JP5494461B2 - Spectroscopic analysis method and spectroscopic analysis apparatus - Google Patents

Spectroscopic analysis method and spectroscopic analysis apparatus Download PDF

Info

Publication number
JP5494461B2
JP5494461B2 JP2010281446A JP2010281446A JP5494461B2 JP 5494461 B2 JP5494461 B2 JP 5494461B2 JP 2010281446 A JP2010281446 A JP 2010281446A JP 2010281446 A JP2010281446 A JP 2010281446A JP 5494461 B2 JP5494461 B2 JP 5494461B2
Authority
JP
Japan
Prior art keywords
adsorbent
liquid sample
electromagnetic wave
spectroscopic analysis
wavelength range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010281446A
Other languages
Japanese (ja)
Other versions
JP2012127900A (en
Inventor
道子 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2010281446A priority Critical patent/JP5494461B2/en
Publication of JP2012127900A publication Critical patent/JP2012127900A/en
Application granted granted Critical
Publication of JP5494461B2 publication Critical patent/JP5494461B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、分光分析方法及び分光分析装置に関する。   The present invention relates to a spectroscopic analysis method and a spectroscopic analysis apparatus.

対象試料に赤外線、可視光、紫外線等の電磁波を照射し、その試料を透過する透過光の分光分析等をすることにより、試料の物性を分析する方法が知られている。   There is known a method of analyzing physical properties of a sample by irradiating an object sample with electromagnetic waves such as infrared rays, visible light, and ultraviolet rays, and performing spectroscopic analysis of transmitted light transmitted through the sample.

例えば、多孔質ガラスに有機ガスを吸着させ、この有機ガスを吸着した多孔質ガラスの紫外・可視吸収スペクトルを測定し、有機ガス吸着前の多孔質ガラスの紫外・可視吸収スペクトルとの差を計算する。これにより吸着させた有機ガス成分のみの紫外、可視吸収スペクトルを得て、吸着したガスの種類と濃度を分析する方法がある。   For example, an organic gas is adsorbed on the porous glass, and the ultraviolet / visible absorption spectrum of the porous glass adsorbed with the organic gas is measured, and the difference from the ultraviolet / visible absorption spectrum of the porous glass before the organic gas adsorption is calculated. To do. There is a method for obtaining the ultraviolet and visible absorption spectra of only the adsorbed organic gas component and analyzing the kind and concentration of the adsorbed gas.

また、透明な樹脂と、不透明な顔料からなる粒子との混合体であるフィルムに、光を照射し、フィルムを透過した光の強度を受光することにより、フィルムに含まれる粒子の単位面積当たりの含有量を検出する方法がある。   In addition, the film, which is a mixture of transparent resin and particles made of opaque pigment, is irradiated with light, and the intensity of the light transmitted through the film is received. There is a method for detecting the content.

更に、樹脂フィルムに含まれる水分の量を測定する方法がある。この方法では、樹脂フィルムに、水分子に吸収される第1波長をもつ測定光と、水分子に吸収されない第2波長をもつ参照光とを照射し、樹脂フィルムの透過光を受光する。その際に、測定光と参照光を略同じ光路を経由させ、測定光と参照光双方の吸光度に基づいて、樹脂フィルムが含有する水分の量を測定するようにしている。   Furthermore, there is a method for measuring the amount of moisture contained in the resin film. In this method, the resin film is irradiated with measurement light having a first wavelength that is absorbed by water molecules and reference light having a second wavelength that is not absorbed by water molecules, and light transmitted through the resin film is received. At that time, the measurement light and the reference light are passed through substantially the same optical path, and the amount of moisture contained in the resin film is measured based on the absorbance of both the measurement light and the reference light.

特開2000−338040号公報JP 2000-338040 A 特開2002−168782号公報JP 2002-167872 A 特開2010−121998号公報JP 2010-121998 A

分光分析方法及び分光分析装置において、液体試料の光物性と質量とを簡易に計測することを目的とする。   In a spectroscopic analysis method and a spectroscopic analysis apparatus, an object is to easily measure the optical properties and mass of a liquid sample.

以下の開示の一観点によれば、 液体試料を吸着していない吸着材に、第1の波長範囲の第1の電磁波を照射したときの、前記吸着材を透過又は反射する第2の電磁波を検出する工程と、前記液体試料を前記吸着材に吸着させる工程と、前記液体試料を吸着した前記吸着材に、前記第1の波長範囲の第3の電磁波を照射し、前記吸着材を透過又は反射する第4の電磁波を検出する工程と、前記第4の電磁波の前記第2の電磁波からの変化に基づいて、前記液体試料の光物性情報を取得する工程と、前記液体試料を吸着した前記吸着材に、第2の波長範囲の第5の電磁波を照射すると共に、前記吸着材を透過した第6の電磁波を検出し、前記第5の電磁波と前記第6の電磁波とに基づいて前記吸着材の光透過率を測定する工程と、前記光透過率に基づいて前記液体試料の質量情報を取得する工程とを有し、前記第1の電磁波を照射する工程、前記第3の電磁波を照射する工程、及び前記第5の電磁波を照射する工程は、同一の分光分析装置内で行う分光分析方法が提供される。   According to one aspect of the disclosure below, when an adsorbent that is not adsorbing a liquid sample is irradiated with a first electromagnetic wave in the first wavelength range, the second electromagnetic wave that is transmitted or reflected by the adsorbent is Detecting, adsorbing the liquid sample on the adsorbent, irradiating the adsorbent adsorbing the liquid sample with a third electromagnetic wave in the first wavelength range and transmitting the adsorbent Detecting a reflected fourth electromagnetic wave, obtaining a light physical property information of the liquid sample based on a change of the fourth electromagnetic wave from the second electromagnetic wave, and adsorbing the liquid sample The adsorbent is irradiated with the fifth electromagnetic wave in the second wavelength range, the sixth electromagnetic wave transmitted through the adsorbent is detected, and the adsorption is performed based on the fifth electromagnetic wave and the sixth electromagnetic wave. Measuring the light transmittance of the material, and the light transmittance Obtaining the mass information of the liquid sample based on the step, irradiating the first electromagnetic wave, irradiating the third electromagnetic wave, and irradiating the fifth electromagnetic wave are the same. A spectroscopic analysis method performed in the spectroscopic analysis apparatus is provided.

また、その開示の別の観点によれば、吸着材に第1の波長範囲の電磁波を照射する第1の光源と、前記吸着材に第2の波長範囲の電磁波を照射する第2の光源と、前記第1の光源から前記吸着材に照射され、該吸着材を透過又は反射した電磁波を検出する第1の検出部と、前記第2の光源から前記吸着材に照射され、該吸着材を透過した電磁波を検出する第2の検出部と、前記第1の検出部の検出結果に基づいて、前記吸着材に吸着している前記液体試料の光物性情報を取得すると共に、前記第2の検出部の検出結果に基づいて、前記液体試料の質量情報を取得する処理部と、を有する分光分析装置が提供される。   According to another aspect of the disclosure, a first light source that irradiates the adsorbent with electromagnetic waves in a first wavelength range, and a second light source that irradiates the adsorbent with electromagnetic waves in a second wavelength range; The first light source irradiates the adsorbent from the first light source, and detects the electromagnetic wave transmitted or reflected by the adsorbent, and the second light source irradiates the adsorbent to the adsorbent. Based on the detection result of the second detection unit for detecting the transmitted electromagnetic wave and the first detection unit, the optical property information of the liquid sample adsorbed on the adsorbent is obtained, and the second There is provided a spectroscopic analysis device including a processing unit that acquires mass information of the liquid sample based on a detection result of the detection unit.

以下の開示によれば、液体試料の状態を保持したまま、液体試料の光物性及び質量の計測を行うことができるので、計測の効率及び精度の向上を図ることができる。また、特に微量な液体試料においても、計測中に液体試料が紛失して液体試料の状態が変化することがないので、精度を悪化させることなく液体試料の光物性及び質量の計測が可能となる。   According to the following disclosure, the optical properties and mass of the liquid sample can be measured while maintaining the state of the liquid sample, so that the measurement efficiency and accuracy can be improved. In particular, even for a very small amount of liquid sample, the liquid sample is not lost during measurement and the state of the liquid sample does not change, so that the optical properties and mass of the liquid sample can be measured without degrading accuracy. .

図1は、分光分析装置の全体の構成例を示す図である。FIG. 1 is a diagram illustrating an overall configuration example of a spectroscopic analyzer. 図2は、分光分析装置の光源部の構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of the light source unit of the spectroscopic analyzer. 図3は、分光分析装置の検出部の構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of a detection unit of the spectroscopic analyzer. 図4は、分光分析装置及び分光分析方法において、液体試料の光物性情報を取得するための手順を示すフローチャートである。FIG. 4 is a flowchart illustrating a procedure for acquiring optical property information of a liquid sample in the spectroscopic analysis apparatus and the spectroscopic analysis method. 図5は、分光分析装置及び分光分析方法において、液体試料の質量情報を取得するための手順を示すフローチャートである。FIG. 5 is a flowchart illustrating a procedure for acquiring mass information of a liquid sample in the spectroscopic analysis apparatus and the spectroscopic analysis method. 図6は、多孔質ポリプロピレンフィルムに、ポリ塩化ビニルに付着した液体試料を吸着させたときの光学像である。FIG. 6 is an optical image when a liquid sample adhered to polyvinyl chloride is adsorbed on a porous polypropylene film. 図7は、液体試料の赤外吸収スペクトルを示す図である。FIG. 7 is a diagram showing an infrared absorption spectrum of a liquid sample. 図8は、多孔質ポリプロピレンの全光透過率と液体試料の質量との関係を示す図である。FIG. 8 is a diagram showing the relationship between the total light transmittance of porous polypropylene and the mass of the liquid sample.

分光分析方法等により液体試料の定性・定量分析を行う際には、液体試料の物性測定と液体試料の質量の計量とを別々の装置を用いて行うことがある。そのため液体試料の分析の効率が悪い。また、液体試料の状態を保持するのが困難であるため、特に液体試料が微量な場合に測定精度が悪化するという問題がある。   When performing a qualitative / quantitative analysis of a liquid sample by a spectroscopic analysis method or the like, the physical property measurement of the liquid sample and the measurement of the mass of the liquid sample may be performed using different apparatuses. Therefore, the efficiency of the analysis of the liquid sample is poor. In addition, since it is difficult to maintain the state of the liquid sample, there is a problem that the measurement accuracy deteriorates particularly when the amount of the liquid sample is very small.

本実施形態に係る分光分析装置及び分光分析方法では、液体試料を吸着材に吸着して、液体試料の状態を保持したまま、液体試料の光物性及び質量の計測を行うことにより、上記問題を解決するようにしている。   In the spectroscopic analysis apparatus and the spectroscopic analysis method according to the present embodiment, the liquid sample is adsorbed to an adsorbent, and the above-mentioned problems are solved by measuring the optical properties and mass of the liquid sample while maintaining the state of the liquid sample. I try to solve it.

図1〜図3を参照しながら、本実施形態に係る分光分析装置の構成について説明する。   The configuration of the spectroscopic analyzer according to the present embodiment will be described with reference to FIGS.

図1は、分光分析装置の全体の構成例を示す図である。   FIG. 1 is a diagram illustrating an overall configuration example of a spectroscopic analyzer.

図1に示されるように、分光分析装置は、赤外線及び可視光を照射する光源部10と、光源部10から照射された赤外線及び可視光が通過する入射スリット20と、入射スリット20を通過して吸着材32を透過した赤外線及び可視光を検出するための検出部30と、計数回路40及び計数回路50とを介して検出部30から検出結果が入力され、その検出結果を処理するコンピュータ60とを有する。   As shown in FIG. 1, the spectroscopic analyzer passes through the light source unit 10 that irradiates infrared light and visible light, the incident slit 20 through which the infrared light and visible light irradiated from the light source unit 10 pass, and the incident slit 20. The detection result is input from the detection unit 30 via the detection unit 30 for detecting infrared light and visible light transmitted through the adsorbent 32 and the counting circuit 40 and the counting circuit 50, and the computer 60 processes the detection result. And have.

そして、検出部30は、吸着材32と、吸着材32が設置された試料室31と、吸着材32を透過した赤外線を検出する赤外分光検出器35と、吸着材32を透過した可視光を検出する積分球(光束系)36とを有する。   The detection unit 30 includes an adsorbent 32, a sample chamber 31 in which the adsorbent 32 is installed, an infrared spectroscopic detector 35 that detects infrared rays that have passed through the adsorbent 32, and visible light that has passed through the adsorbent 32. And an integrating sphere (light beam system) 36 for detecting.

光源部10からは赤外線及び可視光が照射され、照射された光は入射スリット20を介して試料室31に設置されている吸着材32に照射される。吸着材32を透過した赤外線及び可視光は、それぞれ赤外分光検出器35及び積分球36で検出されて電気信号に変換され、計数回路40及び計数回路50を介してコンピュータ60に入力され処理される。   Infrared light and visible light are irradiated from the light source unit 10, and the irradiated light is irradiated to the adsorbent 32 installed in the sample chamber 31 through the entrance slit 20. Infrared light and visible light transmitted through the adsorbent 32 are detected by an infrared spectroscopic detector 35 and an integrating sphere 36, converted into an electrical signal, and input to a computer 60 via a counting circuit 40 and a counting circuit 50 for processing. The

図2は、分光分析装置の光源部10の構成例を示す図である。図2に示されるように、光源部10は、赤外線L1Aを照射する赤外光源11と、可視光L2Aを照射する可視光源12とを有し、更に、赤外線L1及び可視光L2を反射して、入射スリット20へ誘導するための可動式反射鏡33と、反射鏡34とを有する。   FIG. 2 is a diagram illustrating a configuration example of the light source unit 10 of the spectroscopic analyzer. As shown in FIG. 2, the light source unit 10 includes an infrared light source 11 that emits infrared light L1A and a visible light source 12 that emits visible light L2A, and further reflects the infrared light L1 and visible light L2. The movable reflecting mirror 33 for guiding to the entrance slit 20 and the reflecting mirror 34 are provided.

赤外光源11から赤外線L1Aが照射された場合、可動式反射鏡13は赤外線L1Aと平行な向き13aを向き、赤外線L1Aは直進して赤外線L1Bとなり、入射スリット20を通過する。   When the infrared light L1A is irradiated from the infrared light source 11, the movable reflecting mirror 13 faces a direction 13a parallel to the infrared L1A, and the infrared L1A goes straight to become the infrared L1B and passes through the incident slit 20.

また、可視光源12から可視光L2Aが照射された場合、可視光L2Aは反射鏡14で反射され可視光L2Bとなる。そして、可動式反射鏡13は向き13bを向き、可視光L2Bは可動式反射鏡13によって反射され可視光L2Cとなり、可視光L2Cは入射スリット20を通過する。   When visible light L2A is irradiated from the visible light source 12, the visible light L2A is reflected by the reflecting mirror 14 and becomes visible light L2B. The movable reflecting mirror 13 faces the direction 13b, and the visible light L2B is reflected by the movable reflecting mirror 13 to become visible light L2C, and the visible light L2C passes through the incident slit 20.

図3は、分光分析装置の検出部30の構成例を示す図である。   FIG. 3 is a diagram illustrating a configuration example of the detection unit 30 of the spectroscopic analyzer.

図3に示されるように、検出部30は、上記の分光分析装置の全体の構成例での説明において示した構成要素以外に、吸着材32を透過した赤外線L1を赤外分光検出器35に誘導し、吸着材32を透過した可視光L2を積分球36に誘導するための、可動式反射鏡33と、反射鏡34とを有する。   As shown in FIG. 3, in addition to the components shown in the description of the overall configuration example of the spectroscopic analysis device, the detection unit 30 transmits infrared L1 transmitted through the adsorbent 32 to the infrared spectroscopic detector 35. It has a movable reflecting mirror 33 and a reflecting mirror 34 for guiding the visible light L2 that has been guided and passed through the adsorbent 32 to the integrating sphere 36.

入射スリット20を通過した赤外線L1B及び可視光L2Cは、試料室31に設置されている吸着材32に入射する。赤外線L1B及び可視光L2Cは、吸着材32に吸着され、保持されている液体試料の部分32aに入射する。   Infrared light L1B and visible light L2C that have passed through the entrance slit 20 enter the adsorbent 32 installed in the sample chamber 31. The infrared rays L1B and visible light L2C are adsorbed by the adsorbent 32 and enter the liquid sample portion 32a that is held.

そして、赤外光源11から赤外線L1Aが照射されている場合、可動式反射鏡33は吸着材32を透過した赤外線L1Cと平行な向き33aを向き、赤外線L1Cは直進して赤外線L1Dとなる。赤外線L1Dは赤外分光検出器35に受光される。赤外分光検出器35の検出結果はコンピュータ60に入力され、液体試料を吸着していない吸着材32の第2の赤外吸収スペクトル、及び液体試料を吸着している吸着材32の第1の赤外吸収スペクトルが測定される。   When the infrared light L1A is irradiated from the infrared light source 11, the movable reflecting mirror 33 faces the direction 33a parallel to the infrared L1C transmitted through the adsorbent 32, and the infrared L1C goes straight to become the infrared L1D. The infrared L1D is received by the infrared spectroscopic detector 35. The detection result of the infrared spectroscopic detector 35 is input to the computer 60, and the second infrared absorption spectrum of the adsorbent 32 not adsorbing the liquid sample and the first of the adsorbent 32 adsorbing the liquid sample. An infrared absorption spectrum is measured.

可視光源12から可視光L2Aが照射されている場合、可動式反射鏡33は向き33bを向き、吸着材32を透過した可視光L2Dは可動式反射鏡33によって反射され、可視光L2Eとなる。可視光L2Eは、更に反射鏡34で反射され可視光L2Fとなり、可視光L2Fは積分球36に受光される。積分球36の検出結果はコンピュータ60に入力され、液体試料を吸着している吸着材32の光透過率が測定される。   When visible light L2A is irradiated from the visible light source 12, the movable reflecting mirror 33 faces the direction 33b, and the visible light L2D transmitted through the adsorbent 32 is reflected by the movable reflecting mirror 33 to become visible light L2E. The visible light L2E is further reflected by the reflecting mirror 34 to become visible light L2F, and the visible light L2F is received by the integrating sphere 36. The detection result of the integrating sphere 36 is input to the computer 60, and the light transmittance of the adsorbent 32 adsorbing the liquid sample is measured.

次に、図4及び図5に沿って、本実施形態に係る分光分析装置の動作手順、及び分光分析方法の手順について説明する。   Next, the operation procedure of the spectroscopic analyzer according to the present embodiment and the procedure of the spectroscopic analysis method will be described with reference to FIGS.

図4は、分光分析装置及び分光分析方法において、液体試料の光物性情報を取得するための手順を示すフローチャートである。   FIG. 4 is a flowchart illustrating a procedure for acquiring optical property information of a liquid sample in the spectroscopic analysis apparatus and the spectroscopic analysis method.

図4に示されるように、液体試料を吸着していない吸着材32を試料室31に設置し、その吸着材32に赤外光源11から赤外線L1を照射する(ステップS1)。   As shown in FIG. 4, an adsorbent 32 that does not adsorb a liquid sample is placed in the sample chamber 31, and the adsorbent 32 is irradiated with infrared rays L1 from the infrared light source 11 (step S1).

吸着材32を透過した赤外線L1は赤外分光検出器35で検出され、その検出結果はコンピュータ60に入力される。そして、液体試料を吸着していない吸着材32の第2の赤外吸収スペクトルが測定される(ステップS2)。   The infrared ray L1 that has passed through the adsorbent 32 is detected by the infrared spectroscopic detector 35, and the detection result is input to the computer 60. And the 2nd infrared absorption spectrum of the adsorbent 32 which has not adsorb | sucked the liquid sample is measured (step S2).

それから、吸着材32に光物性及び質量の計測の対象となる液体試料を吸着させ、保持させる(ステップS3)。   Then, the adsorbent 32 is made to adsorb and hold the liquid sample to be measured for optical properties and mass (step S3).

次に、液体試料を吸着した吸着材32を試料室31に設置し、その吸着材32に赤外光源11から赤外線L1を照射する(ステップS4)。   Next, the adsorbent 32 that has adsorbed the liquid sample is placed in the sample chamber 31, and the infrared light L11 is irradiated to the adsorbent 32 from the infrared light source 11 (step S4).

吸着材32を透過した赤外線L1は赤外分光検出器35で検出され、その検出結果はコンピュータ60に入力される。そして、液体試料を吸着した吸着材32の第1の赤外吸収スペクトルが測定される(ステップS5)。   The infrared ray L1 that has passed through the adsorbent 32 is detected by the infrared spectroscopic detector 35, and the detection result is input to the computer 60. And the 1st infrared absorption spectrum of the adsorbent 32 which adsorb | sucked the liquid sample is measured (step S5).

コンピュータ60によって、第1の赤外吸収スペクトルと第2の赤外吸収スペクトルとの差スペクトルが算出され、液体試料の赤外吸収スペクトルが取得される(ステップS6)。   The computer 60 calculates the difference spectrum between the first infrared absorption spectrum and the second infrared absorption spectrum, and acquires the infrared absorption spectrum of the liquid sample (step S6).

取得された液体試料の赤外吸収スペクトルは、例えばコンピュータ60のディスプレイ等に表示される(ステップS7)。表示された液体試料の赤外吸収スペクトルを分析することにより、液体試料の成分等についての光物性情報を取得することができる。   The acquired infrared absorption spectrum of the liquid sample is displayed on, for example, a display of the computer 60 (step S7). By analyzing the infrared absorption spectrum of the displayed liquid sample, it is possible to obtain optical property information about the components of the liquid sample.

図5は、分光分析装置及び分光分析方法において、液体試料の質量情報を取得するための手順を示すフローチャートである。   FIG. 5 is a flowchart illustrating a procedure for acquiring mass information of a liquid sample in the spectroscopic analysis apparatus and the spectroscopic analysis method.

先ず、液体試料を吸着した吸着材32に、可視光源12から可視光L2を照射する(ステップS8)。   First, the visible light L2 is irradiated from the visible light source 12 to the adsorbent 32 that has adsorbed the liquid sample (step S8).

吸着材32を透過した可視光L2は積分球36で検出され、その検出結果はコンピュータ60に入力される。そして、液体試料を吸着した吸着材32の光透過率が測定される(ステップS9)。   The visible light L2 that has passed through the adsorbent 32 is detected by the integrating sphere 36, and the detection result is input to the computer 60. Then, the light transmittance of the adsorbent 32 that has adsorbed the liquid sample is measured (step S9).

コンピュータ60は、測定した光透過率と、吸着材32に吸着している液体試料の質量と吸着材32の光透過率との特性曲線とにより、液体試料の質量を算出する(ステップS10)。   The computer 60 calculates the mass of the liquid sample from the measured light transmittance and the characteristic curve of the mass of the liquid sample adsorbed on the adsorbent 32 and the light transmittance of the adsorbent 32 (step S10).

この特性曲線は、例えば図8に示される曲線のようなものである。図8に示される曲線は下記の式(1)で与えられる。   This characteristic curve is, for example, like the curve shown in FIG. The curve shown in FIG. 8 is given by the following equation (1).

Figure 0005494461
Figure 0005494461

そして、液体試料の質量は例えばコンピュータ60のディスプレイ等に表示される(ステップS11)。   Then, the mass of the liquid sample is displayed on, for example, a display of the computer 60 (step S11).

なお、本実施形態における分光分析装置及び分光分析方法において、液体試料を吸着していない吸着材32の第2の赤外吸収スペクトルがあらかじめ分かっている場合は、図4(a)のステップS1及びステップS2の工程は省略することができる。   In the spectroscopic analysis apparatus and spectroscopic analysis method according to the present embodiment, when the second infrared absorption spectrum of the adsorbent 32 that has not adsorbed the liquid sample is known in advance, step S1 in FIG. Step S2 can be omitted.

また、本実施形態において測定される光透過率は、積分球36により測定される全光透過率でも良いが、光透過率は分光光度計によって測定される分光透過率であっても良い。   The light transmittance measured in this embodiment may be the total light transmittance measured by the integrating sphere 36, but the light transmittance may be a spectral transmittance measured by a spectrophotometer.

そして、吸着材32に吸着している液体試料の質量と吸着材32の光透過率との特性曲線における光透過率は、本実施形態における分光分析装置及び分光分析方法において、積分球36又は分光光度計が検出する可視光と同一の波長範囲の可視光に対する、吸着材32の光透過率である。   Then, the light transmittance in the characteristic curve between the mass of the liquid sample adsorbed on the adsorbent 32 and the light transmittance of the adsorbent 32 is the same as that of the integrating sphere 36 or spectroscopic in the spectroscopic analysis apparatus and spectroscopic analysis method of the present embodiment. It is the light transmittance of the adsorbent 32 for visible light in the same wavelength range as the visible light detected by the photometer.

また、吸着材32は、多孔質有機高分子フィルムであることが望ましい。   The adsorbent 32 is preferably a porous organic polymer film.

吸着材32には、液体試料の光物性情報を取得するために赤外線L1が照射され、液体試料の質量情報を取得するために可視光L2が照射される。しかし、液体試料の光物性情報を取得するために吸着材32に照射する電磁波は、液体試料と相互作用が生じる第1の波長範囲の電磁波でよい。また、液体試料の質量情報を取得するために吸着材32に照射する電磁波は、吸着材32に吸着している液体試料の質量と吸着材32の光透過率との特定の関係を有する第2の波長範囲の電磁波でよい。   The adsorbent 32 is irradiated with infrared rays L1 in order to acquire optical property information of the liquid sample, and with visible light L2 in order to acquire mass information of the liquid sample. However, the electromagnetic wave with which the adsorbent 32 is irradiated in order to acquire the optical property information of the liquid sample may be an electromagnetic wave in the first wavelength range that interacts with the liquid sample. In addition, the electromagnetic wave applied to the adsorbent 32 in order to acquire the mass information of the liquid sample has a specific relationship between the mass of the liquid sample adsorbed on the adsorbent 32 and the light transmittance of the adsorbent 32. An electromagnetic wave having a wavelength range of may be sufficient.

なお、吸着材32に照射する第1の波長範囲の電磁波については、吸着材32を透過する第1の波長範囲の電磁波を検出して、液体試料の光物性情報を取得するようにしてもよいが、吸着材32を反射する波長範囲1の電磁波を検出して、液体試料の光物性情報を取得するようにしてもよい。   In addition, about the electromagnetic wave of the 1st wavelength range irradiated to the adsorbent 32, you may make it acquire the optical property information of a liquid sample by detecting the electromagnetic wave of the 1st wavelength range which permeate | transmits the adsorbent 32. However, the electromagnetic property in the wavelength range 1 that reflects the adsorbent 32 may be detected to acquire the optical property information of the liquid sample.

また、赤外線L1の光路及び可視光L2の光路は、図1〜図3に示される光路に限定されることはない。赤外線L1の光路及び可視光L2の光路は、赤外光源11から照射された赤外線L1が、吸着材32を透過又は反射して赤外分光検出器35に受光されるようになっており、可視光源12から照射された可視光L2が、吸着材32を透過して積分球36に受光されるようになっておれば、任意の光路を取り得る。   Moreover, the optical path of the infrared rays L1 and the optical path of the visible light L2 are not limited to the optical paths shown in FIGS. The optical path of the infrared light L1 and the optical path of the visible light L2 are such that the infrared light L1 irradiated from the infrared light source 11 passes through or reflects through the adsorbent 32 and is received by the infrared spectroscopic detector 35. If the visible light L2 emitted from the light source 12 passes through the adsorbent 32 and is received by the integrating sphere 36, an arbitrary optical path can be taken.

以上に説明した本実施形態に係る分光分析方法及び分光分析装置では、液体試料を吸着材32に吸着して液体試料の状態を保持したまま、同一の装置内で液体試料の光物性及び質量の計測を行うことができるので、計測の効率及び精度の向上を図ることができる。   In the spectroscopic analysis method and spectroscopic analysis apparatus according to the present embodiment described above, the optical properties and mass of the liquid sample are maintained in the same apparatus while adsorbing the liquid sample to the adsorbent 32 and maintaining the state of the liquid sample. Since measurement can be performed, the efficiency and accuracy of measurement can be improved.

また、装置外に吸着材32を出す必要がないので、特に微量な液体試料においても、計測中に液体試料が紛失して液体試料の状態が変化することがないので、精度を悪化させることなく液体試料の光物性及び質量の計測が可能となる。   Further, since it is not necessary to put out the adsorbent 32 outside the apparatus, even in a very small amount of liquid sample, the liquid sample is not lost during measurement and the state of the liquid sample does not change, so that the accuracy is not deteriorated. Measurement of optical properties and mass of a liquid sample is possible.

次に、吸着材32として多孔質ポリプロピレンフィルムを使用し、液体試料としてポリ塩化ビニル中に付着した液体を使用して、本実施形態に係る分光分析方法により、液体試料の光物性及び質量の計測を行う。ポリプロフピレンは撥水性を有するため、液体試料として所望の油状成分のみを吸着し、保持することが可能である。   Next, using a porous polypropylene film as the adsorbent 32 and using a liquid adhered in polyvinyl chloride as the liquid sample, the optical properties and mass of the liquid sample are measured by the spectroscopic analysis method according to this embodiment. I do. Since polypropylene has water repellency, only a desired oily component can be adsorbed and retained as a liquid sample.

図6(a)は液体試料吸着前の多孔質ポリプロピレンフィルムの光学像を基にして描いた図であり、図6(b)及び(c)は液体試料吸着後の多孔質ポリプロピレンフィルムの光学像を基にして描いた図である。   FIG. 6A is a drawing based on an optical image of a porous polypropylene film before adsorption of the liquid sample, and FIGS. 6B and 6C are optical images of the porous polypropylene film after adsorption of the liquid sample. It is the figure drawn based on.

図6(c)に示される試料Bの像は、図6(b)に示される試料Aの像よりも多孔質ポリプロピレンフィルムに液体試料を多量に吸着させた場合の像である。多孔質ポリプロピレンフィルムに液体試料を吸着させると、円形の吸着箇所ができることが分かる。   The image of sample B shown in FIG. 6C is an image when a larger amount of liquid sample is adsorbed to the porous polypropylene film than the image of sample A shown in FIG. It can be seen that when a liquid sample is adsorbed on a porous polypropylene film, a circular adsorption site is formed.

図7は、試料Bの赤外吸収スペクトルを示す図である。この赤外吸収スペクトルは、本実施形態に係る分光分析方法により得られたものである。即ち、図7に示される赤外吸収スペクトルは、液体試料を吸着していない多孔質ポリプロピレンフィルムの第2の赤外吸収スペクトルと、液体試料を吸着した多孔質ポリプロピレンフィルムの第1の赤外吸収スペクトルとを測定し、第1の赤外吸収スペクトルと第2の赤外吸収スペクトルとの差スペクトルから取得されたものである。   FIG. 7 is a diagram showing an infrared absorption spectrum of Sample B. This infrared absorption spectrum is obtained by the spectroscopic analysis method according to this embodiment. That is, the infrared absorption spectrum shown in FIG. 7 includes the second infrared absorption spectrum of the porous polypropylene film that has not adsorbed the liquid sample and the first infrared absorption spectrum of the porous polypropylene film that has adsorbed the liquid sample. The spectrum is measured and obtained from the difference spectrum between the first infrared absorption spectrum and the second infrared absorption spectrum.

図7に示される赤外吸収スペクトルにおいて、1723cm-1、1273cm-1、1122cm-1付近に、エステルのC=O、C−Oの伸縮振動に帰属する非常に強いピークが見られる。また、1600cm-1、1580cm-1付近には、略等しい強度で、1,2−置換のフタル酸エステルに特徴的な鋭いピークが見られる。更に、1073cm-1、743cm-1付近にも特徴的なピークが見られる。以上から、試料Bの主成分はフタル酸エステルであることが分かる。 In the infrared absorption spectrum shown in Figure 7, 1723cm -1, 1273cm -1, around 1122cm -1, esters of C = O, a very strong peak assigned to stretching vibration of C-O is observed. Further, 1600 cm -1, in the vicinity of 1580 cm -1, with approximately equal intensity, the phthalic acid ester 1,2-substitution characteristic sharp peaks observed. Furthermore, characteristic peaks are also observed in the vicinity of 1073 cm −1 and 743 cm −1 . From the above, it can be seen that the main component of Sample B is a phthalate ester.

図8は、液体試料を吸着させた多孔質ポリプロピレンフィルムの全光透過率(%)と、吸着させた試料Bに対応する液体試料の質量(μg)との関係を示す図である。丸印で示されるのは測定により得られた結果であり、曲線は上記の式(1)で表される。本実施形態に係る分光分析方法により得られた試料Bの全光透過率は13(%)である。従って、式(1)より試料Bの質量は20(μg)と算出される。   FIG. 8 is a diagram showing the relationship between the total light transmittance (%) of the porous polypropylene film on which the liquid sample is adsorbed and the mass (μg) of the liquid sample corresponding to the adsorbed sample B. The results indicated by the circles are the results obtained by measurement, and the curve is represented by the above formula (1). The total light transmittance of the sample B obtained by the spectroscopic analysis method according to this embodiment is 13 (%). Therefore, the mass of the sample B is calculated as 20 (μg) from the equation (1).

本実施形態に係る分光分析方法及び分光分析装置を用いて、赤外吸収スペクトルが所望のピーク強度を持つ特定の液体試料の光透過率と質量との関係を表す、検量線を作成することができる。検量線の作成は、所望のピーク強度を持つ、質量が既知の液体試料に対して、光透過率を調べる。この光透過率を、いくつかの既知の質量の液体試料に対して調べることによって、検量線を作成することができる。   Using the spectroscopic analysis method and spectroscopic analysis apparatus according to the present embodiment, a calibration curve that represents the relationship between the light transmittance and mass of a specific liquid sample whose infrared absorption spectrum has a desired peak intensity can be created. it can. The calibration curve is created by examining the light transmittance of a liquid sample having a desired peak intensity and a known mass. A calibration curve can be generated by examining this light transmittance for several known mass liquid samples.

また、電子部品等に付着した絶縁油等の微量の付着油に対して、本実施形態に係る分光分析方法及び分光分析装置を適用することができる。即ち、微量の付着油を液体試料として、吸着材32に吸着、保持させることにより、計測中に微量の付着油の状態を保持し、微量の付着油を紛失することなく、付着油の光物性情報及び質量情報を取得することができる。   Moreover, the spectroscopic analysis method and spectroscopic analysis apparatus according to the present embodiment can be applied to a small amount of attached oil such as insulating oil attached to an electronic component or the like. That is, by adsorbing and holding a small amount of adhering oil to the adsorbent 32 as a liquid sample, the state of the minute amount of adhering oil is maintained during measurement, and the optical properties of the adhering oil are lost without losing the minute amount of adhering oil. Information and mass information can be acquired.

10…光源部、11…赤外光源、12…可視光源、13、33…可動式反射鏡、14、34…反射鏡、20…入射スリット、30…検出部、31…試料室、32…吸着材、35…赤外分光検出器、36…積分球 DESCRIPTION OF SYMBOLS 10 ... Light source part, 11 ... Infrared light source, 12 ... Visible light source, 13, 33 ... Movable reflector, 14, 34 ... Reflector, 20 ... Incident slit, 30 ... Detection part, 31 ... Sample chamber, 32 ... Adsorption Material 35 ... Infrared spectroscopic detector 36 ... Integrating sphere

Claims (6)

液体試料を吸着していない吸着材に、第1の波長範囲の第1の電磁波を照射したときの、前記吸着材を透過又は反射する第2の電磁波を検出する工程と、
前記液体試料を前記吸着材に吸着させる工程と、
前記液体試料を吸着した前記吸着材に、前記第1の波長範囲の第3の電磁波を照射し、前記吸着材を透過又は反射する第4の電磁波を検出する工程と、
前記第4の電磁波の前記第2の電磁波からの変化に基づいて、前記液体試料の光物性情報を取得する工程と、
前記液体試料を吸着した前記吸着材に、第2の波長範囲の第5の電磁波を照射すると共に、前記吸着材を透過した第6の電磁波を検出し、前記第5の電磁波と前記第6の電磁波とに基づいて前記吸着材の光透過率を測定する工程と、
前記光透過率に基づいて前記液体試料の質量情報を取得する工程とを有し、
前記第1の電磁波を照射する工程、前記第3の電磁波を照射する工程、及び前記第5の電磁波を照射する工程は、同一の分光分析装置内で行うことを特徴とする分光分析方法。
A step of detecting a second electromagnetic wave transmitted or reflected by the adsorbent when the adsorbent not adsorbing the liquid sample is irradiated with the first electromagnetic wave in the first wavelength range;
Adsorbing the liquid sample on the adsorbent;
Irradiating the adsorbent adsorbing the liquid sample with a third electromagnetic wave in the first wavelength range and detecting a fourth electromagnetic wave transmitted or reflected by the adsorbent;
Obtaining optical property information of the liquid sample based on a change of the fourth electromagnetic wave from the second electromagnetic wave;
The adsorbent that has adsorbed the liquid sample is irradiated with a fifth electromagnetic wave in a second wavelength range, and a sixth electromagnetic wave that has passed through the adsorbent is detected, and the fifth electromagnetic wave and the sixth electromagnetic wave are detected. Measuring the light transmittance of the adsorbent based on electromagnetic waves;
Obtaining mass information of the liquid sample based on the light transmittance,
The step of irradiating the first electromagnetic wave, the step of irradiating the third electromagnetic wave, and the step of irradiating the fifth electromagnetic wave are performed in the same spectral analyzer.
前記質量情報を取得する工程において、前記光透過率と、前記吸着材に吸着している前記液体試料の質量との特性曲線とに基づいて、前記液体試料の質量情報を取得することを特徴とする請求項1に記載の分光分析方法。   In the step of obtaining the mass information, the mass information of the liquid sample is obtained based on a characteristic curve of the light transmittance and the mass of the liquid sample adsorbed on the adsorbent. The spectroscopic analysis method according to claim 1. 前記吸着材が多孔質有機高分子フィルムであることを特徴とする請求項1又は請求項2に記載の分光分析方法。   The spectroscopic analysis method according to claim 1, wherein the adsorbent is a porous organic polymer film. 前記第1の波長範囲が赤外線領域であることを特徴とする請求項1乃至3のいずれか1項に記載の分光分析方法。   The spectroscopic analysis method according to claim 1, wherein the first wavelength range is an infrared region. 前記第2の波長範囲が可視光領域であることを特徴とする請求項1乃至4のいずれか1項に記載の分光分析方法。   The spectroscopic analysis method according to any one of claims 1 to 4, wherein the second wavelength range is a visible light region. 吸着材に第1の波長範囲の電磁波を照射する第1の光源と、
前記吸着材に第2の波長範囲の電磁波を照射する第2の光源と、
前記第1の光源から前記吸着材に照射され、該吸着材を透過又は反射した電磁波を検出する第1の検出部と、
前記第2の光源から前記吸着材に照射され、該吸着材を透過した電磁波を検出する第2の検出部と、
前記第1の検出部の検出結果に基づいて、前記吸着材に吸着している前記液体試料の光物性情報を取得すると共に、前記第2の検出部の検出結果に基づいて、前記液体試料の質量情報を取得する処理部と、を有することを特徴とする分光分析装置。
A first light source that irradiates the adsorbent with electromagnetic waves in a first wavelength range;
A second light source that irradiates the adsorbent with electromagnetic waves in a second wavelength range;
A first detection unit that detects an electromagnetic wave that is applied to the adsorbent from the first light source and is transmitted or reflected by the adsorbent;
A second detection unit that detects electromagnetic waves that are applied to the adsorbent from the second light source and transmitted through the adsorbent;
Based on the detection result of the first detection unit, the optical property information of the liquid sample adsorbed on the adsorbent is obtained, and on the basis of the detection result of the second detection unit, And a processing unit that acquires mass information.
JP2010281446A 2010-12-17 2010-12-17 Spectroscopic analysis method and spectroscopic analysis apparatus Expired - Fee Related JP5494461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010281446A JP5494461B2 (en) 2010-12-17 2010-12-17 Spectroscopic analysis method and spectroscopic analysis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010281446A JP5494461B2 (en) 2010-12-17 2010-12-17 Spectroscopic analysis method and spectroscopic analysis apparatus

Publications (2)

Publication Number Publication Date
JP2012127900A JP2012127900A (en) 2012-07-05
JP5494461B2 true JP5494461B2 (en) 2014-05-14

Family

ID=46645091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010281446A Expired - Fee Related JP5494461B2 (en) 2010-12-17 2010-12-17 Spectroscopic analysis method and spectroscopic analysis apparatus

Country Status (1)

Country Link
JP (1) JP5494461B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9546949B2 (en) 2013-12-20 2017-01-17 Halliburton Energy Services, Inc. Parallel optical thin film measurement system for analyzing multianalytes
JP6188654B2 (en) * 2014-08-26 2017-08-30 三菱電機株式会社 Method and apparatus for analyzing phthalate ester in resin
KR101963520B1 (en) * 2014-08-29 2019-03-28 후지쯔 가부시끼가이샤 Analysis method, analysis apparatus, and computer readable recording medium recording analysis program
JP6240339B2 (en) * 2014-09-22 2017-11-29 株式会社東芝 Gas analyzer and gas processing apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396872A (en) * 1977-02-04 1978-08-24 Hitachi Ltd Coating weight measuring method of powder
JPS6038639A (en) * 1983-08-10 1985-02-28 Katsuo Ebara Apparatus for simultaneously measuring fat amount and moisture content
JPH05215678A (en) * 1991-07-08 1993-08-24 Nalco Chem Co Measuring method of object forming accu- mulated matter in non-transparent liquid
JP3274049B2 (en) * 1995-11-15 2002-04-15 アークレイ株式会社 Optical measurement of liquids in porous materials.
JPH1038802A (en) * 1996-07-19 1998-02-13 Omron Corp Lubricating oil deterioration degree measurement device and its sample
JP2001296240A (en) * 2000-04-12 2001-10-26 Kansai Research Institute Sampling material, analysis method and analyzer for infrared/near-infrared spectroscopic analysis sample
JP2002116147A (en) * 2000-10-05 2002-04-19 K I Chemical Industry Co Ltd Apparatus and method for measuring contamination of water system
JP2007333395A (en) * 2006-06-12 2007-12-27 Hymo Corp Method of quantitating pitch

Also Published As

Publication number Publication date
JP2012127900A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
KR101411102B1 (en) Ultraviolet ray protection effect evaluating device
JP5494461B2 (en) Spectroscopic analysis method and spectroscopic analysis apparatus
JP2004528567A5 (en)
US8629397B2 (en) Spectrophotometer and method for calibrating the same
RU2009101910A (en) X-RAY DEVICE AND METHOD OF VISUALIZING THE OBJECT TO BE TESTED
US20120272719A1 (en) Photoacoustic sensor with adaptive operating frequency
JP2004533620A (en) Gas identification device
KR20120012391A (en) Sample inspection device and sample inspection method
JP4092037B2 (en) Substance identification device
CN103797352A (en) Devices to detect a substance and methods of producing such a device
KR20170052256A (en) Apparatus and method for measuring concentration of material
TW201520534A (en) Fluorescence strip, fluorescence excitation device and portable fluorescence analysis system with the same
US8097859B2 (en) Oxygen concentration measuring device
KR20150115036A (en) NO/NO2 multi-gases analyzer using non-dispersive ultraviolet method and NO/NO2 multi-gases analyzing method
JP4340814B2 (en) Spectral analysis apparatus and spectral analysis method
Kingsborough et al. Colourimetry for the sensitive detection of vapour-phase chemicals: State of the art and future trends
RU2457466C2 (en) Array-based control device
CN113720825B (en) Optical instant detector and detection method and application
US20220381681A1 (en) Miniature multispectral detection system having multiple spectrometers for enhanced photodetection spectroscopy for detection of pathogens, biomarkers, or any compound
WO2014175363A1 (en) Component-concentration measurement device and method
JP2001194297A (en) Method and apparatus for measuring environment
JP2005524069A5 (en)
JP2012215467A (en) Biological substance analyzer and biological substance analysis method
JP2018048825A (en) Raman scattered light detector and raman scattered light detection method
RU134648U1 (en) LIDAR SYSTEM FOR REMOTE MEASUREMENT OF CONCENTRATIONS OF POLLUTANTS IN THE ATMOSPHERE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130904

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5494461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees