JP5499149B2 - Exhaust gas treatment method - Google Patents

Exhaust gas treatment method Download PDF

Info

Publication number
JP5499149B2
JP5499149B2 JP2012278971A JP2012278971A JP5499149B2 JP 5499149 B2 JP5499149 B2 JP 5499149B2 JP 2012278971 A JP2012278971 A JP 2012278971A JP 2012278971 A JP2012278971 A JP 2012278971A JP 5499149 B2 JP5499149 B2 JP 5499149B2
Authority
JP
Japan
Prior art keywords
gas
filling cylinder
exhaust gas
detection means
purge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012278971A
Other languages
Japanese (ja)
Other versions
JP2013066892A (en
Inventor
良夫 石原
英晴 長谷川
薫 迫田
克昌 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2012278971A priority Critical patent/JP5499149B2/en
Publication of JP2013066892A publication Critical patent/JP2013066892A/en
Application granted granted Critical
Publication of JP5499149B2 publication Critical patent/JP5499149B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、排ガス処理方法に関し、詳しくは、半導体装置、平板ディスプレイ、太陽電池、磁性体薄板等の製造において用いられる製造設備から排出される排ガス中の有害ガス成分を除去する排ガス処理方法に関する。   The present invention relates to an exhaust gas treatment method, and more particularly, to an exhaust gas treatment method for removing harmful gas components in exhaust gas discharged from manufacturing equipment used in the manufacture of semiconductor devices, flat displays, solar cells, magnetic thin plates and the like.

半導体集積回路、液晶パネル、太陽電池及びそのパネル、磁気ディスク等の半導体製品を製造する工程では、不活性ガス雰囲気中でプラズマを発生させ、該プラズマによって半導体製品の各種処理を行う装置が広く用いられている。半導体製造設備から排出される排ガスには、前記製造のプロセスがエッチングの場合には、希釈ガスと共に、CF、C、SiF等のパーフロロカーボン系の反応生成物が含まれている。このような排ガスに含まれる反応生成物は、地球温暖化係数が高く、そのまま排出できず、無害化処理を行ってから排出する必要がある。 In the process of manufacturing semiconductor products such as semiconductor integrated circuits, liquid crystal panels, solar cells and their panels, magnetic disks, etc., an apparatus that generates plasma in an inert gas atmosphere and performs various processing of semiconductor products using the plasma is widely used. It has been. When the manufacturing process is etching, the exhaust gas discharged from the semiconductor manufacturing facility includes a perfluorocarbon-based reaction product such as CF 4 , C 2 F 6 , and SiF 4 together with a dilution gas. . The reaction product contained in such exhaust gas has a high global warming potential and cannot be discharged as it is, and needs to be discharged after detoxification treatment.

また、前記製造のプロセスが成膜プロセスの場合には、希釈ガスと共に、モノシラン等の金属水素化物系の反応生成物や、その副生成物等が含まれる。これらは、反応性が高いため、安全化のために無害化処理を行ってから排出する必要がある。   In addition, when the manufacturing process is a film forming process, a metal hydride-based reaction product such as monosilane, a by-product thereof, and the like are included together with a dilution gas. Since these are highly reactive, it is necessary to discharge them after detoxification treatment for safety.

さらに、無害化処理を行う前段で前記排ガスが大気圧になることによって高分子の反応生成物も生成され、例えば、SiFは水分子との会合でゲル状高分子固体となるし、CFの前駆体は大気圧下でのガス分子同士の衝突によってポリマーを生成し、排気配管の目詰まりの原因となる。このため、真空ポンプには大量のガスを常に導入して予期せぬ反応物の堆積を防止している。 Furthermore, a polymer reaction product is also produced by the exhaust gas becoming atmospheric pressure before the detoxification treatment, for example, SiF 4 becomes a gel polymer solid by association with water molecules, and CF 4 These precursors generate a polymer by collision of gas molecules under atmospheric pressure, which causes clogging of the exhaust pipe. For this reason, a large amount of gas is always introduced into the vacuum pump to prevent unexpected deposition of reactants.

前記製造設備から排出される排ガスを無害化処理する装置には、液体、例えば、水との接触により無害化する方法や、固体処理剤との反応あるいは固体処理剤への物理的化学的吸着により無害化する方法がある。固体処理剤との反応あるいは吸着により無害化する装置では、その連続無害化処理のために、少なくとも2筒以上の充填筒を持ち、該充填筒を切替操作することにより連続運転を行っている。   The apparatus for detoxifying exhaust gas discharged from the manufacturing facility includes a method of detoxifying by contact with a liquid, for example, water, a reaction with a solid processing agent, or a physical chemical adsorption to a solid processing agent. There is a way to make it harmless. An apparatus that is rendered harmless by reaction or adsorption with a solid processing agent has at least two cylinders for continuous detoxification, and performs continuous operation by switching the filling cylinders.

特に、パーフロロカーボン系反応生成物や金属水素化物系ガスは、その排出規制から固体処理剤への物理的化学的吸着や反応により無害化される方法が採られており、前記反応生成物や金属水素化物系ガスの流量に応じ、適宜、最適設計された充填筒を用いた装置で無害化が図られている。すなわち、反応あるいは物理的化学的吸着を効率よく行うためにガス流速範囲を決定し、導入ガス量からその筒径や筒長さを決定している。さらに、無害化処理が適切に行われているかどうかの判断のため、充填筒の入口部や出口部に有害成分の濃度を検出する検出器を設ける場合もある(例えば、特許文献1参照。)。   In particular, perfluorocarbon-based reaction products and metal hydride-based gases are detoxified by physical chemical adsorption and reaction on solid processing agents due to their emission regulations, and the reaction products and metal In accordance with the flow rate of the hydride-based gas, detoxification is achieved by an apparatus using an appropriately designed filling cylinder. That is, in order to efficiently perform reaction or physical / chemical adsorption, the gas flow rate range is determined, and the cylinder diameter and cylinder length are determined from the amount of introduced gas. Furthermore, in order to determine whether or not the detoxification process is appropriately performed, a detector that detects the concentration of harmful components may be provided at the inlet or outlet of the filling cylinder (see, for example, Patent Document 1). .

一方、前記製造プロセスでは、処理基板を1枚毎に処理する枚葉処理、あるいは、複数枚の処理基板を一定時間処理するバッチ処理によってプロセスを進行させるため、常時反応性ガスが導入されることはなく、その結果、排ガス中の被処理成分ガス濃度(有害成分)は、処理基板の前記製造装置への搬入搬出に応じて常に変動することになる。このため、前記製造プロセスにおける最大流量を基準に装置設計がなされており、処理装置の大型化を招いていた。   On the other hand, in the manufacturing process, a reactive gas is constantly introduced in order to advance the process by single wafer processing for processing each processing substrate or batch processing for processing a plurality of processing substrates for a certain period of time. As a result, the concentration of the component gas to be processed (hazardous component) in the exhaust gas always fluctuates according to the loading / unloading of the processing substrate into / from the manufacturing apparatus. For this reason, the apparatus design is made on the basis of the maximum flow rate in the manufacturing process, resulting in an increase in the size of the processing apparatus.

処理装置の安定運転や処理剤の破過時期の推定のため、排ガス中に含まれる無害化処理対象物質の濃度を測定すると共に排ガスの流量を測定し、測定した濃度と流量とに基づいて排ガスに導入する希釈ガスの導入量を調節して装置設計の最適化をすることが提案されている(例えば、特許文献2参照。)。   To estimate the stable operation of the treatment equipment and the breakthrough time of the treatment agent, measure the concentration of the detoxification target substance contained in the exhaust gas and measure the flow rate of the exhaust gas, and then check the exhaust gas based on the measured concentration and flow rate. It has been proposed to optimize the device design by adjusting the amount of dilution gas introduced into the system (see, for example, Patent Document 2).

また、吸着式処理装置の場合、吸着が終了した時点において吸着帯の約半分の長さに相当する吸着剤が未使用(未吸着)の状態にあるため、未使用の吸着剤分を大目に充填する必要があった。このため、吸着筒の小型化が困難であった。そのため、吸気ダクトを連通自在ならしめる4方切替弁2基により構成される直列吸着装置が提案されている(例えば、特許文献3参照。)。   In addition, in the case of adsorption type processing equipment, the adsorbent corresponding to about half the length of the adsorption band is unused (unadsorbed) at the time when adsorption is completed. Needed to be filled. For this reason, it is difficult to reduce the size of the adsorption cylinder. For this reason, a serial adsorption device composed of two four-way switching valves that allow the intake duct to communicate freely has been proposed (see, for example, Patent Document 3).

同様に、排ガス処理装置を、その使用時には2筒を直列に接続し、何れか一方の吸着筒を交換する際は並列に接続すると共に、その使用時、交換後の吸着筒は他方の吸着筒の下流側になるように構成し、各吸着筒の下部から排ガスを導入し、その上部にインジケータを設け、インジケータが排ガスを検知したときに吸着筒を並列状態にして排ガスを処理することも提案されている(例えば、特許文献4参照。)。   Similarly, when the exhaust gas treatment device is used, two cylinders are connected in series, and when one of the adsorption cylinders is replaced, they are connected in parallel. At the time of use, the exchanged adsorption cylinder is the other adsorption cylinder. It is also proposed that exhaust gas is introduced from the lower part of each adsorption cylinder, an indicator is provided on the upper part, and when the indicator detects the exhaust gas, the adsorption cylinder is placed in parallel when the exhaust gas is processed. (For example, refer to Patent Document 4).

特開2002−228583号公報JP 2002-228583 A 特開2001−353422号公報JP 2001-353422 A 特開昭60−818号公報JP 60-818 特開平4−358516号公報JP-A-4-358516

特許文献2に記載された方法によれば、従来よりは装置小型化の効果は認められるものの、新たに導入するガスの分、被処理ガス量が増えるので、装置のさらなる小型化が困難であった。また、特許文献3に記載されたものでは、吸着筒の再生(脱着)の方法については何ら記載されておらず、実用性に難点があった。さらに、特許文献4に記載されたものにおいても、並列状態にした後のパージ方法については何ら記載がなく、吸着筒交換前に、インジケータ部から下流側の切替弁及び出口部配管に存在する危険な排ガスをどのように処理するのかについては不明である。さらに、インジケータの健全性について確認する手段についても記載されていない。   According to the method described in Patent Document 2, although the effect of reducing the size of the apparatus is recognized as compared with the prior art, the amount of gas to be processed increases by the amount of newly introduced gas, so that it is difficult to further reduce the size of the apparatus. It was. Moreover, in what was described in patent document 3, there was no description about the method of reproduction | regeneration (desorption) of an adsorption cylinder, and there was a difficulty in practicality. Further, even the one described in Patent Document 4 does not describe any purge method after the parallel state, and there is a danger existing in the switching valve and the outlet pipe downstream from the indicator part before the adsorption cylinder is replaced. It is unclear how to treat various exhaust gases. Furthermore, there is no description about means for confirming the soundness of the indicator.

そこで本発明は、充填筒に充填したガス処理剤を有効に使用しつつ確実に排ガスを処理することができ、充填筒の交換の際にも排ガスを系外に放出することなく充填筒を安全に交換することができる排ガス処理方法を提供することを目的としている。   Therefore, the present invention can reliably treat exhaust gas while effectively using the gas treating agent filled in the filling cylinder, and can safely discharge the filling cylinder without releasing the exhaust gas outside the system even when the filling cylinder is replaced. It is an object to provide an exhaust gas treatment method that can be replaced.

上記目的を達成するため、本発明の排ガス処理方法は、ガス処理剤をそれぞれ充填した第1及び第2の2つの充填筒で排ガス中の有害成分を除去処理する排ガス処理方法において、各充填筒は、排ガス経路から導入される排ガス中に存在する有害成分を除去する除去処理工程と、該除去処理工程後に排ガスをパージする排ガスパージ工程と、該排ガスパージ工程後に充填筒を交換する工程と、交換された充填筒内の大気をパージする大気ガス成分パージ工程と、該大気ガス成分パージ工程後に除去処理工程を行っている充填筒から導出されて検出手段を通ったガスを導入して排出する待機工程とを行い、第1の充填筒が除去処理工程を行っているときに、第2の充填筒は、第1の充填筒から導出した処理ガスを検出手段を通して導入した後排出する待機工程を行い、前記検出手段が有害成分を検出すると、第1の充填筒が除去処理工程から排ガスパージ工程に切り換わるとともに、第2の充填筒が待機工程から除去処理工程に切り換わり、第1の充填筒の排ガスパージ工程において導出されるパージガスを前記検出手段を通して除去処理工程中の第2の充填筒に導入し、第2の充填筒が除去処理工程を行っている間に、前記検出手段がパージガス中の有害成分を検出しなくなったときに排ガスパージ工程を終了し、第1の充填筒を新たな充填筒に交換し、続いて、交換した第1の充填筒の大気ガス成分パージ工程を行ってから待機工程に切り換わることを特徴としている。   In order to achieve the above object, the exhaust gas treatment method of the present invention is the exhaust gas treatment method in which harmful components in the exhaust gas are removed by the first and second filling cylinders each filled with a gas treating agent. Is a removal treatment step for removing harmful components present in the exhaust gas introduced from the exhaust gas path, an exhaust gas purge step for purging the exhaust gas after the removal treatment step, a step of replacing the filling cylinder after the exhaust gas purge step, An atmospheric gas component purge process for purging the atmosphere in the replaced filling cylinder, and a gas introduced from the filling cylinder that is performing the removal process after the atmospheric gas component purge process and introduced through the detection means and then discharged. When the first filling cylinder is performing the removal process step, the second filling cylinder introduces the processing gas derived from the first filling cylinder through the detection means and then discharges it. When the detection means detects a harmful component, the first filling cylinder is switched from the removal treatment process to the exhaust gas purging process, and the second filling cylinder is switched from the waiting process to the removal treatment process, While the purge gas derived in the exhaust gas purging process of the first filling cylinder is introduced into the second filling cylinder in the removal processing process through the detection means, the second filling cylinder performs the removal processing process, When the detection means no longer detects harmful components in the purge gas, the exhaust gas purging step is terminated, the first filling cylinder is replaced with a new filling cylinder, and then the atmospheric gas components in the replaced first filling cylinder It is characterized by switching to a standby process after performing a purge process.

本発明によれば、半導体製造設備からの排ガスを、一つの充填筒を通して除去処理を行い、該充填筒から導出した処理ガスを検出手段に導入して有害成分を検出した後、他の充填筒を経由させて系外に排出することができるので、半導体製造設備の工程によって排ガス量や有害成分濃度が変動しても、一つの充填筒で確実に有害成分の除去処理を行うことができ、該一つの充填筒のガス処理剤が破過して処理ガス中に有害成分が検出されたとしても、他の充填筒で除去処理を行えるので、一つの充填筒のガス処理剤を有効に使用することができ、これによってガス処理剤の無駄を無くして充填筒を含む排ガス処理装置の小型化を図ることができる。   According to the present invention, the exhaust gas from the semiconductor manufacturing facility is removed through one filling cylinder, the processing gas derived from the filling cylinder is introduced into the detection means, and harmful components are detected. Because it can be discharged out of the system through the process, even if the amount of exhaust gas and the concentration of harmful components fluctuate due to the process of semiconductor manufacturing equipment, it is possible to reliably remove harmful components with one filling cylinder, Even if the gas treatment agent in one filling cylinder breaks through and harmful components are detected in the processing gas, the removal treatment can be performed in another filling cylinder, so the gas treatment agent in one filling cylinder can be used effectively. As a result, the waste of the gas treatment agent can be eliminated, and the exhaust gas treatment apparatus including the filling cylinder can be downsized.

また、処理ガス中に有害成分が検出された後の前記一つの充填筒の交換は、該充填筒内に残存する有害成分をパージガスでパージし、検出手段でパージガス中に有害成分が検出されなくなってから行うことにより、充填筒やその周辺の配管中に有害成分が残存するおそれがなくなり、したがって、有害成分が系外に放出されることがなく、充填筒の交換を安全に行うことができる。   In addition, the replacement of the one filling cylinder after the harmful component is detected in the processing gas is performed by purging the harmful component remaining in the filling cylinder with the purge gas, and the harmful component is not detected in the purge gas by the detection means. By doing so, there is no risk of harmful components remaining in the filling cylinder and the surrounding pipes, and therefore, no harmful components are released outside the system, and the filling cylinder can be replaced safely. .

本発明の排ガス処理方法を実施する排ガス処理装置の一形態例を示す構成図である。It is a block diagram which shows one example of the exhaust gas processing apparatus which enforces the exhaust gas processing method of this invention. 検出手段の一例を示す説明図である。It is explanatory drawing which shows an example of a detection means. 本発明の排ガス処理方法の一例を示す説明図である。It is explanatory drawing which shows an example of the waste gas processing method of this invention. 本発明の排ガス処理方法を実施する排ガス処理装置の他の形態例を示す構成図である。It is a block diagram which shows the other example of the exhaust gas processing apparatus which enforces the exhaust gas processing method of this invention.

図1は本発明の排ガス処理方法を実施する排ガス処理装置の一形態例を示す構成図、図2は検出手段の一例を示す説明図、図3は本発明の排ガス処理方法の他の例を示す説明図である。   FIG. 1 is a block diagram showing an embodiment of an exhaust gas treatment apparatus for carrying out the exhaust gas treatment method of the present invention, FIG. 2 is an explanatory view showing an example of a detection means, and FIG. 3 is another example of the exhaust gas treatment method of the present invention. It is explanatory drawing shown.

この排ガス処理装置は、有害成分を物理的化学的吸着あるいは反応により無害化するガス処理剤11,21をそれぞれ充填した2つの充填筒10,20と、各充填筒10,20から導出した処理ガス中の有害成分を検出するための検出手段30とを備えている。   This exhaust gas treatment apparatus includes two filling cylinders 10 and 20 filled with gas treatment agents 11 and 21 that detoxify harmful components by physical chemical adsorption or reaction, and a processing gas derived from the respective filling cylinders 10 and 20. And detecting means 30 for detecting harmful components therein.

各充填筒10,20のガス流入部10a,20aには、半導体装置、平面ディスプレイ、太陽電池、磁性体薄板等の製造において用いられる半導体の製造設備から排出されて排ガス経路41から排ガス処理装置に導入される排ガスを充填筒10,20に導入するための入口経路12,22が設けられるとともに、各入口経路12,22には、排ガスを導入する充填筒を切り換えるための入口弁12V,22Vがそれぞれ設けられている。   The gas inflow portions 10a and 20a of the filling cylinders 10 and 20 are discharged from a semiconductor manufacturing facility used in the manufacture of semiconductor devices, flat displays, solar cells, magnetic thin plates, and the like, and are discharged from an exhaust gas path 41 to an exhaust gas treatment device. Inlet passages 12 and 22 for introducing the exhaust gas to be introduced into the filling cylinders 10 and 20 are provided, and inlet valves 12V and 22V for switching the filling cylinder for introducing the exhaust gas are provided in the inlet passages 12 and 22, respectively. Each is provided.

また、各入口経路12,22における入口弁12V,22Vの下流側(充填筒側)には、図示しないパージガス供給源から供給されるパージガスを各充填筒10,20にそれぞれ導入するためのパージガス導入経路13,23と、前記検出手段30に接続する検出手段出口経路14,24とがそれぞれ分岐しており、各パージガス導入経路13,23にはパージガスの導入を制御するためのパージ弁(パージガス導入弁)13V,23Vがそれぞれ設けられ、各検出手段出口経路14,24には、検出手段出口弁14V,24Vがそれぞれ設けられている。   In addition, purge gas introduction for introducing purge gas supplied from a purge gas supply source (not shown) into the respective filling cylinders 10 and 20 on the downstream side (filling cylinder side) of the inlet valves 12V and 22V in the respective inlet passages 12 and 22 respectively. The paths 13 and 23 and the detection means outlet paths 14 and 24 connected to the detection means 30 are branched, and a purge valve (purge gas introduction) for controlling the introduction of the purge gas is provided in each of the purge gas introduction paths 13 and 23. Valves) 13V and 23V are provided, and the detection means outlet passages 14 and 24 are provided with detection means outlet valves 14V and 24V, respectively.

一方、各充填筒10,20のガス流出部10b,20bには、出口弁15V,25Vをそれぞれ有する出口径路15,25がそれぞれ設けられており、出口径路15,25における出口弁15V,25Vの上流側(充填筒側)からは、パージガス導出弁16V,26Vをそれぞれ有するパージガス排出経路16,26と、前記検出手段30に接続する検出手段入口経路17,27とが分岐しており、該検出手段入口経路17,27には検出手段入口弁17V,27Vがそれぞれ設けられている。   On the other hand, the gas outflow portions 10b and 20b of the filling cylinders 10 and 20 are respectively provided with outlet passages 15 and 25 having outlet valves 15V and 25V, respectively, and the outlet valves 15V and 25V in the outlet passages 15 and 25 are provided. From the upstream side (filling cylinder side), there are branched purge gas discharge paths 16 and 26 having purge gas outlet valves 16V and 26V, respectively, and detection means inlet paths 17 and 27 connected to the detection means 30. The means inlet passages 17 and 27 are provided with detecting means inlet valves 17V and 27V, respectively.

前記検出手段30は、測定対象となるガスが流通する検出部と、入力部32a,演算部32b,出力部32c等を備えた制御装置32とを有しており、検出部からの信号が入力部32aを介して演算部32bに入力され、演算部32bで入力された信号の強度に基づいて成分濃度を演算する。算出された成分濃度信号は、出力部32cから装置制御部33に出力される。   The detection means 30 includes a detection unit through which a gas to be measured flows, and a control device 32 including an input unit 32a, a calculation unit 32b, an output unit 32c, and the like, and a signal from the detection unit is input. The component concentration is calculated based on the intensity of the signal input to the calculation unit 32b via the unit 32a and input by the calculation unit 32b. The calculated component concentration signal is output from the output unit 32 c to the device control unit 33.

装置制御部33は、信号の入出力部33aと、信号の記憶・比較演算部33bとを有するものであって、入出力部33aは、制御装置32からの前記成分濃度の信号の他、排ガスを排出する製造設備からの信号も受信し、また、装置制御部33に接続したアラーム発生部34にアラームを作動させる信号を発信する。記憶・比較演算部33bは、あらかじめ設定されて記憶した設定濃度と、制御装置32から受信した成分濃度とを比較し、アラーム作動信号を発生したり、製造設備から受信した信号も参照して各弁の開閉制御を行うための弁制御信号を発生したりする。   The apparatus control unit 33 includes a signal input / output unit 33a and a signal storage / comparison calculation unit 33b. The input / output unit 33a is configured to output exhaust gas in addition to the component concentration signal from the control unit 32. A signal from the manufacturing facility that discharges the gas is also received, and a signal for operating the alarm is transmitted to the alarm generation unit 34 connected to the device control unit 33. The storage / comparison operation unit 33b compares the set concentration stored in advance and the component concentration received from the control device 32, generates an alarm activation signal, and also refers to the signal received from the manufacturing facility. For example, a valve control signal for performing valve opening / closing control is generated.

前記検出部は、充填筒10側の前記検出手段出口経路14と前記検出手段入口経路17とが合流した第1ガス流入・流出経路35と、充填筒20側の前記検出手段出口経路24と前記検出手段入口経路27とが合流した第2ガス流入・流出経路36と、ガス排出弁37Vを備えたガス排出経路37とが設けられ、ガス排出経路37と前記出口径路15,25とはガス放出経路42に合流している。   The detection unit includes a first gas inflow / outflow path 35 where the detection means outlet path 14 on the filling cylinder 10 side and the detection means inlet path 17 merge, the detection means outlet path 24 on the filling cylinder 20 side, and the A second gas inflow / outflow path 36 joined with the detection means inlet path 27 and a gas discharge path 37 provided with a gas discharge valve 37V are provided. The gas discharge path 37 and the outlet passages 15 and 25 release gas. It joins the path 42.

前記充填筒10,20は、ガス処理剤11,21を充填するための筒状容器の両端に前記ガス流入部10a,20a及びガス流出部10b,20bとなるフランジを設けた気密性容器であって、内部には、ガス処理剤11,21の流出を防止するためのフィルターが設けられている。さらに、充填筒10,20の内部には、ガスの偏流やガス処理剤の巻き上がりを防止するため、剤上部あるいは上部フランジ部に、フィルターやパンチングプレート等を設けておくこともできる。   The filling cylinders 10 and 20 are airtight containers in which flanges serving as the gas inflow portions 10a and 20a and the gas outflow portions 10b and 20b are provided at both ends of a cylindrical container for filling the gas treating agents 11 and 21, respectively. In addition, a filter for preventing the gas treatment agents 11 and 21 from flowing out is provided inside. Further, a filter, a punching plate, or the like can be provided in the upper portion of the agent or the upper flange portion in the filling cylinders 10 and 20 in order to prevent gas drift and gas treatment agent rolling.

また、充填筒10,20には、ガス処理剤11,21との吸着又は反応を最適条件で行うため、加熱手段や冷却手段を設けておくことができる。加熱機構としては、筒外面にヒーターを巻き付ける方法が好適であるが、他の方法を採用することもできる。また、冷却手段としては、筒外面に熱伝導性の良好な金属配管を巻き付け、その内部に冷媒や水を通液させる方法が好適であるが、他の方法を採用することもできる。   Moreover, in order to perform adsorption | suction or reaction with the gas processing agents 11 and 21 on the optimal conditions on the filling cylinders 10 and 20, a heating means and a cooling means can be provided. As the heating mechanism, a method of winding a heater around the outer surface of the cylinder is suitable, but other methods can also be adopted. Moreover, as a cooling means, a method of winding a metal pipe with good thermal conductivity around the outer surface of the cylinder and allowing a coolant or water to flow through the inside is suitable, but other methods can also be adopted.

充填筒10,20におけるガスの流通方向は、筒上部から導入して筒下部から排出するように設定することが望ましい。ガスの流通方向を筒の下部から上部に向かうようにしても十分な除去処理を行うことができるが、例えば、有害成分の除去処理によって水等の液体が発生する場合、下部から排ガスを導入すると、液体の発生によって通気抵抗が経時的に変化し、処理能力が変化するという不具合が発生することがある。また、上部からガスを導入することによってガス処理剤が流通するガスによって流動することも防止できる。 ガス処理剤11,21は、処理すべき排ガス中の有害成分に応じて適宜最適な固体処理剤が選択されるものであり、特に限定されるものではないが、例えば、有害成分がモノシランやアルシン等の金属水素化物系ガスの場合は、水酸化銅、あるいは、無機材料に水酸化銅を坦持させたものが好適である。また、有害成分がフッ素化合物系ガスの場合は、ナトリウム等のアルカリ金属を無機材料に坦持させたものや、カルシウム等のアルカリ土類金属の酸化物や水酸化物、あるいは、これらを無機材料に坦持させたものなどを用いることができる。   The flow direction of the gas in the filling cylinders 10 and 20 is desirably set so as to be introduced from the upper part of the cylinder and discharged from the lower part of the cylinder. Even if the gas flow direction is directed from the lower part of the cylinder to the upper part, sufficient removal treatment can be performed.For example, when a liquid such as water is generated by the removal process of harmful components, the exhaust gas is introduced from the lower part. In some cases, the gas flow resistance changes with time due to the generation of liquid and the processing capacity changes. Moreover, it can also prevent that a gas processing agent flows by the gas which distribute | circulates by introducing gas from the upper part. The gas treatment agents 11 and 21 are appropriately selected as a solid treatment agent according to the harmful components in the exhaust gas to be treated, and are not particularly limited. For example, the harmful components may be monosilane or arsine. In the case of a metal hydride-based gas such as the above, copper hydroxide or one in which copper hydroxide is supported on an inorganic material is suitable. In addition, when the harmful component is a fluorine compound-based gas, an alkali metal such as sodium is supported on an inorganic material, an oxide or hydroxide of an alkaline earth metal such as calcium, or these are inorganic materials It is possible to use what is carried on the surface.

このようなガス処理剤11,21は、処理剤自身の圧力損失を低減するため、ペレット状あるいは粒状に成形されたものが好適に用いられるが、剤の大きさ及び形状は、処理筒の形状や大きさによって適宜決定することができる。また、ガス処理剤11,21の充填量は、排ガス中に含まれる有害成分濃度、ガス処理剤の除去効率、交換頻度等を勘案して決定することができ、例えば、交換頻度は充填筒の交換時間を勘案して少なくとも2週間の連続使用に耐えるように設計される。   In order to reduce the pressure loss of the treatment agent itself, such gas treatment agents 11 and 21 are preferably used in the form of pellets or granules, but the size and shape of the agent is the shape of the treatment cylinder. It can be appropriately determined depending on the size. Further, the filling amount of the gas treatment agents 11 and 21 can be determined in consideration of the concentration of harmful components contained in the exhaust gas, the removal efficiency of the gas treatment agent, the replacement frequency, etc. Designed to withstand continuous use for at least 2 weeks taking into account the replacement time.

装置に用いる弁及び配管は、ステンレス鋼等の気密性を有する金属製のものが好適であり、その口径は、処理すべき排ガス流量やパージガス流量に応じて適宜決定することができる。また、ガス分解性を低減し、耐食性を向上させるため、弁や配管の内面には、不動態化処理、例えば、酸化クロム不動態化膜やアルミナ不動態膜、フッ化不動態膜を適宜形成しておくことができる。ここで、パージガスは、排ガス中に存在する不活性ガスを用いることが最適であるが、他の不活性ガスを用いることもできる。   The valve and piping used in the apparatus are preferably made of a metal having airtightness such as stainless steel, and the diameter of the valve and the pipe can be appropriately determined according to the exhaust gas flow rate and the purge gas flow rate to be processed. In addition, in order to reduce gas decomposability and improve corrosion resistance, passivation treatment, for example, chromium oxide passivation film, alumina passivation film, fluoride passivation film is appropriately formed on the inner surface of valves and pipes Can be kept. Here, the purge gas is optimally an inert gas present in the exhaust gas, but other inert gases can also be used.

前記検出手段30は、有害成分をppmオーダーから%オーダーで検出できるものが用いられ、より望ましくは、10ppm以上、1%未満の有害成分を検出できるものが用いられる。この検出手段30には、所定の検出精度を有していれば各種検出手段を用いることが可能であり、例えば、レーザ分光分析計、フーリエ変換赤外分光分析計(FT−IR)、非分散型赤外分光光度計等の光吸収を利用したものや、質量分析計、ガスクロマトグラフ質量分析計(GC−MS)等の質量の計測を利用したものを好適に用いることができる。   The detection means 30 is capable of detecting harmful components from ppm order to% order, and more preferably, capable of detecting harmful components of 10 ppm or more and less than 1%. Various detection means can be used as the detection means 30 as long as it has a predetermined detection accuracy. For example, a laser spectrometer, a Fourier transform infrared spectrometer (FT-IR), a non-dispersion Those utilizing light absorption such as a type infrared spectrophotometer, and those utilizing mass measurement such as a mass spectrometer and gas chromatograph mass spectrometer (GC-MS) can be suitably used.

なお、各種検出手段において、検出プローブの方向、例えば、レーザ分光計やFT−IRの場合の光照射方向は、各経路35,36,37のいずれに対しても直交する方向であることが望ましい。また、検出部のガス接触部は、必要に応じて不動態化膜を形成してもよく、水分等の予期せぬ不純物の吸着防止のために100〜130℃の範囲で加熱してもよい。   In various detection means, the direction of the detection probe, for example, the light irradiation direction in the case of a laser spectrometer or FT-IR, is preferably a direction orthogonal to each of the paths 35, 36, and 37. . Moreover, the gas contact part of the detection part may form a passivating film as necessary, and may be heated in the range of 100 to 130 ° C. to prevent adsorption of unexpected impurities such as moisture. .

前記装置制御部33の記憶・比較演算部33bからのアラーム作動信号や弁制御信号は、前記検出手段30で有害成分を検出した直後に発生させてもよいが、規定濃度以上の有害成分があらかじめタイマーに設定した時間以上、例えば、半導体の製造設備における処理基板の2回の搬入搬出時間以上にわたって検出された場合、あるいは、検出手段30での有害成分の検出回数、さらには、有害成分量が設定量を超えた場合等にガス処理剤の破過と判定してアラーム作動信号や弁制御信号を発生させることが好ましい。また、検出手段30における制御装置32と装置制御部33とが一体的に形成されていてもよく、適宜に分割形成されていてもよい。さらに、検出部にパージガスを流通させているときに、検出手段30の健全性の確認を行うように設定することもできる。   The alarm activation signal and the valve control signal from the storage / comparison calculation unit 33b of the device control unit 33 may be generated immediately after the detection unit 30 detects the harmful component. More than the time set in the timer, for example, when detected for more than two loading / unloading times of the processing substrate in the semiconductor manufacturing facility, or the number of detections of harmful components in the detection means 30, and further the amount of harmful components is It is preferable to generate an alarm operation signal or a valve control signal by determining that the gas processing agent is broken through when the set amount is exceeded. Further, the control device 32 and the device control unit 33 in the detection unit 30 may be integrally formed, or may be appropriately divided. Further, it can be set so that the soundness of the detection means 30 is confirmed when purge gas is circulated through the detection unit.

次に、図3に基づいて、図1に示した排ガス処理装置を使用した排ガス処理方法を説明する。なお、図3において、太線はガスが流れている経路を示しており、各弁は、説明中で「開く」と表現した弁が開状態であり、他の弁は閉状態となっている。また、符号は説明に必要な構成要素にのみ付している。   Next, an exhaust gas treatment method using the exhaust gas treatment apparatus shown in FIG. 1 will be described based on FIG. In FIG. 3, a thick line indicates a path through which gas flows, and in each valve, a valve expressed as “open” in the description is in an open state, and the other valves are in a closed state. Moreover, the code | symbol is attached | subjected only to the component required for description.

まず、図3(a)は、一方の充填筒10が排ガス中の有害成分を除去処理する工程(除去処理工程)を行い、他方の充填筒20は待機工程を行っている状態を示している。この状態では、入口弁12V,検出手段入口弁17V,検出手段出口弁24V及び出口弁25Vが開いており、製造設備から排出された排ガスは、排ガス経路41から入口経路12を通って除去処理工程を行っている充填筒10に導入される。充填筒10に導入された排ガス中に存在する有害成分は、筒内部に充填されているガス処理剤11と接触することによって除去処理され、無害化された排ガス(処理ガス)が充填筒10から出口径路15に導出される。   First, FIG. 3A shows a state in which one filling cylinder 10 performs a process of removing harmful components in the exhaust gas (removal processing process), and the other filling cylinder 20 performs a standby process. . In this state, the inlet valve 12V, the detecting means inlet valve 17V, the detecting means outlet valve 24V and the outlet valve 25V are open, and the exhaust gas discharged from the manufacturing equipment is removed from the exhaust gas path 41 through the inlet path 12. Is introduced into the filling cylinder 10. The harmful components present in the exhaust gas introduced into the filling cylinder 10 are removed by contact with the gas treatment agent 11 filled inside the cylinder, and the harmless exhaust gas (treatment gas) is discharged from the filling cylinder 10. It is led out to the exit path 15.

出口径路15の処理ガスは、出口弁15Vが閉じていることから全量が検出手段入口経路17に流れ、第1ガス流入・流出経路35を通って検出手段30の検出部に流入し、検出手段30によって有害成分の検出が行われた後、第2ガス流入・流出経路36に流出する。第2ガス流入・流出経路36の処理ガスは、検出手段出口経路24及び入口経路22の下流側を通って待機工程を行っている他方の充填筒20に導入され、ガス処理剤21と接触しながらガス流出部20bに向かって流れ、出口径路25に導出されて処理ガス放出経路42から系外に放出される。   Since the outlet valve 15V is closed, the entire amount of the processing gas in the outlet path 15 flows into the detection means inlet path 17, flows into the detection section of the detection means 30 through the first gas inflow / outflow path 35, and is detected. After the harmful component is detected by 30, it flows out to the second gas inflow / outflow path 36. The processing gas in the second gas inflow / outflow path 36 is introduced into the other filling cylinder 20 that is performing the standby process through the downstream side of the detection means outlet path 24 and the inlet path 22 and comes into contact with the gas processing agent 21. However, the gas flows toward the gas outlet 20b, is led out to the outlet path 25, and is discharged from the processing gas discharge path 42 to the outside of the system.

充填筒10の除去処理工程は、検出手段30によって有害成分が検出されるまで継続され、有害成分の量や検出時間、検出回数等があらかじめ設定された条件となったときに終了し、図3(b)に示すように充填筒10がパージ工程に、充填筒20が除去処理工程に切り換えられる。この工程の切換操作は、入口弁12Vを閉じるとともに入口弁22V及びパージガス導入弁13Vを開くことにより行われる。   The removal process step of the filling cylinder 10 is continued until a harmful component is detected by the detection means 30, and ends when the amount of harmful component, the detection time, the number of detections, and the like are set in advance, as shown in FIG. As shown in (b), the filling cylinder 10 is switched to the purge process, and the filling cylinder 20 is switched to the removal process. The switching operation of this step is performed by closing the inlet valve 12V and opening the inlet valve 22V and the purge gas introduction valve 13V.

これにより、排ガス経路41からの排ガスは、入口経路22を通って除去処理工程に切り換えられた充填筒20に導入される。充填筒20で有害成分が除去処理された処理ガスは、出口径路25に導出されて処理ガス放出経路42から系外に放出される。一方、パージ工程に切り換えられた充填筒10にパージガス導入経路13から入口経路12の下流側を通って導入されたパージガスは、ガス流出部10bから出口径路15の上流側、検出手段入口経路17及び第1ガス流入・流出経路35を経て検出手段30に導入され、充填筒10内やこれらの経路内に残存する排ガスをパージする。   Thereby, the exhaust gas from the exhaust gas path 41 is introduced into the filling cylinder 20 that has been switched to the removal process through the inlet path 22. The processing gas from which harmful components have been removed by the filling cylinder 20 is led out to the outlet path 25 and discharged from the processing gas discharge path 42 to the outside of the system. On the other hand, the purge gas introduced from the purge gas introduction path 13 through the downstream side of the inlet path 12 into the filling cylinder 10 switched to the purge step is upstream of the outlet path 15 from the gas outlet 10b, the detection means inlet path 17 and The gas is introduced into the detection means 30 via the first gas inflow / outflow path 35, and the exhaust gas remaining in the filling cylinder 10 and these paths is purged.

検出手段30から第2ガス流入・流出経路36に導出されたパージガスは、検出手段出口経路24から入口経路22の下流側を通って充填筒20に導入され、ガス処理剤21と接触することにより、工程切換時に充填筒10や前記経路12,15,17,35内に残存した排ガス中の有害成分が除去処理される。有害成分が除去処理されたパージガスは、出口径路25から処理ガス放出経路42を通って系外に放出される。充填筒10のパージ工程は、検出手段30でパージガス中に有害成分が検出されず、かつ、あらかじめ設定された量以上のパージガスを充填筒10に流通させた時点で終了し、充填筒10の交換が行われる。   The purge gas led out from the detection means 30 to the second gas inflow / outflow path 36 is introduced into the filling cylinder 20 from the detection means outlet path 24 through the downstream side of the inlet path 22, and comes into contact with the gas processing agent 21. The harmful components in the exhaust gas remaining in the filling cylinder 10 and the paths 12, 15, 17, and 35 at the time of the process switching are removed. The purge gas from which harmful components have been removed is discharged from the exit path 25 through the processing gas discharge path 42 to the outside of the system. The purging process of the filling cylinder 10 ends when no harmful component is detected in the purge gas by the detection means 30 and when a purge gas of a predetermined amount or more is circulated through the filling cylinder 10, and the replacement of the filling cylinder 10 is performed. Is done.

充填筒10の交換は、パージガス導入弁13V及び検出手段入口弁17Vを閉じて充填筒10のガス流通を遮断した状態で、適宜な位置に設けた継手を脱着することにより行われる。新たな充填筒10を取り付けた後、図3(c)に示す大気成分パージ工程が行われる。この大気成分パージ工程では、パージガス導入弁13Vとパージガス導出弁16Vとが開き、パージガス導入経路13から導入されるパージガスにより、入口経路12の下流側、充填筒10及び出口径路15の上流側等に侵入した大気成分がパージガス排出経路16から排出される。   The replacement of the filling cylinder 10 is performed by detaching a joint provided at an appropriate position in a state where the purge gas introduction valve 13V and the detection means inlet valve 17V are closed and the gas flow in the filling cylinder 10 is shut off. After the new filling cylinder 10 is attached, the atmospheric component purge process shown in FIG. 3C is performed. In this atmospheric component purge step, the purge gas introduction valve 13V and the purge gas lead-out valve 16V are opened, and the purge gas introduced from the purge gas introduction path 13 causes the downstream side of the inlet path 12, the upstream side of the filling cylinder 10 and the outlet path 15, and the like. The invading atmospheric components are discharged from the purge gas discharge path 16.

一方、充填筒10から検出手段30への処理ガスやパージガスの導入が終了した後、出口弁25Vが閉じるとともに、検出手段入口弁27V及びガス排出弁37Vが開き、充填筒20から出口径路25に導出された処理ガスが、検出手段入口経路27から第2ガス流入・流出経路36を通って検出手段30の検出部に流入し、検出手段30によって処理ガス中の有害成分の検出が行われる。検出手段30からガス排出経路37に導出された処理ガスは、処理ガス放出経路42を通って系外に放出される。   On the other hand, after the introduction of the processing gas and the purge gas from the filling cylinder 10 to the detection means 30 is completed, the outlet valve 25V is closed, and the detection means inlet valve 27V and the gas discharge valve 37V are opened. The derived processing gas flows from the detection means inlet passage 27 through the second gas inflow / outflow passage 36 into the detection unit of the detection means 30, and the detection means 30 detects harmful components in the processing gas. The processing gas led out from the detection means 30 to the gas discharge path 37 is discharged out of the system through the processing gas discharge path 42.

充填筒10の大気成分パージ工程は、あらかじめ設定された量のパージガスを流通させることによって終了し、図3(d)に示すように、パージガス導入弁13V、パージガス導出弁16V及びガス排出弁37Vが閉じるとともに、検出手段出口弁14V及び出口弁15Vが開くことにより、充填筒10が待機工程に入る。   The atmospheric component purging process of the filling cylinder 10 is completed by circulating a predetermined amount of purge gas, and as shown in FIG. 3D, the purge gas introduction valve 13V, the purge gas outlet valve 16V, and the gas discharge valve 37V are provided. While the detection means outlet valve 14V and the outlet valve 15V are opened, the filling cylinder 10 enters a standby process.

この図3(d)に示す充填筒10の待機工程を行う段階は、前記図3(a)における充填筒10と充填筒20とが入れ代わった状態であり、充填筒20で除去処理された処理ガスが検出手段30を通り、第1ガス流入・流出経路35を逆流して検出手段出口経路14から入口経路12の下流側を通って充填筒10に導入され、充填筒10から導出された処理ガスは、出口径路15から処理ガス放出経路42を通って系外に放出される。   The stage of performing the standby process of the filling cylinder 10 shown in FIG. 3D is a state in which the filling cylinder 10 and the filling cylinder 20 in FIG. The processing gas passes through the detection means 30, flows back through the first gas inflow / outflow path 35, is introduced from the detection means outlet path 14 to the filling cylinder 10 through the downstream side of the inlet path 12, and is derived from the filling cylinder 10. The processing gas is discharged out of the system from the outlet path 15 through the processing gas discharge path 42.

充填筒20から導出した処理ガス中に有害成分が検出されると、図3(e)に示すように、入口弁22Vが閉じて入口弁12V及びパージガス導入弁23Vが開き、充填筒10が除去処理工程に切り換えられるとともに、充填筒20がパージ工程に切り換えられる。この段階は、前記図3(b)おける充填筒10と充填筒20とが入れ代わった状態となっている。   When a harmful component is detected in the processing gas derived from the filling cylinder 20, as shown in FIG. 3E, the inlet valve 22V is closed, the inlet valve 12V and the purge gas introduction valve 23V are opened, and the filling cylinder 10 is removed. While being switched to the processing step, the filling cylinder 20 is switched to the purge step. At this stage, the filling cylinder 10 and the filling cylinder 20 in FIG.

検出手段30で充填筒20からのパージガス中に有害成分が検出されなくなったら、充填筒20側の各弁が閉じられ、充填筒20が新たな充填筒に交換され、次いで、パージガス導入弁23V及びパージガス導出弁26Vが開いて図3(f)に示す充填筒20の大気成分パージ工程が行われる。この段階は、前記図3(c)おける充填筒10と充填筒20とが入れ代わった状態となっている。   When no harmful components are detected in the purge gas from the filling cylinder 20 by the detection means 30, the valves on the filling cylinder 20 side are closed, the filling cylinder 20 is replaced with a new filling cylinder, and then the purge gas introduction valve 23V and The purge gas outlet valve 26V is opened, and the atmospheric component purging step for the filling cylinder 20 shown in FIG. 3 (f) is performed. This stage is a state where the filling cylinder 10 and the filling cylinder 20 in FIG.

充填筒20の大気成分パージ工程が終了すると、各弁が開閉して図3(a)に示す状態に戻る。以下、図3(a)〜図3(f)の各段階を繰り返し行うことにより、充填筒10及び充填筒20のいずれか一方の充填筒が必ず除去処理工程を行っている状態となり、その間に他方の充填筒を新たな充填筒に交換することができるので、両充填筒によって排ガス中の有害成分を連続して除去することができる。   When the atmospheric component purge process of the filling cylinder 20 is completed, the valves are opened and closed to return to the state shown in FIG. Hereinafter, by repeatedly performing each step of FIG. 3A to FIG. 3F, one of the filling cylinder 10 and the filling cylinder 20 is in a state where the removal treatment process is being performed without fail. Since the other filling cylinder can be replaced with a new filling cylinder, harmful components in the exhaust gas can be continuously removed by both filling cylinders.

このようにして連続して有害成分の除去処理を行うにあたり、除去処理工程に切り換わった直後、すなわち、パージ工程を行っている充填筒から導出されたパージガス中の有害成分を検出している間を除いて、除去処理工程を行っている充填筒から導出した処理ガス中の有害成分が規定値以下であることを検出手段30で常に確認することになるとともに、新たな充填筒に交換されて大気成分パージ工程を終えた充填筒を除去処理工程を行っている充填筒の下流側に検出手段30を介して直列に接続しているので、除去処理工程を行っている充填筒内のガス処理剤が破過近くなって十分な除去処理が行えなくなり、有害成分が流出したとしても、待機工程を行っている下流側の充填筒で確実に除去処理することができる。   In this way, when removing harmful components continuously, immediately after switching to the removal treatment step, that is, while detecting harmful components in the purge gas derived from the filling cylinder performing the purge step. Except that the detection means 30 always confirms that noxious components in the processing gas derived from the filling cylinder performing the removal treatment step are below the specified value, and is replaced with a new filling cylinder. Since the filling cylinder after the atmospheric component purging process is connected in series via the detection means 30 to the downstream side of the filling cylinder performing the removal treatment process, the gas treatment in the filling cylinder performing the removal treatment process is performed. Even if the agent becomes near breakthrough and sufficient removal treatment cannot be performed, and harmful components flow out, the removal treatment can be surely performed by the downstream side filling cylinder performing the standby step.

したがって、検出手段30で検出した有害成分があらかじめ設定された条件に達するまで除去処理工程を継続できるので、充填筒に充填したガス処理剤の略全量を有害成分の除去処理に有効に利用することができる。これにより、ガス処理剤の使用量を従来より大幅に少なくすることができ、充填筒の小型化、すなわち、排ガス処理装置の小型化及び低価格化が図れる。 Therefore, since harmful components detected by the detecting means 30 to continue the removal process until a preset condition, effectively utilized for removing processed toxic components substantially whole amount of the gas processing agent filled in the filling tube be able to. Thereby, the usage-amount of a gas processing agent can be reduced significantly conventionally , and size reduction of a filling cylinder, ie, size reduction and price reduction of an exhaust gas processing apparatus, can be achieved.

また、製造設備の工程によって排ガス量や有害成分濃度が大きく変動する場合、従来の排ガス処理装置では、排ガス流量の最大値や有害成分濃度の最大値に対応させて充填筒の設計を行う必要があり、物理的化学的吸着や反応を利用した充填筒で有害成分を除去処理する場合、充填筒におけるガス流れ方向下流側のガス処理剤には未吸着又は未反応の領域が存在する。通常、この領域を加味して充填筒の高さ、すなわち、ガス処理剤の充填量が決定され、従来の排ガス処理装置では、排ガス流量や有害成分濃度が最大値になっても十分に除去処理を行えるように、必要量に比べて大量のガス処理剤を使用しており、充填筒の交換時には、十分な除去処理能力を有するガス処理剤が有効利用されることなく交換されてしまうことになる。
In addition, when the amount of exhaust gas and the concentration of harmful components fluctuate greatly depending on the process of the manufacturing equipment, it is necessary to design the filling cylinder according to the maximum value of the exhaust gas flow rate and the maximum value of the harmful component concentration in the conventional exhaust gas treatment device In the case where harmful components are removed by a filling cylinder using physical / chemical adsorption or reaction, there is an unadsorbed or unreacted region in the gas processing agent on the downstream side in the gas flow direction of the filling cylinder. Normally, the height of the filling cylinder, that is, the filling amount of the gas treatment agent, is determined taking this region into account, and with conventional exhaust gas treatment devices, even if the exhaust gas flow rate or harmful component concentration reaches the maximum value, sufficient removal treatment is performed. A large amount of gas processing agent is used compared to the required amount so that the gas processing agent having a sufficient removal processing capacity is replaced without being effectively used when the filling cylinder is replaced. Become.

このため、従来の排ガス処理装置では、それを小型化しようとするためには、製造設備の排ガス流量や有害成分濃度に応じた仕様で個々に設計する必要があったが、前述のように、充填筒の一つを検出手段30の下流で待機工程としておくことにより、排ガス流量が一時的に最大値となったり、有害成分濃度が一時的に最大値となって除去処理工程が進んだ充填筒から有害成分が流出したとしても、流出した有害成分の除去処理を待機工程中の充填筒で確実に行うことができるので、排ガス流量の最大値や有害成分濃度の最大値に対応させて充填筒の設計を行う必要がなくなり、排ガス処理装置の小型化や汎用性の向上を図れる。特に、充填筒を3つ以上使用することにより、1つ以上の充填筒を交換したり、パージしたりしているときに、他の2つの充填筒の一方を除去処理工程、他方を待機工程としておくことができるので、より確実に有害成分の除去処理を行うことができるとともに、ガス処理剤を更に有効利用することができる。   For this reason, in the conventional exhaust gas treatment device, in order to reduce the size, it was necessary to individually design with specifications according to the exhaust gas flow rate and harmful component concentration of the production facility. By setting one of the filling cylinders as a standby process downstream of the detection means 30, the exhaust gas flow rate temporarily reaches a maximum value, or the harmful component concentration temporarily reaches a maximum value and the removal treatment process proceeds. Even if harmful components flow out from the cylinder, the removal process of the harmful components that flowed out can be performed reliably in the filling cylinder in the standby process, so filling is performed according to the maximum value of exhaust gas flow rate and maximum value of harmful component concentration. There is no need to design a cylinder, and the exhaust gas treatment device can be reduced in size and improved in versatility. In particular, when three or more filling cylinders are used, when one or more filling cylinders are replaced or purged, one of the other two filling cylinders is removed, and the other is a standby process. Therefore, the harmful components can be removed more reliably and the gas treating agent can be used more effectively.

加えて、充填筒内で偏流等の処理性能を著しく低下させる不具合が発生した場合でも、検出手段30での有害成分の検出によって不具合の発生を直ちに検知することができ、アラーム発生部34でアラームを作動させることによって担当者に速やかに通報することができるので、不具合の解消に必要な対策を迅速に行うことができる。この場合でも、他の待機工程中の充填筒で除去処理を行っているので、有害成分が外部に排出されることはない。   In addition, even when a problem such as drifting that significantly reduces the processing performance occurs in the filling cylinder, the occurrence of the problem can be detected immediately by the detection of the harmful component by the detection means 30, and the alarm generation unit 34 generates an alarm. Since the person in charge can be notified promptly by operating, measures necessary for resolving the problem can be quickly taken. Even in this case, since the removal process is performed by the filling cylinder in another standby process, no harmful components are discharged to the outside.

さらに、パージ工程中の充填筒から導出したパージガスを検出手段30に導入してパージガス中の有害成分を検出することにより、パージガス量の最適化が容易で、パージ時間を短縮することが可能となる。このとき、検出部に有害成分を含まないパージガスを導入することにより、検出手段30そのものの健全性、例えば、ゼロ点ドリフトがないことなどを確認することが可能である。   Furthermore, by introducing the purge gas derived from the filling cylinder during the purge process to the detection means 30 and detecting harmful components in the purge gas, the purge gas amount can be easily optimized and the purge time can be shortened. . At this time, it is possible to confirm the soundness of the detection means 30 itself, for example, the absence of zero point drift, by introducing a purge gas that does not contain harmful components into the detection unit.

また、パージ工程は、工程切換直後に開始する必要はなく、例えば、検出手段30から導出したパージガスを排ガスと合流させて除去処理工程を行っている充填筒に導入すると、ガス流量等の関係で好ましくないときには、製造設備から排ガスが発生していないとき、例えば基体の交換時にパージ工程を行うようにすればよい。この制御は、装置制御部33で製造設備からの運転状態の信号を受信し、この信号に基づいて所定の弁を開閉作動させることによってパージと排ガスの処理とを交互に行うことができる。   Further, the purge process does not need to be started immediately after the process is switched. For example, if the purge gas derived from the detection means 30 is introduced into the filling cylinder where the purge process is performed by merging with the exhaust gas, the gas flow rate is related. When it is not desirable, when the exhaust gas is not generated from the production facility, for example, the purge process may be performed when the substrate is replaced. In this control, the apparatus control unit 33 receives an operation state signal from the manufacturing facility, and based on this signal, a predetermined valve is opened and closed to perform purge and exhaust gas treatment alternately.

すなわち、製造設備が枚葉式の半導体製造装置の場合、1枚毎の基体の交換に要する時間が必ず存在し、その間は有害成分を含む排ガスは排出されない。また、ロット毎の交換では、更に長い時間にわたって排ガスが排出されないので、これらの排ガスが排出されない時間をパージ時間に充当し、必要とするパージ時間に達するまでに、他方の充填筒で排ガスを充分に除去処理できるように設定しておけばよく、充填筒切替時においても系外に有害成分が漏洩することはない。   That is, when the manufacturing facility is a single-wafer type semiconductor manufacturing apparatus, there is always a time required to replace each substrate, and during that time, exhaust gas containing harmful components is not discharged. In addition, since the exhaust gas is not discharged for a longer time in the exchange for each lot, the time during which these exhaust gases are not discharged is allocated to the purge time, and the exhaust gas is sufficiently exhausted in the other filling cylinder until the required purge time is reached. It is sufficient to set it so that it can be removed, and harmful components do not leak outside the system even when the filling cylinder is switched.

また、パージ工程中の充填筒から導出したパージガスを、検出手段30を通さずにパージガス導出弁(16V,26V)を開いてパージガス排出経路(16,26)から別途設けた除害設備にパージガスを送出し、この除害設備でパージガス中の有害成分を除去処理するようにしてもよい。   In addition, the purge gas derived from the filling cylinder during the purge process is not passed through the detection means 30, and the purge gas outlet valve (16V, 26V) is opened, and the purge gas is supplied to the abatement equipment separately provided from the purge gas discharge path (16, 26). You may make it send out and remove the harmful component in purge gas with this abatement equipment.

また、パージ工程は、連続してパージガスを流通させる例を挙げたが、パージガス導入弁13V,23Vとパージガス導出弁16V,26Vとを交互に開くバッチパージを採用してもよく、パージガス導入弁13V,23V又はパージガス導出弁16V,26Vを閉じた状態で開いている弁側の経路に真空排気装置を接続して真空排気を行うようにしてもよく、バッチパージと真空排気とを見合わせてもよい。特に、真空排気装置がヘリウムリークディテクターの場合は、各充填筒10,20や各経路の接合部等の洩れチェックを同時に行うことができるのでより好適である。   In the purge process, the purge gas is continuously circulated. However, a batch purge that alternately opens the purge gas introduction valves 13V and 23V and the purge gas outlet valves 16V and 26V may be adopted. The evacuation device may be connected to a valve-side path that is open with the 23V or purge gas lead-out valves 16V and 26V closed, or evacuation may be performed, or batch purge and evacuation may be combined. In particular, when the evacuation device is a helium leak detector, it is more preferable because it can simultaneously check for leaks of the filling cylinders 10 and 20 and the joints of the respective paths.

さらに、充填筒の交換は、充填されているガス処理剤を交換するだけであってもよい。充填筒やガス処理剤の交換に長時間を要する場合であっても、除去処理工程の継続時間をこれらの交換に要する時間以上、例えば2週間以上に設定しておけば、排ガス中の有害成分が系外へ排出されることはない。   Further, the replacement of the filling cylinder may be merely replacement of the filled gas processing agent. Even if it takes a long time to replace the filling cylinder or the gas treatment agent, if the duration of the removal treatment process is set to be longer than the time required for these replacements, for example, 2 weeks or more, harmful components in the exhaust gas Is not discharged out of the system.

図4は本発明の排ガス処理方法を実施する排ガス処理装置の他の形態例を示す構成図である。なお、以下の説明において、前記形態例で示した排ガス処理装置における構成要素と同一の構成要素には、それぞれ同一符号を付して詳細な説明は省略する。   FIG. 4 is a block diagram showing another embodiment of the exhaust gas treatment apparatus for carrying out the exhaust gas treatment method of the present invention. In the following description, the same components as those in the exhaust gas treatment apparatus shown in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本形態例では、各充填筒10,20の出口径路15,25から分岐した検出手段入口経路17,27を検出手段流入経路38に合流させて検出手段30のガス流入部に接続するとともに、検出手段30のガス流出部に接続した検出手段流出経路39から検出手段出口経路14,24を分岐させて各充填筒10,20の各入口経路12,22に接続し、さらに、検出手段流出経路39からガス排出経路37を分岐させている。このように構成した排ガス処理装置においても、各弁を前記同様に開閉することにより、図3に示した手順と同じ手順で排ガスの処理を行うことができる。   In the present embodiment, the detection means inlet paths 17 and 27 branched from the outlet paths 15 and 25 of the respective filling cylinders 10 and 20 are joined to the detection means inflow path 38 and connected to the gas inflow portion of the detection means 30 and are detected. The detection means outlet paths 14 and 24 are branched from the detection means outflow path 39 connected to the gas outflow portion of the means 30 and connected to the inlet paths 12 and 22 of the respective filling cylinders 10 and 20. The gas discharge path 37 is branched from Also in the exhaust gas treatment apparatus configured as described above, the exhaust gas can be treated in the same procedure as that shown in FIG. 3 by opening and closing each valve in the same manner as described above.

なお、各充填筒10,20から導出したパージガスは、出口弁15V,25Vを開いて出口径路15,25から処理ガス放出経路42を介して放出するようにしているが、前記同様にパージガス導出弁16V,26Vをそれぞれ有するパージガス排出経路16,26を出口径路15,25から分岐させて放出するようにしてもよい。   The purge gas derived from each of the filling cylinders 10 and 20 is discharged from the outlet passages 15 and 25 through the processing gas discharge path 42 by opening the outlet valves 15V and 25V. The purge gas discharge paths 16 and 26 having 16 V and 26 V, respectively, may be branched from the outlet paths 15 and 25 and discharged.

実施例1
図1に示す構成の排ガス処理装置を、図3に示す手順で運転し、枚様式製造設備から排出される排ガス中のSiFガスの除去を行った。製造設備から排出されるガスのほとんどはアルゴン(Ar)であり、製造設備が基板の処理を行っているときは、約3%のSiFが排出され、製造設備内への基板の搬入搬出時には数10ppmのSiFを含むArが排出された。また、排ガスの流量は、基板処理時には約0.4L/分であり、基板の搬入搬出時には0.3L/分であった。処理時間は、基板処理時には5分であり、基板の搬入搬出時には1分であった。排ガスの圧力は10Torr程度であった。ただし、上記条件は、初期基本条件であり、製造する処理基板により、基板処理時のSiF濃度は0.1%から3%の間で変動し、処理時間も3分から15分の間で任意に変化していた。また、基板処理時の排ガス流量は、約0.4L/分から約1.5L/分の間で変化した。
Example 1
The exhaust gas treatment apparatus shown in FIG. 1, is operated in the procedure shown in FIG. 3, was removed of the SiF 4 gas in an exhaust gas discharged from the single-wafer fabrication facility. Most of the gas discharged from the manufacturing facility is argon (Ar). When the manufacturing facility is processing the substrate, about 3% of SiF 4 is discharged, and when the substrate is carried into and out of the manufacturing facility. Ar containing several tens of ppm of SiF 4 was discharged. The exhaust gas flow rate was about 0.4 L / min during substrate processing, and 0.3 L / min during substrate loading / unloading. The processing time was 5 minutes when the substrate was processed, and 1 minute when the substrate was loaded and unloaded. The pressure of the exhaust gas was about 10 Torr. However, the above conditions are initial basic conditions, and the SiF 4 concentration during substrate processing varies between 0.1% and 3% depending on the processing substrate to be manufactured, and the processing time is also arbitrary between 3 minutes and 15 minutes. Had changed. Further, the exhaust gas flow rate during the substrate processing varied between about 0.4 L / min and about 1.5 L / min.

上記排ガス条件に対し、直径125mmの充填筒を用い、その中にガス処理剤として酸化カルシウム剤を20kg充填した。初期基本条件における空塔速度は3.7cm/秒であり、最大排ガス流量における空塔速度は約14cm/秒であった。検出手段で処理ガス中のSiF濃度を計測しながら処理を行ったところ、処理枚数420枚でSiFが検出された。しかし、その濃度は1ppm程度であり、排ガス流量が1.5L/分のときのものであって、排ガス流量が0.8L/分未満になるとSiF4は検出されなくなった。そこで、排ガス中のSiF濃度が100ppmを超えた時点を充填筒の破過点とし、計測を行いながら基板処理を引き続き継続し、最終的には480枚の基板処理ができた。なお、480枚処理の時点で、待機工程中の充填筒出口ではSiFは全く検出されなかった。 With respect to the exhaust gas conditions, a filling cylinder having a diameter of 125 mm was used, and 20 kg of a calcium oxide agent was filled therein as a gas treatment agent. The superficial velocity at the initial basic conditions was 3.7 cm / sec, and the superficial velocity at the maximum exhaust gas flow rate was approximately 14 cm / sec. When processing was performed while measuring the concentration of SiF 4 in the processing gas by the detecting means, SiF 4 was detected in 420 processed sheets. However, the concentration was about 1 ppm, and when the exhaust gas flow rate was 1.5 L / min, SiF 4 was not detected when the exhaust gas flow rate was less than 0.8 L / min. Therefore, the time when the concentration of SiF 4 in the exhaust gas exceeded 100 ppm was taken as the breakthrough point of the filled cylinder, and the substrate processing was continued while measuring, and finally 480 substrates could be processed. At the time of processing 480 sheets, no SiF 4 was detected at the exit of the filling cylinder during the standby process.

比較例1
実施例1と同じ排ガス条件の元、同サイズの充填筒を用いて排ガス処理実験を実施した。ここでは、充填筒の後段に検出器を連接したのみで、第2の充填筒は連接していない。実験の結果、処理枚数420枚程度で実施例と同様にSiFが検出され、その後、SiFが検出されなくなることがあった。しかし、SiFの恕限濃度である1ppmが連続されて検出される枚数は430枚であり、実施例1と比べ、処理枚数が50枚少なかった。この結果から、安全を見込んだ処理可能枚数は420枚であった。したがって、同じ充填量のガス処理剤で約12%のロスが生じることがわかり、実施例1と同様の処理性能を持たせるためには、ガス処理剤の充填量を2.4kg増やす必要があることがわかった。
Comparative Example 1
Under the same exhaust gas conditions as in Example 1, an exhaust gas treatment experiment was performed using a filled cylinder of the same size. Here, only the detector is connected to the subsequent stage of the filling cylinder, and the second filling cylinder is not connected. As a result of the experiment, SiF 4 was detected in the same manner as in the example with about 420 processed sheets, and thereafter, SiF 4 could not be detected. However, the number of sheets detected continuously at 1 ppm, which is the limit concentration of SiF 4 , was 430, and the number of processed sheets was 50 fewer than that in Example 1. From this result, the number of sheets that can be processed with the expectation of safety was 420 sheets. Therefore, it can be seen that a loss of about 12% occurs with the same amount of gas processing agent. In order to obtain the same processing performance as in Example 1, it is necessary to increase the gas processing agent charging amount by 2.4 kg. I understood it.

実施例2
実施例1と同じ操作を行い、最初にSiFが検出された420枚目以降、充填筒に充填されたガス処理剤の未反応部分を算出するため、充填筒に導入されたSiF濃度と処理筒出口、すなわち、検出手段で検出されたSiF濃度が一致するまでの枚数を調査した。その結果、処理可能枚数は500枚程度であった。また、このとき、待機工程中の充填筒出口ではSiFは全く検出されなかった。
Example 2
In order to calculate the unreacted portion of the gas treatment agent filled in the filling cylinder after the 420th sheet where SiF 4 was first detected after performing the same operation as in Example 1, the concentration of SiF 4 introduced into the filling cylinder and The number of sheets until the processing tube exit, that is, the SiF 4 concentration detected by the detecting means coincided was examined. As a result, the number of processable sheets was about 500. At this time, no SiF 4 was detected at the exit of the filling cylinder during the standby process.

実施例3
実施例2で完全に破過した充填筒を用いて、充填筒の交換作業を実施した。充填筒の交換のために、所定の弁を開閉して除去処理工程を他方の充填筒側に切り換えた後、破過済みの充填筒上部からArを0.5L/分で通気した。このときの圧力は10Torrとし。検出手段でSiF濃度を連続計測したところ、Ar通気開始後、約10分でSiF濃度は1ppm未満となり、Ar通気を停止して破過済み充填筒の交換を行った。新品の酸化カルシウム剤を20kg充填した新充填筒を装置に取り付け、新充填筒下部から真空排気をしながらHeリークディテクターで洩れ検査を実施し、洩れが1×10−9Pa・m/s以下であることを確認した。その後、新充填筒上部からArを3L/分で約20分通気して充填筒の大気パージ作業を終了した。その後、新充填筒に、検出手段を経由したSiF含有ガスを通気し、新充填筒出口でSiF濃度を計測したが、SiFは全く検出されなかった。
Example 3
Using the filling cylinder completely broken through in Example 2, the filling cylinder was replaced. In order to replace the filling cylinder, a predetermined valve was opened and closed to switch the removal process step to the other filling cylinder side, and then Ar was vented from the upper part of the filled filling cylinder at 0.5 L / min. The pressure at this time is 10 Torr. When the SiF 4 concentration was continuously measured by the detection means, after the start Ar breathable, SiF 4 concentration becomes less than 1ppm in about 10 minutes, it was carried out an exchange of breakthrough already filled barrel to stop Ar ventilation. A new filling cylinder filled with 20 kg of a new calcium oxide agent is attached to the device, and a leak inspection is performed with a He leak detector while evacuating from the bottom of the new filling cylinder. The leakage is 1 × 10 −9 Pa · m 3 / s. It was confirmed that: Thereafter, Ar was vented from the top of the new filling cylinder at 3 L / min for about 20 minutes to complete the air purge operation of the filling cylinder. After that, SiF 4 -containing gas passed through the detection means was passed through the new filling cylinder, and the SiF 4 concentration was measured at the outlet of the new filling cylinder, but no SiF 4 was detected.

10,20…充填筒、10a,20a…ガス流入部、10b,20b…ガス流出部、11,21…ガス処理剤、12,22…入口経路、12V,22V…入口弁、13,23…パージガス導入経路、13V,23V…パージガス導入弁、14,24…検出手段出口経路、14V,24V…検出手段出口弁、15,25…出口径路、15V,25V…出口弁、16,26…パージガス排出経路、16V,26V…パージガス導出弁、17,27…検出手段入口経路、17V,27V…検出手段入口弁、30…検出手段、32…制御装置、32a…入力部、32b…演算部、32c…出力部、33…装置制御部、33a…入出力部、33b…記憶・比較演算部、34…アラーム発生部、35…第1ガス流入・流出経路、36…第2ガス流入・流出経路、37…ガス排出経路、37V…ガス排出弁、38…検出手段流入経路、39…検出手段流出経路、41…排ガス経路、42…ガス放出経路   DESCRIPTION OF SYMBOLS 10,20 ... Filling cylinder, 10a, 20a ... Gas inflow part, 10b, 20b ... Gas outflow part, 11, 21 ... Gas treatment agent, 12, 22 ... Inlet path, 12V, 22V ... Inlet valve, 13, 23 ... Purge gas Introduction path, 13V, 23V ... purge gas introduction valve, 14, 24 ... detection means outlet path, 14V, 24V ... detection means outlet valve, 15, 25 ... outlet path, 15V, 25V ... outlet valve, 16, 26 ... purge gas discharge path , 16V, 26V ... purge gas outlet valve, 17, 27 ... detection means inlet path, 17V, 27V ... detection means inlet valve, 30 ... detection means, 32 ... control device, 32a ... input unit, 32b ... calculation unit, 32c ... output 33, device control unit, 33a, input / output unit, 33b, storage / comparison calculation unit, 34, alarm generation unit, 35, first gas inflow / outflow path, 36, second gas inflow / outflow Road, 37 ... gas discharge path, 37V ... gas discharge valve, 38 ... detector inflow path 39 ... detector outflow path 41: exhaust gas passage, 42 ... gas discharge path

Claims (1)

ガス処理剤をそれぞれ充填した第1及び第2の2つの充填筒で排ガス中の有害成分を除去処理する排ガス処理方法において、
各充填筒は、排ガス経路から導入される排ガス中に存在する有害成分を除去する除去処理工程と、該除去処理工程後に排ガスをパージする排ガスパージ工程と、該排ガスパージ工程後に充填筒を交換する工程と、交換された充填筒内の大気をパージする大気ガス成分パージ工程と、該大気ガス成分パージ工程後に除去処理工程を行っている充填筒から導出されて検出手段を通ったガスを導入して排出する待機工程とを行い、
第1の充填筒が除去処理工程を行っているときに、第2の充填筒は、第1の充填筒から導出した処理ガスを検出手段を通して導入した後排出する待機工程を行い、前記検出手段が有害成分を検出すると、第1の充填筒が除去処理工程から排ガスパージ工程に切り換わるとともに、第2の充填筒が待機工程から除去処理工程に切り換わり、
第1の充填筒の排ガスパージ工程において導出されるパージガスを前記検出手段を通して除去処理工程中の第2の充填筒に導入し、第2の充填筒が除去処理工程を行っている間に、前記検出手段がパージガス中の有害成分を検出しなくなったときに排ガスパージ工程を終了し、第1の充填筒を新たな充填筒に交換し、続いて、交換した第1の充填筒の大気ガス成分パージ工程を行ってから待機工程に切り換わることを特徴とする排ガス処理方法。
In the exhaust gas treatment method for removing harmful components in the exhaust gas with the first and second filling cylinders respectively filled with a gas treatment agent,
Each filling cylinder has a removal treatment process for removing harmful components present in the exhaust gas introduced from the exhaust gas route, an exhaust gas purge process for purging the exhaust gas after the removal treatment process, and a replacement of the filling cylinder after the exhaust gas purge process. Process, an atmospheric gas component purging step for purging the atmosphere in the replaced filling cylinder, and a gas derived from the filling cylinder performing the removal treatment process after the atmospheric gas component purging process and introduced through the detection means. And a standby process to discharge
When the first filling cylinder is performing the removal processing step, the second filling cylinder performs a standby step of introducing and discharging the processing gas derived from the first filling cylinder through the detection means, and the detection means When the harmful component is detected, the first filling cylinder is switched from the removal treatment process to the exhaust gas purging process, and the second filling cylinder is switched from the standby process to the removal treatment process,
While the purge gas derived in the exhaust gas purging process of the first filling cylinder is introduced into the second filling cylinder in the removal processing process through the detection means, the second filling cylinder performs the removal processing process, When the detection means no longer detects harmful components in the purge gas, the exhaust gas purging step is terminated, the first filling cylinder is replaced with a new filling cylinder, and then the atmospheric gas components in the replaced first filling cylinder An exhaust gas treatment method characterized by switching to a standby process after performing a purge process.
JP2012278971A 2012-12-21 2012-12-21 Exhaust gas treatment method Expired - Fee Related JP5499149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012278971A JP5499149B2 (en) 2012-12-21 2012-12-21 Exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012278971A JP5499149B2 (en) 2012-12-21 2012-12-21 Exhaust gas treatment method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005234175A Division JP2007044667A (en) 2005-08-12 2005-08-12 Apparatus and method for treating exhaust gas

Publications (2)

Publication Number Publication Date
JP2013066892A JP2013066892A (en) 2013-04-18
JP5499149B2 true JP5499149B2 (en) 2014-05-21

Family

ID=48473254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012278971A Expired - Fee Related JP5499149B2 (en) 2012-12-21 2012-12-21 Exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP5499149B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225467Y2 (en) * 1985-07-29 1990-07-12
CA1290551C (en) * 1986-08-04 1991-10-15 Min-Hsiun Lee Sulfur recovery process using metal oxide absorbent
JPH04358516A (en) * 1991-02-05 1992-12-11 Teisan Kk Exhaust gas treatment device
JPH087112B2 (en) * 1992-08-03 1996-01-29 株式会社荏原製作所 Exhaust gas abatement device breakthrough detection method and device
JPH07256047A (en) * 1994-03-24 1995-10-09 Kobe Steel Ltd Deodorizing apparatus
JPH09173772A (en) * 1995-12-28 1997-07-08 Meidensha Corp Operation of waste ozone treating device using active carbon contact method
JP2000061255A (en) * 1998-08-24 2000-02-29 Toshio Awaji Exhaust gas treatment in semiconductor manufacturing industry and device therefor
JP2005144359A (en) * 2003-11-17 2005-06-09 Mitsubishi Electric Corp Siloxane compound-containing gas refiner
JP4410586B2 (en) * 2004-03-09 2010-02-03 大阪瓦斯株式会社 Breakthrough detection method and apparatus for gas adsorption treatment system

Also Published As

Publication number Publication date
JP2013066892A (en) 2013-04-18

Similar Documents

Publication Publication Date Title
TW409170B (en) Large quantity supply apparatus for the gas in semiconductor process
JP2007044667A (en) Apparatus and method for treating exhaust gas
US20130171919A1 (en) Exhaust system
US9371229B2 (en) Ozone-generating system and ozone generation method
JPH0778775A (en) Evacuation of vacuum chamber for supervacuum and method of scavenging
WO2009110611A1 (en) Surface treatment apparatus
KR100817748B1 (en) Substrate processing method and substrate processing apparatus
JP5499149B2 (en) Exhaust gas treatment method
JP4966521B2 (en) Method and apparatus for treating exhaust gas containing perfluoride
WO2014125712A1 (en) Plant for manufacturing hydrogen sulfide gas and method for exhausting hydrogen sulfide gas
KR102235005B1 (en) Portable purge apparatus for removing process residual gas and method of removing process residual gas
WO2020196061A1 (en) Contamination treatment method for substrate treatment device and substrate treatment device
KR101628144B1 (en) The method and apparatus for absorption and exhaust of toxic gas based on gas absorption tower
JP2000306839A (en) Feeding system for semiconductor process gas
JPH0650855A (en) Break through detecting method and device for device for eliminating harmful object in exhaust gas
KR20170135244A (en) Asorbent high-efficiency utilization system of adsorption
JP2009213947A (en) Surface treatment apparatus
JP2009034671A (en) Treatment apparatus of perfluoro compound (pfc) and treatment method of pfc-containing gas
JPH10122539A (en) Discharged gas processing device
CN213853835U (en) Waste gas treatment equipment
CN112246076A (en) Waste gas treatment equipment
JP5277288B2 (en) Ultraviolet gas laser device
JP6248360B2 (en) Exhaust gas treatment system
JP4994424B2 (en) Substrate processing apparatus and method for forming semiconductor device
TWI323195B (en) Workpiece processing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R150 Certificate of patent or registration of utility model

Ref document number: 5499149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees