JP5492864B2 - Production method of polycondensation resin - Google Patents

Production method of polycondensation resin Download PDF

Info

Publication number
JP5492864B2
JP5492864B2 JP2011273256A JP2011273256A JP5492864B2 JP 5492864 B2 JP5492864 B2 JP 5492864B2 JP 2011273256 A JP2011273256 A JP 2011273256A JP 2011273256 A JP2011273256 A JP 2011273256A JP 5492864 B2 JP5492864 B2 JP 5492864B2
Authority
JP
Japan
Prior art keywords
acid
low
order condensate
solid
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011273256A
Other languages
Japanese (ja)
Other versions
JP2013124288A (en
Inventor
智明 下田
智道 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cheil Industries Inc
Original Assignee
Cheil Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cheil Industries Inc filed Critical Cheil Industries Inc
Priority to JP2011273256A priority Critical patent/JP5492864B2/en
Priority to KR1020120131086A priority patent/KR101557531B1/en
Priority to US13/707,775 priority patent/US9029482B2/en
Publication of JP2013124288A publication Critical patent/JP2013124288A/en
Application granted granted Critical
Publication of JP5492864B2 publication Critical patent/JP5492864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • C08G69/30Solid state polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/46Post-polymerisation treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Polyamides (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Description

本発明は、重縮合樹脂の製造方法に関する。   The present invention relates to a method for producing a polycondensation resin.

ポリアミド、ポリカーボネート、ポリエステルなどの重縮合樹脂は、光学用途、自動車分野、電気電子用途、各種容器等、様々な分野で利用されている。このような重縮合樹脂の製造方法としては、低分子量である重縮合樹脂の低次縮合物を作製し、結晶化および/または粉粒化させた後、これを真空下あるいは不活性ガス流通下において固相重合させて高分子量の重縮合樹脂を製造する方法がよく知られている。   Polycondensation resins such as polyamide, polycarbonate, and polyester are used in various fields such as optical applications, automotive fields, electrical and electronic applications, and various containers. As a method for producing such a polycondensation resin, a low-order condensate of polycondensation resin having a low molecular weight is prepared, crystallized and / or granulated, and then subjected to vacuum or inert gas flow. Are well known in the art for producing high molecular weight polycondensation resins by solid phase polymerization.

例えば、特許文献1では、低分子量の結晶性芳香族ポリカーボネート(低次縮合物)を固相重合によって高分子量化する技術が開示されている。   For example, Patent Document 1 discloses a technique for increasing the molecular weight of a low molecular weight crystalline aromatic polycarbonate (low-order condensate) by solid phase polymerization.

特開平1−158033号公報Japanese Patent Laid-Open No. 1-158033

上記特許文献1に記載の重合方法は、色相、成形性が良好な高分子量の芳香族ポリカーボネートが得られるという利点がある。しかしながら、低次縮合物同士の融着や、低次縮合物が配管内でスケーリングを起こす、あるいは機器の内壁に多量に付着するという問題があった。   The polymerization method described in Patent Document 1 has an advantage that a high-molecular-weight aromatic polycarbonate having good hue and moldability can be obtained. However, there has been a problem that the low-order condensates are fused with each other, the low-order condensates cause scaling in the piping, or a large amount adheres to the inner wall of the equipment.

そこで、本発明は、低次縮合物同士の融着や低次縮合物の配管内でのスケーリング等の支障がなく、高品質の重縮合樹脂を効率良く製造することができる手段を提供することを目的とする。   Therefore, the present invention provides means for efficiently producing a high-quality polycondensation resin without any trouble such as fusion of low-order condensates or scaling of the low-order condensates in the piping. With the goal.

本発明者は、上記の問題を解決すべく、鋭意研究を行った。その結果、固相重合の前に、低次縮合物を圧縮成形し、得られた低次縮合物の粒状圧縮成形体を固相重合することにより、上記課題を解決することを見出し、本発明を完成するに至った。   The present inventor has intensively studied to solve the above problems. As a result, the present inventors have found that the above-mentioned problems can be solved by subjecting the low-order condensate to compression molding before solid-phase polymerization, and subjecting the granular compression-molded product of the obtained low-order condensate to solid-phase polymerization. It came to complete.

すなわち、本発明は、低次縮合物を固相重合する工程を含む重縮合樹脂の製造方法であって、低次縮合物を製造する工程と、得られた前記低次縮合物を圧縮成形し粒状圧縮成形体を得る工程と、前記粒状圧縮成形体を固相重合する工程と、を含む、重縮合樹脂の製造方法である。   That is, the present invention is a method for producing a polycondensation resin including a step of solid-phase polymerization of a low-order condensate, the step of producing a low-order condensate, and compression molding the obtained low-order condensate. It is a manufacturing method of polycondensation resin including the process of obtaining a granular compression molding, and the process of solid-phase-polymerizing the said granular compression molding.

本発明の製造方法によれば、低次縮合物同士の融着や低次縮合物の配管内でのスケーリング等の支障がなく、高品質の重縮合樹脂を効率良く製造することができる。   According to the production method of the present invention, it is possible to efficiently produce a high-quality polycondensation resin without problems such as fusion between low-order condensates and scaling of the low-order condensate in the piping.

以下、本発明の製造方法について、工程ごとに詳細に説明する。   Hereafter, the manufacturing method of this invention is demonstrated in detail for every process.

<低次縮合物を製造する工程>
本工程では、重縮合反応を行い、重縮合樹脂の低次縮合物を製造する。
<Process for producing low-order condensate>
In this step, a polycondensation reaction is performed to produce a low-order condensate of polycondensation resin.

前記重縮合樹脂としては、特に制限されないが、工業規模での生産可能性の観点から、ポリアミド、ポリカーボネート、またはポリエステルであることが好ましく、ポリアミドであることがより好ましい。以下、ポリアミド、ポリカーボネート、およびポリエステルの合成に用いられるモノマーおよび触媒等について説明する。   Although it does not restrict | limit especially as said polycondensation resin, From a viewpoint of the productivity on an industrial scale, it is preferable that it is a polyamide, a polycarbonate, or polyester, and it is more preferable that it is a polyamide. Hereinafter, monomers and catalysts used for the synthesis of polyamide, polycarbonate, and polyester will be described.

≪ポリアミド≫
ポリアミドは、ジカルボン酸とジアミンとの重縮合反応により得られる。
≪Polyamide≫
Polyamide is obtained by a polycondensation reaction between a dicarboxylic acid and a diamine.

前記ジカルボン酸の具体例としては、例えば、テレフタル酸、マロン酸、ジメチルマロン酸、コハク酸、グルタル酸、アジピン酸、2−メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2−ジメチルグルタル酸、3,3−ジエチルコハク酸、スベリン酸アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸などの脂肪族ジカルボン酸;1,3−シクロペンタンジカルボン酸、1,4−シクロヘキサンジカルボン酸などの脂環式ジカルボン酸;イソフタル酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,4−フェニレンジオキシジ酢酸、1,3−フェニレンジオキシジ酢酸、ジフェン酸、4,4’−オキシジ安息香酸、ジフェニルメタン−4,4’−ジカルボン酸、ジフェニルスルホン−4,4’−ジカルボン酸、4,4’−ビフェニルジカルボン酸などの芳香族ジカルボン酸を挙げることができる。これらジカルボン酸は、単独でもまたは2種以上組み合わせても使用することができる。また、必要に応じて、トリメリット酸、トリメシン酸、ピロメリット酸などの多価カルボン酸成分を少量併用してもよい。   Specific examples of the dicarboxylic acid include, for example, terephthalic acid, malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, and 2,2-dimethylglutaric acid. , 3,3-diethylsuccinic acid, suberic acid azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid and other aliphatic dicarboxylic acids; 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and other fats Cyclic dicarboxylic acid; isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4-phenylenedioxydiacetic acid, 1,3-phenylenedioxydi Acetic acid, diphenic acid, 4,4'-oxydibenzoic acid, diphenylmethane-4,4'-dicar Phosphate, diphenyl sulfone-4,4'-dicarboxylic acid, and aromatic dicarboxylic acids such as 4,4'-biphenyl dicarboxylic acid. These dicarboxylic acids can be used alone or in combination of two or more. If necessary, a small amount of a polyvalent carboxylic acid component such as trimellitic acid, trimesic acid, pyromellitic acid may be used in combination.

また、前記ジアミンの具体例としては、例えば、エチレンジアミン、プロパンジアミン、1,4−ブタンジアミン、1,6−ヘキサンジアミン(ヘキサメチレンジアミン)、1,7−ヘプタンジアミン、1,8−オクタンジアミン、1,9−ノナンジアミン、1,10−デカンジアミン、1,11−ウンデカンジアミン、1,12−ドデカンジアミン、2−メチル−1,5−ペンタンジアミン、3−メチル−1,5−ペンタンジアミン、2,2,4−トリメチル−1,6−ヘキサンジアミン、2,4,4−トリメチル−1,6−ヘキサンジアミン、2−メチル−1,8−オクタンジアミン、5−メチル−1,9−ノナンジアミン、メタキシリレンジアミン、パラキシリレンジアミンなどの脂肪族アルキレンジアミン;シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミン、ビス(4−アミノシクロヘキシル)メタン、1,3−ビスアミノメチルシクロヘキサン、1,4−ビスアミノメチルシクロヘキサン、ノルボルナンジメタナミン、トリシクロデカンジメタナミンなどの脂環族ジアミン;p−フェニレンジアミン、m−フェニレンジアミン、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルエーテルなどの芳香族ジアミンなどを挙げることができる。これらジアミンは、単独でもまたは2種以上組み合わせても使用することができる。   Specific examples of the diamine include, for example, ethylenediamine, propanediamine, 1,4-butanediamine, 1,6-hexanediamine (hexamethylenediamine), 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 2-methyl-1,5-pentanediamine, 3-methyl-1,5-pentanediamine, 2 2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, 2-methyl-1,8-octanediamine, 5-methyl-1,9-nonanediamine, Aliphatic alkylenediamines such as metaxylylenediamine and paraxylylenediamine; cyclohexanediamine Alicyclics such as methylcyclohexanediamine, isophoronediamine, bis (4-aminocyclohexyl) methane, 1,3-bisaminomethylcyclohexane, 1,4-bisaminomethylcyclohexane, norbornane dimethanamine, tricyclodecane dimethanamine Examples include diamines; aromatic diamines such as p-phenylenediamine, m-phenylenediamine, 4,4′-diaminodiphenylsulfone, and 4,4′-diaminodiphenylether. These diamines can be used alone or in combination of two or more.

本工程においては、重縮合速度の増加および重縮合反応時の劣化防止などの点から、リン系触媒を用いることができる。例えば、次亜リン酸塩、リン酸塩、次亜リン酸、リン酸、リン酸エステル、ポリメタリン酸類、ポリリン酸類、ホスフィンオキサイド類、ホスホニウムハロゲン化合物などが好ましく、次亜リン酸塩、リン酸塩、次亜リン酸、リン酸が特に好ましく用いられる。次亜リン酸塩としては、例えば、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸カルシウム、次亜リン酸マグネシウム、次亜リン酸アルミニウム、次亜リン酸バナジウム、次亜リン酸マンガン、次亜リン酸亜鉛、次亜リン酸鉛、次亜リン酸ニッケル、次亜リン酸コバルト、次亜リン酸アンモニウムなどが好ましく、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸カルシウム、次亜リン酸マグネシウムが特に好ましい。リン酸塩としては、例えば、リン酸ナトリウム、リン酸カリウム、リン酸二水素カリウム、リン酸カルシウム、リン酸バナジウム、リン酸マグネシウム、リン酸マンガン、リン酸鉛、リン酸ニッケル、リン酸コバルト、リン酸アンモニウム、リン酸水素二アンモニウムなどが好ましい。リン酸エステルとしては、例えば、リン酸エチルオクタデシルなどが挙げられる。ポリメタリン酸類としては、例えば、トリメタリン酸ナトリウム、ペンタメタリン酸ナトリウム、ヘキサメタリン酸ナトリウム、ポリメタリン酸などが挙げられる。ポリリン酸類としては、例えば、テトラポリリン酸ナトリウムなどが挙げられる。ホスフィンオキサイド類としては、例えば、ヘキサメチルホスホルアミドなどが挙げられる。   In this step, a phosphorus catalyst can be used from the viewpoints of increasing the polycondensation rate and preventing deterioration during the polycondensation reaction. For example, hypophosphite, phosphate, hypophosphorous acid, phosphoric acid, phosphate ester, polymetaphosphoric acids, polyphosphoric acids, phosphine oxides, phosphonium halogen compounds, etc. are preferred, hypophosphite, phosphate Hypophosphorous acid and phosphoric acid are particularly preferably used. Examples of hypophosphites include sodium hypophosphite, potassium hypophosphite, calcium hypophosphite, magnesium hypophosphite, aluminum hypophosphite, vanadium hypophosphite, manganese hypophosphite, Preferred are zinc hypophosphite, lead hypophosphite, nickel hypophosphite, cobalt hypophosphite, ammonium hypophosphite, sodium hypophosphite, potassium hypophosphite, calcium hypophosphite, secondary Magnesium phosphite is particularly preferred. Examples of phosphates include sodium phosphate, potassium phosphate, potassium dihydrogen phosphate, calcium phosphate, vanadium phosphate, magnesium phosphate, manganese phosphate, lead phosphate, nickel phosphate, cobalt phosphate, phosphoric acid. Ammonium and diammonium hydrogen phosphate are preferred. Examples of the phosphate ester include ethyl octadecyl phosphate. Examples of polymetaphosphoric acids include sodium trimetaphosphate, sodium pentametaphosphate, sodium hexametaphosphate, polymetaphosphoric acid, and the like. Examples of polyphosphoric acids include sodium tetrapolyphosphate. Examples of phosphine oxides include hexamethylphosphoramide.

リン系触媒の添加量としては、仕込み原料100質量部に対して0.0001〜5質量部が好ましく、0.001〜1質量部がより好ましい。また、添加時期は固相重合完了までであればいつでもよいが、原料仕込み時から低次縮合物の重縮合完了までの間であることが好ましい。また、多数回の添加をしてもよい。さらには、異なるリン系触媒を組み合わせて添加してもよい。   As addition amount of a phosphorus catalyst, 0.0001-5 mass parts is preferable with respect to 100 mass parts of preparation raw materials, and 0.001-1 mass part is more preferable. Further, the addition timing may be any time until the solid phase polymerization is completed, but it is preferable to be between the raw material charging time and the completion of polycondensation of the low-order condensate. Moreover, you may add many times. Furthermore, different phosphorus catalysts may be added in combination.

また、本工程では、重縮合反応を末端封止剤の存在下に行ってもよい。末端封止剤を使用すると、低次縮合物の分子量調節がより容易になり、しかも低次縮合物の溶融安定性が向上する。末端封止剤としては、低次縮合物における末端アミノ基または末端カルボキシル基と反応性を有する単官能性の化合物であれば特に制限はなく、例えばモノカルボン酸、モノアミン、無水フタル酸などの酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類などを挙げることができる。そのうちでも、反応性および封止末端の安定性などの点から、モノカルボン酸またはモノアミンが末端封止剤として好ましく用いられ、前記した特性に加えて、取り扱いが容易である点からモノカルボン酸がより好ましく用いられる。   Moreover, you may perform a polycondensation reaction in presence of terminal blocker at this process. When the end-capping agent is used, the molecular weight of the low-order condensate can be easily adjusted, and the melt stability of the low-order condensate is improved. The end capping agent is not particularly limited as long as it is a monofunctional compound having reactivity with the terminal amino group or terminal carboxyl group in the low-order condensate. For example, acid such as monocarboxylic acid, monoamine, phthalic anhydride, etc. Anhydrides, monoisocyanates, monoacid halides, monoesters, monoalcohols and the like can be mentioned. Among them, monocarboxylic acid or monoamine is preferably used as the end-capping agent from the viewpoint of reactivity and stability of the capping end, and in addition to the above-described properties, the monocarboxylic acid is easy to handle. More preferably used.

末端封止剤として好ましく使用されるモノカルボン酸としては、アミノ基との反応性を有するモノカルボン酸であれば特に制限はなく、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソブチル酸などの脂肪族モノカルボン酸;シクロヘキサンカルボン酸などの脂環式モノカルボン酸;安息香酸、トルイン酸、α−ナフタレンカルボン酸、β−ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸などの芳香族モノカルボン酸、またはこれらの任意の混合物を挙げることができる。そのうちでも、反応性、封止末端の安定性、価格などの点から、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ステアリン酸、安息香酸が特に好ましい。   The monocarboxylic acid preferably used as the end-capping agent is not particularly limited as long as it is a monocarboxylic acid having reactivity with an amino group. For example, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, capryl Aliphatic monocarboxylic acids such as acid, lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid, pivalic acid and isobutyric acid; alicyclic monocarboxylic acids such as cyclohexanecarboxylic acid; benzoic acid, toluic acid, α- Mention may be made of aromatic monocarboxylic acids such as naphthalenecarboxylic acid, β-naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, phenylacetic acid, or any mixture thereof. Among them, in terms of reactivity, stability of the sealing end, price, etc., acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid, Benzoic acid is particularly preferred.

末端封止剤として好ましく使用されるモノアミンとしては、カルボキシル基との反応性を有するモノアミンであれば特に制限はなく、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミンなどの脂肪族モノアミン;シクロヘキシルアミン、ジシクロヘキシルアミンなどの脂環式モノアミン;アニリン、トルイジン、ジフェニルアミン、ナフチルアミンなどの芳香族モノアミン、またはこれらの任意の混合物を挙げることができる。そのうちでも、反応性、沸点、封止末端の安定性および価格などの点から、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、シクロヘキシルアミン、アニリンが特に好ましい。   The monoamine preferably used as the end-capping agent is not particularly limited as long as it is a monoamine having reactivity with a carboxyl group. For example, methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, Aliphatic monoamines such as stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine; alicyclic monoamines such as cyclohexylamine, dicyclohexylamine; aromatic monoamines such as aniline, toluidine, diphenylamine, naphthylamine, or any of these Mention may be made of mixtures. Among them, butylamine, hexylamine, octylamine, decylamine, stearylamine, cyclohexylamine, and aniline are particularly preferable from the viewpoints of reactivity, boiling point, stability of the sealing end, and price.

ポリアミドの低次縮合物を製造する際の末端封止剤の使用量は、用いる末端封止剤の反応性、沸点、反応装置、反応条件などによって異なり得るが、通常、ジカルボン酸またはジアミンのモル数に対して0.1〜15モル%の範囲内で使用することが好ましい(実施例2モル%)。   The amount of the end-capping agent used in the production of the polyamide low-order condensate may vary depending on the reactivity of the end-capping agent used, the boiling point, the reactor, the reaction conditions, etc., but usually the molarity of the dicarboxylic acid or diamine. It is preferable to use it within a range of 0.1 to 15 mol% with respect to the number (Example 2 mol%).

≪ポリカーボネート≫
ポリカーボネートとしては、特に制限はなく、種々の構造単位を有するポリカーボネートが挙げられる。通常、二価フェノールとカーボネート前駆体との反応により製造される芳香族ポリカーボネートを用いることができる。
≪Polycarbonate≫
There is no restriction | limiting in particular as a polycarbonate, The polycarbonate which has various structural units is mentioned. Usually, an aromatic polycarbonate produced by a reaction between a dihydric phenol and a carbonate precursor can be used.

この二価フェノールとしては、例えば、4,4’−ジヒドロキシビフェニル、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)、2,2−ビス(3−メチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)エーテル、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(4−ヒドロキシフェニル)ケトン、ハイドロキノン、レゾルシン、カテコールなどが挙げられる。   Examples of the dihydric phenol include 4,4′-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, and 2,2-bis (4-hydroxyphenyl). Propane (bisphenol A), 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 1,1-bis (4- Hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) ketone, Examples include hydroquinone, resorcin, and catechol.

この他、二価フェノールとしては、ハイドロキノン、レゾルシノールなどが挙げられる。これら二価フェノールは、単独でもまたは2種以上を組み合わせても用いることができる。   In addition, examples of the dihydric phenol include hydroquinone and resorcinol. These dihydric phenols can be used alone or in combination of two or more.

これら二価フェノールの中でも、ビス(ヒドロキシフェニル)アルカン類が好ましく、さらに2,2−ビス(4−ヒドロキシフェニル)プロパンを主原料としたものが特に好ましい。   Among these dihydric phenols, bis (hydroxyphenyl) alkanes are preferable, and those using 2,2-bis (4-hydroxyphenyl) propane as the main raw material are particularly preferable.

また、カーボネート前駆体としては、カルボニルハライドやカルボニルエステル、ハロホルメートなどが挙げられる。具体的には、ホスゲン、二価フェノールのジハロホルメート、ジフェニルカーボネート、ジメチルカーボネート、ジエチルカーボネートなどが挙げられる。   Examples of the carbonate precursor include carbonyl halide, carbonyl ester, and haloformate. Specific examples include phosgene, dihaloformate of dihydric phenol, diphenyl carbonate, dimethyl carbonate, diethyl carbonate and the like.

また、このポリカーボネートは、その重合体鎖の分子構造が直鎖構造であるもののほか、分岐構造を有していてもよい。このような分岐構造を導入するための分岐剤としては、1,1,1−トリス(4−ヒドロキシフェニル)エタン、α,α’,α”−トリス(4−ヒドロキシフェニル)−1,3,5−トリイソプロピルベンゼン、フロログルシン、トリメリット酸、イサチンビス(o−クレゾール)などを用いることができる。また、分子量調節剤として、フェノールやp−t−ブチルフェノール、p−t−オクチルフェノール、p−クミルフェノールなどを用いることができる。   Further, this polycarbonate may have a branched structure in addition to the polymer chain having a linear molecular structure. As a branching agent for introducing such a branched structure, 1,1,1-tris (4-hydroxyphenyl) ethane, α, α ′, α ″ -tris (4-hydroxyphenyl) -1,3, 5-triisopropylbenzene, phloroglucin, trimellitic acid, isatin bis (o-cresol), etc. Further, as molecular weight regulators, phenol, pt-butylphenol, pt-octylphenol, p-cumyl Phenol and the like can be used.

本工程においては、重縮合反応によって副生してくる芳香族モノヒドロキシ化合物および/またはジアリールカーボネートを系外に抜き出すことによって、その反応が促進される。そのための方法としては、減圧下に反応を行う方法と、不活性ガスを導入して上記縮合副生物をこれらのガスを随伴させて除去する方法、およびこれらを併用した方法が好ましく用いられる。   In this step, the reaction is accelerated by extracting the aromatic monohydroxy compound and / or diaryl carbonate by-produced by the polycondensation reaction out of the system. As a method therefor, a method in which the reaction is performed under reduced pressure, a method in which an inert gas is introduced and the condensation by-product is removed by accompanying these gases, and a method in which these are used in combination are preferably used.

本工程においては、触媒を添加しなくても充分な速度で進行させることができるが、さらに反応速度を高める目的で重合触媒を使用することができる。   In this step, it is possible to proceed at a sufficient rate without adding a catalyst, but a polymerization catalyst can be used for the purpose of further increasing the reaction rate.

このような重合触媒としては、この分野で用いられている重縮合触媒であれば特に制限はないが、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウムなどのアルカリ金属およびアルカリ土類金属の水酸化物類;水素化アルミニウムリチウム、水素化ホウ素ナトリウム、水素化ホウ素テトラメチルアンモニウムなどのホウ素やアルミニウムの水素化物のアルカリ金属塩、アルカリ土類金属塩、第四級アンモニウム塩類;水素化リチウム、水素化ナトリウム、水素化カルシウムなどのアルカリ金属およびアルカリ土類金属の水素化合物類;リチウムメトキシド、ナトリウムエトキシド、カルシウムメトキシドなどのアルカリ金属およびアルカリ土類金属のアルコキシド類;リチウムフェノキシド、ナトリウムフェノキシド、マグネシウムフェノキシド、LiO−Ar−OLi、NaO−Ar−ONa(Arはアリール基)などのアルカリ金属およびアルカリ土類金属のアリーロキシド類;酢酸リチウム、酢酸カルシウム、安息香酸ナトリウムなどのアルカリ金属およびアルカリ土類金属の有機酸塩類;酸化亜鉛、酢酸亜鉛、亜鉛フェノキシドなどの亜鉛化合物類;酸化ホウ素、ホウ酸、ホウ酸ナトリウム、ホウ酸トリメチル、ホウ酸トリブチル、ホウ酸トリフェニルなどのホウ素の化合物類;酸化ケイ素、ケイ酸ナトリウム、テトラアルキルケイ素、テトラアリールケイ素、ジフェニルーエチルーエトキシケイ素などのケイ素の化合物類;酸化ゲルマニウム、四塩化ゲルマニウム、ゲルマニウムエトキシド、ゲルマニウムフェノキシドなどのゲルマニウムの化合物類;酸化スズ、ジアルキルスズオキシド、ジアルキルスズカルボキシレート、酢酸スズ、エチルスズトリブトキシドなどのアルコキシ基またはアリーロキシ基と結合したスズ化合物、有機スズ化合物などのスズの化合物類;酸化鉛、酢酸鉛、炭酸鉛、塩基性炭酸塩、鉛および有機鉛のアルコキシドまたはアリーロキシドなどの鉛の化合物;第四級アンモニウム塩、第四級ホスホニウム塩、第四級アルソニウム塩などのオニウム化合物類;酸化アンチモン、酢酸アンチモンなどのアンチモンの化合物類;酢酸マンガン、炭酸マンガン、ホウ酸マンガンなどのマンガンの化合物類;酸化チタン、チタンのアルコキシドまたはアリーロキシドなどのチタンの化合物類;酢酸ジルコニウム、酸化ジルコニウム、ジルコニウムのアルコキシドまたはアリーロキシド、ジルコニウムアセチルアセトンなどのジルコニウムの化合物類などの触媒を挙げることができる。これらの重合触媒は、単独でもまたは2種以上組み合わせても用いることができる。   Such a polymerization catalyst is not particularly limited as long as it is a polycondensation catalyst used in this field, but alkali metals such as lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, and alkaline earths. Metal hydroxides; alkali metal salts, alkaline earth metal salts, quaternary ammonium salts of hydrides of boron and aluminum such as lithium aluminum hydride, sodium borohydride, tetramethylammonium borohydride; hydrogenation Alkali metal and alkaline earth metal hydrides such as lithium, sodium hydride and calcium hydride; Alkali metal and alkaline earth metal alkoxides such as lithium methoxide, sodium ethoxide and calcium methoxide; lithium phenoxide; Sodium phenoxide, Alkali metal and alkaline earth metal aryloxides such as gnesium phenoxide, LiO-Ar-OLi and NaO-Ar-ONa (Ar is an aryl group); alkali metals and alkaline earths such as lithium acetate, calcium acetate and sodium benzoate Metal organic acid salts; zinc compounds such as zinc oxide, zinc acetate and zinc phenoxide; boron compounds such as boron oxide, boric acid, sodium borate, trimethyl borate, tributyl borate, triphenyl borate; oxidation Silicon compounds such as silicon, sodium silicate, tetraalkyl silicon, tetraaryl silicon, diphenyl-ethyl-ethoxy silicon; germanium compounds such as germanium oxide, germanium tetrachloride, germanium ethoxide, germanium phenoxide Tin compounds such as tin compounds bonded to alkoxy groups or aryloxy groups such as tin oxide, dialkyltin oxide, dialkyltin carboxylate, tin acetate, ethyltin tributoxide, organotin compounds; lead oxide, lead acetate, carbonic acid Lead compounds such as lead, basic carbonates, lead and organic lead alkoxides or aryloxides; onium compounds such as quaternary ammonium salts, quaternary phosphonium salts, quaternary arsonium salts; antimony oxide, antimony acetate, etc. Antimony compounds of manganese; manganese compounds such as manganese acetate, manganese carbonate, manganese borate; titanium compounds such as titanium oxide, titanium alkoxide or aryloxide; zirconium acetate, zirconium oxide, zirconium alkoxide or aryl A catalyst such as a compound of zirconium such as rhoxide and zirconium acetylacetone can be mentioned. These polymerization catalysts can be used alone or in combination of two or more.

ポリカーボネートの低次縮合物が溶融状態や溶液の状態である場合、結晶化溶媒で処理することにより、粉末状、顆粒状等の形状で得ることができる。   When the low-order condensate of polycarbonate is in a molten state or a solution state, it can be obtained in a powdery or granular shape by treating with a crystallization solvent.

この結晶化溶媒で処理する方法に特に制限はないが、通常、ポリカーボネートの低次縮合物を該結晶化溶媒中で攪拌し、スラリー状態で結晶化させる方法や、低次縮合物と該結晶化溶媒とを混合機や混練機を用いて混合、混練しながら結晶化する方法等が好ましい。スラリー状態で結晶化する場合には、ワーリングブレンダー等の高速攪拌羽根を有する装置や、カッター付き渦巻ポンプを備えた装置等が用いられる。また、混合機や混練機を用いて結晶化する場合、一般に混合機、混練機と呼ばれる機器(粉体工業便覧、日刊工業新聞社、644〜648ページに記載の機器など)が使用でき、具体例としては、コーンブレンダー、リボンブレンダー、ショベルミキサー、パグミキサーヘンシェルミキサー、ブラベンダー、2軸混練機などが挙げられる。   There is no particular limitation on the method of treating with this crystallization solvent, but usually, a low-order condensate of polycarbonate is stirred in the crystallization solvent and crystallized in a slurry state, or the low-order condensate and the crystallization A method of crystallization while mixing and kneading a solvent with a mixer or a kneader is preferred. In the case of crystallization in a slurry state, a device having a high-speed stirring blade such as a Waring blender, a device equipped with a centrifugal pump with a cutter, or the like is used. In addition, when crystallization is performed using a mixer or a kneader, a device generally called a mixer or a kneader (powder industry manual, Nikkan Kogyo Shimbun Co., Ltd., pages 644 to 648, etc.) can be used. Examples include a corn blender, a ribbon blender, an excavator mixer, a pug mixer, a Henschel mixer, a Brabender, and a twin screw kneader.

結晶化溶媒の例としては、例えば、酢酸エチル等のエステル類;ジエチルエーテル等のエーテル類;アセトン、メチルエチルケトン等のケトン類等が挙げられる。また、結晶化の温度条件にもよるが、ヘキサン、オクタン等の炭化水素類;シクロヘキサン等の環式炭化水素類等も結晶化溶媒として使用できる。このうち、アセトンは比表面積の大きいポリカーボネートの低次縮合物を製造できるので、好ましい。   Examples of the crystallization solvent include esters such as ethyl acetate; ethers such as diethyl ether; ketones such as acetone and methyl ethyl ketone. Depending on the temperature conditions for crystallization, hydrocarbons such as hexane and octane; cyclic hydrocarbons such as cyclohexane and the like can also be used as the crystallization solvent. Among these, acetone is preferable because it can produce a low-order condensate of polycarbonate having a large specific surface area.

≪ポリエステル≫
本発明に使用しうるポリエステルは、特に制限はなく、例えば、フェノール性水酸基を有する化合物のアシル化物と芳香族カルボン酸とを反応させて得られるポリエステルが挙げられる。
≪Polyester≫
There is no restriction | limiting in particular in the polyester which can be used for this invention, For example, the polyester obtained by making the acylated compound of the compound which has a phenolic hydroxyl group, and aromatic carboxylic acid react is mentioned.

本発明で用いるアシル化物は、芳香族ジオールおよび/または芳香族ヒドロキシカルボン酸のフェノール性水酸基を、脂肪酸無水物でアシル化したアシル化物であるとよく、芳香族カルボン酸は、芳香族ジカルボン酸および/または芳香族ヒドロキシカルボン酸であるとよい。   The acylated product used in the present invention may be an acylated product obtained by acylating a phenolic hydroxyl group of an aromatic diol and / or an aromatic hydroxycarboxylic acid with a fatty acid anhydride, and the aromatic carboxylic acid may be an aromatic dicarboxylic acid and It may be an aromatic hydroxycarboxylic acid.

フェノール性水酸基を有する化合物は、フェノール性水酸基を1つ有していても2つ以上有していてもよいが、反応性の観点からフェノール性水酸基を1つまたは2つ有することが好ましい。フェノール性水酸基を有する化合物がフェノール性水酸基を1つのみ有する場合、カルボキシル基をさらに1つ有していることが好ましい。フェノール性水酸基を有する化合物としては、芳香族ジオール、芳香族ヒドロキシカルボン酸が特に好ましい。   The compound having a phenolic hydroxyl group may have one phenolic hydroxyl group or two or more, but preferably has one or two phenolic hydroxyl groups from the viewpoint of reactivity. When the compound having a phenolic hydroxyl group has only one phenolic hydroxyl group, it preferably has one carboxyl group. As the compound having a phenolic hydroxyl group, aromatic diols and aromatic hydroxycarboxylic acids are particularly preferable.

芳香族ジオールとしては、例えば、4,4’−ジヒドロキシビフェニル(4,4’−ビフェノール)、ハイドロキノン、レゾルシン、メチルハイドロキノン、クロロハイドロキノン、アセトキシハイドロキノン、ニトロハイドロキノン、1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジクロロフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−クロロフェニル)プロパン、ビス−(4−ヒドロキシフェニル)メタン、ビス−(4−ヒドロキシ−3,5−ジメチルフェニル)メタン、ビス−(4−ヒドロキシ−3,5−ジクロロフェニル)メタン、ビス−(4−ヒドロキシ−3,5−ジブロモフェニル)メタン、ビス−(4−ヒドロキシ−3−メチルフェニル)メタン、ビス−(4−ヒドロキシ−3−クロロフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、ビス−(4−ヒドロキシフェニル)エーテル(4,4’−ジヒドロキシジフェニルエーテル)、ビス−(4−ヒドロキシフェニル)ケトン、ビス−(4−ヒドロキシ−3,5−ジメチルフェニル)ケトン、ビス−(4−ヒドロキシ−3,5−ジクロロフェニル)ケトン、ビス−(4−ヒドロキシフェニル)スルフィド、ビス−(4−ヒドロキシフェニル)スルホンが挙げられる。これらは単独でも2種以上組み合わせて用いてもよい。   Examples of the aromatic diol include 4,4′-dihydroxybiphenyl (4,4′-biphenol), hydroquinone, resorcin, methylhydroquinone, chlorohydroquinone, acetoxyhydroquinone, nitrohydroquinone, 1,4-dihydroxynaphthalene, 1,5 -Dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3, 5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4- Hydroxy-3-chlorophenyl) pro Bis- (4-hydroxyphenyl) methane, bis- (4-hydroxy-3,5-dimethylphenyl) methane, bis- (4-hydroxy-3,5-dichlorophenyl) methane, bis- (4-hydroxy-) 3,5-dibromophenyl) methane, bis- (4-hydroxy-3-methylphenyl) methane, bis- (4-hydroxy-3-chlorophenyl) methane, 1,1-bis (4-hydroxyphenyl) cyclohexane, bis -(4-hydroxyphenyl) ether (4,4'-dihydroxydiphenylether), bis- (4-hydroxyphenyl) ketone, bis- (4-hydroxy-3,5-dimethylphenyl) ketone, bis- (4-hydroxy) -3,5-dichlorophenyl) ketone, bis- (4-hydroxyphenyl) sulfide, bi - (4-hydroxyphenyl) sulfone. These may be used alone or in combination of two or more.

これらの中で、4,4’−ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、2,6−ジヒドロキシナフタレン、2,2−ビス(4−ヒドロキシフェニル)プロパン、又は、ビス−(4−ヒドロキシフェニル)スルホンは、入手が容易であるため好ましく使用される。   Among these, 4,4′-dihydroxybiphenyl, hydroquinone, resorcin, 2,6-dihydroxynaphthalene, 2,2-bis (4-hydroxyphenyl) propane, or bis- (4-hydroxyphenyl) sulfone is It is preferably used because it is easily available.

芳香族ヒドロキシカルボン酸としては、例えば、パラヒドロキシ安息香酸、メタヒドロキシ安息香酸、2−ヒドロキシ−6−ナフトエ酸、2−ヒドロキシ−3−ナフトエ酸、1−ヒドロキシ−4−ナフトエ酸、4−ヒドロキシ−4’−カルボキシジフェニルエ−テル、2,6−ジクロロ−パラヒドロキシ安息香酸、2−クロロ−パラヒドロキシ安息香酸、2,6−ジフルオロ−パラヒドロキシ安息香酸、4−ヒドロキシ−4’−ビフェニルカルボン酸が挙げられる。これらは単独でも2種以上組み合わせて用いてもよい。   As the aromatic hydroxycarboxylic acid, for example, parahydroxybenzoic acid, metahydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, 2-hydroxy-3-naphthoic acid, 1-hydroxy-4-naphthoic acid, 4-hydroxy -4'-carboxydiphenyl ether, 2,6-dichloro-parahydroxybenzoic acid, 2-chloro-parahydroxybenzoic acid, 2,6-difluoro-parahydroxybenzoic acid, 4-hydroxy-4'-biphenylcarboxylic acid Examples include acids. These may be used alone or in combination of two or more.

これらの中で、パラヒドロキシ安息香酸、2−ヒドロキシ−6−ナフトエ酸の入手が容易であるため好ましく使用される。   Among these, parahydroxybenzoic acid and 2-hydroxy-6-naphthoic acid are easily used because they are easily available.

以上説明したフェノール性水酸基を有する化合物をアシル化するとアシル化物が得られる。アシル化物としてはアセチル化物が例示できるが、これに限定されない。   When the compound having a phenolic hydroxyl group described above is acylated, an acylated product is obtained. Examples of the acylated product include, but are not limited to, an acetylated product.

アシル化は、フェノール性水酸基を有する化合物とアシル化剤とを反応させて得ることができる。アシル化剤としては、アシル無水物またはハロゲン化物が代表的である。アシル化剤中のアシル基は、アルカン酸(酢酸、プロピオン酸、酪酸、ピバル酸等)等の脂肪族カルボン酸、パルミチン酸等の高級アルカン酸、安息香酸等の芳香族カルボン酸、フェニル酢酸等のアリール脂肪酸、から誘導することができる。   The acylation can be obtained by reacting a compound having a phenolic hydroxyl group with an acylating agent. Representative acylating agents are acyl anhydrides or halides. The acyl group in the acylating agent includes aliphatic carboxylic acids such as alkanoic acids (acetic acid, propionic acid, butyric acid, pivalic acid, etc.), higher alkanoic acids such as palmitic acid, aromatic carboxylic acids such as benzoic acid, phenylacetic acid, etc. Of aryl fatty acids.

アシル化剤としては脂肪酸無水物が特に好ましく、脂肪酸無水物としては、例えば、無水酢酸、無水プロピオン酸、無水酪酸、無水イソ酪酸、無水吉草酸、無水ピバル酸、無水2エチルヘキサン酸、無水モノクロル酢酸、無水ジクロル酢酸、無水トリクロル酢酸、無水モノブロモ酢酸、無水ジブロモ酢酸、無水トリブロモ酢酸、無水モノフルオロ酢酸、無水ジフルオロ酢酸、無水トリフルオロ酢酸、無水グルタル酸、無水マレイン酸、無水コハク酸、無水β−ブロモプロピオン酸が挙げられる。これらは2種類以上を混合して用いてもよい。価格と取り扱い性の観点から、無水酢酸、無水プロピオン酸、無水酪酸、無水イソ酪酸が好ましく使用され、無水酢酸がより好ましく使用される。   The acylating agent is particularly preferably a fatty acid anhydride, and examples of the fatty acid anhydride include acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, pivalic anhydride, 2-ethylhexanoic anhydride, monochloro anhydride Acetic acid, dichloroacetic anhydride, trichloroacetic anhydride, monobromoacetic anhydride, dibromoacetic anhydride, tribromoacetic anhydride, monofluoroacetic anhydride, difluoroacetic anhydride, trifluoroacetic anhydride, glutaric anhydride, maleic anhydride, succinic anhydride, β -Bromopropionic acid. You may use these in mixture of 2 or more types. From the viewpoint of price and handleability, acetic anhydride, propionic anhydride, butyric anhydride, and isobutyric anhydride are preferably used, and acetic anhydride is more preferably used.

芳香族ジオールおよび/または芳香族ヒドロキシカルボン酸におけるフェノール性水酸基に対する脂肪酸無水物の使用量は、1.0〜1.2倍当量であると好ましい。脂肪酸無水物の使用量が、該フェノール性水酸基に対して1.0倍当量未満の場合には、アシル化反応時の平衡が脂肪酸無水物側にずれて、ポリエステルへの重合時に未反応の芳香族ジオールまたは芳香族ジカルボン酸が昇華し、反応系が閉塞する傾向がある。一方、1.2倍当量を超える場合には、得られる液晶性ポリエステルの着色が著しくなる傾向がある。   The amount of the fatty acid anhydride used relative to the phenolic hydroxyl group in the aromatic diol and / or aromatic hydroxycarboxylic acid is preferably 1.0 to 1.2 times equivalent. When the amount of the fatty acid anhydride used is less than 1.0 equivalent to the phenolic hydroxyl group, the equilibrium during the acylation reaction is shifted to the fatty acid anhydride side, and the unreacted fragrance is produced during the polymerization to polyester. Group diols or aromatic dicarboxylic acids tend to sublimate and the reaction system tends to clog. On the other hand, when it exceeds 1.2 times equivalent, coloring of the obtained liquid crystalline polyester tends to be remarkable.

アシル化は、130〜180℃で15分〜20時間反応させて行うことが好ましく、140〜160℃で30分〜5時間反応させることがより好ましい。   The acylation is preferably carried out by reacting at 130 to 180 ° C. for 15 minutes to 20 hours, more preferably at 140 to 160 ° C. for 30 minutes to 5 hours.

本発明において、上述したアシル化物と反応させる試薬は芳香族カルボン酸である。芳香族カルボン酸としては、カルボキシル基を1つ有するものでも2つ以上有するものでもよいが、良好な反応性を得る観点から、カルボキシル基を1つまたは2つ有するものが好ましい。芳香族カルボン酸がカルボキシル基を1つのみ有する場合は、水酸基を更に1つ有していることが好ましい。芳香族カルボン酸としては、芳香族ジカルボン酸または芳香族ヒドロキシカルボン酸が特に好ましい。   In the present invention, the reagent to be reacted with the acylated product described above is an aromatic carboxylic acid. The aromatic carboxylic acid may have one or two or more carboxyl groups, but preferably has one or two carboxyl groups from the viewpoint of obtaining good reactivity. When the aromatic carboxylic acid has only one carboxyl group, it preferably has one more hydroxyl group. As the aromatic carboxylic acid, an aromatic dicarboxylic acid or an aromatic hydroxycarboxylic acid is particularly preferable.

芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、4,4’−ビフェニルジカルボン酸、メチルテレフタル酸、メチルイソフタル酸、ジフェニルエ−テル−4,4’−ジカルボン酸、ジフェニルスルホン−4,4’−ジカルボン酸、ジフェニルケトン−4,4’−ジカルボン酸、2,2’−ジフェニルプロパン−4,4’−ジカルボン酸が挙げられる。これらは単独でも2種以上組み合わせて用いてもよい。   Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, methylterephthalic acid, methylisophthalic acid, and diphenyl ether. -Ter-4,4'-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, diphenyl ketone-4,4'-dicarboxylic acid, 2,2'-diphenylpropane-4,4'-dicarboxylic acid It is done. These may be used alone or in combination of two or more.

これらの中で、芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、又は、2,6−ナフタレンジカルボン酸が、入手が容易であるため好ましく使用される。なお、本実施形態においては、耐熱性及び耐衝撃性をバランス良く両立させる観点から、フェノール性水酸基を有する化合物のアシル化物及び芳香族カルボン酸の全量中、少なくとも5モル%以上の芳香族ヒドロキシカルボン酸を含有させることが好ましい。   Among these, terephthalic acid, isophthalic acid, or 2,6-naphthalenedicarboxylic acid is preferably used as the aromatic dicarboxylic acid because it is easily available. In the present embodiment, from the viewpoint of achieving both heat resistance and impact resistance in a well-balanced manner, at least 5 mol% of the aromatic hydroxycarboxylic acid in the total amount of the acylated product of the compound having a phenolic hydroxyl group and the aromatic carboxylic acid is used. It is preferable to contain an acid.

本工程においては、フェノール性水酸基を有する化合物のアシル化物と芳香族カルボン酸とを、エステル交換反応させる。   In this step, an acylated product of a compound having a phenolic hydroxyl group and an aromatic carboxylic acid are subjected to a transesterification reaction.

脂肪酸無水物でアシル化したアシル化物と芳香族カルボン酸とをエステル交換反応させる際には、生成物の生成が有利となるように平衡をずらすため、副生する脂肪酸や未反応の脂肪酸無水物は、反応中に蒸発させて系外へ留去することが好ましい。この場合、留出する脂肪酸の一部を還流させて反応器に戻すことによって、脂肪酸と同伴して蒸発又は昇華した原料等を凝縮または逆昇華させ、反応器に戻すこともできる。こうすれば、例えば、析出したカルボン酸を脂肪酸とともに反応器に戻すことが可能である。   In transesterification of acylated products and aromatic carboxylic acids acylated with fatty acid anhydrides, the by-product fatty acids and unreacted fatty acid anhydrides are used in order to shift the equilibrium so that product formation is advantageous. Is preferably evaporated during the reaction and distilled out of the system. In this case, a part of the distilled fatty acid is refluxed and returned to the reactor, so that the raw materials and the like evaporated or sublimated with the fatty acid can be condensed or reverse sublimated and returned to the reactor. In this way, for example, the precipitated carboxylic acid can be returned to the reactor together with the fatty acid.

なお、上記の構成のポリエステルは、単独でもまたは2種以上を組み合わせて使用してもよい。   In addition, you may use the polyester of said structure individually or in combination of 2 or more types.

上記低次縮合物は、上記単量体などを、例えば、通常用いられる加圧重合槽に仕込み、水性溶媒中で、撹拌条件下で重縮合反応を行うことにより合成される。   The low-order condensate is synthesized by, for example, charging the monomer and the like into a commonly used pressure polymerization tank and performing a polycondensation reaction in an aqueous solvent under stirring conditions.

水性溶媒とは、水を主成分とする溶媒である。水以外に用いられる溶媒としては、例えば、メタノール、エタノールなどが挙げられる。   The aqueous solvent is a solvent mainly composed of water. Examples of the solvent used other than water include methanol and ethanol.

本工程の低次縮合物の合成は、通常は撹拌条件下で、昇温および昇圧することによって行われる。重合温度は、原料の仕込み後、コントロールされる。また、重合圧力は、重合の進行に合せてコントロールされる。   The synthesis of the low-order condensate in this step is usually carried out by raising the temperature and increasing the pressure under stirring conditions. The polymerization temperature is controlled after the raw materials are charged. The polymerization pressure is controlled in accordance with the progress of the polymerization.

本工程における反応温度および反応時間は、製造する樹脂により適宜設定され、特に制限されるものではない。しかしながら、通常は、反応温度は170〜400℃であることが好ましく、反応時間は0.5〜10時間であることが好ましい。   The reaction temperature and reaction time in this step are appropriately set depending on the resin to be produced, and are not particularly limited. However, usually, the reaction temperature is preferably 170 to 400 ° C., and the reaction time is preferably 0.5 to 10 hours.

本工程では、重縮合反応を、バッチ式で行ってもよいし連続式で行ってもよい。また、反応容器への低次縮合物の付着防止、重縮合反応の均一な進行、粒径の揃った低次縮合物粉粒体の生成などの点から、低次縮合物を生成させるための重縮合反応を、撹拌下に行うことが好ましい。   In this step, the polycondensation reaction may be performed batchwise or continuously. In addition, in order to produce a low-order condensate, such as prevention of adhesion of low-order condensate to the reaction vessel, uniform progression of the polycondensation reaction, and production of low-order condensate powder particles having a uniform particle size. The polycondensation reaction is preferably performed with stirring.

次いで、上記で生成した低次縮合物を反応容器から取り出す。   Next, the low-order condensate produced above is taken out from the reaction vessel.

低次縮合物が結晶性粉体であれば、低次縮合物の反応容器からの取り出しは、低次縮合物を反応容器から好ましくは不活性ガス雰囲気下、大気圧以下の圧力で取り出すことにより行う。   If the low-order condensate is a crystalline powder, the low-order condensate is removed from the reaction vessel by taking out the low-order condensate from the reaction vessel, preferably in an inert gas atmosphere at a pressure below atmospheric pressure. Do.

上記不活性ガス雰囲気は、低次縮合物の酸化劣化を防ぐという観点から、酸素濃度が1体積%以下であることが好ましい。   The inert gas atmosphere preferably has an oxygen concentration of 1% by volume or less from the viewpoint of preventing oxidative degradation of the low-order condensate.

低次縮合物が結晶性粉体である場合の反応容器からの低次縮合物の排出速度は、反応容器の規模、反応容器内の内容物の量、温度、取り出し口の大きさ、取り出しノズル部の長さなどに応じて適宜調節し得る。   When the low-order condensate is a crystalline powder, the discharge rate of the low-order condensate from the reaction vessel is the scale of the reaction vessel, the amount of contents in the reaction vessel, the temperature, the size of the take-out port, and the take-out nozzle. It can be appropriately adjusted according to the length of the part.

<低次縮合物を圧縮成形し粒状圧縮成形体を得る工程>
本工程では、上記で製造した低次縮合物を圧縮成形し、粒状圧縮成形体を得る。
<Step of compression molding low-order condensate to obtain a granular compression molded product>
In this step, the low-order condensate produced above is compression molded to obtain a granular compression molded product.

なお、「粒状圧縮成形体」とは、上記低次縮合物を圧縮成形し粒状体としたものを表す。粒状圧縮成形体の形状はすべて一定の形状に統一されていてもよいし、統一されていなくてもよい。形状については特に制限はなく、ペレット状、球状、円柱状、円板状、多角柱状、立方体状、直方体状、円筒状、レンズ状等が具体的に挙げられる。   The “granular compression molded product” represents a product obtained by compression molding the low-order condensate into a granular product. The shape of the granular compression-molded body may be unified to a certain shape, or may not be unified. The shape is not particularly limited, and specific examples include pellets, spheres, columns, disks, polygonal columns, cubes, rectangular parallelepipeds, cylinders, and lenses.

本工程で得られる粒状圧縮成形体の粒子径は、好ましくは0.5〜30mm、より好ましくは1.0〜15mm、さらに好ましくは1.5〜10mmである。この範囲であれば、後述の工程トラブルを解決することができ、かつ固相重合を効率よく行うことができる。なお、該粒子径は、ノギスで粒状圧縮成形体の短径と長径とを測定し、その平均値を採用するものとする。   The particle diameter of the granular compression molded product obtained in this step is preferably 0.5 to 30 mm, more preferably 1.0 to 15 mm, and still more preferably 1.5 to 10 mm. If it is this range, the below-mentioned process trouble can be solved and solid phase polymerization can be performed efficiently. In addition, this particle diameter shall measure the short diameter and long diameter of a granular compression molding with a caliper, and shall employ the average value.

微粉末が原因となる工程トラブルとは具体的には、閉塞、磨耗、偏析、付着・凝集、粉塵飛散、フラッシングなどである。微粉末による工程トラブルで生じやすい閉塞は供給・排出、貯蔵、輸送時に、磨耗は輸送、粉砕時に、偏析は貯蔵、付着・凝集は輸送、供給・排出、集塵、粉砕時に、粉塵飛散は集塵時に、フラッシングは供給・排出時に生じる。また特に微粉末が伴うと、固相重合による製造プロセスにおいては不活性ガスにより微粉末が舞って微粉末の滞留時間が長くなり、重縮合樹脂の色相や組成に悪影響を与える。さらに微粉末量が多いと、固相重合中に微粉末が接着剤のような役割をはたし、低次縮合物同士の接着、固相重合用の反応容器と低次縮合物との接着が起こることがある。本工程によって得られる粒状圧縮成形体は、上記の工程トラブルを解決することができる。   Specific examples of process troubles caused by fine powder include clogging, wear, segregation, adhesion / aggregation, dust scattering, and flushing. Clogging that is likely to occur due to process troubles due to fine powder is supplied, discharged, stored and transported, wear is transported and pulverized, segregation is stored, adhesion and agglomeration is transported, supplied and discharged, dust collected and pulverized, dust scattering is collected During dusting, flushing occurs during supply and discharge. In particular, when a fine powder is involved, in the production process by solid phase polymerization, the fine powder is moved by an inert gas, and the residence time of the fine powder becomes long, which adversely affects the hue and composition of the polycondensation resin. In addition, if the amount of fine powder is large, the fine powder plays a role like an adhesive during solid-phase polymerization, adhesion between low-order condensates, and adhesion between a reaction vessel for solid-phase polymerization and the low-order condensate. May happen. The granular compression molded product obtained by this process can solve the above-mentioned process troubles.

得られた低次縮合物は、圧縮成形の前に粒状圧縮成形体を成形しやすい程度の大きさ、即ち0.01〜5mm以下の粒子径に粉砕または細分してもよい。粉砕を行なう具体的な方法としては、例えば通常用いられるハンマークラッシャー等の粉砕機を用いて粉砕する方法を挙げることができ、細分する方法としては、例えば溶融状態で剪断処理を行なって結晶化する工程で同時に一旦シート状に成形した後、ペレタイズするのと同様な手法でそのシートを縦横に切断する方法を挙げることができる。   The obtained low-order condensate may be pulverized or subdivided into a size that can easily form a granular compression-molded product, that is, a particle diameter of 0.01 to 5 mm or less before compression molding. Specific examples of the method of pulverization include a method of pulverization using a commonly used pulverizer such as a hammer crusher. As a method of subdividing, for example, crystallization is performed by performing a shearing treatment in a molten state. An example is a method in which the sheet is once formed into a sheet at the same time in the process, and then the sheet is cut vertically and horizontally by the same technique as pelletizing.

本工程における粒状圧縮成形体を得る方法は、低次縮合物を圧縮成形し、所望の物性を維持し、かつその後におこなう固相重合工程において破壊されないような方法であれば特に制限はない。具体的には、一般的な造粒の工程で用いられている方法が好ましく挙げられ、押出し造粒法、圧縮造粒法などがより好ましく挙げられる。押出し造粒法としてスクリュー方式、ロール型円筒ダイス方式、ロール型円盤ダイス方式などが例示される。また圧縮造粒法として圧縮ロール方式、ブリケッティテング方式、打錠方式等が挙げられる。より具体的には錠剤成形機、圧縮ロール機およびブリケッティング機からなる群から少なくとも1種選ばれる圧縮成形機を用いて圧縮成形するのが好ましい。本工程で用いられる装置のより具体的な例としては、例えば、ギヤペレタイザGCS、ブリケッティングマシン&コンパクティングマシンMS(以上、ホソカワビーペックス社製)などが挙げられる。   The method for obtaining a granular compression molded product in this step is not particularly limited as long as it is a method in which a low-order condensate is compression molded to maintain desired physical properties and is not destroyed in the subsequent solid phase polymerization step. Specifically, a method used in a general granulation step is preferably exemplified, and an extrusion granulation method, a compression granulation method and the like are more preferably exemplified. Examples of the extrusion granulation method include a screw method, a roll-type cylindrical die method, and a roll-type disk die method. Examples of the compression granulation method include a compression roll method, a briquetting method, and a tableting method. More specifically, it is preferable to perform compression molding using a compression molding machine selected from at least one selected from the group consisting of a tablet molding machine, a compression roll machine and a briquetting machine. More specific examples of the apparatus used in this step include, for example, a gear pelletizer GCS, a briquetting machine & compacting machine MS (above, manufactured by Hosokawa Bee Pex).

圧縮成形を行う際の圧縮圧力は特に制限されないが、10〜800MPaが好ましい。この範囲であれば、輸送、供給・排出時に多量に微粉末を伴うことがほとんどなく、また圧縮成型時に圧縮成形機と粒状圧縮成形体との摩擦熱によって粒状圧縮成形体が溶融することなく、良好に成形できる。該圧縮圧力は、より好ましくは50〜500MPaである。   The compression pressure when performing compression molding is not particularly limited, but is preferably 10 to 800 MPa. Within this range, a large amount of fine powder is hardly accompanied during transportation, supply / discharge, and the granular compression molded body does not melt due to frictional heat between the compression molding machine and the granular compression molded body during compression molding. Can be molded well. The compression pressure is more preferably 50 to 500 MPa.

圧縮成形時の温度は、特に制限されない。   The temperature at the time of compression molding is not particularly limited.

なお、圧縮成形は、低次縮合物の反応容器からの取り出しにそのまま引き続いて行っても、反応容器から取り出した低次縮合物を乾燥した後に行っても、反応容器から取り出した低次縮合物を一旦貯蔵した後に行ってもよい。   The compression molding may be carried out as it is after taking out the low-order condensate from the reaction vessel or after drying the low-order condensate taken out from the reaction vessel, or the low-order condensate taken out from the reaction vessel. May be carried out after storage.

<粒状圧縮成形体を固相重合する工程>
本工程では、上記において得られた低次縮合物の粒状圧縮成形体を用いて固相重合による高重合度化を行い、重縮合樹脂を製造する。固相重合により高重合度化すると、熱劣化のより少ない重縮合樹脂を得ることができる。
<Step of solid-phase polymerization of granular compression molded product>
In this step, the polycondensation resin is produced by increasing the degree of polymerization by solid phase polymerization using the granular compression molded product of the low-order condensate obtained above. When the degree of polymerization is increased by solid phase polymerization, a polycondensation resin with less heat deterioration can be obtained.

低次縮合物を固相重合する際の重合方法および条件は特に制限されず、低次縮合物の融着、凝集、劣化などを生ずることなく固体状態を保ちながら高重合度化を行える方法および条件であれば、いずれであってもよい。   The polymerization method and conditions for solid-phase polymerization of the low-order condensate are not particularly limited, and a method capable of increasing the degree of polymerization while maintaining a solid state without causing fusion, aggregation, or deterioration of the low-order condensate and Any condition may be used.

しかしながら、低次縮合物および生成する重縮合樹脂の酸化劣化を防止するため、ヘリウムガス、アルゴンガス、窒素ガス、炭酸ガスなどの不活性ガス雰囲気中または減圧下で固相重合を行うことが好ましい。   However, in order to prevent oxidative degradation of the low-order condensate and the resulting polycondensation resin, it is preferable to perform solid-state polymerization in an inert gas atmosphere such as helium gas, argon gas, nitrogen gas, carbon dioxide gas or under reduced pressure. .

固相重合の温度は特に制限されないが、最高反応温度が好ましくは170〜350℃である。なお、該最高反応温度は固相重合終了時にある必要はなく、固相重合終了までのいつの時点で到達してもよい。   The temperature of the solid phase polymerization is not particularly limited, but the maximum reaction temperature is preferably 170 to 350 ° C. The maximum reaction temperature does not have to be at the end of the solid phase polymerization, and may be reached at any time until the end of the solid phase polymerization.

本工程で用いられる固相重合の装置については特に制限がなく、公知のいずれの装置も使用することができる。固相重合装置の具体例としては、例えば、一軸ディスク、ニーダー、二軸パドル式、縦型の塔式装置、縦型の塔式機器、回転ドラム式、またはダブルコ−ン型の固相重合装置、乾燥機器などが挙げられる。装置コスト、構造の観点から、簡素な縦型の塔式装置または縦型の塔式機器を使用することが好ましい。粉体を用いる場合は器壁への付着、配管の詰まり等の問題を有することから、減圧下の連続生産に適用するには困難であった縦型の塔式装置または縦型の塔式機器を、本発明においては、連続プロセスで行う場合の固相重合の装置として使用することが可能である。このような縦型の塔式装置または縦型の塔式機器を用いることは、工業生産性の観点、あるいは残留モノマーやオリゴマーの低減という品質の観点からも好ましい。   There is no particular limitation on the solid-phase polymerization apparatus used in this step, and any known apparatus can be used. Specific examples of the solid phase polymerization apparatus include, for example, a uniaxial disk, a kneader, a biaxial paddle type, a vertical tower type apparatus, a vertical tower type apparatus, a rotary drum type, or a double cone type solid state polymerization apparatus. And drying equipment. From the viewpoint of apparatus cost and structure, it is preferable to use a simple vertical tower apparatus or vertical tower apparatus. When using powder, it has problems such as adhesion to the vessel wall and clogging of piping, so it was difficult to apply to continuous production under reduced pressure. In the present invention, it can be used as an apparatus for solid-phase polymerization in the case of performing in a continuous process. The use of such a vertical tower apparatus or vertical tower apparatus is also preferable from the viewpoint of industrial productivity or quality from the viewpoint of reducing residual monomers and oligomers.

固相重合の反応時間は、特に制限されないが、通常、1時間〜20時間が好ましく採用される。固相重合反応中に、低次縮合物を機械的に攪拌するか、または気体流により攪拌してもよい。   The reaction time of solid phase polymerization is not particularly limited, but usually 1 to 20 hours is preferably employed. During the solid state polymerization reaction, the low-order condensate may be stirred mechanically or by a gas stream.

本発明においては、低次縮合物を製造する工程、固相重合する工程、または固相重合後の任意の段階で、必要に応じて、ガラス繊維、炭素繊維などの各種繊維材料、無機粉末状フィラー、有機粉末状フィラー、着色剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、難燃剤、結晶化促進剤、可塑剤、潤滑剤などの添加剤、他のポリマーなどを添加してもよい。   In the present invention, various fiber materials such as glass fibers and carbon fibers, inorganic powders, if necessary, in a step of producing a low-order condensate, a step of solid-phase polymerization, or an arbitrary step after solid-phase polymerization. Additives such as fillers, organic powder fillers, colorants, UV absorbers, light stabilizers, antioxidants, antistatic agents, flame retardants, crystallization accelerators, plasticizers, lubricants, and other polymers May be.

本発明の製造方法により得られる重縮合樹脂は、耐熱性、力学性能、低吸水性、耐薬品性などの性能に優れており、それらの特性を活かして、重縮合樹脂単独で、または必要に応じて上記した各種の添加剤や他のポリマーとの組成物の形態で、重縮合樹脂に対して従来から用いられている各種成形法や紡糸法、例えば射出成形、ブロー成形、押出成形、圧縮成形、延伸、真空成形などの成形法や溶融紡糸法などによって、各種の成形品や繊維などに成形することができる。それにより得られる成形品や繊維などは、エンジニアリングプラスチックをはじめとして、電子・電気部品、自動車部品、事務機部品などの産業資材や工業材料、家庭用品などの各種の用途に有効に使用することができる。   The polycondensation resin obtained by the production method of the present invention is excellent in performance such as heat resistance, mechanical performance, low water absorption, chemical resistance, etc., making use of these properties, the polycondensation resin alone or necessary. Accordingly, various molding methods and spinning methods conventionally used for polycondensation resins in the form of compositions with various additives and other polymers described above, such as injection molding, blow molding, extrusion molding, and compression. It can be formed into various molded articles, fibers, and the like by molding methods such as molding, stretching, vacuum molding, and melt spinning. The resulting molded products and fibers can be used effectively in various applications such as engineering plastics, industrial materials such as electronic / electric parts, automobile parts, office machine parts, industrial materials, and household goods. it can.

本発明を、以下の実施例および比較例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、対数粘度および融点は、以下の方法により測定した。   The present invention will be described in further detail using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. In addition, logarithmic viscosity and melting | fusing point were measured with the following method.

<対数粘度IV(dL/g)の測定>
ポリアミドは25℃で溶媒に濃硫酸を用い、ポリカーボネートは20℃で溶媒にジクロロメタンを用い、ポリエステルは60℃で溶媒にペンタフロロフェノールを用いて、それぞれウベローデ粘度計にて測定した。
<Measurement of logarithmic viscosity IV (dL / g)>
Polyamide was measured with a Ubbelohde viscometer at 25 ° C. using concentrated sulfuric acid as a solvent, polycarbonate at 20 ° C. with dichloromethane as a solvent, and polyester at 60 ° C. with pentafluorophenol as a solvent.

<融点Tm(℃)の測定>
セイコーインスツルメンツ株式会社製DSCを用い、10ml/minの流速で窒素流通下、昇温速度10℃/minにて測定を行い、融解による吸熱ピーク温度を融点として計測した。
<Measurement of melting point Tm (° C.)>
Using a DSC manufactured by Seiko Instruments Inc., measurement was performed at a flow rate of 10 ml / min under a nitrogen flow at a heating rate of 10 ° C./min, and the endothermic peak temperature due to melting was measured as the melting point.

(実施例1:ポリアミドの製造例)
原料として、テレフタル酸83.8g(0.504モル)、1,10−デカンジアミン88.2g(0.512モル)、末端封止剤として酢酸0.75g(0.012モル、ジカルボン酸に対して2モル%)、触媒として次亜リン酸ナトリウム一水和物0.172g(仕込み原料に対して0.1質量部)および水115g(仕込み原料に対して40質量%)を、分縮器、圧力調整弁、内視用窓、および底部排出弁を備えた内容積1リットルのオートクレーブ反応槽に仕込み、窒素置換を行った。攪拌しながら0.5時間かけて180℃まで昇温して0.5時間保持し、内容物が均一溶液となることを確認した。その後1時間かけて内部温度を245℃まで昇温し保持した。内圧が3.0MPaに到達した以降は、同圧力に維持するように水を留去しながら2時間反応を継続した。
(Example 1: Production example of polyamide)
As raw materials, 83.8 g (0.504 mol) of terephthalic acid, 88.2 g (0.512 mol) of 1,10-decanediamine, 0.75 g of acetic acid as end-capping agent (0.012 mol, based on dicarboxylic acid) 2 mol%), 0.172 g of sodium hypophosphite monohydrate (0.1 parts by mass with respect to the charged raw material) and 115 g of water (40% by mass with respect to the charged raw material) as catalysts. Then, an autoclave reaction vessel having an internal volume of 1 liter equipped with a pressure regulating valve, an endoscopic window, and a bottom discharge valve was charged with nitrogen. While stirring, the temperature was raised to 180 ° C. over 0.5 hours and held for 0.5 hours, and it was confirmed that the contents became a homogeneous solution. Thereafter, the internal temperature was raised to 245 ° C. and maintained over 1 hour. After the internal pressure reached 3.0 MPa, the reaction was continued for 2 hours while distilling off water so as to maintain the same pressure.

所定の反応時間経過後、反応槽の温度、および反応系内の水分量(32質量%)を維持したまま生成した低次縮合物を底部排出弁より、窒素流通下、常温(25℃)、および大気圧条件でサイクロン容器に排出した。この際の排出弁ノズル径は3mmであり、排出には約10秒を要した。排出される容器の酸素濃度は0.1体積%であり、白色、粉末状の低次縮合物を得た。   After the predetermined reaction time has elapsed, the low-order condensate produced while maintaining the temperature of the reaction vessel and the amount of water in the reaction system (32% by mass) from the bottom discharge valve at room temperature (25 ° C.) And discharged into a cyclone vessel at atmospheric pressure conditions. The discharge valve nozzle diameter at this time was 3 mm, and it took about 10 seconds for discharge. The oxygen concentration in the discharged container was 0.1% by volume, and a white, powdery low-order condensate was obtained.

得られたポリアミドの低次縮合物のIVは0.16dL/g、Tmは310℃であった。   The obtained polyamide low-order condensate had an IV of 0.16 dL / g and a Tm of 310 ° C.

次に、この粉末状の低次縮合物に対して、錠剤成形器を用いて300MPaの圧力を付与し、低次縮合物の4mm径の粒状圧縮成形体を作製した。この粒状圧縮成形体40gをガラス製の500mlのロータリーエバポレーターに仕込み、回転数30rpm、250℃、0.13kPaの真空下で3時間、固相重合させた。   Next, a pressure of 300 MPa was applied to this powdery low-order condensate using a tablet molding machine to produce a 4 mm diameter granular compression-molded product of the low-order condensate. 40 g of this granular compression-molded product was charged into a 500 ml rotary evaporator made of glass and subjected to solid phase polymerization for 3 hours under a vacuum of 30 rpm, 250 ° C. and 0.13 kPa.

得られたポリアミドのIVは、0.85dL/gであった。また、反応器壁面には、粉体の付着はほとんどみられず、樹脂の融着によるねばつきもなかった。さらに真空ベントラインへの粉の付着も確認されなかった。   The obtained polyamide had an IV of 0.85 dL / g. Moreover, almost no adhesion of powder was observed on the reactor wall surface, and there was no stickiness due to resin fusion. Furthermore, no powder adhered to the vacuum vent line.

(比較例1)
粒状圧縮成形体を作製せず、直接、粉末状の低次縮合物を固相重合したこと以外は実施例1と同様にして、ポリアミドを得た。
(Comparative Example 1)
A polyamide was obtained in the same manner as in Example 1 except that the powdery low-order condensate was directly solid-phase polymerized without producing a granular compression molded product.

得られたポリアミドのIVは、0.75であった。また、反応器壁面には、粉体の付着はほとんどみられず、樹脂の融着によるねばつきもなかったが、真空ベントラインへの粉体の付着が確認された。   The obtained polyamide had an IV of 0.75. Moreover, there was almost no adhesion of powder to the reactor wall surface, and there was no stickiness due to resin fusion, but adhesion of the powder to the vacuum vent line was confirmed.

(実施例2:ポリアミドの製造例)
粒状圧縮成形体100gを直径5cm、長さ25cmのガラス製のシリンダーに仕込み、静置し、250℃、0.13kPaの真空下で3時間、固相重合させたこと以外は、実施例1と同様にして、ポリアミドを得た。
(Example 2: Polyamide production example)
Example 1 except that 100 g of a granular compression molded product was charged into a glass cylinder having a diameter of 5 cm and a length of 25 cm, left to stand, and solid-phase polymerized at 250 ° C. under a vacuum of 0.13 kPa for 3 hours. Similarly, a polyamide was obtained.

得られたポリアミドのIVは0.80dL/gであった。また、反応器壁面には、粉体の付着はまったくみられず、樹脂の融着によるねばつきもなかった。さらに真空ベントラインへの粉の付着も確認されなかった。   The obtained polyamide had an IV of 0.80 dL / g. In addition, no powder adhered to the reactor wall surface, and there was no stickiness due to resin fusion. Furthermore, no powder adhered to the vacuum vent line.

(比較例2)
粒状圧縮成形体を作製せず、直接、粉体を固相重合したこと以外は実施例2と同様にして、ポリアミドを得た。
(Comparative Example 2)
A polyamide was obtained in the same manner as in Example 2 except that the granular compression-molded body was not produced and the powder was directly solid-phase polymerized.

得られたポリアミドのIVは0.65dL/gであった。また、反応器壁面には、粉体の付着が少しみられ、樹脂の融着によるねばつきもなかったが、真空ベントラインへの粉体の付着が確認された。   The obtained polyamide IV was 0.65 dL / g. Further, a slight amount of powder adhered to the reactor wall surface and there was no stickiness due to resin fusion, but the adhesion of the powder to the vacuum vent line was confirmed.

(実施例3:ポリアミドの製造例)
原料として、テレフタル酸83.8g(0.504モル)、1,10−デカンジアミン88.2g(0.512モル)、末端封止剤として酢酸0.75g(0.012モル、ジカルボン酸に対して2モル%)、触媒として次亜リン酸ナトリウム一水和物0.172g(仕込み原料に対して0.1質量部)および水115g(仕込み原料に対して40質量%)を、分縮器、圧力調整弁、内視用窓、および底部排出弁を備えた内容積1リットルのオートクレーブ反応槽に仕込み、窒素置換を行った。攪拌しながら0.5時間かけて180℃まで昇温して0.5時間保持し、内容物が均一溶液となることを確認した。その後1時間かけて内部温度を220℃まで昇温し保持した。内圧が2.2MPaに到達した以降は、同圧力に維持するように水を留去しながら2時間反応を継続した。
(Example 3: Production example of polyamide)
As raw materials, 83.8 g (0.504 mol) of terephthalic acid, 88.2 g (0.512 mol) of 1,10-decanediamine, 0.75 g of acetic acid as end-capping agent (0.012 mol, based on dicarboxylic acid) 2 mol%), 0.172 g of sodium hypophosphite monohydrate (0.1 parts by mass with respect to the charged raw material) and 115 g of water (40% by mass with respect to the charged raw material) as catalysts. Then, an autoclave reaction vessel having an internal volume of 1 liter equipped with a pressure regulating valve, an endoscopic window, and a bottom discharge valve was charged with nitrogen. While stirring, the temperature was raised to 180 ° C. over 0.5 hours and held for 0.5 hours, and it was confirmed that the contents became a homogeneous solution. Thereafter, the internal temperature was raised to 220 ° C. over 1 hour and held. After the internal pressure reached 2.2 MPa, the reaction was continued for 2 hours while distilling off water so as to maintain the same pressure.

所定の反応時間経過後、反応槽の温度、および反応系内の水分量(32質量%)を維持したまま生成した低次縮合物を底部排出弁より、窒素流通下、常温(25℃)、大気圧条件でサイクロン容器に排出した。この際の排出弁ノズル径は3mmであり、排出には約10秒を要した。排出される容器の酸素濃度は0.1体積%であり、白色、粉末状の低次縮合物を得た。   After the predetermined reaction time has elapsed, the low-order condensate produced while maintaining the temperature of the reaction vessel and the amount of water in the reaction system (32% by mass) from the bottom discharge valve at room temperature (25 ° C.) The product was discharged into a cyclone container under atmospheric pressure conditions. The discharge valve nozzle diameter at this time was 3 mm, and it took about 10 seconds for discharge. The oxygen concentration in the discharged container was 0.1% by volume, and a white, powdery low-order condensate was obtained.

得られたポリアミドの低次縮合物のIVは0.06dL/g、Tmは、310℃であった。   The obtained polyamide low-order condensate had an IV of 0.06 dL / g and a Tm of 310 ° C.

次に、この粉末状の低次縮合物に対して、錠剤成形器を用いて300MPaの圧力を付与し、低次縮合物の4mm径の粒状圧縮成形体を作製した。   Next, a pressure of 300 MPa was applied to this powdery low-order condensate using a tablet molding machine to produce a 4 mm diameter granular compression-molded product of the low-order condensate.

この粒状圧縮成形体100gを直径5cm、長さ25cmのガラス製のシリンダーに仕込み、静置し、250℃、0.13kPaの真空下で3時間、固相重合させた。   100 g of this granular compression-molded product was placed in a glass cylinder having a diameter of 5 cm and a length of 25 cm, allowed to stand, and subjected to solid state polymerization at 250 ° C. under a vacuum of 0.13 kPa for 3 hours.

得られたポリアミドのIVは0.78dL/gであった。また、反応器壁面には、粉体の付着はまったくみられず、樹脂の融着によるねばつきもなかった。さらに真空ベントラインへの粉の付着も確認されなかった。   The obtained polyamide had an IV of 0.78 dL / g. In addition, no powder adhered to the reactor wall surface, and there was no stickiness due to resin fusion. Furthermore, no powder adhered to the vacuum vent line.

(比較例3)
粒状圧縮成形体を作製せず、直接、粉体を固相重合したこと以外は実施例3と同様にして、ポリアミドを得た。
(Comparative Example 3)
A polyamide was obtained in the same manner as in Example 3 except that the granular compression-molded body was not produced and the powder was directly solid-phase polymerized.

得られたポリアミドのIVは0.61dL/gであった。また、反応器壁面には、粉体の付着がみられ、樹脂の融着によるねばつきがあった。さらに、真空ベントラインへの粉の付着も確認された。   The obtained polyamide IV was 0.61 dL / g. In addition, adhesion of powder was observed on the reactor wall surface, and there was stickiness due to resin fusion. Furthermore, the adhesion of powder to the vacuum vent line was also confirmed.

(実施例4:ポリカーボネートの製造例)
攪拌槽、コンデンサー、および減圧装置を有する重合反応装置の攪拌槽に、2,2−ビス(4−ヒドロキシフェニル)プロパンを228g(1モル)、ジフェニルカーボネートを223g(1.04モル)、および水酸化カリウムを0.056mg仕込み、温度240℃、反応圧力1.3kPa(10torr)で、反応副生成物のフェノールを攪拌槽から留出させながら2時間反応を行った。室温(25℃)まで冷却後、ポリカーボネートの低次縮合物を攪拌槽から取り出した。粉砕し、アセトン溶媒中で攪拌し、結晶化させろ過し、さらに100℃で減圧乾燥し、粉末状のポリカーボネートの低次縮合物を得た。
(Example 4: Production example of polycarbonate)
228 g (1 mol) of 2,2-bis (4-hydroxyphenyl) propane, 223 g (1.04 mol) of diphenyl carbonate, and water in a stirring tank of a polymerization reactor having a stirring tank, a condenser, and a decompression device 0.056 mg of potassium oxide was charged, and the reaction was carried out at a temperature of 240 ° C. and a reaction pressure of 1.3 kPa (10 torr) for 2 hours while distilling out the reaction by-product phenol from the stirring tank. After cooling to room temperature (25 ° C.), the low-order condensate of polycarbonate was taken out from the stirring vessel. The mixture was pulverized, stirred in an acetone solvent, crystallized, filtered, and dried under reduced pressure at 100 ° C. to obtain a powdery low-order condensate of polycarbonate.

得られたポリカーボネートの低次縮合物のIVは0.16dL/g、Tmは226℃であった。   The obtained polycarbonate low-order condensate had an IV of 0.16 dL / g and a Tm of 226 ° C.

次に、この粉末状の低次縮合物に対して、錠剤成形器を用いて300MPaの圧力を付与し、ポリカーボネートの低次縮合物の4mm径の粒状圧縮成形体を作製した。   Next, a pressure of 300 MPa was applied to the powdery low-order condensate using a tablet molding machine to prepare a 4 mm diameter granular compression molded product of a polycarbonate low-order condensate.

この粒状圧縮成形体40gをガラス製の500mlのロータリーエバポレーターに仕込み、回転数30rpm、220℃、0.13kPaの真空下で3時間、固相重合させた。   40 g of this granular compression-molded product was charged into a 500 ml rotary evaporator made of glass and subjected to solid phase polymerization for 3 hours under a vacuum of 30 rpm, 220 ° C. and 0.13 kPa.

得られたポリカーボネートのIVは0.56dL/gであった。また、反応器壁面には、粉体の付着はほとんどみられず、樹脂の融着によるねばつきもなかった。さらに真空ベントラインへの粉の付着も確認されなかった。   The obtained polycarbonate had an IV of 0.56 dL / g. Moreover, almost no adhesion of powder was observed on the reactor wall surface, and there was no stickiness due to resin fusion. Furthermore, no powder adhered to the vacuum vent line.

(比較例4)
粒状圧縮成形体を作製せず、直接、粉体を固相重合したこと以外は、実施例4と同様にして、ポリカーボネートを得た。
(Comparative Example 4)
A polycarbonate was obtained in the same manner as in Example 4 except that the granular compression-molded body was not produced and the powder was directly solid-phase polymerized.

得られたポリカーボネートのIVは0.55dL/gであった。また、反応器壁面には、粉体の付着がみられ、樹脂の融着によるねばつきがあった。さらに、真空ベントラインへの粉の付着も確認された。   The obtained polycarbonate had an IV of 0.55 dL / g. In addition, adhesion of powder was observed on the reactor wall surface, and there was stickiness due to resin fusion. Furthermore, the adhesion of powder to the vacuum vent line was also confirmed.

(実施例5:ポリカーボネートの製造例)
粒状圧縮成形体100gを直径5cm、長さ25cmのガラス製のシリンダーに仕込み、静置し、220℃、0.13kPaの真空下で3時間、固相重合させた以外は、実施例4と同様にして、ポリカーボネートを得た。
(Example 5: Production example of polycarbonate)
Similar to Example 4 except that 100 g of the granular compression-molded body was charged in a glass cylinder having a diameter of 5 cm and a length of 25 cm, left to stand, and solid-phase polymerized under a vacuum of 220 ° C. and 0.13 kPa for 3 hours. Thus, a polycarbonate was obtained.

得られたポリカーボネートのIVは0.53dL/gであった。また、反応器壁面には、粉体の付着はまったくみられず、樹脂の融着によるねばつきもなかった。さらに真空ベントラインへの粉の付着も確認されなかった。   The obtained polycarbonate had an IV of 0.53 dL / g. In addition, no powder adhered to the reactor wall surface, and there was no stickiness due to resin fusion. Furthermore, no powder adhered to the vacuum vent line.

(比較例5)
粒状圧縮成形体を作製せず、直接、粉体を固相重合したこと以外は、実施例5と同様にして、ポリカーボネートを得た。
(Comparative Example 5)
A polycarbonate was obtained in the same manner as in Example 5 except that the granular compression-molded body was not produced and the powder was directly solid-phase polymerized.

得られたポリカーボネートのIVは0.48dL/gであった。また、反応器壁面には、粉体の付着がみられ、樹脂の融着によるねばつきがあった。さらに、真空ベントラインへの粉の付着も確認された。   The obtained polycarbonate had an IV of 0.48 dL / g. In addition, adhesion of powder was observed on the reactor wall surface, and there was stickiness due to resin fusion. Furthermore, the adhesion of powder to the vacuum vent line was also confirmed.

(実施例6:ポリエステルの製造例)
攪拌槽、およびコンデンサーを有する重合反応装置の攪拌槽に、パラヒドロキシ安息香酸207.0g(1.5モル)、ビフェノール19.9g(0.11モル)、4,4’−ジヒドロキシジフェニルエーテル43.3g(0.21モル)、テレフタル酸53.4g(0.32モル)および無水酢酸229.5g(2.25モル)を仕込み、攪拌下、140℃で5時間保持した。ついで、窒素気流下で過剰の無水酢酸および副生する酢酸を留去しながら、内容物を170℃に昇温し、この温度で1時間保持し、さらに4時間かけて350℃に昇温して、この温度で30分反応させた。室温(25℃)まで冷却後、ポリエステルの低次縮合物を攪拌槽から取り出し、粉砕機で粉体にした。
(Example 6: Production example of polyester)
In a stirring tank and a stirring tank of a polymerization reactor having a condenser, 207.0 g (1.5 mol) of parahydroxybenzoic acid, 19.9 g (0.11 mol) of biphenol, 43.3 g of 4,4′-dihydroxydiphenyl ether (0.21 mol), 53.4 g (0.32 mol) of terephthalic acid and 229.5 g (2.25 mol) of acetic anhydride were charged and kept at 140 ° C. for 5 hours with stirring. Next, while distilling off excess acetic anhydride and by-product acetic acid under a nitrogen stream, the contents were heated to 170 ° C., held at this temperature for 1 hour, and further heated to 350 ° C. over 4 hours. And reacted at this temperature for 30 minutes. After cooling to room temperature (25 ° C.), the low-order polyester condensate was taken out of the stirring vessel and powdered with a pulverizer.

得られたポリエステルの低次縮合物のIVは1.10dL/g、Tmは320℃であった。   The obtained polyester low-order condensate had an IV of 1.10 dL / g and a Tm of 320 ° C.

次に、この粉末状のポリエステルの低次縮合物に対して、錠剤成形器を用いて300MPaの圧力を付与し、ポリエステルの低次縮合物の4mm径の粒状圧縮成形体を作製した。   Next, a pressure of 300 MPa was applied to the powdery low-order condensate of polyester using a tablet molding machine to produce a granular compression-molded body having a diameter of 4 mm of the low-order condensate of polyester.

この粒状圧縮成形体100gを直径5cm、長さ25cmのガラス製のシリンダーに仕込み、静置し、280℃、0.13kPaの真空下で3時間、固相重合させた。   100 g of this granular compression-molded product was placed in a glass cylinder having a diameter of 5 cm and a length of 25 cm, allowed to stand, and subjected to solid phase polymerization at 280 ° C. under a vacuum of 0.13 kPa for 3 hours.

得られたポリエステルのIVは3.02dL/gであった。また、反応器壁面には、粉体の付着はまったくみられず、樹脂の融着によるねばつきもなかった。さらに真空ベントラインへの粉の付着も確認されなかった。   The obtained polyester had an IV of 3.02 dL / g. In addition, no powder adhered to the reactor wall surface, and there was no stickiness due to resin fusion. Furthermore, no powder adhered to the vacuum vent line.

(比較例6)
粒状圧縮成形体を作製せず、直接、粉体を固相重合したこと以外は、実施例6と同様にして、ポリエステルを得た。
(Comparative Example 6)
A polyester was obtained in the same manner as in Example 6 except that the granular compression-molded body was not produced and the powder was directly solid-phase polymerized.

得られたポリエステルのIVは2.73dL/gであった。また、反応器壁面には、樹脂の融着によるねばつきは見られなかったが、粉体の付着がみられ、さらに真空ベントラインへの粉の付着も確認された。   The obtained polyester had an IV of 2.73 dL / g. Further, no stickiness due to resin fusion was observed on the reactor wall surface, but adhesion of powder was observed, and adhesion of powder to the vacuum vent line was also confirmed.

上記実施例および比較例の結果をまとめて、下記表1に示す。   The results of the above Examples and Comparative Examples are summarized and shown in Table 1 below.

Figure 0005492864
Figure 0005492864

Claims (3)

低次縮合物を固相重合する工程を含む重縮合樹脂の製造方法であって、
低次縮合物を製造する工程と、
得られた前記低次縮合物を50〜500MPaの圧縮圧力で圧縮成形し、粒子径が1.5〜10mmである粒状圧縮成形体を得る工程と、
前記粒状圧縮成形体を固相重合する工程と、
を含み、前記固相重合後の重縮合樹脂の対数粘度IVが0.53dL/g〜3.02dL/gである、重縮合樹脂の製造方法。
A process for producing a polycondensation resin comprising a step of solid-phase polymerization of a low-order condensate,
Producing a low-order condensate;
Compression molding the obtained low-order condensate at a compression pressure of 50 to 500 MPa to obtain a granular compression molded product having a particle size of 1.5 to 10 mm ;
Solid-phase polymerization of the granular compression molded body,
Only contains the a logarithmic viscosity IV of 0.53dL / g~3.02dL / g polycondensation resin after solid phase polymerization method for producing a polycondensation resin.
前記固相重合する工程は、縦型の塔式装置または縦型の塔式機器で行う、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the solid-phase polymerization is performed using a vertical tower apparatus or a vertical tower apparatus. 前記重縮合樹脂がポリアミドである、請求項1または2に記載の製造方法。   The manufacturing method of Claim 1 or 2 whose said polycondensation resin is polyamide.
JP2011273256A 2011-12-14 2011-12-14 Production method of polycondensation resin Active JP5492864B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011273256A JP5492864B2 (en) 2011-12-14 2011-12-14 Production method of polycondensation resin
KR1020120131086A KR101557531B1 (en) 2011-12-14 2012-11-19 Method for preparing polycondensation resin
US13/707,775 US9029482B2 (en) 2011-12-14 2012-12-07 Method for preparing polycondensation resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011273256A JP5492864B2 (en) 2011-12-14 2011-12-14 Production method of polycondensation resin

Publications (2)

Publication Number Publication Date
JP2013124288A JP2013124288A (en) 2013-06-24
JP5492864B2 true JP5492864B2 (en) 2014-05-14

Family

ID=48775758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011273256A Active JP5492864B2 (en) 2011-12-14 2011-12-14 Production method of polycondensation resin

Country Status (2)

Country Link
JP (1) JP5492864B2 (en)
KR (1) KR101557531B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6196892B2 (en) * 2013-11-26 2017-09-13 ロッテ アドバンスト マテリアルズ カンパニー リミテッド Polyamide resin and polyamide molded body using the same
WO2015080436A1 (en) * 2013-11-29 2015-06-04 삼성에스디아이 주식회사 Polyamide resin and method for manufacturing same
JP6223154B2 (en) * 2013-11-29 2017-11-01 ロッテ アドバンスト マテリアルズ カンパニー リミテッド Polyamide resin and method for producing the same
JP6364183B2 (en) * 2013-11-29 2018-07-25 ロッテ アドバンスト マテリアルズ カンパニー リミテッド Polyamide resin and method for producing the same
KR102203151B1 (en) * 2017-11-28 2021-01-14 롯데케미칼 주식회사 Crystallization of Polycarbonate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8601893A (en) * 1986-07-22 1988-02-16 Stamicarbon PREPARATION OF HIGH MOLECULAR POLYTETRAMETHYLENE ADIPAMIDE.
JPH0794546B2 (en) * 1987-09-28 1995-10-11 旭化成工業株式会社 Method for producing aromatic polycarbonate and crystalline aromatic polycarbonate powder obtained thereby
EP1336633A4 (en) 2000-10-11 2004-12-08 Teijin Ltd Aromatic polyester carbonate and method for production thereof
JP3732797B2 (en) * 2002-03-29 2006-01-11 帝人株式会社 Compressed granule of aromatic polycarbonate prepolymer and process for producing highly polymerized aromatic polycarbonate

Also Published As

Publication number Publication date
JP2013124288A (en) 2013-06-24
KR20130069388A (en) 2013-06-26
KR101557531B1 (en) 2015-10-06

Similar Documents

Publication Publication Date Title
JP5492864B2 (en) Production method of polycondensation resin
JP5260291B2 (en) Polyesters containing aluminum / alkali or alkali / titanium with improved reheating, color and clarity
JP4179703B2 (en) Method for producing polyamide
TWI282799B (en) Polyester polymer particles having a small surface to center molecular weight gradient
JP5611932B2 (en) Production method of polycondensation resin
JP2010523791A (en) Oxygen scavenging polymer blends suitable for use in packaging
EP3020747B1 (en) Method for producing polyamide resin
WO2015053181A1 (en) Carbon fiber reinforced resin composition, pellets, molded article, and casing for electronic device
JP6840455B2 (en) Liquid crystal polymer composition
TW201249925A (en) Method for producing liquid crystal polyester
EP0916687A1 (en) Process for preparing aromatic polyamides
US9029482B2 (en) Method for preparing polycondensation resin
JP4596810B2 (en) Process for producing aliphatic polyhydroxycarboxylic acid
TW201313775A (en) Method for producing liquid crystal polyester
KR101685747B1 (en) Method for preparing polycondensation resin
WO2003106532A1 (en) Process for producing polyester resin
JP6029201B2 (en) Method for producing liquid crystalline polyester
JP5085863B2 (en) Liquid crystal polymer composition
JP2012188557A (en) Method for producing polyamide
JP6703426B2 (en) Polyethylene terephthalate resin composition
KR20180082398A (en) Method and apparatus for enhancing crystallinity of thermoplastic resin
JP2004051729A (en) Process for producing shaped product of glycolic acid copolymer
JP4408614B2 (en) Production method of glycolic acid polymer
JP2001225323A (en) Method for manufacturing polycarbonate pellet
JP7017969B2 (en) Polyamide resin composition and its molded products

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131224

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5492864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250