wherein the treatment for enriching aminobutyric acid is appropriately switched.
JP2009094786A 2009-04-09 2009-04-09 Co-drying preparation facility with GABA generator Active JP5499510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009094786A JP5499510B2 (en) 2009-04-09 2009-04-09 Co-drying preparation facility with GABA generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009094786A JP5499510B2 (en) 2009-04-09 2009-04-09 Co-drying preparation facility with GABA generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012072614A Division JP5360255B2 (en) 2012-03-27 2012-03-27 Method for enriching γ-aminobutyric acid contained in grains

Publications (3)

Publication Number Publication Date
JP2010243119A JP2010243119A (en) 2010-10-28
JP2010243119A5 JP2010243119A5 (en) 2012-05-17
JP5499510B2 true JP5499510B2 (en) 2014-05-21

Family

ID=43096298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009094786A Active JP5499510B2 (en) 2009-04-09 2009-04-09 Co-drying preparation facility with GABA generator

Country Status (1)

Country Link
JP (1) JP5499510B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6362541B2 (en) * 2011-12-20 2018-07-25 ブライ・エアー・アジア・ピーヴイティー・リミテッド Method and apparatus for moisture determination and control
JP6089771B2 (en) * 2013-02-25 2017-03-08 株式会社サタケ Grain heating and humidifying device
JP6089925B2 (en) * 2013-04-24 2017-03-08 株式会社サタケ γ-aminobutyric acid enrichment equipment
JP6468481B2 (en) * 2014-12-25 2019-02-13 株式会社サタケ Rice grain milling method and polished rice obtained by the method
JP6528453B2 (en) 2015-02-23 2019-06-12 株式会社サタケ Grain γ-aminobutyric acid enrichment device
CN105767857A (en) * 2016-03-09 2016-07-20 佐竹机械(苏州)有限公司 Enrichment device and enrichment method of gamma-aminobutyric acid in plant fruits
CN113508883A (en) * 2021-06-24 2021-10-19 五常葵花阳光米业有限公司 Production method of Wuchang rice rich in gamma-aminobutyric acid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086227Y2 (en) * 1989-10-03 1996-02-21 ヤンマー農機株式会社 Dryer
JP4409879B2 (en) * 2003-08-04 2010-02-03 株式会社ファンケル Method for enriching γ-aminobutyric acid and grains obtained by the method
JP2008000639A (en) * 2006-06-20 2008-01-10 Ando Toshiharu Manufacturing method for high functional rice
JP5061970B2 (en) * 2007-05-17 2012-10-31 株式会社サタケ Grain having increased content of functional ingredient and method for producing the same

Also Published As

Publication number Publication date
JP2010243119A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP5499510B2 (en) Co-drying preparation facility with GABA generator
JP2010243119A5 (en)
JP4783477B2 (en) Nutrient-enriched grain production device and grain drying facility equipped with the same
JPS6024396B2 (en) grain dryer
US4139952A (en) Apparatus and method for drying seed corn by burning cobs
WO2006066096A2 (en) Continuous horizontal grain drying system
US9109834B2 (en) High performance grain dryer
JP5360255B2 (en) Method for enriching γ-aminobutyric acid contained in grains
KR102004669B1 (en) Method for drying grain
US12018888B2 (en) Grain drying
JP4848549B2 (en) Method and apparatus for drying food waste
JP2018013323A (en) Grain drying method
JP2009027950A (en) Method for producing parboiled rice
JP2010101535A (en) Circulation type grain drying machine
JP5664676B2 (en) Method for producing whole grain rice flour and whole grain rice flour obtained by the method
RU2471558C2 (en) Method of automatic control over hydrothermal oats grain treatment in production of oat flour
JP2009210184A (en) Grain drying machine
JP5034695B2 (en) Circulating grain dryer
KR102418885B1 (en) Machine for drying forage and method for drying forage using the same
RU2709712C1 (en) Method for drying grain material
THANT et al. Comparative Study of Re-Circulating Grain Dryer and Open Sun Dying
Thant et al. Economic investigation of a re-circulating grain dryer
JP7073900B2 (en) Grain drying method
CN105767857A (en) Enrichment device and enrichment method of gamma-aminobutyric acid in plant fruits
JP4324837B2 (en) Organic waste treatment method and treatment system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120327

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5499510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250