JP5496821B2 - Copper alloy-attached antibacterial paper and method for producing the same - Google Patents

Copper alloy-attached antibacterial paper and method for producing the same Download PDF

Info

Publication number
JP5496821B2
JP5496821B2 JP2010184947A JP2010184947A JP5496821B2 JP 5496821 B2 JP5496821 B2 JP 5496821B2 JP 2010184947 A JP2010184947 A JP 2010184947A JP 2010184947 A JP2010184947 A JP 2010184947A JP 5496821 B2 JP5496821 B2 JP 5496821B2
Authority
JP
Japan
Prior art keywords
paper
electron beam
sheet
vapor deposition
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010184947A
Other languages
Japanese (ja)
Other versions
JP2012040798A (en
Inventor
健 櫻井
正之 相田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2010184947A priority Critical patent/JP5496821B2/en
Publication of JP2012040798A publication Critical patent/JP2012040798A/en
Application granted granted Critical
Publication of JP5496821B2 publication Critical patent/JP5496821B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Physical Vapour Deposition (AREA)
  • Paper (AREA)

Description

本発明は、銅合金組成物が電子ビーム加熱式蒸着にてシート状紙の少なくとも一つの主面上に非連続に付着された抗菌紙及びその製造方法に関する。   The present invention relates to an antibacterial paper in which a copper alloy composition is deposited discontinuously on at least one main surface of a sheet-like paper by electron beam heating vapor deposition and a method for producing the same.

抗菌効果を有する金属原子が紙製品の表面に付着された、所謂、金属原子付着抗菌紙は、医療や介護の現場、或いは、一般家庭においてもニーズが高く、その金属原子の紙製品の表面への付着方法は、真空蒸着法、イオンプレーティング法、スパッタリング法等のドライプロセス方式が多用されている。
付着される金属原子としては、銅、銀、銅、亜鉛、錫から選ばれる少なくとも1種類の金属の原子が主に使用されており、特に、銀および銅は、高い抗菌性を示す一般的な金属として使用されている。
最近では、特に医療や介護の現場での感染症対策として、カルテ、メモ用紙等の抗菌紙への需要が高まっており、抗菌性と共に、医療用記録媒体として、ボールペン等の筆記具での書き易さと書かれた字の消え難さ(印字性)と、書かれた字の見え易さ(易読性)とが要求されている。
また、製造コスト面からも、一般的に多用されている銀よりも安価であり、且つ、保管時に変色し難い金属或いは金属合金を使用した金属原子付着抗菌紙に対する需要も高まっている。
The so-called metal atom-attached antibacterial paper, in which metal atoms having antibacterial effect are attached to the surface of the paper product, is highly demanded in the field of medical care and nursing care or in general households, and the metal atom is attached to the surface of the paper product As the deposition method, dry process methods such as vacuum deposition, ion plating, and sputtering are frequently used.
As a metal atom to be attached, an atom of at least one metal selected from copper, silver, copper, zinc, and tin is mainly used. In particular, silver and copper are common and exhibit high antibacterial properties. Used as metal.
Recently, the demand for antibacterial paper, such as medical records and memo paper, has been increasing as a countermeasure against infectious diseases, particularly in the field of medical care and nursing care. In addition to antibacterial properties, it is easy to write with writing instruments such as ballpoint pens as medical recording media. There is a demand for the ease of erasing written characters (printability) and the visibility of written characters (readability).
Further, from the viewpoint of production cost, there is an increasing demand for metal atom-attached antibacterial paper using a metal or metal alloy which is less expensive than silver which is generally used frequently and hardly discolors during storage.

特許文献1には、Ag20〜60原子%、Cu20〜60原子%、Sn20〜60原子%の組成で、非晶質相を呈するときに、一層優れた抗菌・防カビ作用を発現するAg−Cu−Sn系合金及びその利用方法が開示されている。
特許文献2には、病院のカルテなどに好適である優れた抗菌性を示す、シート状の紙の少なくとも一つの主面に1×1014〜1×1017原子/cm
の金属原子が付着した、抗菌紙の酸塩基度のpHが6〜9の範囲に調整された抗菌紙が開示されており、使用される金属原子は、銀、銅、亜鉛、錫から選ばれる少なくとも1種類の金属の原子である。
特許文献3には、抗菌性及び抗カビ性の少なくともいずれかを有する抗菌性積層体において、その抗菌性積層体は、ポリマーフィルムまたは紙を含む基材層4、抗菌性及び抗カビ性の少なくともいずれかを有する金属が蒸着された抗菌層2、前記抗菌層2を被覆するための被覆層1とから少なくとも構成され、前記抗菌層2が前記基材層4と前記被覆層1との間に形成され、前記被覆層1が、実質的に無孔のポリマー被膜であることを特徴とする抗菌性積層体が開示されている。
Patent Document 1 discloses that Ag-Cu that exhibits an excellent antibacterial and antifungal action when it exhibits an amorphous phase with a composition of Ag 20 to 60 atomic%, Cu 20 to 60 atomic%, and Sn 20 to 60 atomic%. -Sn-based alloys and methods of using the same are disclosed.
In Patent Document 2, 1 × 10 14 to 1 × 10 17 atoms / cm 2 is formed on at least one main surface of sheet-like paper, which exhibits excellent antibacterial properties suitable for hospital charts and the like.
The antibacterial paper in which the pH of acid basicity of the antibacterial paper is adjusted to the range of 6 to 9 is disclosed, and the metal atom used is selected from silver, copper, zinc and tin At least one metal atom.
In Patent Document 3, an antibacterial laminate having at least one of antibacterial and antifungal properties, the antibacterial laminate includes a base material layer 4 including a polymer film or paper, antibacterial and antifungal at least. It comprises at least an antibacterial layer 2 on which a metal having one of them is deposited and a coating layer 1 for coating the antibacterial layer 2, and the antibacterial layer 2 is interposed between the base material layer 4 and the coating layer 1. An antibacterial laminate is disclosed wherein the coating layer 1 is formed and is a substantially nonporous polymer coating.

特許文献1:特開平09−111378号公報
特許文献2:特開平11−179870号公報
特許文献3:国際公開WO2007/132912号公報
Patent Document 1: Japanese Patent Laid-Open No. 09-111378 Patent Document 2: Japanese Patent Laid-Open No. 11-179870 Patent Document 3: International Publication WO 2007/132912

これらの特許文献に開示される従来の銀或いは銀合金を主体とする抗菌紙或いは抗菌性積層体は、抗菌性は充分ではあるが、製造コストが高く、特に、印字性および易読性が充分とは言えなかった。
本発明は、これらの欠点を改良し、製造コストが安く、優れた印字性および易読性を有し、Cuを70〜90質量%以上含有し、Ag、Al、Cr、Fe、Mg、Ni、Si、Sn、Ti、Zn、Zrからなるグループから選択された一種或いは複数の元素を10〜30質量%含有する銅合金組成物がシート状の紙面上に非連続に付着された銅合金抗菌紙及びその製造方法を提供する。
The conventional antibacterial paper or antibacterial laminate mainly composed of silver or silver alloy disclosed in these patent documents has sufficient antibacterial properties, but has a high production cost, and in particular, sufficient printability and readability. I couldn't say that.
The present invention improves these disadvantages, has a low production cost, has excellent printability and easy readability, contains 70 to 90% by mass or more of Cu, Ag, Al, Cr, Fe, Mg, Ni Copper alloy antibacterial in which a copper alloy composition containing 10 to 30% by mass of one or more elements selected from the group consisting of Si, Sn, Ti, Zn, and Zr is non-continuously adhered on a sheet-like paper surface Paper and a method for producing the same are provided.

本発明者らは、金属原子が付着された金属原子付着抗菌紙の印字性および易読性を高めるためには、抗菌性を損なわない範囲の量の金属原子を、下地となるシート状の紙面上に電子ビーム加熱式蒸着にて付着させ、連続状態ではない非緻密な膜を形成することが効果的であることを見出した。
従来の金属原子付着抗菌紙では、下地となるシート状の紙面上に金属原子により構成された金属膜が連続して緻密に形成されており、その表面が滑り易くてボールペン等の筆記具にて印字し難く、更に、光が反射して印字が見辛い状態になり易くなっていた。
そこで、下地となるシート状の紙面を、抗菌性が損なわれない範囲で、不連続に部分的に露出させることにより、印字性が良くなり、易読性も改良されるのである。
また、付着される金属原子としては高価な銀の代替品として、製造コスト面から安価な銅を使用することが好ましいが、銅は経時変化による変色が激しいので、比較的製造コストの安い適切な銅と他の適切な金属との銅合金組成物を使用することにより、経時変化による変色を防止することができる。
In order to improve the printability and readability of the metal atom-attached antibacterial paper to which metal atoms are attached, the present inventors have added an amount of metal atoms in a range that does not impair the antibacterial property to a sheet-like paper surface as a base. It has been found that it is effective to form a non-dense film that is not continuous by depositing it by electron beam heating vapor deposition.
With conventional metal atom-attached antibacterial paper, a metal film composed of metal atoms is continuously and densely formed on a sheet-like paper surface as a base, and its surface is slippery and can be printed with a writing instrument such as a ballpoint pen. In addition, the light is reflected and the printing is difficult to see.
Therefore, the printability is improved and the readability is improved by partially discontinuously exposing the sheet-like surface of the sheet as long as the antibacterial properties are not impaired.
In addition, it is preferable to use inexpensive copper as a substitute for expensive silver as a metal atom to be attached, but copper is highly discolored due to aging. By using a copper alloy composition of copper and another suitable metal, discoloration due to aging can be prevented.

即ち、本発明の抗菌紙は、シート状紙の少なくとも一つの主面上に、Cuを70〜90質量%含有し、Ag、Al、Cr、Fe、Mg、Ni、Si、Sn、Ti、Zn、Zrからなるグループから選択された一種或いは複数の元素を10〜30質量%含有する銅合金組成物を電子ビーム加熱式蒸着にて30〜94mg/m付着させてなる連続ではない非緻密な膜を有し、その膜が前記シート状紙の少なくとも一つの主面上の総面積の70〜90%を被覆していることを特徴とする。 That is, the antibacterial paper of the present invention contains 70 to 90% by mass of Cu on at least one main surface of the sheet-like paper, and Ag, Al, Cr, Fe, Mg, Ni, Si, Sn, Ti, Zn , Non-consecutive non-dense formed by depositing 30 to 94 mg / m 2 of a copper alloy composition containing 10 to 30% by mass of one or more elements selected from the group consisting of Zr by electron beam heating vapor deposition It has a film | membrane, The film | membrane covers 70 to 90% of the total area on the at least 1 main surface of the said sheet-like paper, It is characterized by the above-mentioned.

Cuの含有量が70質量%未満では、使用される他の金属のコストとの関係でコスト高となり、90質量%を超えると経時変化による変色が激しくなる。
Ag、Al、Cr、Fe、Mg、Ni、Si、Sn、Ti、Zn、Zrからなるグループから選択された一種或いは複数の元素は、抗菌性、蒸着光沢色、製造コスト等を考慮し、必要に応じて適切に選択されれば良い。
銅合金組成物の付着量が、30mg/m未満では抗菌性が不充分となり、94mg/mを超えると形成される蒸着膜が連続になり易い。
連続ではない非緻密な膜の被覆面積率がシート主面上の総面積の70%未満では、抗菌性が不十分であり、90%を超えると印字性及び易読性が悪くなる。
If the Cu content is less than 70% by mass, the cost increases in relation to the cost of other metals used, and if it exceeds 90% by mass, discoloration due to changes over time becomes severe.
One or more elements selected from the group consisting of Ag, Al, Cr, Fe, Mg, Ni, Si, Sn, Ti, Zn, Zr are necessary in consideration of antibacterial properties, vapor deposition gloss color, manufacturing cost, etc. Appropriate selection may be made according to the situation.
When the adhesion amount of the copper alloy composition is less than 30 mg / m 2 , the antibacterial property is insufficient, and when it exceeds 94 mg / m 2 , the deposited film tends to be continuous.
When the coverage area ratio of the non-dense film that is not continuous is less than 70% of the total area on the sheet main surface, the antibacterial property is insufficient, and when it exceeds 90%, the printability and the readability are deteriorated.

本発明にて、非連続で非緻密な膜とは、連続した緻密な蒸着膜ではないが、表面の均質性を有しており、その膜表面の算術平均表面粗さRaが0.02〜0.1μmで、最大高さRzが0.2〜0.5μmで、二乗平均平方根粗さRqと最大高さRzの比Rq/Rzが0.3〜1.3であることを特徴とする。
算術平均表面粗さRaが0.02μm未満では、印字性及び易読性が悪くなり、0.1μmを超えると、表面が粗くなり手触り感が悪くなる。
最大高さRzが0.2μm未満では、印字性及び易読性が悪くなり、0.5μmを超えると、表面が粗くなり手触り感が悪くなる。
二乗平均平方根粗さRqと最大高さRzの比Rq/Rzが1.3を超えると、膜の均質性が失われ、0.3未満では、均質性が飽和する。
In the present invention, the discontinuous and non-dense film is not a continuous dense vapor-deposited film, but has surface homogeneity, and the film surface has an arithmetic average surface roughness Ra of 0.02 to 0.02. The maximum height Rz is 0.2 to 0.5 μm at 0.1 μm, and the ratio Rq / Rz of the root mean square roughness Rq to the maximum height Rz is 0.3 to 1.3. .
When the arithmetic average surface roughness Ra is less than 0.02 μm, the printability and the readability are deteriorated. When the arithmetic average surface roughness Ra is more than 0.1 μm, the surface becomes rough and the touch feeling is deteriorated.
When the maximum height Rz is less than 0.2 μm, the printability and the readability are deteriorated, and when it exceeds 0.5 μm, the surface becomes rough and the touch feeling is deteriorated.
When the ratio Rq / Rz of the root mean square roughness Rq to the maximum height Rz exceeds 1.3, the film homogeneity is lost, and when it is less than 0.3, the homogeneity is saturated.

また、本発明の抗菌紙の製造方法は、電子ビームを発生させる電子ビーム発生機構と、前記電子ビームの照射位置に蒸着材料を保持する蒸着材料保持部と、この蒸着材料保持部に対し外周面の一部を対向して設けられ、駆動機により回転駆動される冷却ドラムと、この冷却ドラムの前記外周面の一部に紙を巻回した状態でシート状紙を走行させる紙走行手段と、以上の各機構を収容する真空容器とを有する電子ビーム加熱式蒸着装置において、銅合金組成物を構成する融点の異なるそれぞれの金属が単独に投入された複数の坩堝を、前記走行しているシート状紙の幅方向に並列に設置し、前記電子ビームを、前記複数の坩堝上に、走行しているシート状紙の幅方向に順次スキャンして照射し、前記走行しているシート状紙の少なくとも一つの主面上に、Cuを70重量%以上含有しAg、Al、Cr、Fe、Mg、Ni、Si、Sn、Ti、Zn、Zrからなるグループから選択された一種或いは複数の元素からなる銅合金組成物を30〜94mg/m付着させることを特徴とする。 The antibacterial paper manufacturing method of the present invention includes an electron beam generating mechanism for generating an electron beam, a vapor deposition material holding part for holding a vapor deposition material at the irradiation position of the electron beam, and an outer peripheral surface with respect to the vapor deposition material holding part. A cooling drum that is provided to face a part of the cooling drum and is driven to rotate by a driving machine, and a paper traveling unit that travels the sheet-like paper in a state where the paper is wound around a part of the outer peripheral surface of the cooling drum, In an electron beam heating type vapor deposition apparatus having a vacuum vessel containing each of the above mechanisms, a plurality of crucibles each having a different melting point and constituting a copper alloy composition are separately fed into the traveling sheet. Installed in parallel in the width direction of the paper sheet, the electron beam is sequentially scanned and irradiated in the width direction of the traveling sheet paper on the plurality of crucibles, At least one A copper alloy composition containing one or more elements selected from the group consisting of Ag, Al, Cr, Fe, Mg, Ni, Si, Sn, Ti, Zn, and Zr, containing 70% by weight or more of Cu on the surface 30 to 94 mg / m 2 is attached to the product.

本製造方法により、シート状紙の少なくとも一つの主面上に、Cuを70〜90質量%
含有し、Ag、Al、Cr、Fe、Mg、Ni、Si、Sn、Ti、Zn、Zrからなるグループから選択された一種或いは複数の元素を10〜30質量%含有する銅合金組成物を電子ビーム加熱式蒸着にて30〜94mg/m付着させてなる連続ではない非緻密な膜を有し、その膜がシート状紙の少なくとも一つの主面上の総面積の70〜90%を被覆していることを特徴とする抗菌紙が製造される。
電子ビームを複数の坩堝上に、走行しているシート紙の幅方向に順次スキャンして照射することにより、シート状紙の主面上に、連続した緻密な蒸着膜ではないが、その表面が均質性を有しており、表面の算術平均表面粗さRaが0.02〜0.1μmで、最大高さRzが0.2〜0.5μmで、二乗平均平方根粗さRqと最大高さRzの比Rq/Rzが0.3〜1.3である蒸着膜が形成される。
By this production method, 70 to 90% by mass of Cu is formed on at least one main surface of the sheet-like paper.
A copper alloy composition containing 10 to 30% by mass of one or more elements selected from the group consisting of Ag, Al, Cr, Fe, Mg, Ni, Si, Sn, Ti, Zn, and Zr It has a non-consecutive non-dense film formed by depositing 30 to 94 mg / m 2 by beam heating vapor deposition, and the film covers 70 to 90% of the total area on at least one main surface of the sheet-like paper. Antibacterial paper is produced that is characterized by
By sequentially scanning and irradiating the electron beam on a plurality of crucibles in the width direction of the traveling sheet paper, the surface is not a continuous dense deposited film on the main surface of the sheet paper, It has homogeneity, the arithmetic mean surface roughness Ra of the surface is 0.02 to 0.1 μm, the maximum height Rz is 0.2 to 0.5 μm, the root mean square roughness Rq and the maximum height A vapor deposition film having an Rz ratio Rq / Rz of 0.3 to 1.3 is formed.

この場合、銅合金組成物を形成するCuと他の金属種では融点が異なるので、Cuを収容した坩堝と他の金属種を収容した坩堝への電子ビームの滞留時間を一定として、各々の坩堝の電子ビーム照射面積を適切に調整するか、或いは、電子ビームの照射面積を一定として、各々の坩堝への電子ビームの滞留時間を適切に調整することにより、目的とする銅合金組成物の蒸着膜形成が促進される。
また、電子ビームのスキャン照射は一回ではなく、適切な回数のスキャン照射をすることが均質な目的とする銅合金組成物の蒸着膜を形成するうえで好ましい。
In this case, since the melting point is different between Cu and other metal species forming the copper alloy composition, the residence time of the electron beam in the crucible containing Cu and the crucible containing other metal species is constant, and each crucible is fixed. By appropriately adjusting the electron beam irradiation area, or by adjusting the electron beam residence time in each crucible while keeping the electron beam irradiation area constant, vapor deposition of the target copper alloy composition Film formation is promoted.
In addition, it is preferable that the electron beam scan irradiation is not performed once but an appropriate number of scan irradiations is performed in order to form a vapor deposition film of a copper alloy composition which is a homogeneous object.

本発明により、製造コストが安く、優れた印字性および易読性を有し、Cuを70〜90質量%以上含有し、Ag、Al、Cr、Fe、Mg、Ni、Si、Sn、Ti、Zn、Zrからなるグループから選択された一種或いは複数の元素を10〜30質量%含有する銅合金組成物が非連続に付着された銅合金抗菌紙及びその製造方法が提供される。 According to the present invention, the manufacturing cost is low, the printing property is excellent and the readability is high, Cu is contained in an amount of 70 to 90% by mass or more, Ag, Al, Cr, Fe, Mg, Ni, Si, Sn, Ti, Provided are a copper alloy antibacterial paper to which a copper alloy composition containing 10 to 30% by mass of one or more elements selected from the group consisting of Zn and Zr is attached in a discontinuous manner, and a method for producing the same.

本発明の一実施形態である銅合金付着抗菌紙の模式断面図である。It is a schematic cross section of the copper alloy adhesion antibacterial paper which is one Embodiment of this invention. 本発明の製造方法の一実施形態にて使用する電子ビーム加熱式蒸着装置を示す概略図である。It is the schematic which shows the electron beam heating type vapor deposition apparatus used in one Embodiment of the manufacturing method of this invention. 本発明の製造方法の一実施形態にて使用する電子ビーム加熱式蒸着装置にて使用する蒸着材料保持部の平面図である。It is a top view of the vapor deposition material holding | maintenance part used with the electron beam heating type vapor deposition apparatus used in one Embodiment of the manufacturing method of this invention.

本発明の一実施形態である銅合金付着抗菌紙について、添付の図面を参照に詳細を説明する。
図1に示すように、本発明の銅合金付着抗菌紙21は、シート状紙22の表面に不連続な非緻密膜23が30〜94mg/m付着されており、その被覆面積は、シート状紙22の総面積の70〜90%である。
シート状紙22は、薄紙、上質紙、画用紙、ケント紙、コート紙であり、一般的にその表面にボールペン等の筆記用具を用いて記録を行うことを目的とする紙である。特に、好ましくは、上質なPPCコピー用紙等である。
不連続な非緻密膜23は、Cuを70〜90質量%含有し、Ag、Al、Cr、Fe、Mg、Ni、Si、Sn、Ti、Zn、Zrからなるグループから選択された一種或いは複数の元素を10〜30質量%含有する銅合金組成物を、シート状紙22の表面上に電子ビーム加熱式蒸着にて、30〜94mg/m付着させて形成される。
Cuの含有量が70質量%未満ではコスト高となり、90質量%を超えると経時変化による変色が激しくなり、Ag、Al、Cr、Fe、Mg、Ni、Si、Sn、Ti、Zn、Zrからなるグループから選択された一種或いは複数の元素は、抗菌性、蒸着光沢色、価格等を考慮し、必要に応じて適宜選択されれば良い。
The copper alloy adhesion antibacterial paper which is one embodiment of the present invention will be described in detail with reference to the accompanying drawings.
As shown in FIG. 1, the antibacterial paper 21 to which the copper alloy is attached according to the present invention has a discontinuous non-dense film 23 attached to the surface of a sheet-like paper 22 in an amount of 30 to 94 mg / m 2. 70 to 90% of the total area of the paper 22.
The sheet-like paper 22 is thin paper, high-quality paper, drawing paper, Kent paper, and coated paper, and is generally paper for the purpose of recording on the surface thereof using a writing instrument such as a ballpoint pen. In particular, a high-quality PPC copy paper or the like is preferable.
The discontinuous non-dense film 23 contains 70 to 90% by mass of Cu, and one or more selected from the group consisting of Ag, Al, Cr, Fe, Mg, Ni, Si, Sn, Ti, Zn, and Zr. A copper alloy composition containing 10 to 30% by mass of the above element is formed by adhering 30 to 94 mg / m 2 on the surface of the sheet-like paper 22 by electron beam heating vapor deposition.
When the Cu content is less than 70% by mass, the cost increases. When the Cu content exceeds 90% by mass, discoloration due to aging becomes severe. From Ag, Al, Cr, Fe, Mg, Ni, Si, Sn, Ti, Zn, Zr One or more elements selected from the group may be appropriately selected as necessary in consideration of antibacterial properties, vapor deposition gloss color, price, and the like.

その付着量が30mg/m未満では抗菌性が充分ではなく、94mg/mを超えると、不連続な非緻密膜23が連続になり易くなる。
また、不連続な非緻密膜23の被覆面積率が、シート状紙22の面積の70%未満では抗菌性が不充分となり、90%を超えると印字性及び易読性が悪くなる。
また、不連続な非緻密23は、連続した緻密な蒸着膜ではないが、均質性を有しており、その表面の算術平均表面粗さRaが0.02〜0.1μm、最大高さRzが0.2〜0.5μm、二乗平均平方根粗さRqと最大高さRzの比Rq/Rzが0.3〜1.3である。
算術平均表面粗さRaが0.02μm未満では、印字性及び易読性が悪くなり、0.1μmを超えると、表面が粗くなり手触りが悪くなる。
最大高さRzが0.2μm未満では、印字性及び易読性が悪くなり、0.5μmを超えると、表面が粗くなり手触りが悪くなる。
二乗平均平方根粗さRqと最大高さRzの比Rq/Rzが1.3を超えると、膜の均質性が失われる。0.3未満では、均質性は飽和する傾向がある。
When the adhesion amount is less than 30 mg / m 2 , the antibacterial property is not sufficient, and when it exceeds 94 mg / m 2 , the discontinuous non-dense film 23 tends to be continuous.
Further, when the coverage area ratio of the discontinuous non-dense film 23 is less than 70% of the area of the sheet-like paper 22, the antibacterial property is insufficient, and when it exceeds 90%, the printability and the readability are deteriorated.
The discontinuous non-dense 23 is not a continuous dense vapor-deposited film, but has homogeneity and has an arithmetic average surface roughness Ra of 0.02 to 0.1 μm and a maximum height Rz. Is 0.2 to 0.5 μm, and the ratio Rq / Rz of the root mean square roughness Rq to the maximum height Rz is 0.3 to 1.3.
When the arithmetic average surface roughness Ra is less than 0.02 μm, the printability and the readability are deteriorated, and when it exceeds 0.1 μm, the surface becomes rough and the touch is deteriorated.
When the maximum height Rz is less than 0.2 μm, the printability and the readability are deteriorated, and when it exceeds 0.5 μm, the surface becomes rough and the touch is deteriorated.
When the ratio Rq / Rz of the root mean square roughness Rq to the maximum height Rz exceeds 1.3, the uniformity of the film is lost. Below 0.3, the homogeneity tends to saturate.

図2は、本発明の製造方法において使用する電子ビーム加熱式蒸着装置の一例を示す概略図である。図中符号1は真空容器であり、図示しない真空ポンプにより内部が減圧される。真空容器1の内部中央には、金属等からなる円筒状の冷却ドラム2が配置され、図示しない駆動装置により回転駆動される。
冷却ドラム2の外周面の一部には、長尺のシート状紙5がドラム周方向に向けて巻回され、アンコイラ3およびリコイラ4の間で連続走行されるようになっている。冷却ドラム2のシート状紙巻回部と対向して、例えば、図3に示す様な、複数の坩堝8を有する蒸着材料保持部6が配置され、坩堝AにはCuが、坩堝BにはAg、Al、Cr、Fe、Mg、Ni、Si、Sn、Ti、Zn、Zrからなるグループから選択された一種の金属が収容されている。坩堝Aと坩堝Bには、その上部に坩堝上蓋A1、B1がなされ、Cuと金属の融点及び目標とする銅合金膜の組成を考慮して、蒸着材料保持部6の側方に配置された電子銃等の電子ビーム発生機構(図示略)より発生される電子ビーム12が照射される坩堝開口部A2、B2がそれぞれ最適の面積に調整される。
電子ビーム12は坩堝AのA2、坩堝BのB2を繰り返し複数回スキャン照射する。このスキャン照射によりA2よりのCuとB2よりの金属とが銅合金化した蒸気14が冷却ドラム2上のシート状紙5上に蒸着する。
冷却ドラム2と蒸着材料保持部6との間には、蒸着範囲を規制するための隔壁16が設けられている。この隔壁16は、冷却ドラム2を収容する半円筒状部分16Aを有し、この半円筒状部分16Aの内周面と、冷却ドラム2のフィルム巻回部の外周面との間には
一定の間隙が形成されている。半円筒状部分16Aには、蒸着材料保持部6と対向する位置に、長方形状の蒸気通過口18が冷却ドラム2の軸線方向へ向けて形成されている。この蒸気通過口18はシート状紙5の蒸着幅と同じ全長を有する。
FIG. 2 is a schematic view showing an example of an electron beam heating vapor deposition apparatus used in the production method of the present invention. Reference numeral 1 in the figure denotes a vacuum vessel, and the inside is decompressed by a vacuum pump (not shown). A cylindrical cooling drum 2 made of metal or the like is disposed in the center of the inside of the vacuum vessel 1 and is driven to rotate by a driving device (not shown).
A long sheet-like paper 5 is wound around a part of the outer peripheral surface of the cooling drum 2 in the drum circumferential direction and continuously travels between the uncoiler 3 and the recoiler 4. Opposite to the sheet-like paper winding part of the cooling drum 2, for example, as shown in FIG. 3, a vapor deposition material holding part 6 having a plurality of crucibles 8 is arranged, Cu in the crucible A and Ag in the crucible B. A kind of metal selected from the group consisting of Al, Cr, Fe, Mg, Ni, Si, Sn, Ti, Zn, and Zr is accommodated. The crucible A and the crucible B are provided with crucible upper lids A1 and B1 at the upper part thereof, and are arranged on the side of the vapor deposition material holder 6 in consideration of the melting point of Cu and metal and the composition of the target copper alloy film The crucible openings A2 and B2 irradiated with the electron beam 12 generated by an electron beam generating mechanism (not shown) such as an electron gun are adjusted to optimum areas.
The electron beam 12 repeatedly irradiates A2 of the crucible A and B2 of the crucible B multiple times. By this scanning irradiation, the vapor 14 in which Cu from A2 and metal from B2 are alloyed with copper is deposited on the sheet-like paper 5 on the cooling drum 2.
A partition wall 16 is provided between the cooling drum 2 and the vapor deposition material holding unit 6 to regulate the vapor deposition range. The partition wall 16 has a semi-cylindrical portion 16A that accommodates the cooling drum 2. A constant space is provided between the inner peripheral surface of the semi-cylindrical portion 16A and the outer peripheral surface of the film winding portion of the cooling drum 2. A gap is formed. In the semi-cylindrical portion 16 </ b> A, a rectangular steam passage port 18 is formed in a position facing the vapor deposition material holding unit 6 toward the axial direction of the cooling drum 2. The vapor passage port 18 has the same overall length as the deposition width of the sheet-like paper 5.

次に、上記装置を用いた本発明の銅合金付着抗菌紙の製造方法について説明する。
先ず、真空容器1内の圧力を1×10−2
〜1Pa、より好ましくは、5×10−2〜5×10−1
Paで平衡させる。
電子ビーム発生機構および磁界発生機構10を作動させ、電子ビーム12を、走行しているシート状紙5の幅方向に並列に設置された銅合金組成物を構成するCuが収容された坩堝Aと金属が収容された坩堝Bを有する蒸着材料保持部6の直上を、走行しているシート状紙5の幅方向に繰り返し複数回スキャン照射し、連続的に銅合金化蒸気14を発生させることにより、シート状紙5の表面に、シート紙の幅方向に連続した緻密な蒸着膜ではないが、均質性を有しており、その表面の算術平均表面粗さRaが0.02〜0.1μmで、最大高さRzが0.2〜0.5μmで、二乗平均平方根粗さRqと最大高さRzの比Rq/Rzが0.3〜1.3である銅合金蒸着膜を形成させる。
Next, the manufacturing method of the copper alloy adhesion antibacterial paper of this invention using the said apparatus is demonstrated.
First, the pressure in the vacuum vessel 1 is set to 1 × 10 −2
˜1 Pa, more preferably 5 × 10 −2 to 5 × 10 −1.
Equilibrate at Pa.
A crucible A containing Cu constituting a copper alloy composition in which the electron beam generating mechanism and the magnetic field generating mechanism 10 are operated and the electron beam 12 is installed in parallel in the width direction of the traveling sheet-like paper 5; By directly irradiating a plurality of times in the width direction of the traveling sheet-like paper 5 directly above the vapor deposition material holding unit 6 having the crucible B containing the metal, and continuously generating the copper alloyed vapor 14 The surface of the sheet-like paper 5 is not a dense vapor-deposited film continuous in the width direction of the sheet paper, but has a homogeneity, and the arithmetic average surface roughness Ra of the surface is 0.02 to 0.1 μm. Thus, a copper alloy vapor deposition film having a maximum height Rz of 0.2 to 0.5 μm and a ratio Rq / Rz of the root mean square roughness Rq to the maximum height Rz of 0.3 to 1.3 is formed.

上記の例では、目的とする均質な銅合金組成物を得るために、坩堝AのA2、坩堝BのB2にて各々の電子ビーム照射面積を適切に調整したが、照射面積を同一として坩堝A、坩堝Bへの電子ビーム照射の滞留時間を適切に調整し、目的とする均質な銅合金組成物を得ても良い。 In the above example, in order to obtain a desired homogeneous copper alloy composition, the irradiation area of each electron beam was appropriately adjusted in A2 of crucible A and B2 of crucible B. Alternatively, the residence time of the electron beam irradiation to the crucible B may be appropriately adjusted to obtain the intended homogeneous copper alloy composition.

図2の装置、図3の蒸着材料保持部を使用して、PPC用コピー用紙表面上に、次の運転条件にて、坩堝AにCu、坩堝BにZnを入れて、坩堝照射部面積比(Cu入り坩堝へのビーム照射面積/Zn入り坩堝へのビーム照射面積)とPPC用コピー用紙表面上への付着量を表1に示すように変更し、銅亜鉛合金が蒸着された抗菌紙を作製した。
[運転条件]
真空容器内圧力:10-2 〜5×10-1 Pa
酸素導入圧力:1×10-1 Pa
電子ビーム発生機構:電子衝撃陰極式自己加速型電子銃(90゜偏向)
加速電圧:30kV
エミッション電流:2A
電子銃のスキャン幅:500mm
スキャン照射回数:20回
蒸着材料保持部とシート状紙間の距離:250mm
冷却ドラム2の外径:400mm
シート状紙の走行速度:10m/分
Using the apparatus shown in FIG. 2 and the vapor deposition material holder shown in FIG. 3, put the Cu in the crucible A and the Zn in the crucible B under the following operating conditions on the surface of the copy paper for PPC. The antibacterial paper on which the copper zinc alloy was vapor-deposited was changed as shown in Table 1. Produced.
[Operating conditions]
Vacuum vessel pressure: 10-2 to 5x10-1 Pa
Oxygen introduction pressure: 1 × 10-1 Pa
Electron beam generation mechanism: Electron impact cathode type self-accelerating electron gun (90 ° deflection)
Acceleration voltage: 30 kV
Emission current: 2A
Scanning width of electron gun: 500mm
Number of scanning irradiations: 20 times Distance between vapor deposition material holding part and sheet-like paper: 250 mm
Outer diameter of cooling drum 2: 400 mm
Travel speed of sheet paper: 10 m / min

作製された各抗菌紙につき、銅亜鉛合金蒸着膜の面積被覆率、銅亜鉛合金組成、表面粗さRa、Rz、Rqを測定した。
面積被覆率は、走査イオン顕微鏡で観察した抗菌紙表面の走査イオン像(SIM像)から確認した。
銅亜鉛合金組成は、原子吸光分析装置により皮膜の表面を10箇所分析し、その平均値を求めた。
表面粗さRa、Rz、Rqは、皮膜の表面をオリンパス株式会社製の走査型共焦点レーザ顕微鏡LEXT OLS−3000を用い、対物レンズ100倍の条件でレーザ光を照射して、その反射光から距離を測定し、そのレーザ光を試料の表面に沿って直線的にスキャンしながら距離を連続的に測定することにより求めた。
その結果を表1に示す。
About each produced antibacterial paper, the area coverage of the copper zinc alloy vapor deposition film, the copper zinc alloy composition, and surface roughness Ra, Rz, Rq were measured.
The area coverage was confirmed from a scanned ion image (SIM image) of the antibacterial paper surface observed with a scanning ion microscope.
For the copper zinc alloy composition, the surface of the film was analyzed at 10 locations using an atomic absorption analyzer, and the average value was determined.
The surface roughness Ra, Rz, Rq is determined by irradiating the surface of the coating with laser light under the condition of an objective lens 100 times using a scanning confocal laser microscope LEXT OLS-3000 manufactured by Olympus Corporation. The distance was measured and obtained by continuously measuring the distance while scanning the laser beam linearly along the surface of the sample.
The results are shown in Table 1.

Figure 0005496821
Figure 0005496821

また、得られた各試料につき、印字性、易読性、抗菌性につき測定した。
印字性は、市販インクジェットプリンター(エプソン社製、PM−950C)にて印字した後、ティッシュペーパーでふき取り印字跡の状態を目視し、完全に残るものを○、一部残るものを△、全く残らないものを×とした。
易読性は、市販インクジェットプリンター(エプソン社製、PM−950C)にて印字した後、得られた印字を目視し、眩しくなく非常に読み易いものを○、読み易いものを△、眩しくて読み難いものを×とした。
抗菌性は、試料を100cm切り取り、銅合金皮膜側に黄色ブドウ球菌の洗浄菌体を10個になるように塗布した。この様にして得た供試体を室内で24時間放置後の菌数を測定し、残存菌数が300個/cm以下のものを○とし、300個/cm以上のものを×とした。
その結果を表2に示す。
Moreover, it measured about printability, easy-to-read property, and antibacterial property about each obtained sample.
After printing with a commercially available inkjet printer (manufactured by Epson Corporation, PM-950C), the printability is wiped off with a tissue paper, and the state of the print mark is left as it is. Those that do not have a cross.
Easy-to-read is printed with a commercially available ink jet printer (manufactured by Epson, PM-950C), and the resulting print is visually observed. Difficult things were set as x.
Antibacterial activity, samples 100 cm 2 cut was applied washed cells of Staphylococcus aureus to be 10 5 to the copper alloy film side. The specimen obtained in this manner to count the number of bacteria after standing 24 hours at room, number of remaining bacteria and ○ those 300 / cm 2 or less, and as × 300 / cm 2 or more of .
The results are shown in Table 2.

Figure 0005496821
表1、表2より、本発明の銅合金付着抗菌紙は、優れた印字性、易読性および抗菌性を有することがわかる。
Figure 0005496821
From Tables 1 and 2, it can be seen that the copper alloy-attached antibacterial paper of the present invention has excellent printability, readability and antibacterial properties.

以上、本発明の実施形態の製造方法について説明したが、本発明はこの記載に限定されることはなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   As mentioned above, although the manufacturing method of embodiment of this invention was demonstrated, this invention is not limited to this description, A various change can be added in the range which does not deviate from the meaning of this invention.

21 銅合金抗菌紙
22 シート状紙
23 不連続な非緻密膜
1 真空容器
2 冷却ドラム
3 アンコイラ
4 リコイラ
5 シート状紙
6 蒸着材料保持部
8 坩堝
10 磁界発生機構
12 電子ビーム
14 銅合金蒸気
16 隔壁
16A 半円筒状部分
18 蒸気通過口
A 坩堝
B 坩堝
A1 坩堝上蓋
B1 坩堝上蓋
A2 坩堝開口部
B2 坩堝開口部
21 Copper alloy antibacterial paper 22 Sheet-like paper 23 Discontinuous non-dense film 1 Vacuum container 2 Cooling drum 3 Uncoiler 4 Recoiler 5 Sheet-like paper 6 Vapor deposition material holding part 8 Crucible 10 Magnetic field generating mechanism 12 Electron beam 14 Copper alloy vapor 16 Bulkhead 16A Semi-cylindrical portion 18 Steam passage A A crucible B A crucible A1 A crucible upper lid B1 A crucible upper lid A2 A crucible opening B2 A crucible opening

Claims (2)

シート状紙の少なくとも一つの主面上に、Cuを70〜90質量%含有し、Ag、Al、Cr、Fe、Mg、Ni、Si、Sn、Ti、Zn、Zrからなるグループから選択された一種或いは複数の元素を10〜30質量%含有する銅合金組成物を電子ビーム加熱式蒸着にて30〜94mg/m付着させてなる連続ではない非緻密な膜を有し、その膜が前記シート状紙の少なくとも一つの主面上の総面積の70〜90%を被覆していることを特徴とする抗菌紙。 On at least one main surface of the sheet-like paper, 70 to 90% by mass of Cu is selected and selected from the group consisting of Ag, Al, Cr, Fe, Mg, Ni, Si, Sn, Ti, Zn, and Zr A non-continuous non-dense film formed by depositing 30 to 94 mg / m 2 of a copper alloy composition containing 10 to 30% by mass of one or more elements by electron beam heating vapor deposition, An antibacterial paper which covers 70 to 90% of the total area on at least one main surface of a sheet-like paper. 電子ビームを発生させる電子ビーム発生機構と、前記電子ビームの照射位置に蒸着材料を保持する蒸着材料保持部と、この蒸着材料保持部に対し外周面の一部を対向して設けられ、駆動機により回転駆動される冷却ドラムと、この冷却ドラムの前記外周面の一部に紙を巻回した状態でシート状紙を走行させる紙走行手段と、以上の各機構を収容する真空容器とを有する電子ビーム加熱式蒸着装置において、銅合金組成物を構成する融点の異なるそれぞれの金属が単独に投入された複数の坩堝を、前記走行しているシート状紙の幅方向に並列に設置し、前記電子ビームを前記複数の坩堝上に前記走行しているシート紙の幅方向に順次スキャンして照射し、前記走行しているシート状紙の少なくとも一つの主面上に、Cuを70重量%以上含有しAg、Al、Cr、Fe、Mg、Ni、Si、Sn、Ti、Zn、Zrからなるグループから選択された一種或いは複数の元素からなる銅合金組成物を30〜94mg/m付着させることを特徴とする請求項1に記載の抗菌紙の製造方法。 An electron beam generating mechanism for generating an electron beam; a vapor deposition material holding portion for holding a vapor deposition material at the irradiation position of the electron beam; and a part of an outer peripheral surface facing the vapor deposition material holding portion. A cooling drum that is driven to rotate, a paper traveling means that travels the sheet-like paper in a state in which the paper is wound around a part of the outer peripheral surface of the cooling drum, and a vacuum container that accommodates each of the above mechanisms. In the electron beam heating type vapor deposition apparatus, a plurality of crucibles each having a different melting point constituting the copper alloy composition are separately placed, and installed in parallel in the width direction of the traveling sheet-like paper, An electron beam is sequentially scanned and irradiated in the width direction of the traveling sheet on the plurality of crucibles, and Cu is 70% by weight or more on at least one main surface of the traveling sheet. Contains g, Al, Cr, Fe, Mg, Ni, Si, Sn, Ti, Zn, and making the copper alloy composition consisting of one or more elements selected from the group consisting of Zr 30~94mg / m 2 is deposited The method for producing an antibacterial paper according to claim 1.
JP2010184947A 2010-08-20 2010-08-20 Copper alloy-attached antibacterial paper and method for producing the same Expired - Fee Related JP5496821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010184947A JP5496821B2 (en) 2010-08-20 2010-08-20 Copper alloy-attached antibacterial paper and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010184947A JP5496821B2 (en) 2010-08-20 2010-08-20 Copper alloy-attached antibacterial paper and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012040798A JP2012040798A (en) 2012-03-01
JP5496821B2 true JP5496821B2 (en) 2014-05-21

Family

ID=45897631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010184947A Expired - Fee Related JP5496821B2 (en) 2010-08-20 2010-08-20 Copper alloy-attached antibacterial paper and method for producing the same

Country Status (1)

Country Link
JP (1) JP5496821B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112438274A (en) * 2020-04-03 2021-03-05 祁海强 Preparation method of high-dispersion anti-discoloration nano-silver antibacterial agent material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103526068B (en) * 2013-10-13 2015-07-08 蒋荣 Preparation method of high-strength rare earth doped copper alloy
WO2017095346A2 (en) 2015-11-30 2017-06-08 Dokuz Eylul Universitesi Rektorlugu Production of αντi bacterial effect thinned copper plates suitable in form to the contact surface of objects and application method thereof
CN109847451A (en) * 2017-11-30 2019-06-07 江苏宇之源新能源科技有限公司 A kind of novel filtering net material
CN111437401B (en) * 2019-01-16 2023-04-28 理工清科(北京)科技有限公司 Antibacterial method
CN114671403B (en) * 2022-04-06 2024-01-30 中国科学院长春应用化学研究所 Ti-Mn-Fe hydrogen storage material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112438274A (en) * 2020-04-03 2021-03-05 祁海强 Preparation method of high-dispersion anti-discoloration nano-silver antibacterial agent material

Also Published As

Publication number Publication date
JP2012040798A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5496821B2 (en) Copper alloy-attached antibacterial paper and method for producing the same
Pujilaksono et al. Oxidation of binary FeCr alloys (Fe–2.25 Cr, Fe–10Cr, Fe–18Cr and Fe–25Cr) in O 2 and in O 2+ H 2 O environment at 600 C
Rao et al. Pitting corrosion of titanium by a freshwater strain of sulphate reducing bacteria (Desulfovibrio vulgaris)
Wang et al. Silver-nanoparticles-modified biomaterial surface resistant to staphylococcus: New insight into the antimicrobial action of silver
Sharifahmadian et al. Relationship between surface properties and antibacterial behavior of wire arc spray copper coatings
Manninen et al. Antibacterial Ag/aC nanocomposite coatings: The influence of nano-galvanic aC and Ag couples on Ag ionization rates
Wu et al. Preparation, antibacterial effects and corrosion resistant of porous Cu–TiO2 coatings
Rokosz et al. Development of plasma electrolytic oxidation for improved Ti6Al4V biomaterial surface properties
Ouyang et al. Liquid-infused superhydrophobic dendritic silver matrix: A bio-inspired strategy to prohibit biofouling on titanium
Wang et al. Effects of silver segregation on sputter deposited antibacterial silver-containing diamond-like carbon films
Rezk et al. Strategic design of a Mussel-inspired in situ reduced Ag/Au-Nanoparticle Coated Magnesium Alloy for enhanced viability, antibacterial property and decelerated corrosion rates for degradable implant Applications
Echeverrigaray et al. Antibacterial properties obtained by low-energy silver implantation in stainless steel surfaces
Sun et al. Nitrogen-doped titanium dioxide films fabricated via magnetron sputtering for vascular stent biocompatibility improvement
US20160376694A1 (en) Method and Apparatus for Coating Nanoparticulate Films on Complex Substrates
Dinca et al. Nickel–titanium alloy: Cytotoxicity evaluation on microorganism culture
Hirpara et al. Anticorrosive behavior enhancement of stainless steel 304 through tantalum-based coatings: Role of coating morphology
Maj et al. In-situ formation of Ag nanoparticles in the MAO coating during the processing of cp-Ti
Mandal et al. Electrochemical behavior of Cu 60 Zr 25 Ti 15 bulk metallic glass with the addition of Nb and Mo
Han et al. Enhanced biocompatibility of Co Cr implant material by Ti coating and micro‐arc oxidation
JP6581296B2 (en) Synthetic polymer membrane having a surface with bactericidal action
Yada et al. Antibacterial properties of titanate nanofiber thin films formed on a titanium plate
Hartjen et al. Cytocompatibility of direct laser interference-patterned titanium surfaces for implants
Khamseh et al. Investigations on sputter-coated cotton fabric with regard to their microstructure, antibacterial, hydrophobic properties and thermal stability
Yada et al. Synthesis and antibacterial activity of a silver nanoparticle/silver titanium phosphate–nanocomposite nanobelt thin film formed on a titanium plate
Elangovan et al. Development of a CrN/Cu nanocomposite coating on titanium-modified stainless steel for antibacterial activity against Pseudomonas aeruginosa

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140305

R150 Certificate of patent or registration of utility model

Ref document number: 5496821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees