JP5496441B2 - Sterilization method - Google Patents

Sterilization method Download PDF

Info

Publication number
JP5496441B2
JP5496441B2 JP2006096751A JP2006096751A JP5496441B2 JP 5496441 B2 JP5496441 B2 JP 5496441B2 JP 2006096751 A JP2006096751 A JP 2006096751A JP 2006096751 A JP2006096751 A JP 2006096751A JP 5496441 B2 JP5496441 B2 JP 5496441B2
Authority
JP
Japan
Prior art keywords
chlorine
silver
water
concentration
residual chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006096751A
Other languages
Japanese (ja)
Other versions
JP2007268402A (en
Inventor
満夫 賀来
敬二 金光
広之 國島
正純 神戸
邦夫 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Air Technologies Co Ltd
Original Assignee
Shin Nippon Air Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Air Technologies Co Ltd filed Critical Shin Nippon Air Technologies Co Ltd
Priority to JP2006096751A priority Critical patent/JP5496441B2/en
Publication of JP2007268402A publication Critical patent/JP2007268402A/en
Application granted granted Critical
Publication of JP5496441B2 publication Critical patent/JP5496441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

本発明は、水利用施設の感染性微生物の殺菌方法に関する。すなわち、給水・給湯設備、冷却塔、冷却水系、加湿器、水景施設、蓄熱槽、循環式浴槽などの水利用施設における、レジオネラ属菌をはじめとした感染性微生物の殺菌方法に関する。   The present invention relates to a method for sterilizing infectious microorganisms in water use facilities. That is, the present invention relates to a method for sterilizing infectious microorganisms such as Legionella spp. In water use facilities such as water / hot water supply facilities, cooling towers, cooling water systems, humidifiers, waterscape facilities, heat storage tanks, and circulation baths.

レジオネラ属菌は、重症の肺炎(レジオネラ肺炎)や一過性の発熱であるポンティアック熱を起こす微生物である。自然界では土壌や淡水に生息するが菌数は少ないと考えられている。しかし人工環境水ではレジオネラ菌の増殖に適した水温などの環境により容易に増殖し、冷却塔などの給湯・空調設備を介し、エアロゾル化したレジオネラ菌を吸引することによる病院・施設内における肺炎の集団感染が報告されるなど社会問題ともなり、厚生労働省は2003年7月25日、「レジオネラ症を予防するために必要な措置に関する技術上の指針」を策定している。レジオネラ属菌は一般に、36℃程度がもっとも成長に適した温度とされており、70℃では直ぐに死滅する。藻類やアメーバと共生関係にあり、生物膜がレジオネラ属菌の増殖の温床とされる。生物膜とは、壁面に付着した微生物が増殖するとともに、粘液性物質を体外に産出し、これらが混在、結合して形成されたものである。   Legionella is a microorganism that causes severe pneumonia (Legionella pneumonia) and Pontiac fever, which is a transient fever. In nature, it lives in soil and fresh water, but the number of bacteria is thought to be small. However, artificial environment water easily grows in an environment such as water temperature suitable for the growth of Legionella bacteria, and it causes pneumonia in hospitals and facilities by sucking aerosolized Legionella bacteria through hot water supply and air conditioning equipment such as cooling towers. The Ministry of Health, Labor and Welfare, on July 25, 2003, has formulated “Technical Guidelines on Actions Necessary for Preventing Legionellosis” due to social problems such as reports of mass infections. In general, Legionella is considered to be the most suitable temperature for growth at about 36 ° C., and it immediately dies at 70 ° C. It is in a symbiotic relationship with algae and amoeba, and the biofilm is used as a hotbed for the growth of Legionella spp. A biofilm is formed by the growth of microorganisms adhering to the wall and the production of mucous substances outside the body, which are mixed and combined.

給湯・空調設備におけるレジオネラ菌の増殖に対する防止策としては、外部から機器などにレジオネラ属菌による汚染がされないようにする、できるだけ水温を20℃以下にする、機器・配管内にスケール、スラッジ、藻などが発生しないようにする、死水域がでないようにする、エアロゾルを発生する器具の使用を避ける、などが挙げられるが、より確実な防止策としてレジオネラ属菌が生息すると考えられる水域の殺菌がある。殺菌方法として、厚生労働省の「新版レジオネラ症防止指針」では、塩素消毒、高温殺菌、紫外線殺菌、オゾン殺菌、銀イオン殺菌が挙げられている。   Prevention measures against Legionella bacteria growth in hot water supply / air-conditioning equipment: Prevent external contamination of Legionella bacteria, keep the water temperature below 20 ° C as much as possible, scale, sludge, algae in equipment / piping Such as avoiding the generation of dead water areas, avoiding the use of aerosol-generating equipment, etc., but as a more reliable preventive measure, sterilization of water areas where Legionella spp. is there. As sterilization methods, the Ministry of Health, Labor and Welfare's “New Edition of Legionellosis Prevention Guidelines” includes chlorine disinfection, high-temperature sterilization, ultraviolet sterilization, ozone sterilization, and silver ion sterilization.

塩素消毒は遊離残留塩素が2〜6mg/lになるように注入するもので、手法が確立されており、末端の水栓で容易に濃度を検出することができるという長所があるが、機器・配管の腐食が促進される、トリハロメタンの発生の可能性がある、塩素臭が残るなどの問題がある。   Chlorine disinfection is performed by injecting so that free residual chlorine is 2 to 6 mg / l. The method has been established and has the advantage that the concentration can be easily detected with a water tap at the end. There are problems such as accelerated corrosion of piping, possible generation of trihalomethane, and residual chlorine odor.

高温殺菌は70℃以上に加熱するもので確実性が高いが、耐熱性のある系統にかぎられ、多量の熱水を準備する必要があるなどの問題がある。   High temperature sterilization is heated to 70 ° C. or higher and has high reliability, but it is limited to heat-resistant systems, and there is a problem that it is necessary to prepare a large amount of hot water.

紫外線照射は40℃以下の水流に適用し、設置が容易である長所があるが、給湯に利用できない、局所的な消毒であり残留効果はない、照射管にスケールなどが付着し照射効率が低下する場合がある、照射管の破損やゴムスリーブの緩みによって漏水が生じる場合があるなどの問題がある。   UV irradiation is applied to water flow of 40 ° C or less, and has the advantage of being easy to install, but cannot be used for hot water supply, it is a local disinfection and has no residual effect, scale is attached to the irradiation tube, and irradiation efficiency decreases There is a problem that water leakage may occur due to breakage of the irradiation tube or loosening of the rubber sleeve.

オゾン殺菌は、1〜2mg/lのオゾンを注入するもので、瞬間的に細菌やウイルスを不活性化するものであるが、費用が高い、局所的な消毒であり残留効果がない、機器配管の腐食が促進される、スペースが必要である、オゾンは有毒ガスである、副生成物としての有害物を除去するための設備等が必要であるなどの問題がある。   Ozone sterilization injects 1-2 mg / l of ozone and inactivates bacteria and viruses instantaneously, but is expensive, local disinfection and has no residual effects, equipment piping Corrosion is promoted, space is required, ozone is a toxic gas, and equipment for removing harmful substances as by-products is required.

銀イオン殺菌は、水流中に銀電極を設置し、荷電により銀イオンを発生させるもので、銀イオンの濃度は軟水の場合には30〜50μg、硬水の場合には40μgにするとしている。電気分解式のイオン殺菌は残留効果があり、設置が容易などの長所があるが、硬水の場合には、電極にスケールがつき、効果が低減する。また、銀電極は効果で高コストという問題もある。銅イオンに関してはレジオネラ属菌の殺菌効果は低く、一般には露点風呂の殺藻を目的として使われている(非特許文献2)。
厚生労働省「レジオネラ症を予防するために必要な措置に関する技術上の指針」2003年7月25日 厚生労働省「循環式浴槽におけるレジオネラ症防止対策マニュアル」
In silver ion sterilization, a silver electrode is installed in a water stream and silver ions are generated by charging. The concentration of silver ions is 30 to 50 μg for soft water and 40 μg for hard water. Electrolytic ion sterilization has a residual effect and has advantages such as easy installation, but in the case of hard water, the scale is attached to the electrode and the effect is reduced. In addition, the silver electrode is also effective and expensive. With regard to copper ions, the bactericidal effect of Legionella spp. Is low, and is generally used for the purpose of killing alga in a dew point bath (Non-patent Document 2).
Ministry of Health, Labor and Welfare “Technical guidelines on measures necessary to prevent legionellosis” July 25, 2003 Ministry of Health, Labor and Welfare “Manual for Preventing Legionellosis in Circulation Bathtub”

したがって、本発明が解決しようとする主たる課題は、高い殺菌効果が発揮させ、特に極めて低い残留塩素濃度でも高い殺菌効果が発現させることにある。   Therefore, the main problem to be solved by the present invention is to exhibit a high bactericidal effect, and to develop a high bactericidal effect even at a very low residual chlorine concentration.

この課題を解決した本発明は、次のとおりである。
〔請求項1記載の発明〕
水利用施設のレジオネラ属菌の殺菌において、
液体塩素、次亜塩素酸ナトリウム、次亜塩素酸カルシウム(高度さらし粉を含む)の群から選ばれた塩素殺菌剤を用いて、薬注装置により、対象とする水系統に注入することにより、残留塩素濃度(遊離残留塩素と結合性残留塩素との合計量の濃度)を0.1mg/l〜1mg/lとするとともに、
この残留塩素に、銀イオンを共存させ、銅イオンは共存させない、
さらに、銀イオンの発生に銀型ゼオライトを使用することを特徴とする殺菌方法。
The present invention that has solved this problem is as follows.
[Invention of Claim 1]
In sterilization of Legionella spp. In water use facilities,
Residual by injecting into the target water system with a chemical injection device using a chlorine disinfectant selected from the group of liquid chlorine, sodium hypochlorite, and calcium hypochlorite (including highly bleached powder) The chlorine concentration (concentration of the total amount of free residual chlorine and binding residual chlorine) is 0.1 mg / l to 1 mg / l,
In this residual chlorine, silver ions coexist , copper ions do not coexist,
Furthermore, the sterilization method characterized by using silver type zeolite for generation of silver ions .

(作用効果)
従来の殺菌方法は、単独のものであるが、本発明では、特定の殺菌方法を複合している。その結果、後述の実施例にて明らかにするように、高い殺菌効果が得られ、特に極めて低い残留塩素濃度でも高い殺菌効果が発現するものとなる。
残留塩素のみでは、高濃度の2〜6mg/lという激しい塩素臭がする濃度で使用する必要があるが、銀イオンと塩素を共存させることで極めて低い残留塩素濃度で高い殺菌効果が発現できることを発見した。
(Function and effect)
Conventional sterilization methods are independent, but in the present invention, specific sterilization methods are combined. As a result, as will be clarified in the examples described later, a high bactericidal effect is obtained, and a high bactericidal effect is manifested even at a very low residual chlorine concentration.
Only with residual chlorine, it is necessary to use a high concentration of 2 to 6 mg / l with a vigorous chlorine odor. By coexisting silver ions and chlorine, a high bactericidal effect can be achieved with a very low residual chlorine concentration. discovered.

現在、我が国の水道水は水道法により、塩素または結合塩素で消毒を行ない、給水栓水での残留塩素量が遊離塩素の場合は0.1mg/l以上(結合塩素の場合は0.4mg/l以上)、ただし、病原菌による汚染の疑いがあるときや水系感染症流行時は、遊離塩素2〜6mg/l以上と定められている。本発明は水道法で定められた濃度レベルでも十分に効果のあるものである。残留塩素濃度が0.1mg/l未満では殺菌効果が十分でなく、また、1mg/lを超えると塩素臭によって水利用施設での利用に適しないものとなる。   At present, tap water in Japan is sterilized with chlorine or combined chlorine according to the Water Supply Law. If the amount of residual chlorine in the tap water is free chlorine, it is 0.1 mg / l or more (0.4 mg / l for combined chlorine). However, when there is a suspicion of contamination by pathogenic bacteria or during the epidemic of water-borne infections, it is determined to be 2-6 mg / l or more of free chlorine. The present invention is sufficiently effective even at a concentration level defined by the Water Supply Law. If the residual chlorine concentration is less than 0.1 mg / l, the bactericidal effect is not sufficient, and if it exceeds 1 mg / l, the chlorine odor makes it unsuitable for use in water utilization facilities.

本発明によれば、高い殺菌効果を発揮し、特に極めて低い残留塩素濃度でも高い殺菌効果が発現させることができる。   According to the present invention, a high bactericidal effect is exhibited, and a high bactericidal effect can be exhibited even at a particularly low residual chlorine concentration.

次に、本発明の実施の形態を説明する。
本発明では、少なくとも銀イオンを使用するのが望ましい。銀イオンは、レジオネラ属菌に対する効果が明確である。銅イオンは、殺藻効果に優れる。
Next, an embodiment of the present invention will be described.
In the present invention, it is desirable to use at least silver ions. Silver ions have a clear effect on Legionella spp. Copper ions are excellent in the algicidal effect.

銀イオンと銅イオンとを併用すると、レジオネラ菌の増殖の温床となる藻やバイオフィルムの発生を防止しつつ、レジオネラ属菌の進入時には直ちに銀イオンで殺菌することで、高いレジオネラ属菌の増殖作用を実現できる。   When silver ions and copper ions are used in combination, while preventing the generation of algae and biofilms that serve as a hotbed for the growth of Legionella, they are sterilized with silver ions immediately upon entry of Legionella, thereby increasing the growth of Legionella The action can be realized.

銀イオン及び又は銅イオンと共に、残留塩素を利用することができる。
残留塩素の制御は、塩素殺菌剤である液体塩素、次亜塩素酸ナトリウム、次亜塩素酸カルシウム(高度さらし粉を含む)などを適宜選択し、薬注装置により対象とする水系統に注入することで目標残留塩素濃度することができる。また、水道水中に含まれる残留塩素も塩素源として利用できる。
Residual chlorine can be utilized along with silver ions and / or copper ions.
Residual chlorine is controlled by appropriately selecting liquid chlorine, sodium hypochlorite, calcium hypochlorite (including highly bleached powder), which are chlorine disinfectants, and injecting them into the target water system using a chemical injection device. With the target residual chlorine concentration can be. Residual chlorine contained in tap water can also be used as a chlorine source.

銀イオンの発生には、銀板電極に電流を流し電気分解を行い銀イオンを溶出させる電解法のほか、ゼオライトのもつイオン交換機能を利用して硝酸銀溶液中でイオン交換反応を行なって製造した銀型ゼオライトを用いる方法、水溶性ガラスのSi原子の一部を銀に置換し、ガラスの溶解とともに銀イオンが溶出する銀含有水溶性ガラスを用いる方法、樹脂の表面に銀の微粉末をコーティングして銀イオンを溶出させる金属微粉末を用いる方法などがあり、目標銀イオン濃度となるよう電流値や投入量を制御する。   For the generation of silver ions, in addition to the electrolytic method in which current is passed through a silver plate electrode and electrolysis is performed to elute silver ions, the ion exchange function of zeolite is used to conduct ion exchange reaction in silver nitrate solution. A method using silver-type zeolite, a method using silver-containing water-soluble glass in which some of the Si atoms of water-soluble glass are replaced with silver, and silver ions are eluted as the glass dissolves, and the surface of the resin is coated with fine silver powder Then, there is a method using metal fine powder that elutes silver ions, and the current value and input amount are controlled so as to achieve the target silver ion concentration.

銅イオンの発生には、銅板電極に電流を流し電気分解を行い銅イオンを溶出させる電解法のほか、銅の細線あるいは銅板を目標とする水系に設置するのみでも高い銅イオン濃度とすることが可能である。   For the generation of copper ions, in addition to the electrolysis method in which an electric current is applied to the copper plate electrode and electrolysis is performed to elute the copper ions, it is possible to increase the copper ion concentration simply by installing copper wires or copper plates in the target aqueous system. Is possible.

次に実施例により本発明の効果を明らかにする。
使用菌種はLegionella pneumophila serogroup 1 (ATCC 33152株)をBCYE−α培地にて37℃、3日間培養して使用した。銀イオン原水は電気分解法(銀イオン殺菌装置ICK−02 日本イオン(株)製)にて作成した。銅イオン原水は純水中に銅板を浸漬して作成した。塩素原水は純水に次亜塩素酸ナトリウムを添加して作成した。これら原水を表1に記載した濃度となるよう添加、混合して濃度を調整した。濃度調整時の分析は、銀イオン・銅イオンはEPA吸光光度法、残留塩素はDPD吸光光度法を用いた。
Next, effects of the present invention will be clarified by examples.
The bacterial strain used was Legionella pneumophila serogroup 1 (ATCC 33152 strain) cultured in BCYE-α medium at 37 ° C. for 3 days. Silver ion raw water was prepared by electrolysis (silver ion sterilizer ICK-02 manufactured by Nippon Ion Co., Ltd.). Copper ion raw water was prepared by immersing a copper plate in pure water. Raw chlorine water was prepared by adding sodium hypochlorite to pure water. These raw waters were added and mixed so as to have the concentrations shown in Table 1 to adjust the concentrations. For analysis at the time of concentration adjustment, silver ion and copper ion were measured by EPA absorption photometry, and residual chlorine was measured by DPD absorption photometry.

実験は、滅菌水にて1×108CFU/ml(マクファーランド0.5)となるよう調整した菌液を10倍希釈し、その菌液200μlを銀イオン濃度・銅イオン濃度・残留塩素濃度を所定の値に調整した試料水1800μlに加えた(最終濃度は1×106CFU/ml)。室温にて1,2,15,30,60分経過後、菌液100μlを滅菌水900μlで10倍段階希釈した。その希釈液を各々20μlづつBYCE−α培地に塗布し、37℃で3日間静置培養してから、コロニーカウント法を用いて生菌数を計測した。 In the experiment, a bacterial solution adjusted to 1 × 10 8 CFU / ml (McFarland 0.5) with sterilized water was diluted 10 times, and 200 μl of the bacterial solution was diluted with silver ion concentration, copper ion concentration, residual chlorine. The concentration was added to 1800 μl of sample water adjusted to a predetermined value (final concentration: 1 × 10 6 CFU / ml). After 1, 2, 15, 30, 60 minutes at room temperature, 100 μl of the bacterial solution was serially diluted 10-fold with 900 μl of sterilized water. Each 20 μl of the diluted solution was applied to BYCE-α medium, left to stand for 3 days at 37 ° C., and then the number of viable bacteria was counted using a colony count method.

結果を表1、及び図1〜図5に示す。図1の生菌数変化から銀イオン、銅イオン、残留塩素の各単味での殺菌能が分かる。同一濃度において、残留塩素は銅イオンよりも殺菌効果は小さい。銀イオン、銅イオンは高濃度で殺菌能が高く、銀イオンが高い殺菌能があることが分かる。   The results are shown in Table 1 and FIGS. From the change in the number of viable bacteria in FIG. 1, the bactericidal ability of each of silver ions, copper ions, and residual chlorine can be understood. At the same concentration, residual chlorine is less sterilizing than copper ions. It can be seen that silver ions and copper ions have high bactericidal ability at high concentrations, and silver ions have high bactericidal ability.

図2,3には銀イオンと銅イオンを共存させた条件における生菌数変化を示した。共存することで生菌数は単味の値より大きく減少しており各々のイオンの効果の積算値より生菌数は減少しており相乗共存効果が表れている。図4,5には銀イオンに残留塩素を共存させた条件、銅イオンに残留塩素を共存させた条件の生菌数変化を示した。銀イオン+銅イオンの場合より顕著な相乗共存効果が現れており、各々のイオンの効果の積算値より生菌数は減少しており相乗効果が表れていることがわかる。   2 and 3 show changes in the number of viable bacteria under the condition where silver ions and copper ions coexist. By virtue of the coexistence, the viable cell count is greatly reduced from the simple value, and the viable cell count is reduced from the integrated value of the effect of each ion, thus showing a synergistic coexistence effect. 4 and 5 show changes in the number of viable bacteria under conditions where silver ions coexist with residual chlorine and copper ions coexist with residual chlorine. A remarkable synergistic coexistence effect appears compared to the case of silver ion + copper ion, and it can be seen that the viable cell count is reduced from the integrated value of the effect of each ion, and a synergistic effect appears.

また、特に殺菌効果の優れるのは、銀イオンを利用する例である。したがって、銀イオンと銅イオン、銀イオンと残留塩素を共存させるのが好適であることも知見される。 Moreover, the example which utilizes a silver ion is especially excellent in a bactericidal effect. Therefore, it is also found that it is preferable to coexist silver ions and copper ions, and silver ions and residual chlorine .

Figure 0005496441
Figure 0005496441

実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result.

Claims (1)

水利用施設のレジオネラ属菌の殺菌において、
液体塩素、次亜塩素酸ナトリウム、次亜塩素酸カルシウム(高度さらし粉を含む)の群から選ばれた塩素殺菌剤を用いて、薬注装置により、対象とする水系統に注入することにより、残留塩素濃度(遊離残留塩素と結合性残留塩素との合計量の濃度)を0.1mg/l〜1mg/lとするとともに、
この残留塩素に、銀イオンを共存させ、銅イオンは共存させない、
さらに、銀イオンの発生に銀型ゼオライトを使用することを特徴とする殺菌方法。
In sterilization of Legionella spp. In water use facilities,
Residual by injecting into the target water system with a chemical injection device using a chlorine disinfectant selected from the group of liquid chlorine, sodium hypochlorite, and calcium hypochlorite (including highly bleached powder) The chlorine concentration (concentration of the total amount of free residual chlorine and binding residual chlorine) is 0.1 mg / l to 1 mg / l,
In this residual chlorine, silver ions coexist , copper ions do not coexist,
Furthermore, the sterilization method characterized by using silver type zeolite for generation of silver ions .
JP2006096751A 2006-03-31 2006-03-31 Sterilization method Active JP5496441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006096751A JP5496441B2 (en) 2006-03-31 2006-03-31 Sterilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096751A JP5496441B2 (en) 2006-03-31 2006-03-31 Sterilization method

Publications (2)

Publication Number Publication Date
JP2007268402A JP2007268402A (en) 2007-10-18
JP5496441B2 true JP5496441B2 (en) 2014-05-21

Family

ID=38671751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096751A Active JP5496441B2 (en) 2006-03-31 2006-03-31 Sterilization method

Country Status (1)

Country Link
JP (1) JP5496441B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2474330B1 (en) 2009-08-31 2016-10-12 Tokyo Institute of Technology Sterilization method
JP6138040B2 (en) * 2013-12-27 2017-05-31 三菱電機株式会社 Air conditioner
US20170280728A1 (en) * 2014-09-12 2017-10-05 Cms Technology, Inc.. Antimicrobial compositions and methods of their use
BR112020014234A2 (en) * 2018-01-14 2020-12-08 Collidion, Inc. COMPOSITIONS, KITS, METHODS AND USES FOR CLEANING, DISINFECTION, STERILIZATION AND / OR TREATMENT
JP7214762B2 (en) * 2021-02-05 2023-01-30 新日本空調株式会社 Humidifying device, humidifier and humidifying method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010917A1 (en) * 1994-10-05 1996-04-18 Toto Ltd. Antibacterial solid, process for producing the same, and method of utilizing the same
JPH119919A (en) * 1997-06-22 1999-01-19 Bridgestone Corp Hot bath device
JP2001276828A (en) * 2000-03-30 2001-10-09 Tomoyoshi Miyazaki Electrolytically sterilizing method of water and electrolytically sterilizing device therefor
JP2003080265A (en) * 2001-09-13 2003-03-18 Tadashi Inoue Method and equipment for disinfecting water by circulating water in water storage tank
JP2004321878A (en) * 2003-04-22 2004-11-18 Hideo Eguchi Water sterilizing device and water sterilization method
JP2005314281A (en) * 2004-04-28 2005-11-10 Kitasato Gakuen Bactericide for bacteria living in environmental water and bactericidal method

Also Published As

Publication number Publication date
JP2007268402A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
Blanc et al. Water disinfection with ozone, copper and silver ions, and temperature increase to control Legionella: seven years of experience in a university teaching hospital
US11655167B2 (en) Methods for eradicating biofilms from plumbing systems
Coleman et al. The role of manufacturers in reducing biofilms in dental chair waterlines
Pathak et al. Evaluation of bactericidal efficacy of silver ions on Escherichia coli for drinking water disinfection
RU2602110C2 (en) Method and device for water treatment
JP5496441B2 (en) Sterilization method
Türetgen Comparison of the efficacy of free residual chlorine and monochloramine against biofilms in model and full scale cooling towers
Martı́nez et al. Electrolytically generated silver and copper ions to treat cooling water: an environmentally friendly novel alternative
van der Lugt et al. Growth of Legionella anisa in a model drinking water system to evaluate different shower outlets and the impact of cast iron rust
CN102017996A (en) Curing agent for sewer pipeline
LeChevallier Examining the efficacy of copper‐silver ionization for management of Legionella: Recommendations for optimal use
Bonetta et al. Effectiveness of a neutral electrolysed oxidising water (NEOW) device in reducing Legionella pneumophila in a water distribution system: A comparison between culture, qPCR and PMA-qPCR detection methods
Munasinghe et al. The effect of iron corrosion in cast iron pipes on the microbiological quality of drinking water: a laboratory and field investigation
Campos et al. Disinfection of domestic water systems for Legionella pneumophila
Ditommaso et al. Peracetic acid in the disinfection of a hospital water system contaminated with Legionella species
Shuval et al. An innovative method for the control of legionella infections in the hospital hot water systems with a stabilized hydrogen peroxide-silver formulation
Barbosa et al. Controlling Legionella in a UK hospital using copper and silver ionisation—A case study
Solis-Castro et al. Efficacy of copper-silver ionization for the disinfection of drinking water in Tumbes, Peru
States et al. Controlling Legionella using copper‐silver ionization
Payne Interactions of corrosion control and biofilm on lead and copper in premise plumbing
Bedford Legionella control in water systems using copper and silver ion generation systems
JP6931256B2 (en) Disinfectants for Legionella spp., Water treatment methods, bath water additives, and air conditioning cooling tower water additives
Patel et al. Economical solution to remove microbes from harvested roof water
Masaka et al. Health risks associated with the use of water mist systems as a cooling intervention in public places in Australia
Nissankarrao Copper coated stainless steel as an antimicrobial agent in preventing bacterial growth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140305

R150 Certificate of patent or registration of utility model

Ref document number: 5496441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250