JP5498331B2 - Information recording medium, authenticity determination method thereof, and authenticity determination system - Google Patents

Information recording medium, authenticity determination method thereof, and authenticity determination system Download PDF

Info

Publication number
JP5498331B2
JP5498331B2 JP2010209244A JP2010209244A JP5498331B2 JP 5498331 B2 JP5498331 B2 JP 5498331B2 JP 2010209244 A JP2010209244 A JP 2010209244A JP 2010209244 A JP2010209244 A JP 2010209244A JP 5498331 B2 JP5498331 B2 JP 5498331B2
Authority
JP
Japan
Prior art keywords
emission intensity
wavelength
information
emission
information recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010209244A
Other languages
Japanese (ja)
Other versions
JP2012061794A (en
Inventor
寛規 岩永
純一 鷲塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010209244A priority Critical patent/JP5498331B2/en
Publication of JP2012061794A publication Critical patent/JP2012061794A/en
Application granted granted Critical
Publication of JP5498331B2 publication Critical patent/JP5498331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明の実施形態は、希土類蛍光錯体の発光スペクトルを活用した、情報記録媒体、その真偽判定方法、及び真偽判定システムに関する。   Embodiments described herein relate generally to an information recording medium, an authenticity determination method, and an authenticity determination system using an emission spectrum of a rare earth fluorescent complex.

近年、真偽判定手段は、ますますその重要性を増してきている。   In recent years, the authenticity determination means has become increasingly important.

一般に、蛍光染顔料を活用したセキュリティー方式では、可視光では視認識できない画像、記号、その他の形成物が、特定の波長に光、特に紫外光を照射することによって出現して認識できる状態に至る。従来、無機蛍光顔料を用いてパターンを形成し、紫外線照射によってパターンを出現させる方式が開示されているが、無機蛍光顔料は粒子として存在するため、可視光下で薄くパターンが視認できることにより、セキュリティー性に課題がある。   In general, in a security method using fluorescent dyes and pigments, images, symbols, and other formations that cannot be visually recognized by visible light appear and can be recognized by irradiating light at a specific wavelength, particularly ultraviolet light. . Conventionally, a method of forming a pattern using an inorganic fluorescent pigment and causing the pattern to appear by ultraviolet irradiation has been disclosed, but since the inorganic fluorescent pigment exists as particles, the pattern can be visually recognized thinly under visible light. There is a problem with sex.

これに対し、希土類蛍光錯体を活用するセキュリティー方式が報告されている。   On the other hand, a security method using a rare earth fluorescent complex has been reported.

希土類蛍光錯体は可視光下で透明であり、かつ媒体に溶解して光散乱がないため、視認できない点ではセキュリティー性が高い。このため、写真等の画像を印刷して紫外光を照射し、通常の写真と照合することにより、セキュリティー性が保たれる。しかしながら、全面に紫外線を照射して検査することにより偽造が可能であり、単独では高度なセキュリティーシステムを構築できない。   Since the rare earth fluorescent complex is transparent under visible light and dissolves in the medium and does not scatter light, it is highly secure in that it cannot be visually recognized. Therefore, security is maintained by printing an image such as a photograph, irradiating it with ultraviolet light, and collating it with a normal photograph. However, forgery is possible by inspecting the entire surface by irradiating ultraviolet rays, and it is impossible to construct a high-level security system by itself.

特開2002−173622号公報JP 2002-173622 A 特開2002−88282号公報JP 2002-88282 A

本実施形態は、かかる事情を鑑みてなされたものであり、希土類蛍光錯体を用いて、セキュリティー性の良好な情報記録媒体、真偽判定方法、及び真偽判定システムを得ることを目的とする。   The present embodiment has been made in view of such circumstances, and an object thereof is to obtain an information recording medium, authenticity determination method, and authenticity determination system with good security by using a rare earth fluorescent complex.

実施態様によれば、基材と、該基材上に設けられ、2以上の波長において発光強度ピークを出現し得る希土類蛍光錯体を含有する情報記録層を含む情報記録媒体に励起光を照射し、第1の波長及び該第1の波長とは異なる第2の波長における発光強度を並行して測定し、第1の発光強度及び第2の発光強度を決定する2波長発光強度測定部、
該2波長発光強度測定部からの該第1の発光強度情報及び第2の発光強度情報を受けて、該第1の発光強度及び第2の発光強度の相対強度比を計算する数値処理部、及び
該数値処理部から送られた相対強度比情報と、真偽判定情報から得られる相対強度比情報とを照合し、真偽判定を行う判定部を具備する真偽判定システムが得られる。
According to an embodiment, an excitation light is irradiated to an information recording medium including a base material and an information recording layer provided on the base material and containing a rare earth fluorescent complex capable of appearing an emission intensity peak at two or more wavelengths. , A two-wavelength emission intensity measuring unit that measures the emission intensity at the first wavelength and the second wavelength different from the first wavelength in parallel, and determines the first emission intensity and the second emission intensity;
A numerical processing unit that receives the first emission intensity information and the second emission intensity information from the two-wavelength emission intensity measurement unit, and calculates a relative intensity ratio between the first emission intensity and the second emission intensity; And the authenticity determination system provided with the determination part which collates the relative intensity ratio information sent from this numerical process part, and the relative intensity ratio information obtained from authenticity determination information, and performs authenticity determination is obtained.

実施形態の真偽判定システムの構成の一例を表すブロック図である。It is a block diagram showing an example of composition of a true / false determination system of an embodiment. 実施形態の情報記録媒体の一例を表す正面図である。It is a front view showing an example of the information recording medium of an embodiment. 図2のA−A断面図である。It is AA sectional drawing of FIG. 実施形態の真偽判定方法の一例を表すフローである。It is a flow showing an example of the authenticity determination method of embodiment. 実施形態の真偽判定方法の他の一例を表すフローである。It is a flow showing other examples of the authenticity determination method of an embodiment. 実施形態に使用可能な希土類蛍光錯体の一種であるEu(III)錯体の発光スペクトルを表すグラフである。It is a graph showing the emission spectrum of Eu (III) complex which is 1 type of the rare earth fluorescent complexes which can be used for embodiment. 実施形態に使用可能な希土類蛍光錯体の一種であるTb(III)錯体の発光スペクトルを表すグラフである。It is a graph showing the emission spectrum of the Tb (III) complex which is 1 type of the rare earth fluorescent complexes which can be used for embodiment. 実施形態に使用可能なインクリボンの構成の一例を表す断面図である。It is sectional drawing showing an example of a structure of the ink ribbon which can be used for embodiment.

実施形態にかかる情報記録媒体は、基材と、基材上に設けられ、2以上の波長において発光強度ピークを出現し得る希土類蛍光錯体を含有する情報記録層とを含む。   The information recording medium according to the embodiment includes a base material and an information recording layer that is provided on the base material and contains a rare earth fluorescent complex capable of appearing an emission intensity peak at two or more wavelengths.

実施形態にかかる真偽判定システム及び真偽判定方法では、上記情報記録媒体について真偽判定を行う。   In the authenticity determination system and the authenticity determination method according to the embodiment, authenticity determination is performed on the information recording medium.

以下、図面を参照し、実施形態をより詳細に説明する。   Hereinafter, embodiments will be described in more detail with reference to the drawings.

図1は、実施形態に係る真偽判定システムの構成を表すブロック図である。   FIG. 1 is a block diagram illustrating a configuration of a true / false determination system according to an embodiment.

図示するように、実施形態にかかる真偽判定システム100は、2波長発光強度測定部101、数値処理部102、及び判定部103を有する。   As illustrated, the authenticity determination system 100 according to the embodiment includes a two-wavelength emission intensity measurement unit 101, a numerical processing unit 102, and a determination unit 103.

2波長発光強度測定部101は、上記情報記録媒体に励起光を照射し、第1の波長及び該第1の波長とは異なる第2の波長における発光強度を並行して測定し、第1の発光強度及び第2の発光強度の決定を行うために設けられる。   The two-wavelength emission intensity measuring unit 101 irradiates the information recording medium with excitation light, measures in parallel the emission intensity at the first wavelength and the second wavelength different from the first wavelength, It is provided for determining the emission intensity and the second emission intensity.

数値処理部102は、2波長発光強度測定部101からの第1の発光強度情報及び第2の発光強度情報を受けて、該第1の発光強度及び第2の発光強度の相対強度比の計算を行うために設けられる。
判定部103は、数値処理部102から送られた相対強度比情報と、真偽判定情報から得られる相対強度比情報とを照合し、真偽判定を行うために設けられる。
The numerical processing unit 102 receives the first emission intensity information and the second emission intensity information from the two-wavelength emission intensity measurement unit 101, and calculates the relative intensity ratio between the first emission intensity and the second emission intensity. It is provided to do.
The determination unit 103 is provided to collate the relative intensity ratio information sent from the numerical processing unit 102 with the relative intensity ratio information obtained from the authenticity determination information and perform authenticity determination.

例えば、真偽判定情報は、真偽判定情報記録部104から得ることができる。真偽判定情報記録部104は例えば情報記録媒体の基材上に設けることが可能である。   For example, the authenticity determination information can be obtained from the authenticity determination information recording unit 104. The authenticity determination information recording unit 104 can be provided on a base material of an information recording medium, for example.

図2に、実施形態にかかる情報記録媒体の一例を表す正面図を示す。   FIG. 2 is a front view illustrating an example of the information recording medium according to the embodiment.

図3に図2のA−A断面図を示す。   FIG. 3 is a cross-sectional view taken along the line AA in FIG.

図示するように、実施形態に係る情報記録媒体の一例となるIDカード10は、基材1とその上に設けられた例えば文字情報層3、画像情報層2等の情報記録層を含む。希土類蛍光錯体は、情報記録層の少なくとも一部に含まれ得る。そこの希土類蛍光錯体を溶解するポリマーと共に使用できる。希土類蛍光錯体は、この希土類蛍光錯体を溶解するポリマーと共に使用できる。例えば画像情報層2を形成するためのインクに添加することができる。任意に、画像情報層2の右上の隅には、真偽判定情報記録部4を設けることが出来る。また、基材1、文字情報層3、画像情報層2、及び真偽判定情報記録部4上には、保護層5を設けることが出来る。   As shown in the drawing, an ID card 10 as an example of an information recording medium according to the embodiment includes a base material 1 and information recording layers such as a character information layer 3 and an image information layer 2 provided thereon. The rare earth fluorescent complex can be included in at least a part of the information recording layer. It can be used with a polymer that dissolves the rare earth fluorescent complex. The rare earth fluorescent complex can be used together with a polymer that dissolves the rare earth fluorescent complex. For example, it can be added to the ink for forming the image information layer 2. Optionally, a true / false determination information recording unit 4 can be provided in the upper right corner of the image information layer 2. A protective layer 5 can be provided on the substrate 1, the character information layer 3, the image information layer 2, and the authenticity determination information recording unit 4.

なお、ここでは、情報記録媒体に真偽判定情報記録部を設ける例について述べたが、これに限定するものではなく、例えば真偽判定情報は、判定部と接続可能なデータ蓄積部等に予め記憶させておくことが出来る。   Although an example in which the authenticity determination information recording unit is provided on the information recording medium has been described here, the present invention is not limited to this. For example, the authenticity determination information is preliminarily stored in a data storage unit that can be connected to the determination unit. It can be remembered.

図4に、実施形態にかかる真偽判定方法の一例を表すフローを示す。   FIG. 4 shows a flow representing an example of the authenticity determination method according to the embodiment.

実施形態にかかる真偽判定方法では、2波長発光強度測定(ブロック1)、数値処理(ブロック2)、及び真偽判定(ブロック3)を行う。   In the authenticity determination method according to the embodiment, two-wavelength emission intensity measurement (block 1), numerical processing (block 2), and authenticity determination (block 3) are performed.

2波長発光強度測定(ブロック1)では、2波長発光強度測定部にて、上記情報記録媒体に励起光を照射し、第1の波長及び該第1の波長とは異なる第2の波長における第1の発光強度及び第2の発光強度を並行して測定する。   In the two-wavelength emission intensity measurement (Block 1), the two-wavelength emission intensity measurement unit irradiates the information recording medium with excitation light, and the first wavelength and the second wavelength different from the first wavelength are measured. The first emission intensity and the second emission intensity are measured in parallel.

数値処理(ブロック2)では、2波長発光強度測定部からの第1の発光強度情報及び第2の発光強度情報を受けて、該第1の発光強度及び第2の発光強度の相対強度比を計算する。   In the numerical processing (block 2), the first emission intensity information and the second emission intensity information from the two-wavelength emission intensity measurement unit are received, and the relative intensity ratio between the first emission intensity and the second emission intensity is determined. calculate.

真偽判定(ブロック3)では、数値処理部から送られた相対強度比情報と、真偽判定情報から得られる相対強度比情報とを照合し、その照合結果を受けて判定を行う。   In the authenticity determination (block 3), the relative intensity ratio information sent from the numerical processing unit and the relative intensity ratio information obtained from the authenticity determination information are collated, and a determination is made based on the collation result.

実施形態にかかる真偽判定システム及び真偽判定方法は、希土類蛍光錯体のスペクトル形状の特異性を活用したものであり、発光スペクトル中の2以上の波長における発光強度例えば電気双極子遷移に基づく発光ピークの強度と、磁気双極子遷移に基づく発光ピークの強度とを並行して計測し、その相対強度比を求める。   The authenticity determination system and the authenticity determination method according to the embodiment utilize the specificity of the spectrum shape of the rare earth fluorescent complex, and emit light based on emission intensity at two or more wavelengths in the emission spectrum, for example, electric dipole transition. The intensity of the peak and the intensity of the emission peak based on the magnetic dipole transition are measured in parallel, and the relative intensity ratio is obtained.

相対強度比は、使用される希土類蛍光錯体を溶解するポリマーが同一であれば個々の希土類蛍光錯体固有のものとなる。   The relative intensity ratio is unique to each rare earth fluorescent complex as long as the polymer dissolving the rare earth fluorescent complex used is the same.

目視にはほとんど同一の発光が得られても、希土類蛍光錯体の分子構造が異なれば、相対強度比が変動する。   Even if almost the same light emission is obtained visually, the relative intensity ratio varies if the molecular structure of the rare earth fluorescent complex is different.

また、使用される希土類蛍光錯体が同じであっても、溶解するポリマーが異なると、相対強度比が変動する。   Even if the rare earth fluorescent complex used is the same, the relative intensity ratio varies if the polymer to be dissolved is different.

さらに、使用される希土類蛍光錯体が同じであっても、溶解するポリマーとの配合比が異なっても、有為な変動は検出されない。   Furthermore, even if the rare earth fluorescent complex used is the same, even if the blending ratio with the polymer to be dissolved is different, no significant fluctuation is detected.

このため、実施形態によれば、使用されている希土類蛍光錯体の分子構造、溶解するポリマー、希土類蛍光錯体とポリマー配合比について、真偽判定情報記録部等にあらかじめ記録された情報と一致するか、あるいは不一致であるかを容易に判定することが可能となり、セキュリティー性が良好となる。   For this reason, according to the embodiment, whether the molecular structure of the rare earth fluorescent complex used, the polymer to be dissolved, the rare earth fluorescent complex and the polymer blending ratio match the information recorded in advance in the authenticity determination information recording unit, etc. Or, it is possible to easily determine whether they are inconsistent, and the security is improved.

また、例えば、図4に示す2波長発光強度測定に加えて、2波長例えばλ1,λ2間の任意の少なくとも1波長例えばλ3の波長で発光強度例えばI3を測定し、上記2波長λ1,λ2における発光強度例えばI1,I2のいずれかよりも小さいことを確かめる発光強度測定を行うことができる。   Further, for example, in addition to the two-wavelength emission intensity measurement shown in FIG. 4, the emission intensity, for example, I3 is measured at an arbitrary wavelength of at least one wavelength, for example, λ3, between the two wavelengths, for example, λ1, λ2. The emission intensity can be measured by confirming that the emission intensity is smaller than either I1 or I2.

発光強度I3が、上記2波長における発光強度I1,I2のいずれかよりも高い場合には、真偽判定は偽と判定される。   When the emission intensity I3 is higher than either of the emission intensity I1 and I2 at the two wavelengths, the authenticity determination is determined to be false.

なお、このような場合は、例えば発光がブロードに起きる蛍光体が使用されているか、または測定すべき希土類蛍光錯体とは異なる波長にも発光強度とピークを有する蛍光体が使用されている等の原因が考えられる。   In such a case, for example, a phosphor that emits light broadly is used, or a phosphor having emission intensity and peak at a wavelength different from that of the rare earth fluorescent complex to be measured is used. Possible cause.

図5に、実施形態にかかる真偽判定方法の他の一例を表すフローを示す。   FIG. 5 shows a flow representing another example of the authenticity determination method according to the embodiment.

図示するように、この真偽判定方法では、最初の真偽判定の結果を受けた場合には(ブロック4)、再度、同じ媒体について2波長発光強度測定、数値処理、及び真偽判定を行い、得られた真偽判定の結果と、その前の真偽判定の結果とを照合し、その一致をもって最終的に真偽を決定し(ブロック5)、得られた真偽判定の結果と、その前の真偽判定の結果とを照合し、2つの結果が一致しないときは、加えて、2波長発光強度測定、数値処理、及び真偽判定を行い、得られた真偽判定の結果と、その前の真偽判定の結果とが一致するまで、2波長発光強度測定、数値処理、及び真偽判定を繰り返すこと以外は、図4に示す方法と同様である。   As shown in the figure, in this authenticity determination method, when the result of the initial authenticity determination is received (block 4), the two-wavelength emission intensity measurement, numerical processing, and authenticity determination are performed again for the same medium. The obtained true / false judgment result is compared with the previous true / false judgment result, and finally the true / false is determined by the coincidence (block 5), and the obtained true / false judgment result; Compared with the previous true / false judgment result, if the two results do not match, in addition, the two-wavelength emission intensity measurement, numerical processing, and true / false judgment are performed, and the obtained true / false judgment result 4 is the same as the method shown in FIG. 4 except that the two-wavelength emission intensity measurement, numerical processing, and authenticity determination are repeated until the previous authenticity determination result matches.

実施形態に使用可能な希土類蛍光錯体の一種である下記式(1)で表される分子構造を有するEu(III)錯体の発光スペクトルを図6に示す。

Figure 0005498331
FIG. 6 shows an emission spectrum of an Eu (III) complex having a molecular structure represented by the following formula (1), which is a kind of rare earth fluorescent complex that can be used in the embodiment.
Figure 0005498331

図6において、波長612nmにピークを有する、電気双極子遷移に基づく発光スペクトル強度602は、錯体の配位子の分子構造及び溶解するポリマーの種類の影響を大きく受けるものである。一方、各々、波長580nm、594nm、650nm、700nmにピークを有する、磁気双極子遷移に基づく発光スペクトル強度601は、これらの影響を受けず、ほぼ一定の発光強度を有するのである。以上より、電気双極子遷移と磁気双極子遷移に基づく発光強度の比率は、錯体の分子構造と溶解するポリマーの種類固有の値となる。すなわち、セキュリティーを設置する側が用いた蛍光錯体と分子構造が異なる蛍光錯体を用いて偽造を試みた場合、目視の発光は区別できなくとも、発光スペクトルの比率を把握することにより、直ちにその真偽を判定し得る。   In FIG. 6, the emission spectrum intensity 602 based on the electric dipole transition having a peak at a wavelength of 612 nm is greatly affected by the molecular structure of the ligand of the complex and the kind of the polymer to be dissolved. On the other hand, emission spectrum intensities 601 based on magnetic dipole transitions having peaks at wavelengths of 580 nm, 594 nm, 650 nm, and 700 nm, respectively, are not affected by these and have a substantially constant emission intensity. From the above, the ratio of the emission intensity based on the electric dipole transition and the magnetic dipole transition is a value specific to the molecular structure of the complex and the type of polymer to be dissolved. In other words, when attempting to counterfeit using a fluorescent complex with a molecular structure different from the fluorescent complex used by the security installation side, even if visual emission cannot be distinguished, it is immediately possible to determine its authenticity by grasping the ratio of the emission spectrum. Can be determined.

実施形態に使用可能な希土類蛍光錯体の一種である下記式(2)で表される分子構造を有するTb(III)錯体の発光スペクトル図7に示す。

Figure 0005498331
FIG. 7 shows an emission spectrum of a Tb (III) complex having a molecular structure represented by the following formula (2), which is a kind of rare earth fluorescent complex that can be used in the embodiment.
Figure 0005498331

図中、波長544nmにピークを有する603は、磁気双極子遷移に基づく発光スペクトル強度、604は、一方、各々、波長492nm、588nm、及び624nmにピークを有する、磁気双極子遷移に基づく発光スペクトル強度を、各々示す。   In the figure, 603 having a peak at a wavelength of 544 nm is an emission spectrum intensity based on a magnetic dipole transition, and 604 is an emission spectrum intensity based on a magnetic dipole transition having peaks at wavelengths of 492 nm, 588 nm, and 624 nm, respectively. Are shown respectively.

図7において、Eu(III)錯体の場合と同様に、セキュリティーを設置する側が用いた蛍光錯体と分子構造が異なる蛍光錯体を用いて偽造を試みた場合、目視の発光は区別できなくとも、発光スペクトルの比率を把握することにより、直ちにその真偽を判定し得る。   In FIG. 7, as in the case of the Eu (III) complex, when a counterfeit is attempted using a fluorescent complex having a molecular structure different from that of the fluorescent complex used by the side where the security is installed, the visual emission cannot be distinguished. By grasping the spectrum ratio, it is possible to immediately determine its authenticity.

Eu(III)錯体とTb(III)錯体等、複数の希土類蛍光錯体を混合することにより、より強固な上記のセキュリティーシステムを構築することが可能である。   By mixing a plurality of rare earth fluorescent complexes such as Eu (III) complex and Tb (III) complex, it is possible to construct a stronger security system.

発光スペクトルの検出方式は、電気双極子遷移と磁気双極子遷移の発光のピーク波長の2波長の強度を並行して、好ましくは同時に計測し、瞬時にその相対強度比率を計算して規定の値であるか否かを照合することができる。実施形態の方法を用いると、発光スペクトル全体を計測するよりも、測定に時間がかからず、低コストで、良好なセキュリティ性が要求される種々の用途に適用することが可能となる。   The emission spectrum detection method is to measure the intensity of the two wavelengths of the emission peak wavelength of the electric dipole transition and the magnetic dipole transition in parallel, preferably at the same time, and calculate the relative intensity ratio instantaneously to the specified value. It can be verified whether or not. When the method of the embodiment is used, the measurement takes less time than measuring the entire emission spectrum, and it can be applied to various applications that require low cost and good security.

一般的に有機蛍光体は、溶解するポリマーにより、発光強度のみならず、発光波長が大きく変化するため、上記のような真偽判定は不可能である。   In general, organic phosphors cannot be subjected to authenticity determination as described above because not only the emission intensity but also the emission wavelength varies greatly depending on the polymer to be dissolved.

これに対し、実施形態にかかる希土類蛍光錯体は、波長が、分子構造や存在条件でほとんどシフトせず、かつ置かれた環境で発光強度が変化しない磁気双極子遷移に基づく発光と、置かれた環境によって発光強度が変化する電気双極子遷移に基づく発光を分離して有する希土類蛍光錯体でのみ可能なシステムである。   On the other hand, the rare earth fluorescent complex according to the embodiment was placed with light emission based on a magnetic dipole transition in which the wavelength hardly shifts depending on the molecular structure or existence condition and the light emission intensity does not change in the placed environment. This system is only possible with rare earth fluorescent complexes that have separate emission based on the electric dipole transition whose emission intensity varies depending on the environment.

実施形態に用いられる希土類蛍光錯体を溶解するポリマーとしては、アクリル樹脂、ポリエステル樹脂、塩化ビニル−酢酸ビニル共重合樹脂などの透明な樹脂が望ましい。より望ましくは、高極性なものである。   The polymer that dissolves the rare earth fluorescent complex used in the embodiment is preferably a transparent resin such as an acrylic resin, a polyester resin, or a vinyl chloride-vinyl acetate copolymer resin. More preferably, it is highly polar.

実施形態に用いられるアクリル樹脂としては、具体的には、三菱レイヨン(株)製ダイヤナールBR−53、ダイヤナールBR−64、ダイヤナールBR−77、ダイヤナールBR−79、ダイヤナールBR−90、ダイヤナールBR−93、ダイヤナールBR−101、ダイヤナールBR−102、ダイヤナールBR−105、ダイヤナールBR−106、ダイヤナールBR−107、ダイヤナールBR−112、ダイヤナールBR−115、ダイヤナールBR−116、ダイヤナールBR−117、ダイヤナールBR−118等があげられる。   Specifically, the acrylic resin used in the embodiment is made by Mitsubishi Rayon Co., Ltd., Dialal BR-53, Dialnal BR-64, Dialnal BR-77, Dialnal BR-79, Dialnal BR-90. , Dialnal BR-93, dialnal BR-101, dialnal BR-102, dialnal BR-105, dialnal BR-106, dialnal BR-107, dialnal BR-112, dialnal BR-115, diamond Narnal BR-116, Dianal BR-117, Dianar BR-118, and the like.

実施形態に用いられるポリエステル樹脂としては、具体的には、東洋紡績(株)製バイロン200、バイロン220、バイロン245、バイロン270、バイロン280、バイロン290、バイロンGK640、バイロンGK880、バイロンSI−173、バイロンRN−9300、バイロンRN−9600、バイロナールMD−1245、ユニチカ(株)製エリーテルUE−3200、エリーテルUE−3201、エリーテルUE−3203、エリーテルUE−3600、エリーテルUE−9600、エリーテルUE−9800、エリーテルUE−3660等があげられる。   Specific examples of the polyester resin used in the embodiment include Byron 200, Byron 220, Byron 220, Byron 245, Byron 270, Byron 280, Byron 290, Byron GK640, Byron GK880, Byron SI-173, manufactured by Toyobo Co., Ltd. Byron RN-9300, Byron RN-9600, Byronal MD-1245, Unitika Ltd. Elitel UE-3200, Elitel UE-3201, Elitel UE-3203, Elitel UE-3600, Elitel UE-9600, Elitel UE-9800, Elitel UE-3660 and the like.

実施形態に用いられる塩化ビニル−酢酸ビニル共重合樹脂としては、具体的には、ダウケミカル製VYNS−3、VYHH、VYHD、VMCH、VMCC、VMCA、VERR−40、VAGH、VAGD、VAGF、VROH、日信化学工業(株)製ソルバインC、ソルバインCL、ソルバインCH、ソルバインCN、ソルバインC5、ソルバインM、ソルバインML、ソルバインTA5R、ソルバインTAO、ソルバインMK6、ソルバインTA2等があげられる。   Specific examples of the vinyl chloride-vinyl acetate copolymer resin used in the embodiment include Dow Chemical's VYNS-3, VYHH, VYHD, VMCH, VMCC, VMCA, VERR-40, VAGH, VAGD, VAGF, VROH, Examples include Solven C, Solvein CL, Solvein CH, Solvein CN, Solvein C5, Solvein M, Solvein ML, Solvein TA5R, Solvein TAO, Solvein MK6 and Solvein TA2 manufactured by Nissin Chemical Industry Co., Ltd.

実施形態に用いられる希土類蛍光錯体は、光に対する耐久性、発光強度、印刷性能の3つの特性を満たす必要がある。我々は種々の検討を行った結果、下記式(1)に示す分子構造のLn(III)錯体が上記特性を最もよく満たすことを見出した。

Figure 0005498331
The rare earth fluorescent complex used in the embodiment needs to satisfy three characteristics of durability against light, emission intensity, and printing performance. As a result of various studies, we have found that an Ln (III) complex having a molecular structure represented by the following formula (1) best satisfies the above characteristics.
Figure 0005498331

式(3)において、Ar,Arは同一でも異なっていてもよい芳香族置換基またはこの置換体、R,Rは同一でも異なっていても良い直鎖、枝分かれ構造のどちらでもよいアルキル基、アルコキシ基、R(F),R(F)は、同一であっても異なっていてもよいパーフルオロアルキル基、nは2以上の整数、Ln(III)は希土類イオンである。 In the formula (3), Ar 1 and Ar 2 may be the same or different aromatic substituents or their substituents, and R 3 and R 4 may be either the same or different linear or branched structures. Alkyl group, alkoxy group, R 1 (F), R 2 (F) may be the same or different perfluoroalkyl group, n is an integer of 2 or more, and Ln (III) is a rare earth ion .

また、さらには、実施形態に用いられる希土類蛍光錯体は、下記式(4)に示す分子構造のLn(III)錯体が上記特性を満たすことを見出した。

Figure 0005498331
Furthermore, it has been found that the rare-earth fluorescent complex used in the embodiment satisfies the above-described characteristics of the Ln (III) complex having a molecular structure represented by the following formula (4).
Figure 0005498331

式(4)において、R1,R2,R3,R4は同一でも異なっていてもよい芳香族置換基または直鎖、枝分かれ構造のどちらでもよいアルキル基、アルコキシ基またはこれらの置換体であり、すべて同一である場合を除く。R1(F),R2(F)は、同一であっても異なっていてもよいパーフルオロアルキル基、Ln(III)は希土類イオンである。   In the formula (4), R 1, R 2, R 3 and R 4 are the same or different aromatic substituents or alkyl groups, alkoxy groups which may be either linear or branched structures, or substituted products thereof, all the same Except the case. R1 (F) and R2 (F) may be the same or different perfluoroalkyl groups, and Ln (III) is a rare earth ion.

実施形態にかかるセキュリティー媒体は、熱転写印刷等で画像やパターンを形成することによって実現することができる。熱転写印刷を行う場合のインクリボンの断面図を図8に示す。   The security medium according to the embodiment can be realized by forming an image or a pattern by thermal transfer printing or the like. FIG. 8 shows a cross-sectional view of the ink ribbon when performing thermal transfer printing.

図示するように、このインクリボン20は、基材7、と基材7の一方の主面上に形成された耐熱層6と、基材7のもう一方の主面には、溶融型または昇華型熱転写インク層8とが記載されている。   As shown in the figure, the ink ribbon 20 has a base material 7, a heat resistant layer 6 formed on one main surface of the base material 7, and a melt type or sublimation on the other main surface of the base material 7. The mold thermal transfer ink layer 8 is described.

実施形態によれば、使用される希土類蛍光錯体の分子構造と、溶解するポリマーの種類によって変化し得、かつ他の要因に左右されない磁気双極子遷移と電気双極子遷移に基づく発光ピークの強度比を真偽判定時の基準とすることができる。これにより、希土類蛍光錯体とポリマーの種類の両方の合致を以て、真偽判定を行うことができ、さらには、希土類蛍光錯体とポリマーの配合比の合致に以て、簡単安価なシステムでよりセキュリティーの良好な真偽判定を行うことが可能となる。   According to the embodiment, the intensity ratio of the emission peak based on the magnetic dipole transition and the electric dipole transition, which can vary depending on the molecular structure of the rare earth fluorescent complex used and the type of polymer to be dissolved and is not influenced by other factors. Can be used as a reference for authenticity determination. As a result, it is possible to make a true / false judgment by matching both the rare earth fluorescent complex and the polymer type, and furthermore, by matching the mixing ratio of the rare earth fluorescent complex and the polymer, a simple and inexpensive system can provide more security. Good authenticity determination can be performed.

実験例
以下、実施例を示し、実施の形態をより詳細に説明する。
Experimental Example Hereinafter, an example will be shown, and the embodiment will be described in more detail.

実施例1
実施形態にかかる情報記録媒体を以下のように作成し、その光耐久性、明るさ、及び印刷精度を測定、評価した。
Example 1
The information recording medium according to the embodiment was prepared as follows, and its light durability, brightness, and printing accuracy were measured and evaluated.

熱溶融性インクリボンの作成
一方の表面に耐熱フィルムを設けた厚さ4.5μmの透明ポリエステルフィルム(東レ株式会社製、商品型番:ルミラーQ27)を用意し、そのポリエステルフィルムのもう一方の表面に、下記組成の熱溶融性インク塗布液を、グラビアコーターを用いて、乾燥後の塗膜厚みが3μmになるよう塗布し、それぞれ120℃で2分間、加熱・乾燥して、熱溶融性インク層を形成し、熱溶融性インクリボンを得た。
Preparation of a heat-meltable ink ribbon A 4.5 μm thick transparent polyester film (manufactured by Toray Industries, Inc., product number: Lumirror Q27) with a heat-resistant film provided on one surface is prepared, and the other surface of the polyester film is prepared. The hot melt ink coating liquid having the following composition was applied using a gravure coater so that the coating thickness after drying would be 3 μm, and heated and dried at 120 ° C. for 2 minutes, respectively. And a hot-melt ink ribbon was obtained.

熱溶融性インク層塗布液
メチルエチルケトン 40重量部
トルエン 40重量部
東洋紡績(株)製バイロン220 14重量部
式(5)で表される希土類蛍光錯体 6重量部

Figure 0005498331
Heat-meltable ink layer coating solution Methyl ethyl ketone 40 parts by weight Toluene 40 parts by weight Byon 220 manufactured by Toyobo Co., Ltd. 14 parts by weight Rare earth fluorescent complex represented by formula (5) 6 parts by weight
Figure 0005498331

得られた熱溶融性インクリボンと市販のPPC用紙を重ね、熱溶融性インクリボンの背面側から600dpiのサーマルヘッドで、画像記録を行い、例えばIDカード等の画像入り情報記録媒体を得た。   The obtained hot-melt ink ribbon and a commercially available PPC paper were overlapped, and image recording was performed with a 600 dpi thermal head from the back side of the hot-melt ink ribbon to obtain an image-containing information recording medium such as an ID card.

下記条件にて、光耐久性、明るさ、及び印刷精度を測定、評価した。   Light durability, brightness, and printing accuracy were measured and evaluated under the following conditions.

耐久性
画像記録を行った媒体を、スガ試験機(株)製ロングライフキセノンウェザーメーターWEL−75X−HC−BEC型内に7日間放置し、発光強度の残存率の変化を日本分光製蛍光分光光度計FP−6600にて測定した。
Durability The medium on which the image was recorded was left in a long-life xenon weather meter WEL-75X-HC-BEC manufactured by Suga Test Instruments Co., Ltd. for 7 days, and the change in the residual ratio of the emission intensity was measured by Fluorescence Spectroscopy manufactured by JASCO. Measured with a photometer FP-6600.

発光強度の残存率は、次式より求めた。   The residual ratio of emission intensity was obtained from the following equation.

残存率(%)=(試験後の発光強度)/(試験前の発光強度)×100(%)
その結果、発光強度の残存率は、88(%)と、良好であった。
Residual rate (%) = (emission intensity after test) / (emission intensity before test) × 100 (%)
As a result, the residual ratio of the emission intensity was as good as 88 (%).

尚、残存率は、70(%)以上が良好、40(%)以上70(%)未満がやや良好、40(%)未満を不良とする。   In addition, 70% or more of the remaining rate is good, 40% or more and less than 70% is a little good, and less than 40% is a bad.

明るさ(発光強度)
画像記録を行った媒体の発光強度を、日本分光製蛍光分光光度計FP−6600にて測定した。その結果、全体の発光強度は、420であり、良好であった。
Brightness (emission intensity)
The emission intensity of the medium on which the image was recorded was measured with a fluorescence spectrophotometer FP-6600 manufactured by JASCO. As a result, the overall emission intensity was 420, which was good.

また、580nmの波長における発光強度は324であり、700nmの波長における発光強度は23となる。   The emission intensity at a wavelength of 580 nm is 324, and the emission intensity at a wavelength of 700 nm is 23.

その発光強度比は、14.1である。   The emission intensity ratio is 14.1.

印刷精度の評価方法
画像記録を行った媒体の画点の形状を実体顕微鏡で観察し、画点面積のばらつき、画点の中央抜けの有無を調べた。画点面積のばらつきが±10%以内であれば良好、±10%を越えると不良として評価した。また、中央抜けがない場合を良好、ある場合を不良として評価した。その結果、画点面積のばらつきが4%と良好であった。
Evaluation Method of Printing Accuracy The shape of the dot on the medium on which the image was recorded was observed with a stereomicroscope, and the variation in the dot area and the presence or absence of the center of the dot were examined. When the variation in the dot area was within ± 10%, it was evaluated as good, and when it exceeded ± 10%, it was evaluated as defective. Moreover, the case where there was no center omission was evaluated as good, and the case where it was present was evaluated as defective. As a result, the variation in the dot area was as good as 4%.

上述のごとく、光耐久性、印刷精度、及び発光強度の3特性ともに良好であり、情報記録媒体として実用的に使用できることが分かった。   As described above, it has been found that the three characteristics of light durability, printing accuracy, and light emission intensity are all good and can be used practically as an information recording medium.

また、熱溶融性インクの発光スペクトルについて、二波長同時検出システム日本板硝子社製 光ファイバー型蛍光検出器を用いて測定したところ、ピーク強度比()/()は、8.0となった。 Further, the emission spectrum of hot melt ink, dual wavelength simultaneous detection was systems measured using a Nippon Sheet Glass Co. fiber optic fluorescence detector, the peak intensity ratio (5 D 0 ⇒ 7 F 2 ) / (5 D 0 ⇒ 7 F 1 ) was 8.0.

また、使用されるポリマー バイロン220に対する希土類蛍光錯体の重量は42.86重量%であった。   Moreover, the weight of the rare earth fluorescent complex with respect to the polymer Byron 220 used was 42.86% by weight.

実施例2
式(5)で表される希土類蛍光錯体の代わりに、下記式(6)に示す分子構造の錯体を用いること以外は、実施例1と同様にして、画像入り情報記録媒体を作成した。

Figure 0005498331
Example 2
An image-recorded information recording medium was prepared in the same manner as in Example 1 except that a complex having a molecular structure represented by the following formula (6) was used instead of the rare earth fluorescent complex represented by the formula (5).
Figure 0005498331

実施例1と同様にして、光耐久性、印刷精度、明るさを測定、評価したところ、光耐久性は82%、発光強度は384であり、良好であった。しかしながら、印刷精度は、画点面積のばらつきが23%とやや劣っていた。   The light durability, printing accuracy, and brightness were measured and evaluated in the same manner as in Example 1. As a result, the light durability was 82% and the light emission intensity was 384, which was favorable. However, the printing accuracy was slightly inferior with 23% variation in the dot area.

印刷精度がやや悪い原因は、熱転写時の転写能が良くない、即ち膜質が丈夫であり、転写されがたいことがあげられる。一般に、溶質に対するフッ素原子の導入は、ポリマーをもろくする傾向がある。即ち、βジケトンの置換基は、両者ともにフルオロアルキル基であることが必要である。   The reason why the printing accuracy is slightly poor is that the transfer capability at the time of thermal transfer is not good, that is, the film quality is strong and the transfer is difficult. In general, introduction of fluorine atoms into the solute tends to make the polymer brittle. That is, both of the substituents of β diketone need to be fluoroalkyl groups.

実施例3
式(5)で表される希土類蛍光錯体の代わりに、下記式(1)に示す分子構造をもつ希土類蛍光錯体を用いること以外は、実施例1と同様にして、画像入り情報記録媒体を作成した。

Figure 0005498331
Example 3
An image-recorded information recording medium is prepared in the same manner as in Example 1 except that a rare earth fluorescent complex having a molecular structure represented by the following formula (1) is used instead of the rare earth fluorescent complex represented by the formula (5). did.
Figure 0005498331

実施例1と同様にして、光耐久性、印刷精度、明るさを評価したところ、光耐久性、明るさ、印刷精度が多少劣ることが判明した。   Evaluation of light durability, printing accuracy, and brightness in the same manner as in Example 1 revealed that the light durability, brightness, and printing accuracy were somewhat inferior.

式(1)に示す錯体は、他の錯体と比較して、溶媒に対する溶解性に極めて優れることが特徴である。ポリマー中で染料として振舞うため、耐久性が劣化したものと考えられる。   The complex represented by the formula (1) is characterized by extremely excellent solubility in a solvent as compared with other complexes. It is thought that durability deteriorated because it behaves as a dye in the polymer.

実施例4
式(5)で表される希土類蛍光錯体の代わりに、下記式(7)下記で表される分子構造をもつ希土類蛍光錯体を用いること以外は実施例1と同様にして、画像入り情報記録媒体を作成した。

Figure 0005498331
Example 4
In the same manner as in Example 1, except that a rare earth fluorescent complex having a molecular structure represented by the following formula (7) is used instead of the rare earth fluorescent complex represented by the formula (5), an information recording medium containing images It was created.
Figure 0005498331

実施例1と同様にして、光耐久性、印刷精度、明るさを評価したところ、明るさは良好であったが、光耐久性、印刷精度がやや劣ることが判明した。   Evaluation of light durability, printing accuracy, and brightness in the same manner as in Example 1 revealed that although the brightness was good, the light durability and printing accuracy were slightly inferior.

式(7)で表される分子構造をもつ希土類蛍光錯体では、βジケトン配位子に芳香族置換基が導入されたことにより、活性メチレンとなるβジケトンの中央部のHの酸性度が向上し、分解が促進されて光耐久性が低下したものと思われる。   In the rare earth fluorescent complex having the molecular structure represented by the formula (7), the acidity of H at the center of the β-diketone that becomes active methylene is improved by introducing an aromatic substituent into the β-diketone ligand. However, it seems that decomposition was accelerated and light durability was lowered.

実施例5〜9
下記式(8)ないし式(12)で表される分子構造を有するEu(III)錯体を、各々合成し、 酢酸エチル溶液中における発光スペクトルについて、二波長同時検出システム 日本板硝子社製 光ファイバー型蛍光検出器を用いてピーク強度比()/()を測定したところ、下記表1に示す結果を得た。

Figure 0005498331
Examples 5-9
Eu (III) complexes having a molecular structure represented by the following formulas (8) to (12) are respectively synthesized, and the emission spectrum in an ethyl acetate solution is a two-wavelength simultaneous detection system manufactured by Nippon Sheet Glass Co., Ltd. Optical fiber type fluorescence When the peak intensity ratio ( 5 D 07 F 2 ) / ( 5 D 07 F 1 ) was measured using a detector, the results shown in Table 1 below were obtained.
Figure 0005498331

Figure 0005498331
Figure 0005498331

Figure 0005498331
Figure 0005498331

Figure 0005498331
Figure 0005498331

Figure 0005498331
Figure 0005498331

Figure 0005498331
Figure 0005498331

式(8)ないし式(12)で表される分子構造を有するEu(III)錯体は互いに似たような構造を有するけれども、上記表1のように、ピーク強度比に差が出る。   Although Eu (III) complexes having molecular structures represented by the formulas (8) to (12) have similar structures to each other, the peak intensity ratio differs as shown in Table 1 above.

このように、実施形態にかかる情報記録媒体に使用される希土類蛍光錯体には、各々、固有のピーク強度比があることがわかる。   Thus, it is understood that each rare earth fluorescent complex used in the information recording medium according to the embodiment has a specific peak intensity ratio.

このように、希土類蛍光錯体が二以上の波長にて固有のピーク強度比を示す特性を使用し、使用されている希土類蛍光錯体の分子構造、溶解するポリマー、及び希土類蛍光錯体とポリマー配合比について、あらかじめ情報を記憶させておくことにより、測定を行った試料のピーク強度比と一致するか、あるいは不一致であるかを容易に判定することが可能となり、セキュリティー性が良好となる。   In this way, the rare earth fluorescent complex uses the characteristic that exhibits an intrinsic peak intensity ratio at two or more wavelengths, and the molecular structure of the rare earth fluorescent complex used, the polymer to be dissolved, and the rare earth fluorescent complex and polymer blend ratio By storing information in advance, it is possible to easily determine whether the peak intensity ratio of the measured sample matches or does not match, and the security is improved.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

参考例10
式(5)で表される希土類蛍光錯体の代わりに、式(2)で表される分子構造をもつ希土類蛍光錯体を用いること以外は実施例1と同様にして、画像入り情報記録媒体を作成した。ピーク強度比(5072)/(5071)を測定したところ、0.20であった。

Figure 0005498331
Reference Example 10
An image-recorded information recording medium was prepared in the same manner as in Example 1 except that the rare earth fluorescent complex having the molecular structure represented by formula (2) was used instead of the rare earth fluorescent complex represented by formula (5). did. When the peak intensity ratio (5 D 0 ⇒ 7 F 2 ) / (5 D 0 ⇒ 7 F 1) was measured to be 0.20.
Figure 0005498331

実施例11
式(12)のEu(III)錯体を用いて作成したセキュリティー画像5種(真)と、実施例1の式(5)のEu(III)錯体を用いて作成したセキュリティー画像1種(偽)を混合した。
Example 11
5 types of security images (true) created using the Eu (III) complex of formula (12) and 1 type of security image (false) created using the Eu (III) complex of formula (5) of Example 1 Were mixed.

ブラックライト照射時は、全く同一に見える赤色発光画像が得られた。しかしながら、二波長同時検出システムでピーク強度比を測定したところ、1種のみピーク強度比28の偽の画像が検出された。   When illuminated with black light, a red light emission image that looks exactly the same was obtained. However, when the peak intensity ratio was measured with the two-wavelength simultaneous detection system, only one type of false image with a peak intensity ratio of 28 was detected.

1…基材、2…画像情報層、3…文字情報層、4…真偽判定情報記録部、10…IDカード、100…真偽判定システム、102…2波長発光強度測定部、103…判定部、104…真偽判定情報記録部   DESCRIPTION OF SYMBOLS 1 ... Base material, 2 ... Image information layer, 3 ... Character information layer, 4 ... Authenticity determination information recording part, 10 ... ID card, 100 ... Authenticity determination system, 102 ... Two wavelength emission intensity measurement part, 103 ... Determination 104, authenticity determination information recording unit

Claims (14)

基材と、該基材上に設けられ、2以上の波長において発光強度ピークを出現し得る下記式(3)で現される希土類蛍光錯体を含有する情報記録層を含む情報記録媒体に励起光を照射し、第1の波長及び該第1の波長とは異なる第2の波長における発光強度を並行して測定し、第1の発光強度及び第2の発光強度を決定する2波長発光強度測定部、
該2波長発光強度測定部からの該第1の発光強度情報及び第2の発光強度情報を受けて、該第1の発光強度及び第2の発光強度の相対強度比を計算する数値処理部、及び
該数値処理部から送られた相対強度比情報と、真偽判定情報から得られる相対強度比情報とを照合し、真偽判定を行う判定部を具備する真偽判定システム。
Figure 0005498331
(式(3)において、Ar 1 , Ar 2 は同一でも異なっていてもよい芳香族置換基またはこの置換体、R 3 , R 4 は同一でも異なっていても良い直鎖、枝分かれ構造のどちらでもよいアルキル基、アルコキシ基、R 1 (F),R 2 (F)は、同一であっても異なっていてもよく、その少なくとも一方はパーフルオロアルキル基である)、nは2以上の整数、Ln(III)は希土類イオンである。)
Excitation light is applied to an information recording medium including a base material and an information recording layer that is provided on the base material and includes a rare earth fluorescent complex represented by the following formula (3) that can exhibit emission intensity peaks at two or more wavelengths. A two-wavelength emission intensity measurement that determines the first emission intensity and the second emission intensity by measuring the emission intensity at a first wavelength and a second wavelength different from the first wavelength in parallel. Part,
A numerical processing unit that receives the first emission intensity information and the second emission intensity information from the two-wavelength emission intensity measurement unit, and calculates a relative intensity ratio between the first emission intensity and the second emission intensity; And a true / false determination system including a determination unit that compares the relative intensity ratio information sent from the numerical processing unit with the relative intensity ratio information obtained from the authenticity determination information, and performs true / false determination.
Figure 0005498331
(In the formula (3), Ar 1 and Ar 2 may be the same or different aromatic substituents or substituents thereof, and R 3 and R 4 may be the same or different, either linear or branched structures. A good alkyl group, an alkoxy group, R 1 (F) and R 2 (F) may be the same or different, at least one of which is a perfluoroalkyl group), n is an integer of 2 or more, Ln (III) is a rare earth ion. )
前記の2波長以上の波長に対応する発光は、少なくとも一つの磁気双極子遷移に基づく発光と、少なくとも一つの電気双極子遷移に基づく発光の中心である請求項1に記載のシステム。   The system according to claim 1, wherein the emission corresponding to the two or more wavelengths is a center of emission based on at least one magnetic dipole transition and emission based on at least one electric dipole transition. 前記真偽判定情報を記録した真偽判定情報記録部が前記基材上に設けられる請求項1または2に記載のシステム。   The system according to claim 1, wherein a true / false determination information recording unit that records the authenticity determination information is provided on the base material. 2波長発光強度測定部にて、基材と、該基材上に設けられ、2以上の波長において発光強度ピークを出現し得る下記式(3)で現される希土類蛍光錯体を含有する情報記録層を含む情報記録媒体に励起光を照射し、第1の波長及び該第1の波長とは異なる第2の波長における第1の発光強度及び第2の発光強度を並行して測定する2波長発光強度測定を行い、
該2波長発光強度測定部からの該第1の発光強度情報及び第2の発光強度情報を受けて、該第1の発光強度及び第2の発光強度の相対強度比を計算する数値処理を行い、及び
該数値処理部から送られた相対強度比情報と、真偽判定情報から得られる相対強度比情報とを照合し、真偽判定を行うことを含む真偽判定方法。
Figure 0005498331
(式(3)において、Ar 1 , Ar 2 は同一でも異なっていてもよい芳香族置換基またはこの置換体、R 3 , R 4 は同一でも異なっていても良い直鎖、枝分かれ構造のどちらでもよいアルキル基、アルコキシ基、R 1 (F),R 2 (F)は、同一であっても異なっていてもよく、その少なくとも一方はパーフルオロアルキル基である)、nは2以上の整数、Ln(III)は希土類イオンである。)
Information recording comprising a base material and a rare earth fluorescent complex represented by the following formula (3), which is provided on the base material and can exhibit a light emission intensity peak at two or more wavelengths, in a two-wavelength emission intensity measurement unit Two wavelengths for irradiating an information recording medium including a layer with excitation light and measuring in parallel the first emission intensity and the second emission intensity at the first wavelength and a second wavelength different from the first wavelength. Measure the emission intensity,
In response to the first emission intensity information and the second emission intensity information from the two-wavelength emission intensity measurement unit, numerical processing is performed to calculate a relative intensity ratio between the first emission intensity and the second emission intensity. And a true / false determination method including collating the relative intensity ratio information sent from the numerical processing unit with the relative intensity ratio information obtained from the true / false determination information and performing a true / false determination.
Figure 0005498331
(In the formula (3), Ar 1 and Ar 2 may be the same or different aromatic substituents or substituents thereof, and R 3 and R 4 may be the same or different, either linear or branched structures. A good alkyl group, an alkoxy group, R 1 (F) and R 2 (F) may be the same or different, at least one of which is a perfluoroalkyl group), n is an integer of 2 or more, Ln (III) is a rare earth ion. )
前記2波長以上の波長に対応する発光は、少なくとも一つの磁気双極子遷移に基づく発光と、少なくとも一つの電気双極子遷移に基づく発光の中心である請求項に記載の方法。 5. The method according to claim 4 , wherein the emission corresponding to the two or more wavelengths is a center of emission based on at least one magnetic dipole transition and emission based on at least one electric dipole transition. 前記真偽判定の結果を受けて、再度、同じ媒体について2波長発光強度測定、数値処理、及び真偽判定を行い、得られた真偽判定の結果と、前回の真偽判定の結果とを照合し、その一致をもって最終的に真偽判定を決定する請求項またはに記載の方法。 In response to the result of the true / false determination, the two-wavelength emission intensity measurement, the numerical processing, and the true / false determination are performed again for the same medium, and the obtained true / false determination result and the previous true / false determination result 6. The method according to claim 4 or 5 , wherein collation is performed and a true / false judgment is finally determined based on the match. 前記真偽判定情報を記録した真偽判定情報記録部が前記基材上に設けられる請求項4ないし6のいずれか1項に記載の方法。 The method according to any one of claims 4 to 6, wherein a true / false determination information recording unit that records the authenticity determination information is provided on the base material. 前記第1の波長と第2の波長との間の第3の波長における発光強度をさらに測定し、前第1の波長及び第2の波長における各発光強度と比較して、前記判定部は、真偽判定を行うことをさらに含む請求項ないしのいずれか1項に記載の方法。 Further measuring the emission intensity at a third wavelength between the first wavelength and the second wavelength, and comparing with the respective emission intensity at the previous first wavelength and the second wavelength, the determination unit, The method according to any one of claims 4 to 7 , further comprising performing authenticity determination. 基材と、該基材上に設けられ、励起光照射により、2以上の波長において発光強度のピークを出現し得る下記式(3)で現される希土類蛍光錯体を含有する情報記録部を具備する情報記録媒体。
Figure 0005498331
(式(3)において、Ar 1 , Ar 2 は同一でも異なっていてもよい芳香族置換基またはこの置換体、R 3 , R 4 は同一でも異なっていても良い直鎖、枝分かれ構造のどちらでもよいアルキル基、アルコキシ基、R 1 (F),R 2 (F)は、同一であっても異なっていてもよく、その少なくとも一方はパーフルオロアルキル基である)、nは2以上の整数、Ln(III)は希土類イオンである。)
A substrate, and an information recording unit that is provided on the substrate and contains a rare earth fluorescent complex represented by the following formula (3) that can emit a peak of emission intensity at two or more wavelengths when irradiated with excitation light. To record information.
Figure 0005498331
(In the formula (3), Ar 1 and Ar 2 may be the same or different aromatic substituents or substituents thereof, and R 3 and R 4 may be the same or different, either linear or branched structures. A good alkyl group, an alkoxy group, R 1 (F) and R 2 (F) may be the same or different, at least one of which is a perfluoroalkyl group), n is an integer of 2 or more, Ln (III) is a rare earth ion. )
前記少なくとも2つの波長に対応する発光は、少なくとも一つの磁気双極子遷移に基づく発光と、少なくとも一つの電気双極子遷移に基づく発光の中心を含む請求項に記載の情報記録媒体。 The information recording medium according to claim 9 , wherein the light emission corresponding to the at least two wavelengths includes a light emission based on at least one magnetic dipole transition and a light emission center based on at least one electric dipole transition. 前記基材上に、前記希土類蛍光錯体の発光強度のピークを出現し得る2つの波長と、該2つの波長における各発光強度の相対強度比とを含む真偽判定情報を記録した真偽判定情報記録部をさらに具備する請求項または10に記載の情報記録媒体。 Authenticity determination information in which authenticity determination information including two wavelengths at which the peak of the emission intensity of the rare earth fluorescent complex can appear and a relative intensity ratio of each emission intensity at the two wavelengths is recorded on the substrate. the information recording medium according to claim 9 or 10 further comprising a recording unit. 基材と、該基材上に設けられ、2以上の波長において発光強度ピークを出現し得る下記式(7)で現される希土類蛍光錯体を含有する情報記録層を含む情報記録媒体に励起光を照射し、第1の波長及び該第1の波長とは異なる第2の波長における発光強度を並行して測定し、第1の発光強度及び第2の発光強度を決定する2波長発光強度測定部、Excitation light is applied to an information recording medium including a base material and an information recording layer including a rare earth fluorescent complex represented by the following formula (7), which is provided on the base material and can emit an emission intensity peak at two or more wavelengths. A two-wavelength emission intensity measurement that determines the first emission intensity and the second emission intensity by measuring the emission intensity at a first wavelength and a second wavelength different from the first wavelength in parallel. Part,
該2波長発光強度測定部からの該第1の発光強度情報及び第2の発光強度情報を受けて、該第1の発光強度及び第2の発光強度の相対強度比を計算する数値処理部、及びA numerical processing unit that receives the first emission intensity information and the second emission intensity information from the two-wavelength emission intensity measurement unit, and calculates a relative intensity ratio between the first emission intensity and the second emission intensity; as well as
該数値処理部から送られた相対強度比情報と、真偽判定情報から得られる相対強度比情報とを照合し、真偽判定を行う判定部を具備する真偽判定システム。  A true / false determination system including a determination unit that compares the relative intensity ratio information sent from the numerical processing unit with the relative intensity ratio information obtained from the authenticity determination information and performs authenticity determination.
Figure 0005498331
Figure 0005498331
2波長発光強度測定部にて、基材と、該基材上に設けられ、2以上の波長において発光強度ピークを出現し得る下記式(7)で現される希土類蛍光錯体を含有する情報記録層を含む情報記録媒体に励起光を照射し、第1の波長及び該第1の波長とは異なる第2の波長における第1の発光強度及び第2の発光強度を並行して測定する2波長発光強度測定を行い、Information recording comprising a base material and a rare earth fluorescent complex represented by the following formula (7), which is provided on the base material and can exhibit a light emission intensity peak at two or more wavelengths, in a two-wavelength emission intensity measurement unit Two wavelengths for irradiating an information recording medium including a layer with excitation light and measuring in parallel the first emission intensity and the second emission intensity at the first wavelength and a second wavelength different from the first wavelength. Measure the emission intensity,
該2波長発光強度測定部からの該第1の発光強度情報及び第2の発光強度情報を受けて、該第1の発光強度及び第2の発光強度の相対強度比を計算する数値処理を行い、及びIn response to the first emission intensity information and the second emission intensity information from the two-wavelength emission intensity measurement unit, numerical processing is performed to calculate a relative intensity ratio between the first emission intensity and the second emission intensity. ,as well as
該数値処理部から送られた相対強度比情報と、真偽判定情報から得られる相対強度比情報とを照合し、真偽判定を行うことを含む真偽判定方法。  A true / false determination method including collating the relative intensity ratio information sent from the numerical processing unit with the relative intensity ratio information obtained from the authenticity determination information and performing authenticity determination.
Figure 0005498331
Figure 0005498331
基材と、該基材上に設けられ、励起光照射により、2以上の波長において発光強度のピークを出現し得る下記式(7)で現される希土類蛍光錯体を含有する情報記録部を具備する情報記録媒体。A base material and an information recording part containing the rare earth fluorescent complex represented by the following formula (7), which is provided on the base material and can exhibit a peak of emission intensity at two or more wavelengths by irradiation with excitation light. To record information.
Figure 0005498331
Figure 0005498331
JP2010209244A 2010-09-17 2010-09-17 Information recording medium, authenticity determination method thereof, and authenticity determination system Active JP5498331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010209244A JP5498331B2 (en) 2010-09-17 2010-09-17 Information recording medium, authenticity determination method thereof, and authenticity determination system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010209244A JP5498331B2 (en) 2010-09-17 2010-09-17 Information recording medium, authenticity determination method thereof, and authenticity determination system

Publications (2)

Publication Number Publication Date
JP2012061794A JP2012061794A (en) 2012-03-29
JP5498331B2 true JP5498331B2 (en) 2014-05-21

Family

ID=46058009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010209244A Active JP5498331B2 (en) 2010-09-17 2010-09-17 Information recording medium, authenticity determination method thereof, and authenticity determination system

Country Status (1)

Country Link
JP (1) JP5498331B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11702591B2 (en) 2019-09-06 2023-07-18 Kabushiki Kaisha Toshiba Fluorescent rare earth complex and security medium using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6289951B2 (en) * 2014-03-19 2018-03-07 株式会社東芝 Thin film biomolecule detection element, biomolecule detection method, and biomolecule detection apparatus
JP6334340B2 (en) 2014-09-12 2018-05-30 株式会社東芝 Forgery and alteration prevention medium, forgery and alteration prevention medium creation device, and forgery and alteration prevention medium creation method
WO2019053962A1 (en) * 2017-09-15 2019-03-21 大日本印刷株式会社 Ink composition and printed matter
KR102402407B1 (en) * 2020-09-03 2022-05-27 한국조폐공사 Security article using fluorescence intensity and system for identifying users using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3012710U (en) * 1994-12-20 1995-06-27 東京アルテック有限会社 prepaid card
US7796242B2 (en) * 2005-08-22 2010-09-14 National University Corporation Information identification device, information identification method, and information identification system
WO2010032395A1 (en) * 2008-09-19 2010-03-25 国立大学法人奈良先端科学技術大学院大学 Rare earth complex nanocrystals and applications thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11702591B2 (en) 2019-09-06 2023-07-18 Kabushiki Kaisha Toshiba Fluorescent rare earth complex and security medium using the same

Also Published As

Publication number Publication date
JP2012061794A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
EP1981719B1 (en) Improvements in and relating to printing
JP5498331B2 (en) Information recording medium, authenticity determination method thereof, and authenticity determination system
CN104703808B (en) Color laser is marked
CA2446787C (en) Homogeneous photosensitive optically variable ink compositions for ink jet printing
EP3390065B1 (en) Security element formed from at least two inks applied in overlapping patterns, articles carrying the security element, and authentication methods
CN100549110C (en) The method and the printing ink group that are used for goods mark and authentication
EP3390067B9 (en) Security element, security arrangement, method for its production and authentication method using the same
JP2008503643A (en) Signature protected photosensitive optically variable ink composition and method
RU2759568C2 (en) Use of 4-boron-3a,4a-diase-s-indacenes to ensure safety
JP2007513447A (en) Patent application title: POLYMER AUTHENTICATION METHOD, AUTHENTICABLE POLYMER, AUTHENTICABLE POLYMER AND MANUFACTURING METHOD
KR20130124494A (en) Security element
BR112014017367B1 (en) authentication method of an article and security element
KR20080059531A (en) Authenticatable plastic material, articles, and methods for their fabrication
EP3194177B1 (en) Printing ink, its use for the authentication of articles, articles obtained thereby and authentication methods
JP4498825B2 (en) Hologram transfer sheet and printed matter
JP4381809B2 (en) Document appraisal
CN110446761A (en) Barium stannate material, safe ink composition and its security feature of luminescence generated by light Fe2O3 doping
JP2561961B2 (en) Thermal transfer material and detection method
JP3979244B2 (en) Information display medium and authenticity determination method thereof
JP2013196165A (en) Identification medium and ink for identification
JP2011213074A (en) Forgery preventing printed matter and printing method for preventing forgery
JP2005111704A (en) Identification mark, its judging method and system and label and transfer foil for forming it
JP4407224B2 (en) Printing ink and printed matter
US20080148837A1 (en) Red fluorescent inks that change properties after being processed
JP2004122690A (en) Production method for fluorescent printed matter, fluorescent printed matter, image forming material and authenticity detecting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140106

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140307

R151 Written notification of patent or utility model registration

Ref document number: 5498331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151