JP5493911B2 - Hot metal dephosphorization method - Google Patents
Hot metal dephosphorization method Download PDFInfo
- Publication number
- JP5493911B2 JP5493911B2 JP2010013380A JP2010013380A JP5493911B2 JP 5493911 B2 JP5493911 B2 JP 5493911B2 JP 2010013380 A JP2010013380 A JP 2010013380A JP 2010013380 A JP2010013380 A JP 2010013380A JP 5493911 B2 JP5493911 B2 JP 5493911B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- hot metal
- dephosphorization
- blowing
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Description
本発明は、上底吹き転炉型の反応容器を用いて、溶銑を高能率で脱燐処理する方法に関する。 The present invention relates to a method for dephosphorizing hot metal with high efficiency using a top-bottom blowing converter type reaction vessel.
従来、転炉を用いて溶銑の脱燐処理を行う溶銑の予備処理工程では、転炉にスクラップおよび溶銑を装入し、塊状の生石灰や石灰石等を脱燐剤として添加することによって脱燐吹錬を行っていた。但し、溶銑の脱燐を促進させるためには脱燐剤の溶融(滓化)が必要であり、通常脱燐吹錬中の溶銑温度は1300〜1400℃と低温であることから、この温度域で脱燐剤を速やかに滓化させるためにホタル石等の滓化促進剤を利用していた。 Conventionally, in the hot metal pretreatment process in which hot metal dephosphorization processing is performed using a converter, scrap and hot metal are charged into the converter and dephosphorization blowing is performed by adding massive quicklime, limestone, etc. as a dephosphorizing agent. I was refining. However, in order to promote the dephosphorization of the hot metal, it is necessary to melt the dephosphorizing agent (incubation), and since the hot metal temperature during dephosphorization blowing is usually as low as 1300 to 1400 ° C., this temperature range In order to quickly hatch the dephosphorizing agent, hatching accelerators such as fluorite were used.
しかし、近年では蛍石を実質的に用いることができなくなってきたため、脱燐剤を滓化させる新たな技術が必要になってきた。その一例として、特許文献1には、ホタル石等の滓化促進剤を使用しないで、粉状の生石灰を上吹き酸素と共に溶銑に吹き付ける溶銑脱燐方法が開示されている。また、そのような方法においても、脱燐処理後のスラグ塩基度を高める方が低燐溶銑を効率的に製造するためには好適であると考えて、特許文献2に示されるように、処理後のスラグ塩基度が2.5〜5.0となるよう処理している例もある。 However, in recent years, since it has become impossible to use fluorite substantially, a new technique for hatching a dephosphorizing agent has become necessary. As an example, Patent Document 1 discloses a hot metal dephosphorization method in which powdered quicklime is sprayed on hot metal together with top-blown oxygen without using a hatching accelerator such as fluorite. Further, even in such a method, it is considered preferable to increase the slag basicity after the dephosphorization treatment in order to efficiently produce the low phosphorus hot metal, as shown in Patent Document 2, There is also an example in which the later slag basicity is processed to be 2.5 to 5.0.
但し、特許文献1に記載された発明の上吹き酸素流量は0.7〜2.0Nm3/min/tonであり、その酸素供給時間は10分間程度である。特許文献2に記載された発明の上吹き酸素流量は不明であるが、その脱燐処理時間は8〜12分間と説明されているので、特許文献1に記載された発明と同程度と推測される。この上吹き酸素流量が2.0Nm3/min/ton程度以下とされている理由は、特許文献1にはスピッティング増加の回避と説明されているが、従来は脱燐処理時間が10分間程度で十分だったこととも関係している。 However, the top blowing oxygen flow rate of the invention described in Patent Document 1 is 0.7 to 2.0 Nm 3 / min / ton, and the oxygen supply time is about 10 minutes. Although the flow rate of the top blown oxygen in the invention described in Patent Document 2 is unknown, its dephosphorization processing time is described as 8 to 12 minutes, so it is estimated that it is the same level as the invention described in Patent Document 1. The The reason why the upper blown oxygen flow rate is about 2.0 Nm 3 / min / ton or less is described in Patent Document 1 as avoiding an increase in spitting, but the conventional dephosphorization time is about 10 minutes. It is also related to the fact that was enough.
ところが、近年では脱燐処理の高能率化の必要性が高くなり、その処理時間を6〜10分間程度に短縮する要請が為されるようになってきた。その要請に応えるには、端的には上吹き酸素の流量を高めた上で脱燐率の低下を防止し、かつ、スピッティングの増加を抑制する必要がある。例えば、特許文献3には、比較的低塩基度のカバースラグを生成させた後にCaO含有脱燐剤を上吹き酸素と共に溶銑へ吹き付けることによって、上吹き酸素流量を0.5〜2.5Nm3/min/tonと高めても、スピッティング量を低減できる方法が開示されている。
However, in recent years, the necessity for increasing the efficiency of the dephosphorization process has increased, and there has been a demand for shortening the treatment time to about 6 to 10 minutes. In order to meet this requirement, it is necessary to increase the flow rate of the top blown oxygen, prevent the dephosphorization rate from decreasing, and suppress the increase in spitting. For example, in
さらに、特許文献4には、上吹きランスからの気体酸素の供給速度を1.5〜5.0Nm3/min/tonと高くする発明が開示されている。但し、スピッティングやダストの発生を抑制するためにスラグ塩基度を1.0〜2.5と低めにする必要があり、その低塩基度での脱燐能力の低下を防ぐためにスラグの酸素ポテンシャルを高めるとしている。
Further,
ところが、上吹き酸素の流量を高めると、スピッティングが増加するほかにスラグ中の酸化鉄濃度が予定外に高くなって、スロッピングが発生してしまうおそれがある。その上、脱燐処理時間が短くなる結果、脱燐能力が低下してしまうおそれもある。これらのおそれに対し、特許文献4には、上吹きランスから粉粒状の固体酸素源を吹付けること以外には具体的な手段が開示されておらず、その上吹きランスからの粉粒状の固体酸素源吹付けには特別な設備を要することから、より簡便な方法が望まれる。
However, when the flow rate of the top blown oxygen is increased, spitting increases, and the iron oxide concentration in the slag becomes unexpectedly high, which may cause slopping. In addition, as a result of shortening the dephosphorization time, the dephosphorization ability may be lowered. With respect to these fears,
本発明の目的は、上底吹転炉を用いて、脱燐剤に実質的にフッ素を含む副原料を使わずに溶銑から燐(P)を除去する方法において、その脱燐処理を高能率かつ高効率で行う方法を提供することである。より具体的には、上吹き酸素の供給時間が6〜8分間でも溶銑の脱燐率が80%以上であり、かつ、スピッティングやスロッピングの発生も実際上問題ないレベルに抑制することができる方法を提供することである。 An object of the present invention is to provide a highly efficient dephosphorization treatment in a method for removing phosphorus (P) from hot metal without using an auxiliary raw material containing substantially fluorine as a dephosphorizing agent using an upper bottom blowing converter. And to provide a method of performing it with high efficiency. More specifically, the dephosphorization rate of the molten iron is 80% or more even when the supply time of the top blowing oxygen is 6 to 8 minutes, and the occurrence of spitting and slopping is suppressed to a level that is practically no problem. It is to provide a way that can be done.
上底吹き転炉での酸素供給時間を、従来の8〜12分間から6〜8分間に短縮するためには、上吹き酸素の供給流量を従来の0.7〜2.0Nm3/min/tonなどから高め、2.0〜4.0Nm3/min/tでも従来並みのスピッティング、スロッピング発生状況に抑えることができ、かつ、従来並みの処理後[P]濃度0.020%以下(脱燐率80%以上)を維持できる吹錬方法を確立する必要がある。 In order to reduce the oxygen supply time in the top-bottom blown converter from the conventional 8-12 minutes to 6-8 minutes, the supply flow rate of the top blown oxygen is 0.7-2.0 Nm 3 / min / It can be increased from ton, etc., and it can be suppressed to the same level of spitting and slopping as usual even at 2.0 to 4.0 Nm 3 / min / t, and [P] concentration is 0.020% or less after conventional processing It is necessary to establish a blowing method capable of maintaining (dephosphorization rate of 80% or more).
上吹き送酸速度を2.0Nm3/min/t以上とすると、スロッピングが発生し易くなる。この理由は、火点面積当たりの酸素供給量が多くなるため、酸化鉄が生成しやすくなり、スラグ中の酸化鉄量の指標をT.Fe濃度とした場合に、それが容易に15質量%以上となるためである。このスラグ中のT.Fe濃度は、底吹きガス流量を高めることで低減可能であるが、脱燐率を高めるにはT.Fe濃度が高い方が良いという事情もある。そこで、高上吹き送酸速度に対して適切な底吹きガス流量で脱燐処理を行い、スラグのT.Fe濃度を高めの適正範囲に調整することで、吹錬中のスロッピングを抑制しつつ脱燐率を維持する処理が可能となると考えられる。但し、この底吹きガス流量の調整によるT.Fe濃度の調整は、その調整幅に難点があり、その調整だけでは上吹き送酸速度が2.0Nm3/min/t以上の条件下において脱燐処理後[P]≦0.02質量%を着実に達成することは難しい。 When the top blowing acid speed is 2.0 Nm 3 / min / t or more, slopping easily occurs. The reason for this is that since the amount of oxygen supplied per hot spot area increases, iron oxide is easily generated. This is because when the Fe concentration is set, it easily becomes 15% by mass or more. T. in this slag. The Fe concentration can be reduced by increasing the bottom blowing gas flow rate. There is also a circumstance that a higher Fe concentration is better. Therefore, dephosphorization treatment was performed at an appropriate bottom blowing gas flow rate for a high top blowing acid rate, and slag T.I. By adjusting the Fe concentration to a higher appropriate range, it is considered that a treatment for maintaining the dephosphorization rate while suppressing the slopping during blowing is possible. However, the T.P. The adjustment of the Fe concentration has a difficulty in the adjustment range, and only by the adjustment, after dephosphorization treatment under the condition that the upper blowing acid rate is 2.0 Nm 3 / min / t or more, [P] ≦ 0.02 mass% It is difficult to achieve steadily.
そこで、スラグのT.Fe濃度を高めに調整するだけでなく、溶銑の酸素ポテンシャルを高めることが有用と考えた。脱燐反応はスラグの塩基度とスラグ/溶銑界面での酸素ポテンシャルとに依存しているため、それぞれを高めることによって高脱燐率を達成することができるという着想である。溶銑の酸素ポテンシャルを高める方法は、処理後[C]を低下させることで良く、例えば[C]を3.2質量%以下に吹き下げることが確実かつ効果的である。 Therefore, T. In addition to adjusting the Fe concentration to a higher level, it was considered useful to increase the oxygen potential of the hot metal. Since the dephosphorization reaction depends on the basicity of the slag and the oxygen potential at the slag / hot metal interface, the idea is that a high dephosphorization rate can be achieved by increasing each. A method for increasing the oxygen potential of the hot metal may be to lower [C] after the treatment. For example, it is reliable and effective to blow down [C] to 3.2 mass% or less.
但し、[C]を3.4質量%以下にすると溶銑の凝固開始温度(液相線温度)が高くなって、処理した溶銑を次工程の脱炭処理炉などへ搬送する際に溶銑鍋への地金付きが増加し、生産量が低下するおそれがある。このおそれへの対策として、脱燐吹錬中に[C]を3.2質量%以下に一旦吹き下げて溶銑脱燐率を高め、その後、炭素源を溶銑に添加して溶銑中[C]濃度を3.4質量%以上に高めれば、高溶銑脱燐率であって溶銑鍋への地金付着も防止できる溶銑脱燐処理を行うことができる。 However, if [C] is 3.4% by mass or less, the solidification start temperature (liquidus temperature) of the hot metal becomes high, and when the processed hot metal is transported to the decarburization furnace of the next step, etc., to the hot metal ladle. There is a risk that the amount of bullion will increase and the production will decrease. As a countermeasure against this fear, during dephosphorization blowing, [C] is once blown down to 3.2 mass% or less to increase the hot metal dephosphorization rate, and then a carbon source is added to the hot metal to add [C] If the concentration is increased to 3.4% by mass or more, hot metal dephosphorization treatment can be performed which has a high hot metal dephosphorization rate and can prevent adhesion of metal to the hot metal pan.
さらに、上記の着想を、特許文献1〜4に開示されているCaO含有脱燐剤を上吹き酸素と共に溶銑に吹き付けて脱燐する方法に適用すれば、本発明の目的が一層容易かつ確実に達成可能になるものと考えられる。 Furthermore, if the above idea is applied to a method of dephosphorizing a CaO-containing dephosphorization agent disclosed in Patent Documents 1 to 4 by spraying it on hot metal together with top-blown oxygen, the object of the present invention is more easily and reliably achieved. It will be possible to achieve.
そこで、本発明においては、塊状CaO源として粒径30mm以下の塊状生石灰(CaO含有率:92〜95質量%、残CO2および不純物)を主として使用する。但し、塊状CaO源のうちCaO質量比率で50%未満の量まで転炉スラグや取鍋スラグを併用しても良い。表1に取鍋スラグの組成(単位:質量%)の一例を示す。これらのスラグはCaOのほかにSiO2やAl2O3などを含んでいて融点が低いため、初期のカバースラグ生成に適しているからである。特に取鍋スラグは、本発明におけるAl2O3源としても活用することができる。 Therefore, in the present invention, massive quicklime having a particle size of 30 mm or less (CaO content: 92 to 95% by mass, residual CO 2 and impurities) is mainly used as the massive CaO source. However, converter slag or ladle slag may be used in combination up to an amount of CaO mass ratio of less than 50% in the bulk CaO source. Table 1 shows an example of the composition (unit: mass%) of ladle slag. This is because these slags contain SiO 2 and Al 2 O 3 in addition to CaO and have a low melting point, and are suitable for initial cover slag generation. In particular, ladle slag can be used as an Al 2 O 3 source in the present invention.
但し、本発明では溶銑を脱燐する能力を重視して脱燐吹錬終了後の塩基度を調整するため、吹錬前または吹錬初期に使用する塊状CaO源のうち、CaO純度の低い転炉スラグや取鍋スラグの使用量には限界がある。それらを多用すると脱燐吹錬後のスラグ量が増えてしまうほか、塩基度調整に支障を来たす場合も出てくるからである。 However, in the present invention, since the basicity after the dephosphorization blowing is adjusted with emphasis on the ability to dephosphorize hot metal, among the bulk CaO sources used before blowing or at the beginning of blowing, the conversion of CaO purity is low. The amount of furnace slag and ladle slag used is limited. This is because if they are used frequently, the amount of slag after dephosphorization will increase and there will be cases where the basicity adjustment will be hindered.
転炉内への塊状CaO源の投入は、上吹き酸素の供給開始前またはその開始後2分間以内などに転炉上に設置したバンカーから所要量を秤量して投入することにより行ったり、スクラップと一緒にシュートに入れておいてスクラップと共に投入したりして行う。したがって、投入時の飛散ロスを少なくするためには、粒径5mm以上に篩っておく方が好ましい。 The bulk CaO source is introduced into the converter by weighing and feeding the required amount from a bunker installed on the converter before starting the supply of top-blown oxygen or within 2 minutes after the start, And put it in the chute together with the scrap. Therefore, in order to reduce the scattering loss at the time of charging, it is preferable to sieve to a particle size of 5 mm or more.
また、粉状CaO源としては、粒径が60メッシュアンダーの生石灰粉(CaO含有率:92〜95質量%、残CO2および不純物)を主として使用するが、生石灰粉でなくとも石灰石粉などを用いても良い。 In addition, as the powdered CaO source, quick lime powder having a particle size of 60 mesh under (CaO content: 92 to 95 mass%, residual CO 2 and impurities) is mainly used. It may be used.
粉状CaO源の添加は上吹き酸素と共に溶銑に向けて吹き付けることにより行い、上吹き酸素の供給開始と同時に、または上吹き酸素の供給開始から2分間以内にその吹き付けを開始する。したがって、粉状CaO源の方が塊状CaO源よりも滓化が早く、かつ、脱燐反応効率が高いのは当然である。そこで、本発明は粉状CaO源の使用を必須とするものではないが、使用する全CaO源の中で上吹き酸素と共に溶銑に吹き付ける粉状CaO源の質量比率を、含有されるCaOの質量比で40%以上とすると、脱燐処理後の溶銑中[P]濃度が0.020質量%以下に安定するので好ましい。この処理後の[P]濃度は、処理前の溶銑中[P]濃度にも依存するので、脱燐率が80%以上を本発明実施効果の目安にしても良い。 The powdered CaO source is added by spraying toward the molten iron together with the top blowing oxygen, and the spraying is started simultaneously with the start of the top blowing oxygen supply or within 2 minutes from the start of the top blowing oxygen supply. Therefore, it is natural that the powdered CaO source is hatched faster than the bulk CaO source and the dephosphorization reaction efficiency is higher. Therefore, the present invention does not necessarily require the use of a powdered CaO source, but the mass ratio of the powdered CaO contained in the total CaO source used is the mass ratio of the powdered CaO source that is sprayed onto the hot metal together with the top-blown oxygen. A ratio of 40% or more is preferable because the [P] concentration in the hot metal after the dephosphorization treatment is stabilized at 0.020% by mass or less. Since the [P] concentration after the treatment also depends on the [P] concentration in the hot metal before the treatment, a dephosphorization rate of 80% or more may be used as a measure of the effect of the present invention.
本発明は、上記の知見に基づき完成されたもので、次のとおりである。
(1)上底吹転炉を用いて、脱燐剤に蛍石を含まない副原料のみを使用し、上吹き酸素流量が2.0Nm3/min/t以上4.0Nm3/min/t以下の条件で溶銑を脱燐処理する方法であって、底吹き流量を0.15Nm3/min/t以上1.5Nm3/min/t以下として該脱燐処理後のスラグ中T.Fe質量濃度が3質量%以上15質量%以下となるように調整し、かつ、前記脱燐処理中に該溶銑に含有される炭素の質量濃度を2.8質量%以上3.2質量%以下に一旦低下させ、その後、該溶銑に炭素源を供給して前記脱燐処理後に該溶銑に含有される炭素の質量濃度を3.4質量%以上3.8質量%以下に調整することを特徴とする溶銑の脱燐処理方法。
The present invention has been completed based on the above findings and is as follows.
(1) Using an upper bottom blowing converter, only a secondary material that does not contain fluorite is used as a dephosphorizing agent, and an upper blowing oxygen flow rate is 2.0 Nm 3 / min / t or more and 4.0 Nm 3 / min / t. a method for dephosphorization process molten iron under the following conditions, bottom blowing flow rate of 0.15Nm 3 / min / t or more 1.5Nm 3 / min / t or less in the slag T. after dehydration phosphorus treated as The Fe mass concentration is adjusted so as to be 3% by mass or more and 15% by mass or less, and the mass concentration of carbon contained in the molten iron during the dephosphorization treatment is 2.8% by mass or more and 3.2% by mass or less. And then, after supplying the carbon source to the hot metal and adjusting the mass concentration of carbon contained in the hot metal after the dephosphorization treatment to 3.4% by mass or more and 3.8% by mass or less. And a dephosphorization method for hot metal.
(2)脱燐剤として用いるCaO源のうち、CaOの質量比率で40質量%以上を粒径60メッシュ以下の粉状CaO源として前記上吹き酸素と共に上吹きランスより溶銑へ吹き付けることによって、前記脱燐処理後のスラグ中CaOとSiO2の質量濃度比(%CaO/%SiO2)が2.3以上3.2以下、かつ、脱燐処理後に転炉から溶銑鍋へ出湯した直後の鍋中の溶銑の温度を1320℃以上1380℃以下となるように調整することを特徴とする、上記(1)に記載の溶銑の脱燐処理方法。 (2) Of the CaO source used as a dephosphorizing agent, by spraying 40 mass% or more in a mass ratio of CaO as a powdered CaO source having a particle size of 60 mesh or less to the hot metal from the upper blowing lance together with the upper blowing oxygen, The pot immediately after the dephosphorization treatment has a mass concentration ratio of CaO and SiO 2 (% CaO /% SiO 2 ) of 2.3 or more and 3.2 or less, and after the dephosphorization treatment, the hot water is discharged from the converter to the hot metal ladle. The hot metal dephosphorization method according to (1) above, wherein the temperature of the hot metal in the hot metal is adjusted to 1320 ° C. or higher and 1380 ° C. or lower.
(3)吹錬終了時のスラグ中(Al2O3)濃度が3質量%以上10質量%以下となるように吹錬前または吹錬開始後2分間以内にAl2O3源を装入することを特徴とする上記(1)または(2)に記載の溶銑の脱燐処理方法。 (3) The Al 2 O 3 source is charged before blowing or within 2 minutes after the start of blowing so that the concentration of (Al 2 O 3 ) in the slag at the end of blowing is 3% by mass or more and 10% by mass or less. The method for dephosphorizing hot metal as described in (1) or (2) above.
本発明によれば、上底吹転炉を用いて、脱燐剤に実質的にフッ素を含む副原料を使わずに上吹き酸素流量を2.0〜4.0Nm3/min/tとして、脱燐処理後の溶銑中[P]が0.020%以下である低燐溶銑を、6〜8分間の上吹き酸素供給時間で製造することができる。 According to the present invention, using an upper bottom blow converter, the upper blowing oxygen flow rate is set to 2.0 to 4.0 Nm 3 / min / t without using a secondary material substantially containing fluorine as a dephosphorizing agent. A low phosphorus hot metal in which the [P] in the hot metal after the dephosphorization treatment is 0.020% or less can be produced in an upper blowing oxygen supply time of 6 to 8 minutes.
本発明での脱燐炉の操業方法では、脱燐処理を行うにあたり、実質的にフッ素を含む副原料を使う必要は無い。実質的にフッ素を含む副原料とは、蛍石などのように高濃度のフッ素を含むものである。例えば、1質量%未満のフッ素が含有されるスラグなどの物質を副原料として使用しても、脱燐吹錬終了後のスラグ中のフッ素濃度が0.4ppm未満となるような範囲であれば、本発明の実施において「実質的にフッ素を含む副原料を使うこと」には該当しない。 In the method of operating a dephosphorization furnace according to the present invention, it is not necessary to use an auxiliary material substantially containing fluorine for performing the dephosphorization treatment. The auxiliary material substantially containing fluorine is one containing high concentration of fluorine such as fluorite. For example, even if a substance such as slag containing less than 1% by mass of fluorine is used as a secondary raw material, the fluorine concentration in the slag after dephosphorization is less than 0.4 ppm. In the practice of the present invention, it does not fall under “use of a sub-raw material substantially containing fluorine”.
本発明は、実質的にフッ素を含む副原料を使わずに、上吹き酸素供給時間を6〜8分間という短時間で行う。特に、そのような短時間吹錬においても処理後の溶銑中[P]が0.020%以下という、高能率の低燐溶銑製造方法である。このように高能率な方法では、上吹き酸素の供給流量は基本的に2.0Nm3/min/ton以上でなければならない。基本的にとは、上吹き酸素の供給時間中に1分間未満のような短時間だけ1.0〜2.0Nm3/min/tonのような低酸素流量期間を設けた吹錬をも、本発明の均等範囲内に含めるという意味である。但し、上吹き酸素流量を高めるほど脱燐処理時間が短くなることは自明であって、代わりにスピッティング・スロッピングの増加や脱燐不良が問題となることがよく知られているので、実際可能な上吹き酸素流量には上限があって当然である。本発明においては、その上限を4.0Nm3/min/tonと設定し、上吹き酸素の供給期間中には基本的に2.0Nm3/min/ton以上の酸素を溶銑に吹き付けてもスピッティング・スロッピングが操業上の問題とならず、かつ、処理後の溶銑中[P]が0.020%以下にできるような技術の開発を目指して確立した。 In the present invention, the top blowing oxygen supply time is performed in a short time of 6 to 8 minutes without using a sub-material substantially containing fluorine. In particular, even in such short-time blowing, this is a high-efficiency, low-phosphorus hot metal production method in which the amount of [P] in the molten iron after treatment is 0.020% or less. In such a highly efficient method, the supply flow rate of the top blown oxygen must basically be 2.0 Nm 3 / min / ton or more. Basically, the blowing with a low oxygen flow rate period of 1.0 to 2.0 Nm 3 / min / ton for only a short time such as less than 1 minute during the supply time of the top blowing oxygen, It is meant to be included within the equivalent scope of the present invention. However, it is obvious that the dephosphorization time is shortened as the upper oxygen flow rate is increased. Instead, it is well known that increased spitting / sloping and poor dephosphorization are problematic. Naturally, there is an upper limit to the possible top-blown oxygen flow rate. In the present invention, the upper limit is set to 4.0 Nm 3 / min / ton, and basically even if oxygen of 2.0 Nm 3 / min / ton or more is sprayed on the hot metal during the supply period of the top-blown oxygen, the speed is increased. Established with the aim of developing a technology that does not cause sloping and slopping to be an operational problem, and that [P] in the molten iron after treatment can be 0.020% or less.
上吹き酸素流量を2.0Nm3/min/ton以上にすると、スラグ中のT.Fe濃度が上昇し易い。本発明では、上吹き酸素流量が2.0〜4.0Nm3/min/tonの範囲で、底吹きガス流量を0.15〜1.5Nm3/minにすることによって、脱燐処理後のスラグ中のT.Fe濃度を15質量%以下に調整し、この調整を通じてスロッピングの発生を抑制する。15質量%以上にすると、鉄分歩留まりの悪化によるコスト上昇の問題もあるため、それを防止するためにも15質量%以下にする必要がある。 When the top blowing oxygen flow rate is 2.0 Nm 3 / min / ton or more, the T.I. Fe concentration tends to increase. In the present invention, the top blown oxygen flow rate is in the range of 2.0 to 4.0 Nm 3 / min / ton, and the bottom blow gas flow rate is 0.15 to 1.5 Nm 3 / min, so that T. in slag The Fe concentration is adjusted to 15% by mass or less, and the occurrence of slopping is suppressed through this adjustment. If it is 15% by mass or more, there is a problem of cost increase due to deterioration of the iron yield, so it is necessary to make it 15% by mass or less in order to prevent it.
一方、スラグ中のT.Fe濃度の増加に伴いスピッティングが低減する。スラグ中のT.Feは、3質量%以下になるとスピッティングが多くなり、かつ、未滓化のCaO(f.CaO)が3質量%以上となって前記した排滓性の低下と炉体付着スラグの増加を招くため、3質量%以上にすることが必要である。上吹き酸素流量を2.0〜4.0Nm3/min/tonという高送酸速度下におけるスラグ中のT.Fe濃度は、底吹きガスの流量を0.15〜1.5Nm3/minの範囲で調整することによって、3〜15質量%の範囲に調整することができる。 On the other hand, T. in the slag. Spitting decreases with increasing Fe concentration. T. in slag When Fe is 3% by mass or less, spitting increases, and undenitrated CaO (f.CaO) is 3% by mass or more, which reduces the above-described reduction of exhaustability and increase of furnace body adhesion slag. Therefore, it is necessary to be 3% by mass or more. The T.O. in the slag under a high acid feed rate of 2.0 to 4.0 Nm 3 / min / ton at the top blowing oxygen flow rate. The Fe concentration can be adjusted to the range of 3 to 15% by mass by adjusting the flow rate of the bottom blowing gas in the range of 0.15 to 1.5 Nm 3 / min.
本発明に係る脱燐処理方法では、脱燐処理中に溶銑に含有される炭素の質量濃度[C]を2.8〜3.2質量%に一旦低下させる。脱燐吹錬中に[C]を3.2質量%以下に吹き下げることで、本発明で必要とする脱燐能を確保することが可能になる。ただし、[C]を吹き下げ過ぎると後の加炭負荷が大きくなってしまうので、脱燐吹錬中の[C]は2.8質量%以上に制御する。 In the dephosphorization method according to the present invention, the mass concentration [C] of carbon contained in the hot metal during the dephosphorization treatment is temporarily reduced to 2.8 to 3.2 mass%. By blowing down [C] to 3.2 mass% or less during dephosphorization, it is possible to ensure the dephosphorization ability required in the present invention. However, if [C] is blown down too much, the subsequent carburizing load becomes large, so [C] during dephosphorization blowing is controlled to 2.8% by mass or more.
本発明に係る脱燐処理方法では、上記のように脱燐吹錬中の[C]を2.8〜3.2質量%に一旦低下させた後、溶銑に炭素源を供給して、脱燐処理後に溶銑に含有される炭素の質量濃度[C]を3.4〜3.8質量%に調整する。処理後の溶銑[C]が3.4質量%以下では溶銑の液相線温度が高くなる。このため、溶銑鍋への地金付きが増加し、生産量が低下する。また、3.8質量%以上では炭素源の加炭歩留まり(C歩留)が著しく低下する。高い加炭歩留を確保しつつ吹錬中の[C]濃度制御を実施するためには、炭素源とスラグとの接触を抑制する必要があるため、吹錬中にサブランスから粉状の炭素源を吹き付ける方法が効果的と言える。ほかには、転炉の炉底等に設けた羽口から石炭粉などの炭素源を溶銑中に吹き込むことでも良い。 In the dephosphorization processing method according to the present invention, [C] during dephosphorization blowing is once reduced to 2.8 to 3.2% by mass as described above, and then a carbon source is supplied to the hot metal to remove the dephosphorization. After the phosphorus treatment, the mass concentration [C] of carbon contained in the hot metal is adjusted to 3.4 to 3.8 mass%. When the hot metal [C] after the treatment is 3.4% by mass or less, the liquidus temperature of the hot metal becomes high. For this reason, the amount of bullion attached to the hot metal pan increases and the production volume decreases. On the other hand, if it is 3.8% by mass or more, the carbonization yield (C yield) of the carbon source is remarkably lowered. In order to control the [C] concentration during blowing while securing a high carburization yield, it is necessary to suppress contact between the carbon source and slag. It can be said that the method of spraying the source is effective. Alternatively, a carbon source such as coal powder may be blown into the hot metal from a tuyere provided at the bottom of the converter.
本発明に係る脱燐処理方法では、脱燐処理後に転炉から溶銑鍋へ出湯した直後の鍋中の溶銑の温度を1320℃以上1380℃以下となるように調整することが好ましい。脱燐処理後の鍋中温度、具体的には脱燐処理後に転炉から溶銑鍋へ出湯した直後の鍋中の溶銑の温度が1320℃未満であるような条件では、脱燐剤の滓化が阻害され、スラグの流動性が低下して、脱燐不良やスピッティング増加のおそれがある。また、上記の溶銑の温度が1380℃超となると、温度が高く脱燐不良になる場合がある。調整する方法としては、脱燐処理開始前の溶銑成分・温度情報を元に、当該溶銑に吹き付ける酸素量から計算される温度上昇分に見合う冷材量を計算で求めて、転炉内に投入する方法が一般的である。 In the dephosphorization processing method according to the present invention, it is preferable to adjust the temperature of the hot metal in the pan immediately after discharging from the converter to the hot metal pan after the dephosphorization treatment so that the temperature is 1320 ° C. or higher and 1380 ° C. or lower. Under conditions where the temperature in the pan after the dephosphorization treatment, specifically, the temperature of the hot metal in the pan immediately after discharging from the converter to the hot metal pan after dephosphorization treatment is less than 1320 ° C. Is hindered, the fluidity of the slag is lowered, and there is a risk of dephosphorization failure and increased spitting. Further, when the temperature of the hot metal exceeds 1380 ° C., the temperature may be high, resulting in poor dephosphorization. As a method of adjustment, based on the hot metal composition and temperature information before the start of dephosphorization, the amount of cold material corresponding to the temperature rise calculated from the amount of oxygen sprayed on the hot metal is calculated and put into the converter. The method to do is common.
また、本発明に係る脱燐処理方法では、脱燐処理後のスラグ中CaOとSiO2の質量濃度比(%CaO/%SiO2)が2.3以上3.2以下となるように調整することが好ましい。高脱燐能を確保する目的で吹錬後のスラグ塩基度(脱燐処理後のスラグ中CaOとSiO2の質量濃度比(%CaO/%SiO2))を3.2より過度に大きくすると、本願発明法によっても未反応のCaO分が増加し、処理後スラグの排滓性の低下および炉体付着スラグの増加を招くことが懸念される。また、吹錬後のスラグ塩基度が2.3よりも過度に小さくなると、脱燐能が低下して脱燐不良となる危険性が生じる。 Further, the dephosphorization treatment method according to the present invention, adjusted to slag CaO and SiO 2 in a mass concentration ratio after dephosphorization (% CaO /% SiO 2) is 2.3 or more 3.2 or less It is preferable. If the slag basicity after blowing (the mass concentration ratio of CaO and SiO 2 in the slag after dephosphorization treatment (% CaO /% SiO 2 )) is excessively larger than 3.2 for the purpose of ensuring high dephosphorization ability There is a concern that the unreacted CaO content also increases by the method of the present invention, leading to a decrease in the evacuation property of the treated slag and an increase in the furnace body-attached slag. Moreover, when the slag basicity after blowing is excessively smaller than 2.3, there is a risk that the dephosphorization ability is lowered and dephosphorization is poor.
これらの必要条件の調査と確認は、次のようにして行った。
先ず、調査条件を説明する。脱硫処理を実施した溶銑を約270tとスクラップ約20tを上底吹き転炉に装入した。溶銑の主な成分例(単位:質量%)を表2に示す。
These requirements were investigated and confirmed as follows.
First, the investigation conditions will be described. About 270 t of molten iron subjected to desulfurization treatment and about 20 t of scrap were charged into an upper bottom blowing converter. Table 2 shows examples of main components of the hot metal (unit: mass%).
上吹き酸素を2.0〜4.0Nm3/min/t、底吹きガスにN2を0.15〜1.5Nm3/min/t、脱燐剤には塊状生石灰(粒径0.5〜30mm)を2〜15kg/t、粉状生石灰(粒径60メッシュ以下)を5〜20kg/tの範囲で用い、その粉状で供給したCaOの比率は40〜80質量%を基本とした。但し、一部は塊状生石灰のみを使用した。 The top blown oxygen is 2.0 to 4.0 Nm 3 / min / t, the bottom blown gas is N 2 is 0.15 to 1.5 Nm 3 / min / t, and the dephosphorizer is massive quicklime (particle size 0.5 ~ 30mm) is used in the range of 2 to 15kg / t, powdered quicklime (particle size of 60 mesh or less) in the range of 5 to 20kg / t, and the ratio of CaO supplied in powder form is based on 40 to 80% by mass. . However, only a lump quick lime was used for a part.
加炭は、サブランスの先端を溶銑浴面から1.5m上方の位置まで下げ、その先端から黒鉛粉を800〜1100kg/分の速度で、溶銑へ向けて2〜4分間吹き付けた。
加炭処理に関しては、吹錬中の[C]をスタティックモデルにより推定し、その推定[C]が2.8〜3.2質量%となるまで一旦吹き下げ、その後、サブランス先端より黒鉛粉を吹き付け、脱燐後[C]が3.4〜3.8質量%となるように調整した。脱燐処理後のT.Feは3〜15質量%、塩基度は2.3〜3.2に調整することができた。
For carburizing, the tip of the lance was lowered to a position 1.5 m above the hot metal bath surface, and graphite powder was sprayed from the tip toward the hot metal for 2 to 4 minutes at a speed of 800 to 1100 kg / min.
Regarding the carburizing treatment, [C] during blowing is estimated using a static model, and then blown down until the estimated [C] reaches 2.8 to 3.2% by mass. After spraying and dephosphorization, the [C] was adjusted to 3.4 to 3.8% by mass. T. after dephosphorization treatment Fe was adjusted to 3 to 15% by mass, and the basicity was adjusted to 2.3 to 3.2.
図1は、脱燐吹錬中にサブランスを用いて溶銑をサンプリングし、オフラインで分析して得た[C]と[P]との関係である。図1から、[C]%が低いほど[P]%を低くできると分かった。 FIG. 1 shows the relationship between [C] and [P] obtained by sampling hot metal using a sub lance during dephosphorization blowing and analyzing off-line. From FIG. 1, it was found that [P]% can be lowered as [C]% is lower.
図2は、脱燐処理後の[C]と[P]との関係である。脱燐吹錬中に[C]を2.8〜3.2質量%まで一旦吹き下げた後、溶銑中の炭素の質量濃度の変化量(△[C])が0.3〜0.8質量%になるように加炭を行って[C]を3.4〜3.8質量%に高めた本発明の実施例では、処理後の[P]は0.01〜0.02質量%に収まっていた。 FIG. 2 shows the relationship between [C] and [P] after the dephosphorization treatment. [C] is once blown down to 2.8 to 3.2% by mass during dephosphorization blowing, and then the change in mass concentration of carbon in molten iron (Δ [C]) is 0.3 to 0.8. In the examples of the present invention in which [C] was increased to 3.4 to 3.8% by mass by performing carburization so as to be mass%, [P] after the treatment was 0.01 to 0.02% by mass. It was settled in.
これは、[C]%の一旦吹下げと加炭処理を行わない従来脱燐処理と比べて、[P]が0.005〜0.015質量%低いという好成績であった。
なお、この処理後の[P]のばらつきは、粉状生石灰を用いた場合の方が小さかった。
This was a good result that [P] was 0.005 to 0.015% by mass lower than the conventional dephosphorization treatment in which [C]% was not blown down and carburized.
In addition, the dispersion | variation in [P] after this process was smaller when powdered quicklime was used.
図3は、脱燐吹錬中に加炭されたことに基づく炭素濃度の変化量(Δ[C])と復燐量(Δ[P])との関係である。加炭吹錬を行うと、溶銑[C]%の吹下げ効果を喪失してしまう程ではないが、或る程度の復燐は生じていた。 FIG. 3 shows the relationship between the amount of change in carbon concentration (Δ [C]) and the amount of dephosphorization (Δ [P]) based on carburization during dephosphorization blowing. When carburizing was performed, a certain amount of rephosphorus had occurred, although not so much that the effect of lowering the hot metal [C]% was lost.
以上の結果を総合すると、処理後の溶銑中[P]%は処理中に[C]%を吹き下げるほど低くすることが出来るが、過度に吹き下げると、その後の加炭吹錬の負荷が増加するため、処理中[C]は2.8〜3.2質量%の範囲とし、その後加炭して[C]を3.4〜3.8質量%とすることが最適であると言える。 Summing up the above results, [P]% in the hot metal after the treatment can be lowered as the [C]% is blown down during the treatment. Therefore, it can be said that it is optimal to set the [C] in the range of 2.8 to 3.2% by mass and then carburize to set the [C] to 3.4 to 3.8% by mass. .
この脱燐吹錬中の[C]の制御は、脱燐吹錬開始前の溶銑中[C]や[Si]などの成分と溶銑へ供給する酸素量などのデータを用いて、いわゆるスタティックコントロールにより行えば十分であるが、溶銑サンプルを採取して[C]を迅速分析するなど、他の方法を用いても良い。 The control of [C] during the dephosphorization blowing is a so-called static control using data such as [C] and [Si] components and the amount of oxygen supplied to the hot metal before starting the dephosphorization blowing. However, other methods such as collecting hot metal samples and analyzing [C] quickly may be used.
また、スラグ中(Al203)濃度が3〜10質量%となるように吹錬前にAl203源を装入することでスピッティングが抑制された。スラグ中(Al203)濃度が3〜10質量%の場合、スラグがフォーミングしやすくなり、スラグ中(FeO)の還元速度が低下するため、T.Feが上昇し、滓化が促進され、容易にカバースラグが形成されたと考えられる。一方、スラグ中(Al203)濃度が上昇するとスラグの粘度が上昇する。その影響でスラグ中(Al203)濃度の増加に伴いスラグのフォーミングが発生し、スロッピングが多くなった。スラグ中(Al203)濃度が10質量%を超えると過度なフォーミングにより、スラグが炉外へ溢れるスロッピングや、出湯中の炉口からのスラグ横溢などが発生し、操業が困難になることを確認した。 Further, in the slag (Al 2 0 3) concentration spitting was suppressed by charging the Al 2 0 3 source before blowing so that 3-10 wt%. When the concentration in the slag (Al 2 O 3 ) is 3 to 10% by mass, the slag is easily formed and the reduction rate in the slag (FeO) is decreased. It is thought that Fe increased, hatching was promoted, and cover slag was easily formed. On the other hand, when the concentration in the slag (Al 2 O 3 ) increases, the viscosity of the slag increases. As a result, slag forming occurred with an increase in the concentration of (Al 2 O 3 ) in the slag, and slopping increased. If the concentration in the slag (Al 2 O 3 ) exceeds 10% by mass, excessive forming will cause slag overflowing to the outside of the furnace, slag overflow from the furnace outlet during hot water, etc., making operation difficult. It was confirmed.
本発明の高速吹錬下における低燐溶銑の安定製造効果を確認するため、下記の試験を行った。
(1)試験条件
脱燐処理前の溶銑成分が、[C]:4.2〜4.8質量%、[Si]:0.15〜0.45質量%、[P]:0.095〜0.120質量%、[Mn]:0.20〜0.35質量%であり、脱燐処理前の温度が1300〜1370℃である溶銑約264tおよびスクラップ約29tを、上底吹き転炉に注銑し、主に、上吹き酸素流量=2.4〜3.0Nm3/min/t、底吹きガスにN2を用い、底吹き流量=0.30〜0.50Nm3/min/tで吹錬した。ただし、比較例として一部上記以外の条件で処理を実施した。
In order to confirm the stable production effect of the low phosphorus hot metal under high speed blowing of the present invention, the following test was conducted.
(1) Test conditions The hot metal components before dephosphorization were [C]: 4.2 to 4.8% by mass, [Si]: 0.15 to 0.45% by mass, [P]: 0.095 to 0.120% by mass, [Mn]: 0.20 to 0.35% by mass, about 264t of hot metal and about 29t of scrap having a temperature before dephosphorization of 1300 to 1370 ° C., and about 29t of scrap are used as an upper bottom blowing converter. Note that mainly, the top blowing oxygen flow rate is 2.4 to 3.0 Nm 3 / min / t, N 2 is used as the bottom blowing gas, and the bottom blowing flow rate is 0.30 to 0.50 Nm 3 / min / t. Blowed with. However, as a comparative example, processing was partially performed under conditions other than those described above.
脱燐炉の溶銑率は89〜91質量%であった。生石灰は、CaO純分が約92質量%であり、粒径0.5〜30mmの塊状および150μm以下の粉体を使用した。
脱燐剤には塊状生石灰を2〜15kg/t、粉状生石灰を5〜20kg/tの範囲で用い、その粉状で供給したCaOの比率は40質量%以上を基本とした。
The hot metal ratio of the dephosphorization furnace was 89 to 91% by mass. As quicklime, a pure CaO content of about 92% by mass, a lump with a particle size of 0.5 to 30 mm and a powder of 150 μm or less were used.
As the dephosphorizing agent, massive quicklime was used in a range of 2 to 15 kg / t and powdered quicklime was used in a range of 5 to 20 kg / t, and the ratio of CaO supplied in powder form was basically 40% by mass or more.
また、脱燐中到達[C]は、溶銑成分と吹錬条件を元にスタティックモデルを用いて推定した。
加炭剤の添加方法として、サブランスの先端を溶銑浴面から1.5m上方の位置まで下げ、その先端から[C]濃度90質量%の黒鉛粉を1000kg/分の速度で、溶銑へ向けて1〜4分間吹き付けた。加炭処理に関しては、吹錬中の[C]をスタティックモデルにより推定し、その推定[C]が2.8〜3.2質量%となるまで一旦吹き下げ、その後、サブランス先端より黒鉛粉を吹き付け、脱P後[C]が3.4〜3.8質量%となるように調整した。
なお、多くの実施例・比較例において、上吹き酸素の吹付けを開始する前に、表1に記載した取鍋スラグ4.0〜7.0kg/tを転炉内に添加して脱燐処理を行った。
Further, the arrival [C] during dephosphorization was estimated using a static model based on the hot metal component and blowing conditions.
As a method of adding the carburizing agent, the tip of the sub lance is lowered to a position 1.5 m above the hot metal bath surface, and graphite powder having a [C] concentration of 90 mass% is directed from the tip to the hot metal at a rate of 1000 kg / min. Sprayed for 1-4 minutes. Regarding the carburizing treatment, [C] during blowing is estimated using a static model, and then blown down until the estimated [C] reaches 2.8 to 3.2% by mass. After spraying and removing P, [C] was adjusted to 3.4 to 3.8% by mass.
In many examples and comparative examples, before starting the blowing of top-blown oxygen, ladle slag 4.0 to 7.0 kg / t described in Table 1 was added to the converter to remove phosphorus. Processed.
(2)評価方法
評価は、脱P後[P]、T.Fe、鉄分歩留、注銑鍋地金付着、およびC粉歩留について行った。注銑鍋地金付着の評価は、脱P出湯前の注銑鍋の重量と脱C注銑後の注銑鍋の重量の差を用いた。
(2) Evaluation method Evaluation is performed after de-P [P], T.P. Fe, iron yield, pouring hot metal adhesion, and C powder yield were performed. The evaluation of the pouring pot metal adhesion was based on the difference between the weight of the pouring pan before de-P pouring and the weight of the pouring pan after de-C pouring.
表3に実施例の試験条件および試験結果を示す。 Table 3 shows test conditions and test results of the examples.
本発明で規定する上吹き酸素流量、底吹き流量、スラグ中T.Fe、脱燐処理中到達[C]、脱燐処理後[C]について請求項1の条件を満足する本発明例1〜9では、表3に示すように、脱燐後[P]≦0.020質量%と、良好な結果が得られた。また、前述した条件に加え、脱燐処理後のスラグ塩基度、CaO源の粉体比率、脱燐処理後鍋中温度についての請求項2に示す条件を満足する本発明例6〜9では、脱燐処理後[P]≦0.015質量%と、さらに良好な結果が得られた。いずれも、スピッティング・スロッピングは軽微で、操業上の支障になるような発生は無かった。なお、前述した条件に加え、脱燐処理後のスラグ中(Al2O3)濃度を7〜9質量%とした本発明例8および9では、スラグフォーミングが大きいことが認められた。しかしスロッピング発生にまでは至らず、代わりにスラグ中T.Fe濃度が高めで処理後[P]≦0.011質量%と、さらに良好な脱燐結果が得られた。 The top blowing oxygen flow rate, bottom blowing flow rate, T. In the present invention examples 1 to 9 that satisfy the conditions of claim 1 for Fe, reached during dephosphorization process [C], and after dephosphorization process [C], as shown in Table 3, after dephosphorization [P] ≦ 0 Good results were obtained with 0.020% by mass. Further, in addition to the above-described conditions, Examples 6 to 9 of the present invention satisfying the conditions shown in claim 2 for the slag basicity after dephosphorization, the powder ratio of the CaO source, and the temperature in the pan after dephosphorization, Even better results were obtained with [P] ≦ 0.015 mass% after dephosphorization. In all cases, spitting and slopping were minor, and there were no occurrences that would hinder operations. In addition to the above-described conditions, it was confirmed that the present invention examples 8 and 9 in which the concentration of (Al 2 O 3 ) in the slag after the dephosphorization treatment was 7 to 9% by mass showed large slag forming. However, slopping has not occurred, and T. Even better Fe removal results were obtained with high Fe concentration and [P] ≦ 0.011 mass% after treatment.
これに対し、上吹き酸素流量が本発明で規定する条件より低い比較例1では、脱燐処理後[P]やスロッピング・スピッティングには問題は無いが、上吹き酸素の供給時間が10分間を超えてしまい生産性が低かった。また、上吹き酸素流量が本発明で規定する条件より高い比較例2では、スロッピングが発生したほか、処理後の[P]濃度も0.023質量%と目標値を達成することができなかった。さらに、底吹き流量が低い比較例3でスロッピングが発生し、底吹き流量が高い比較例4ではスピッティングが激しかったほか処理後の[P]濃度も0.033質量%と不良であった。 On the other hand, in Comparative Example 1 in which the flow rate of the top blown oxygen is lower than the conditions specified in the present invention, there is no problem with [P] and the slopping / spitting after the dephosphorization treatment, but the supply time of the top blown oxygen is 10 Productivity was low because it exceeded the minute. Further, in Comparative Example 2 in which the flow rate of the top blown oxygen is higher than the conditions defined in the present invention, not only slopping occurred, but also the [P] concentration after treatment cannot reach the target value of 0.023% by mass. It was. Further, slopping occurred in Comparative Example 3 with a low bottom blowing flow rate, and spitting was severe in Comparative Example 4 with a high bottom blowing flow rate, and the [P] concentration after treatment was also poor at 0.033 mass%. .
一方、上吹き酸素流量も底吹き流量も本発明の範囲を満たす比較例5〜8において、脱燐処理中の[C]濃度を2.71質量%にまで吹き下げた比較例5では、その後の加炭処理の負荷が大きく、上吹き酸素の供給時間を8分間以下とする本発明の目標を達成することができなかった。その反対に、脱燐処理中の[C]濃度を3.34質量%にまでしか吹き下げなかった比較例6では、上吹き酸素の供給時間は約7分間と本発明の目標を達成することができたが、処理後の[P]濃度が0.039質量%と最も悪い脱燐成績になってしまった。また、脱燐処理後の[C]を低くした比較例7では、脱燐成績自体は問題なかったが、処理後の溶銑が鍋内で一部凝固し、本発明により生産性を高めるという目的に反する結果となった。その反対に、脱燐処理後の[C]を高くした比較例8では、加炭歩留まりが低いために脱燐処理コストが必要以上に嵩むという結果になった。 On the other hand, in Comparative Examples 5 to 8 in which the top blow oxygen flow rate and the bottom blow flow rate satisfy the scope of the present invention, in Comparative Example 5 in which the [C] concentration during the dephosphorization treatment was blown down to 2.71% by mass, The carburizing treatment load was large, and the target of the present invention in which the supply time of top blowing oxygen was 8 minutes or less could not be achieved. On the contrary, in Comparative Example 6 in which the [C] concentration during the dephosphorization process was blown down only to 3.34% by mass, the supply time of the top blowing oxygen was about 7 minutes, and the object of the present invention was achieved. However, the [P] concentration after treatment was 0.039% by mass, which was the worst dephosphorization result. Further, in Comparative Example 7 in which [C] after the dephosphorization treatment was lowered, the dephosphorization result itself was not a problem, but the hot metal after the treatment partially solidified in the pan, and the object of the present invention is to increase productivity. The result was against. On the other hand, in Comparative Example 8 in which [C] after dephosphorization was increased, the decarburization process cost was increased more than necessary because the carburization yield was low.
Claims (3)
上吹き酸素流量が2.0Nm3/min/t以上4.0Nm3/min/t以下の条件で溶銑を脱燐処理する方法であって、
底吹き流量を0.15Nm3/min/t以上1.5Nm3/min/t以下として該脱燐処理後のスラグ中T.Fe質量濃度が3質量%以上15質量%以下となるように調整し、
かつ、前記脱燐処理中に該溶銑に含有される炭素の質量濃度を2.8質量%以上3.2質量%以下に一旦低下させ、その後、該溶銑に炭素源を供給して前記脱燐処理後に該溶銑に含有される炭素の質量濃度を3.4質量%以上3.8質量%以下に調整することを特徴とする溶銑の脱燐処理方法。 Using an upper-bottom blow converter, using only auxiliary materials that do not contain fluorite as a dephosphorization agent,
A method in which the hot metal is dephosphorized under a condition that the flow rate of top blown oxygen is 2.0 Nm 3 / min / t or more and 4.0 Nm 3 / min / t or less,
Bottom-blown flow rate of 0.15Nm 3 / min / t or more 1.5Nm 3 / min / t or less in the slag T. after dehydration phosphorus treated as Adjust so that the Fe mass concentration is 3 mass% or more and 15 mass% or less,
In addition, the mass concentration of carbon contained in the hot metal during the dephosphorization treatment is temporarily reduced to 2.8 mass% or more and 3.2 mass% or less, and then a carbon source is supplied to the hot metal to supply the dephosphorization. A method for dephosphorizing hot metal, which comprises adjusting the mass concentration of carbon contained in the hot metal after the treatment to 3.4% by mass or more and 3.8% by mass or less.
前記脱燐処理後のスラグ中CaOとSiO2の質量濃度比(%CaO/%SiO2)が2.3以上3.2以下、
かつ、脱燐処理後に転炉から溶銑鍋へ出湯した直後の鍋中の溶銑の温度を1320℃以上1380℃以下となるように調整することを特徴とする、請求項1に記載の溶銑の脱燐処理方法。 Of the CaO source used as a dephosphorizing agent, by spraying 40 mass% or more in a mass ratio of CaO as a powdered CaO source having a particle size of 60 mesh or less to the hot metal from the upper blowing lance together with the upper blowing oxygen,
The slag CaO and SiO 2 in a mass concentration ratio after dephosphorization (% CaO /% SiO 2) is 2.3 or more 3.2 or less,
The hot metal desorption according to claim 1, wherein the temperature of the hot metal in the pan immediately after discharging from the converter to the hot metal pan after dephosphorization is adjusted to 1320 ° C or higher and 1380 ° C or lower. Phosphorus treatment method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010013380A JP5493911B2 (en) | 2010-01-25 | 2010-01-25 | Hot metal dephosphorization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010013380A JP5493911B2 (en) | 2010-01-25 | 2010-01-25 | Hot metal dephosphorization method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011149083A JP2011149083A (en) | 2011-08-04 |
JP5493911B2 true JP5493911B2 (en) | 2014-05-14 |
Family
ID=44536323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010013380A Active JP5493911B2 (en) | 2010-01-25 | 2010-01-25 | Hot metal dephosphorization method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5493911B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112014001081B1 (en) * | 2011-07-19 | 2022-09-20 | Jfe Steel Corporation | METHOD FOR CAST IRON REFINING |
JP5408369B2 (en) | 2012-01-19 | 2014-02-05 | Jfeスチール株式会社 | Hot metal pretreatment method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11323418A (en) * | 1998-05-18 | 1999-11-26 | Nippon Steel Corp | Molten iron dephosphorizing method |
JP4353818B2 (en) * | 2004-01-23 | 2009-10-28 | 株式会社神戸製鋼所 | Converter operation method |
JP4419594B2 (en) * | 2004-02-13 | 2010-02-24 | Jfeスチール株式会社 | Hot metal refining method |
JP2006009146A (en) * | 2004-05-24 | 2006-01-12 | Sumitomo Metal Ind Ltd | Method for refining molten iron |
JP2007077416A (en) * | 2005-09-12 | 2007-03-29 | Jfe Steel Kk | Method for refining molten iron |
JP4743072B2 (en) * | 2006-10-11 | 2011-08-10 | 住友金属工業株式会社 | Method for improving slag evacuation after dephosphorization and method for dephosphorizing hot metal using the slag |
-
2010
- 2010-01-25 JP JP2010013380A patent/JP5493911B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011149083A (en) | 2011-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5954551B2 (en) | Converter steelmaking | |
JP5408369B2 (en) | Hot metal pretreatment method | |
JP5418733B2 (en) | Hot metal refining method | |
JP2006274349A (en) | Method for refining steel | |
JP5343506B2 (en) | Hot phosphorus dephosphorization method | |
CN104195283A (en) | Vanadium slag modifier for converter vanadium extraction and converter vanadium extraction smelting method | |
JP4743078B2 (en) | Method for improving slag evacuation after dephosphorization and method for dephosphorizing hot metal using the slag | |
JP5408379B2 (en) | Hot metal pretreatment method | |
JP5983492B2 (en) | Hot metal pretreatment method | |
JP4977870B2 (en) | Steel making method | |
JP5493911B2 (en) | Hot metal dephosphorization method | |
JP3607767B2 (en) | Molten steel desulfurization and dehydrogenation method with small refractory melting loss | |
JP2006009146A (en) | Method for refining molten iron | |
JP4894325B2 (en) | Hot metal dephosphorization method | |
JP5772645B2 (en) | Dephosphorization method for hot metal | |
WO2007100109A1 (en) | Method of dephosphorization of molten iron | |
JP3158912B2 (en) | Stainless steel refining method | |
JP2009114489A (en) | Method for dephosphorizing molten iron | |
JP2008095139A (en) | Method for improving dischargeability of slag after dephosphorization treatment, and method for dephosphorizing molten pig iron using the same | |
JP4854933B2 (en) | Refining method with high reaction efficiency | |
JP5494170B2 (en) | Hot phosphorus dephosphorization method | |
JP4360239B2 (en) | Method for desulfurization of molten steel in vacuum degassing equipment | |
JP2007119813A (en) | Method for refining molten iron | |
JP6627642B2 (en) | How to reduce iron ore | |
JP3297997B2 (en) | Hot metal removal method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121011 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20121011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131216 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20131216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140217 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5493911 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |