JP5490590B2 - Exhaust gas control device - Google Patents

Exhaust gas control device Download PDF

Info

Publication number
JP5490590B2
JP5490590B2 JP2010070982A JP2010070982A JP5490590B2 JP 5490590 B2 JP5490590 B2 JP 5490590B2 JP 2010070982 A JP2010070982 A JP 2010070982A JP 2010070982 A JP2010070982 A JP 2010070982A JP 5490590 B2 JP5490590 B2 JP 5490590B2
Authority
JP
Japan
Prior art keywords
film
dlc
concentration
exhaust gas
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010070982A
Other languages
Japanese (ja)
Other versions
JP2011202596A (en
Inventor
英男 太刀川
憲一 鈴木
正樹 梶野
浩二 加藤
斌 馮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2010070982A priority Critical patent/JP5490590B2/en
Publication of JP2011202596A publication Critical patent/JP2011202596A/en
Application granted granted Critical
Publication of JP5490590B2 publication Critical patent/JP5490590B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、自動車等の燃焼機関の排気ガスの流路を制御する排気ガス制御装置に関する。   The present invention relates to an exhaust gas control device that controls an exhaust gas flow path of a combustion engine such as an automobile.

ガソリンエンジンまたはディーゼルエンジンなどの燃焼機関(以下「エンジン」という。)を搭載する自動車などでは、排気ガスの流れを制御することで、エンジン出力、排気ガス浄化、低燃費化等の向上が図られる。例えば、エンジンの運転状況に応じて排気ガスの流路を切り替えることにより、トルクの平滑化や出力の向上が図られる。またディーゼルエンジンの排気ガスの流路を一時的に閉塞して排気ガス圧力を高めた後、その排気ガス中に含まれる粒子状物質(PM)を捕集するDPF(Diesel particulate filter)の再生が行われる。さらに排気ガスを吸気側へ適時に還流(いわゆるEGR)させて、ディーゼルエンジンであれば燃焼温度低下による窒素酸化物(NOX)の低減が図られ、ガソリンエンジンであれば部分負荷領域におけるポンピングロス低減による燃費(燃料消費率)の向上が図られる。その他、エンジン始動直後の冷間時に排気ガス流路を切り替えて、各部の暖気に排気ガスの廃熱が利用されたりもする。   In automobiles equipped with combustion engines (hereinafter referred to as “engines”) such as gasoline engines or diesel engines, the engine output, exhaust gas purification, fuel efficiency reduction, etc. can be improved by controlling the flow of exhaust gas. . For example, by switching the flow path of the exhaust gas according to the operating condition of the engine, torque smoothing and output improvement can be achieved. In addition, after the exhaust gas flow path of the diesel engine is temporarily blocked to increase the exhaust gas pressure, the DPF (Diesel particulate filter) that collects particulate matter (PM) contained in the exhaust gas is regenerated. Done. Furthermore, exhaust gas is recirculated to the intake side in a timely manner (so-called EGR) to reduce nitrogen oxides (NOX) by lowering the combustion temperature for diesel engines, and to reduce pumping loss in the partial load range for gasoline engines. The fuel consumption (fuel consumption rate) can be improved. In addition, the exhaust gas flow path may be switched when the engine is cold immediately after the engine is started, and the exhaust heat of the exhaust gas may be used for warm air in each part.

このような排気ガス制御は、排気ガス流路に設けた制御弁が、排気ガス流路を切替、絞りまたは遮蔽等してなされる。制御弁のそのような動作は、制御弁と一体的に可動する可動軸を揺動、回動または往復動させることで行われる。その可動軸は、排気ガス制御装置の筐体(ケース)等に配設された軸受で支承され、アクチュエータによって駆動される。このような排気ガス制御装置の詳細は、例えば下記の特許文献1〜3に記載されている。   Such exhaust gas control is performed by a control valve provided in the exhaust gas flow path switching, restricting or shielding the exhaust gas flow path. Such an operation of the control valve is performed by swinging, rotating, or reciprocating a movable shaft that moves integrally with the control valve. The movable shaft is supported by a bearing disposed in a casing (case) of the exhaust gas control device and is driven by an actuator. The details of such an exhaust gas control device are described, for example, in Patent Documents 1 to 3 below.

特表2008−522020号公報Special table 2008-52220 gazette 特開2006−291355号公報JP 2006-291355 A 特開2007−308753号公報JP 2007-308753 A 特開2007−308753号公報JP 2007-308753 A

ところで、大気中へ排出される前の排気ガスは相当の高温である。それに曝される排気ガス制御装置の構成部材も相応の高温になる。このような厳しい高温環境下でも、排気ガス制御装置が安定的に作動するためには、可動軸および軸受が高温摺動性に優れることが必要である。特に、排気ガス制御装置の小型軽量化や低コスト化等の要請から、無潤滑の高温環境下でも、可動軸と軸受との間に高い摺動性が求められる。   By the way, the exhaust gas before being discharged into the atmosphere has a considerably high temperature. The components of the exhaust gas control apparatus that are exposed to it also have a correspondingly high temperature. In order for the exhaust gas control device to operate stably even in such a severe high temperature environment, it is necessary that the movable shaft and the bearing have excellent high temperature slidability. In particular, due to demands for reducing the size and weight of the exhaust gas control device and reducing the cost, high slidability is required between the movable shaft and the bearing even in a non-lubricated high temperature environment.

そこで従来の可動軸および軸受には、例えば、高温耐酸化性に優れるステンレス製の基材に窒化処理したものが用いられていた。しかし、このような可動軸と軸受では、両者間の摩擦係数が比較的大きかった。長期にわたる安定動作を確保するためには、可動軸を駆動するアクチュエータの出力を大きくする必要が生じ、排気ガス制御装置の小型化や消費電力の省力化などの妨げになっていた。   Therefore, conventional movable shafts and bearings used are, for example, those obtained by nitriding a stainless steel base material having excellent high-temperature oxidation resistance. However, the friction coefficient between the movable shaft and the bearing is relatively large. In order to ensure stable operation over a long period of time, it is necessary to increase the output of the actuator that drives the movable shaft, which hinders downsizing the exhaust gas control device and saving power consumption.

その摩擦係数の低減を図るために、摺動部に非晶質炭素膜(ダイヤモンドライクカーボン(DLC)膜)を設けることが考えられる。しかし従来のDLC膜は、主成分であるCが高温域で酸化されて早期に摩耗消失したり非晶質構造からグラファイト的構造へ変化して摩耗消失する課題があった。このため、高温環境下での利用は困難と考えられていた。   In order to reduce the friction coefficient, it is conceivable to provide an amorphous carbon film (diamond-like carbon (DLC) film) on the sliding portion. However, the conventional DLC film has a problem that C, which is the main component, is oxidized in a high temperature range and disappears at an early stage or changes from an amorphous structure to a graphite-like structure and disappears. For this reason, it was thought that the utilization in a high temperature environment was difficult.

もっとも最近、耐熱性を備えるSi含有非晶質炭素膜(DLC−Si膜)が提案されており、それに関する記載が特許文献4にある。特許文献4に記載のDLC−Si膜は、界面側のSi濃度を約30原子%程度、膜表面側のSi濃度を20原子%程度とし、表面側よりも界面側でSi濃度を高くしている。このDLC−Si膜は、500℃および600℃の環境下に3時間曝してもクラックが発生しない。しかし特許文献4には、それ以上の記載がなく、高温域における実用的な摩擦摺動特性や耐久性に関しては何ら検討されていない。   Most recently, a Si-containing amorphous carbon film (DLC-Si film) having heat resistance has been proposed. In the DLC-Si film described in Patent Document 4, the Si concentration on the interface side is about 30 atomic%, the Si concentration on the film surface side is about 20 atomic%, and the Si concentration is higher on the interface side than on the surface side. Yes. This DLC-Si film does not crack even when exposed to 500 ° C. and 600 ° C. for 3 hours. However, Patent Document 4 has no further description, and no study has been made on practical frictional sliding characteristics and durability in a high temperature range.

本発明は、このような事情に鑑みて為されたものであり、円滑な作動を確保しつつ小型化または省力化を図れる排気ガス制御装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an exhaust gas control device that can achieve downsizing or labor saving while ensuring smooth operation.

本発明者はこの課題を解決すべく鋭意研究し試行錯誤を重ねた結果、排気ガス制御装置の制御弁に連動して作動する可動軸とその可動軸を支承する軸受との摺動部に、Si濃度が膜表面側で高く界面側で低いSi含有非晶質炭素膜(以下「DLC−Si膜」という。)を介在させると、その摺動部における摩擦係数が大幅に低減した。またそのDLC−Si膜は耐久性または耐摩耗性にも優れることがわかった。この成果を発展させることにより、以降に述べる本発明を完成するに至った。   As a result of extensive research and trial and error to solve this problem, the inventor of the present invention, on the sliding portion of the movable shaft that operates in conjunction with the control valve of the exhaust gas control device and the bearing that supports the movable shaft, When a Si-containing amorphous carbon film (hereinafter referred to as “DLC-Si film”) having a high Si concentration on the film surface side and a low interface side was interposed, the friction coefficient at the sliding portion was greatly reduced. The DLC-Si film was also found to be excellent in durability or wear resistance. By developing this result, the present invention described below has been completed.

《排気ガス制御装置》
(1)本発明の排気ガス制御装置は、燃焼機関の排気ガスの経路に配設され該排気ガスの流れを制御する制御弁と、該制御弁と一体的に可動する可動軸と、該可動軸を摺動させつつ支承し該可動軸の摺動面に摺接する摺受面を有する軸受と、を備える排気ガス制御装置であって、前記摺動面または前記摺受面の少なくとも一方は、ケイ素(Si)、水素(H)および残部である炭素(C)からなる非晶質炭素膜を有し、該非晶質炭素膜は、付着する界面に臨む臨界部と該臨界部に連なり表面側へ延びる表面部とからなり、該表面部は、Si濃度が8〜30原子%である部分を有し、該臨界部は、該表面部よりもSi濃度が低いと共に該界面側から該表面部側にかけてSi濃度が漸増する傾斜部を有し、該臨界部の付着界面近傍におけるSi濃度が該非晶質炭素膜中で最も低くなっていることを特徴とする。
<Exhaust gas control device>
(1) An exhaust gas control device of the present invention includes a control valve that is disposed in an exhaust gas path of a combustion engine and controls the flow of the exhaust gas, a movable shaft that is movable integrally with the control valve, and the movable A bearing having a sliding surface that is supported while sliding the shaft and is in sliding contact with the sliding surface of the movable shaft, wherein at least one of the sliding surface or the sliding surface is: It has an amorphous carbon film made of silicon (Si), hydrogen (H), and the balance carbon (C). The amorphous carbon film is connected to the critical portion facing the adhesion interface and the critical portion, and the surface side The surface portion has a portion having an Si concentration of 8 to 30 atomic%, and the critical portion has a lower Si concentration than the surface portion and the surface portion from the interface side. The Si concentration in the vicinity of the adhesion interface of the critical portion. There, characterized in that the lowest in the amorphous carbon film.

(2)本発明の排気ガス制御装置によれば、可動軸と軸受との摺接部に、高温域でも優れた摩擦摺動特性を発現するSi含有非晶質炭素膜(DLC−Si膜)が存在する。このため、可動軸と軸受が従来用いられていたステンレス鋼の窒化処理品同士である場合やCrN被膜品と窒化品との組合せである場合と比較して、その摺動部における摩擦係数が高温域でも安定的に低下し、可動軸の摺動に伴う摩擦力が低下して、制御弁の作動に必要する駆動力が低減され得る。この省力化により、排気ガス制御装置の小型軽量化や駆動エネルギーの節減が可能となる。つまり本発明によれば、小型化または省力化を図りつつ、高温環境下でも円滑な作動を確保できる排気ガス制御装置が得られる。 (2) According to the exhaust gas control apparatus of the present invention, a Si-containing amorphous carbon film (DLC-Si film) that exhibits excellent frictional sliding characteristics even in a high temperature range at the sliding contact portion between the movable shaft and the bearing. Exists. For this reason, compared with the case where the movable shaft and the bearing are nitriding products of stainless steel, which are conventionally used, or the combination of a CrN coated product and a nitriding product, the friction coefficient at the sliding portion is high. The driving force required for the operation of the control valve can be reduced because the frictional force accompanying the sliding of the movable shaft is reduced and the control force of the control valve is reduced. This labor saving makes it possible to reduce the size and weight of the exhaust gas control device and to reduce driving energy. That is, according to the present invention, it is possible to obtain an exhaust gas control device capable of ensuring a smooth operation even in a high temperature environment while achieving downsizing or labor saving.

ところで本発明に係るDLC−Si膜が、高温環境下でも十分な摩擦摺動特性、耐酸化性、耐摩耗性等を発現する理由やメカニズムは定かではない。現状では次のように考えられる。本発明に係るDLC−Si膜は、先ず、相手材と接触する表面部(膜表面側)でSi濃度が相対的に高い。これにより少なくとも表面部におけるDLC−Si膜の構造が高温域でも安定している。また、臨界部ではDLC−Si膜のSi濃度が相対的に低い。これによりDLC−Si膜は、可動軸または軸受の基材界面近傍で、硬さが抑制されて高靱性になっている。このため、使用中に作用する種々の応力や衝撃等は、Si濃度が相対的に低い臨界部で巧く吸収または逃され、DLC−Si膜は基材に安定的に密着した状態となる。このような表面部と臨界部とが相乗的に作用することで、本発明に係るDLC−Si膜は高温環境下で使用される場合でも、優れた摩擦摺動特性を安定的または長期的に発現し得ると考えられる。   By the way, the reason and mechanism by which the DLC-Si film according to the present invention exhibits sufficient frictional sliding characteristics, oxidation resistance, wear resistance, etc. even in a high temperature environment are not clear. The current situation is considered as follows. The DLC-Si film according to the present invention first has a relatively high Si concentration at the surface portion (film surface side) in contact with the counterpart material. As a result, the structure of the DLC-Si film at least on the surface is stable even in a high temperature range. In the critical part, the Si concentration of the DLC-Si film is relatively low. As a result, the DLC-Si film has high toughness by suppressing the hardness in the vicinity of the interface between the movable shaft and the base material of the bearing. For this reason, various stresses and impacts acting during use are skillfully absorbed or released at the critical portion where the Si concentration is relatively low, and the DLC-Si film is in a state of being stably adhered to the substrate. By such a synergistic action of the surface portion and the critical portion, even when the DLC-Si film according to the present invention is used in a high temperature environment, excellent friction sliding characteristics can be stably or long-termed. It is thought that it can express.

《その他》
本明細書では、DLC−Si膜の高温域における摩擦摺動特性、耐酸化性、耐摩耗性、耐久性、耐割れ性または耐剥離等をまとめて適宜「耐熱性」という。
特に断らない限り、本明細書でいう「x〜y」は、下限値xおよび上限値yを含む。また、本明細書に記載した種々の下限値または上限値は、任意に組合わされて「a〜b」のような範囲を構成し得る。さらに、本明細書に記載した範囲内に含まれる任意の数値を、数値範囲を設定するための上限値または下限値とすることができる。
<Others>
In this specification, the frictional sliding characteristics, oxidation resistance, wear resistance, durability, crack resistance, or peeling resistance of the DLC-Si film at high temperatures are collectively referred to as “heat resistance” as appropriate.
Unless otherwise specified, “x to y” in the present specification includes a lower limit value x and an upper limit value y. Moreover, the various lower limit value or upper limit value described in this specification can be arbitrarily combined to constitute a range such as “ab”. Furthermore, any numerical value included in the range described in the present specification can be used as an upper limit value or a lower limit value for setting the numerical value range.

直流プラズマCVD成膜装置の概略図である。It is the schematic of a direct-current plasma CVD film-forming apparatus. ボール・オン・ディスク試験装置の概略図である。1 is a schematic view of a ball-on-disk test apparatus. ボール・オン・ディスク試験で用いたディスクの摩耗深さ(同図(a))とボールの摩耗痕径(同図(b))とを示す説明図である。It is explanatory drawing which shows the wear depth (the figure (a)) of the disk used in the ball-on-disk test, and the wear scar diameter (the figure (b)) of the ball. 本発明に係るDLC−Si膜のEPMA分析結果例である。It is an example of the EPMA analysis result of the DLC-Si film concerning the present invention. 排気ガス制御装置の一例を示す断面図であるIt is sectional drawing which shows an example of an exhaust-gas control apparatus. 摺動試験装置の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of a sliding test apparatus. その摺動試験における作動パターンを示す説明図である。It is explanatory drawing which shows the action | operation pattern in the sliding test. 種々の表面被膜を施したシャフトと軸受との間の摩擦係数を示す棒グラフである。It is a bar graph which shows the friction coefficient between the shaft and bearing which gave various surface coatings. 耐久試験による摩擦係数(常温域)への影響を示すグラフである。It is a graph which shows the influence on the friction coefficient (normal temperature range) by an endurance test. 耐久試験による摩擦係数(500℃)への影響を示すグラフである。It is a graph which shows the influence on the friction coefficient (500 degreeC) by an endurance test. 本発明に係る表面部と臨界部に関する説明図である。It is explanatory drawing regarding the surface part and critical part which concern on this invention.

1 直流プラズマCVD成膜装置
2 ボール・オン・ディスク試験装置
3 排気圧力制御装置
4 摺動試験装置
24 スロットルバルブ(制御弁)
S、27 シャフト(可動軸)
B1、B2、34、39 軸受
S1a、S2a 摺動面
B1a、B2a 摺受面
DESCRIPTION OF SYMBOLS 1 DC plasma CVD film-forming apparatus 2 Ball-on-disk test apparatus 3 Exhaust pressure control apparatus 4 Sliding test apparatus 24 Throttle valve (control valve)
S, 27 Shaft (movable axis)
B1, B2, 34, 39 Bearing S1a, S2a Sliding surface B1a, B2a Sliding surface

発明の実施形態を挙げて本発明をより詳しく説明する。なお上述した本発明の構成に、本明細書中から任意に選択した一つまたは二つ以上の構成を付加し得る。この際、製造方法に関する構成は、プロダクトバイプロセスとして理解すれば物に関する構成ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The present invention will be described in more detail with reference to embodiments of the invention. One or two or more configurations arbitrarily selected from the present specification can be added to the configuration of the present invention described above. At this time, the structure related to the manufacturing method can be a structure related to an object if understood as a product-by-process. Which embodiment is the best depends on the target, required performance, and the like.

《排気ガス制御装置》
排気ガス制御装置は、上述した制御弁、可動軸および軸受を備えるものである限り、構造や用途などは問わない。本発明の排気ガス制御装置の用途として、例えば、再生DPF用の排気圧力制御装置やEGR用排気流路(クーラバイパス流路)切替装置などがある。
<Exhaust gas control device>
As long as the exhaust gas control device includes the control valve, the movable shaft, and the bearing described above, the structure and application are not limited. Applications of the exhaust gas control apparatus of the present invention include, for example, an exhaust pressure control apparatus for a regenerated DPF, an EGR exhaust flow path (cooler bypass flow path) switching device, and the like.

排気ガス制御装置に用いられる制御弁は、バタフライ式でもポペット式でもよい。制御弁は、排気ガス流路の切替や開閉を行うものでも、絞りにより流量調整を行うものでもよい。制御弁と共に動く可動軸は、回動し得る軸(シャフト)でも往復動し得る軸(ステム)でもよい。制御弁がバタフライ式の場合、可動軸は軸受に支承されて揺動または回動する。制御弁がポペット式の場合、可動軸は軸受により支承されて往復動する。軸受による可動軸の支承は一箇所で行われても複数箇所で行われてもよい。軸受は、薄肉円筒状のブッシュなどでも筐体に直接設けられた円筒内周面等でもよい。   The control valve used in the exhaust gas control device may be a butterfly type or a poppet type. The control valve may be one that switches or opens and closes the exhaust gas flow path, or one that adjusts the flow rate with a throttle. The movable shaft that moves together with the control valve may be a pivotable shaft (shaft) or a reciprocating shaft (stem). When the control valve is a butterfly type, the movable shaft is supported by a bearing and swings or rotates. When the control valve is a poppet type, the movable shaft is supported by a bearing and reciprocates. The support of the movable shaft by the bearing may be performed at one place or at a plurality of places. The bearing may be a thin cylindrical bush or the like, or a cylindrical inner peripheral surface provided directly on the housing.

DLC−Si膜は、可動軸の摺動面または軸受の摺受面の一方にあっても、両方にあってもよい。いずれか一方がDLC−Si膜である場合、他方はDLC−Si膜以外の表面被膜または表面処理層が形成されていると好ましい。このようなものとして、窒化クロム膜、窒化層などがある。本発明者の研究によると、DLC−Si膜と窒化クロム膜とを組み合わせた場合、特に可動軸の摺動面に窒化クロム膜を設け軸受の摺受面にDLC−Si膜を設けた場合、可動軸と軸受との間の摩擦係数を著しく低減することができる。なお、可動軸と軸受の基材は材質を問わず、同一でも異なっていてもよい。   The DLC-Si film may be provided on one or both of the sliding surface of the movable shaft and the bearing surface of the bearing. When either one is a DLC-Si film, it is preferable that a surface coating or a surface treatment layer other than the DLC-Si film is formed on the other. Examples of such a material include a chromium nitride film and a nitride layer. According to the inventor's study, when a DLC-Si film and a chromium nitride film are combined, particularly when a chromium nitride film is provided on the sliding surface of the movable shaft and a DLC-Si film is provided on the bearing surface of the bearing, The coefficient of friction between the movable shaft and the bearing can be significantly reduced. The movable shaft and the base material of the bearing may be the same or different regardless of the material.

《非晶質炭素膜》
(1)臨界部と表面部
本発明に係る非晶質炭素膜(DLC−Si膜)のSi濃度(Si組成)は、臨界部で低く、表面部で高くなっている。Si濃度は、DLC−Si膜が付着する基材界面(以下「付着界面」という。)から、DLC−Si膜の膜表面付近にかけて緩やかな変化してもよい。Si濃度の変化は臨界部でほぼ収束し、表面部では均一な方が、DLC−Si膜の摩擦摺動特性と耐久性の両立を図る上で好ましい。
《Amorphous carbon film》
(1) Critical part and surface part The Si concentration (Si composition) of the amorphous carbon film (DLC-Si film) according to the present invention is low in the critical part and high in the surface part. The Si concentration may change gradually from the substrate interface to which the DLC-Si film adheres (hereinafter referred to as “attachment interface”) to the vicinity of the film surface of the DLC-Si film. The change in the Si concentration almost converges at the critical part and is more uniform at the surface part in order to achieve both the frictional sliding property and durability of the DLC-Si film.

もっともSi濃度が臨界部で過度に急激な変化をすると、高温環境下でDLC−Si膜が応力集中などによって割れたり剥離したりし得る。そこでSi濃度は、臨界部で連続的に滑らかに変化すると好ましい。具体的にはSi濃度が付着界面から表面部側にかけて漸増する傾斜部を臨界部が有すると好ましい。   However, if the Si concentration changes excessively at the critical part, the DLC-Si film may be cracked or peeled off due to stress concentration or the like in a high temperature environment. Therefore, the Si concentration is preferably changed continuously and smoothly at the critical portion. Specifically, it is preferable that the critical portion has an inclined portion where the Si concentration gradually increases from the adhesion interface to the surface portion side.

臨界部と表面部のそれぞれの膜厚は、DLC−Si膜の特性や用途に応じて異なる。もっとも、主要特性を担うのは表面部であるから、臨界部の厚さ(t)を小さく、表面部の厚さ(t)を厚くすると良い。例えば、臨界部の厚さ(t)は、DLC−Si膜全体の厚さ(t=t+t:表面部の厚さt )に対して50%、25%以下さらには20%以下にしてもよい。もっとも、DLC−Si膜と基材との密着性を確保したり、臨界部におけるSi濃度の急激な変化を避けるために、臨界部の厚さは全体の5%以上さらには10%以上であると好ましい。
ちなみに本明細書では、表面部および臨界部を次のように定義する。その説明図を図10に示した。
(i)先ずDLC−Si膜の全体厚さ(t=t+t)を光学顕微鏡等で確定する。
(ii)次に、そのDLC−Si膜をEPMA分析して得られたSi濃度分布を示す曲線(以下「Si濃度曲線」という。/図4参照)に基づいて、DLC−Si膜の最表面から起算してDLC−Si膜の全体厚さの10〜30%に相当する領域におけるSi濃度を、積分した平均値(平均濃度)を「表面部のSi濃度」と定義する。
(iii)Si濃度曲線中のSi濃度がその平均濃度の1/2となる点Eを求める。この点Eを表面部と臨界部との境界点とする。この境界点を通り、Si濃度曲線の横軸に垂直な線が表面部と臨界部との境界線となる。被覆部材として観れば、その境界点を通る基材表面に平行な面が両者の境界面となる。
(iv)以上を踏まえて本明細書では、その境界線(境界面)からDLC−Si膜の最表面までの領域を「表面部」と、その境界線(境界面)から基材の最表面までの領域を「臨界部」と定義する。
(v)なお本明細書で規定する「臨界部のSi濃度」の上限値は、Si濃度曲線上の境界点におけるSi濃度(平均濃度の1/2のSi濃度)とする。その下限値は、Si濃度曲線上で、基材の最表面から0.5μmだけ境界点側へ移動した点HにおけるSi濃度とする。
The film thicknesses of the critical part and the surface part differ depending on the characteristics and applications of the DLC-Si film. However, it may because the responsibility for a key characteristic is a surface portion, the thickness of the critical section (t 1) the small, the thickness of the surface portion (t 2) is thickened. For example, the thickness (t 1 ) of the critical part is 50%, 25% or less, or 20% with respect to the thickness of the entire DLC-Si film (t 0 = t 1 + t 2 : surface part thickness t 2 ). % Or less. However, in order to ensure the adhesion between the DLC-Si film and the base material or to avoid a sudden change in the Si concentration in the critical part, the thickness of the critical part is 5% or more, further 10% or more of the whole. And preferred.
Incidentally, in this specification, the surface portion and the critical portion are defined as follows. The explanatory diagram is shown in FIG.
(I) First, the total thickness (t 0 = t 1 + t 2 ) of the DLC-Si film is determined with an optical microscope or the like.
(Ii) Next, based on a curve indicating the Si concentration distribution obtained by EPMA analysis of the DLC-Si film (hereinafter referred to as “Si concentration curve” / see FIG. 4), the outermost surface of the DLC-Si film The average value (average concentration) obtained by integrating the Si concentration in a region corresponding to 10 to 30% of the total thickness of the DLC-Si film from the above is defined as “the Si concentration of the surface portion”.
(Iii) A point E at which the Si concentration in the Si concentration curve is ½ of the average concentration is obtained. This point E is defined as a boundary point between the surface portion and the critical portion. A line passing through this boundary point and perpendicular to the horizontal axis of the Si concentration curve becomes the boundary line between the surface portion and the critical portion. When viewed as a covering member, a plane parallel to the substrate surface passing through the boundary point becomes the boundary surface between the two.
(Iv) Based on the above, in this specification, the region from the boundary line (boundary surface) to the outermost surface of the DLC-Si film is referred to as “surface portion”, and the boundary line (boundary surface) to the outermost surface of the substrate. The region up to is defined as the “critical section”.
(V) The upper limit value of the “critical portion Si concentration” defined in this specification is the Si concentration at the boundary point on the Si concentration curve (the Si concentration that is ½ of the average concentration). The lower limit value is the Si concentration at the point H on the Si concentration curve that has moved 0.5 μm from the outermost surface of the substrate toward the boundary point.

(2)膜組成(濃度)
Siは、高温環境下におけるDLC−Si膜の耐酸化性、耐久性、硬さ、耐摩耗性などの有効な元素である。Si濃度が過小ではこれらの効果が十分に得られず、Si濃度が過大になると、DLC−Si膜の硬さは向上するが脆化し耐久性が低下し得る。また、Si濃度が過大になると、DLC−Si膜のヤング率も過大となり、DLC−Si膜に作用する応力も過大となって割れなども生じ易くなる。ちなみにDLC−Si膜のヤング率は、Si濃度が30原子%のとき190GPa、Si濃度が10原子%のとき100GPaとなり、Si濃度の増加と共にヤング率も増加する。
(2) Film composition (concentration)
Si is an effective element such as oxidation resistance, durability, hardness, and wear resistance of the DLC-Si film in a high temperature environment. If the Si concentration is too low, these effects cannot be obtained sufficiently. If the Si concentration is too high, the hardness of the DLC-Si film is improved, but it becomes brittle and durability can be lowered. Further, when the Si concentration is excessive, the Young's modulus of the DLC-Si film is excessively increased, and the stress acting on the DLC-Si film is excessively increased, so that cracking or the like is likely to occur. Incidentally, the Young's modulus of the DLC-Si film is 190 GPa when the Si concentration is 30 atomic%, and 100 GPa when the Si concentration is 10 atomic%, and the Young's modulus increases as the Si concentration increases.

そこで上記の特性に大きく影響する表面部は、例えば、Si濃度が8〜30原子%、12〜25原子%さらには16〜23原子%である部分を有すると好ましい。またDLC−Si膜と基材との密着性に影響する臨界部は、Si濃度が表面部よりも小さい方が、靱性が高くなり、ヤング率が低く柔軟性に富み、密着性が向上して好ましい。もっとも、臨界部のSi濃度が過小になると、高温域での密着安定性が低下する。そこで臨界部のSi濃度は1原子%以上さらには2原子%以上であると好ましい。   Therefore, it is preferable that the surface portion that greatly affects the above-described characteristics has, for example, a portion where the Si concentration is 8 to 30 atomic%, 12 to 25 atomic%, or 16 to 23 atomic%. In addition, the critical part that affects the adhesion between the DLC-Si film and the base material has higher toughness, lower Young's modulus, more flexibility, and better adhesion when the Si concentration is lower than the surface part. preferable. However, when the Si concentration in the critical part is too low, the adhesion stability in the high temperature range decreases. Therefore, the Si concentration in the critical part is preferably 1 atomic% or more, more preferably 2 atomic% or more.

なお、表面部や臨界部の大部分が上記のようなSi濃度であるほど好ましいが、表面部の最表面近傍、表面部と臨界部との境界近傍さらには臨界部と基材との付着界面近傍では、Si濃度が前記範囲から逸脱することはある。少なくとも表面部に関していえば、全体的に観て安定域の組成を表面部の組成(濃度)と考え、そのような安定域がない場合は表面部全体の平均的な組成をもって、表面部の組成(濃度)とする。このことは後述するH濃度やC濃度についても同様である。   It is preferable that most of the surface part and the critical part have the Si concentration as described above. However, the vicinity of the outermost surface of the surface part, the vicinity of the boundary between the surface part and the critical part, and the adhesion interface between the critical part and the substrate. In the vicinity, the Si concentration may deviate from the above range. At least with regard to the surface portion, the composition of the stable region is considered as the composition (concentration) of the surface portion as a whole, and if there is no such stable region, the composition of the surface portion has the average composition of the entire surface portion. (Concentration). The same applies to the H concentration and C concentration described later.

Hは、DLC−Si膜の硬さ、靱性、ヤング率などに影響し、ひいてはDLC−Si膜の耐摩耗性、密着性、割れ、耐久性などに影響する元素である。H濃度が過小ではDLC−Si膜の靱性の低下やヤング率の増大を招き、密着性の低下や割れの発生につながる。H濃度が過大ではDLC−Si膜の硬さが低下し、耐摩耗性や耐久性の低下を生じ得る。表面部のSi濃度およびH濃度を好適な範囲にすることで、高温環境下における摩擦係数や相手材への攻撃性の低減を図ることができる。臨界部に関していえば、H濃度を適度に調整することで、DLC−Si膜の割れや剥離を抑制できる。高温耐久性を向上させるために表面部を厚くした場合でも、H濃度を調整することで、DLC−Si膜へ作用する高温負荷時や冷熱サイクル時の内部応力が低減され、DLC−Si膜の密着性や耐剥離性が確保され得る。   H is an element that affects the hardness, toughness, Young's modulus, and the like of the DLC-Si film, and thus affects the wear resistance, adhesion, cracking, durability, and the like of the DLC-Si film. If the H concentration is too small, the toughness of the DLC-Si film is decreased and the Young's modulus is increased, leading to a decrease in adhesion and cracking. If the H concentration is excessive, the hardness of the DLC-Si film is lowered, and wear resistance and durability may be lowered. By setting the Si concentration and H concentration in the surface portion within a suitable range, it is possible to reduce the friction coefficient and the aggressiveness to the mating material in a high temperature environment. Regarding the critical part, cracking and peeling of the DLC-Si film can be suppressed by appropriately adjusting the H concentration. Even when the surface portion is thickened to improve the high temperature durability, by adjusting the H concentration, the internal stress at the time of high temperature load and cooling cycle acting on the DLC-Si film is reduced, and the DLC-Si film Adhesion and peel resistance can be ensured.

例えば、表面部は、H濃度が20〜40原子%、24〜36原子%さらには27〜33原子%である部分を有すると好適である。また臨界部は、H濃度が表面部よりも大きい方が好ましいが、その上限は40原子%さらには36原子%であると好適である。
さらに臨界部のSi濃度は1〜15原子%さらには2〜15原子%の範囲内にあり、H濃度は20〜40原子%さらには24〜36原子%の範囲内にあると好適である。これにより、DLC−Si膜の密着性や耐剥離性などが確保され易い。
For example, the surface portion preferably has a portion having an H concentration of 20 to 40 atomic%, 24 to 36 atomic%, or 27 to 33 atomic%. The critical part preferably has a higher H concentration than the surface part, but the upper limit is preferably 40 atomic% or even 36 atomic%.
Further, it is preferable that the Si concentration in the critical portion is in the range of 1 to 15 atomic%, more preferably 2 to 15 atomic%, and the H concentration is in the range of 20 to 40 atomic%, further 24 to 36 atomic%. This makes it easy to ensure the adhesion and peel resistance of the DLC-Si film.

(3)膜厚と硬さ
DLC−Si膜の全膜厚は問わないが、高温環境下で使用される場合でも安定して低摩擦係数が維持されるために、3〜50μmさらには5〜30μm程度であると好ましい。膜厚が過小では耐久性が低下し摩擦係数の長期低減を図れず、過大では割れや剥離を生じ易くなる。
DLC−Si膜の硬さも問わないが、耐摩耗性を確保して摩擦係数の長期低減を図るために、表面部のビッカース硬さはHv800〜3000、特に400℃でHv600以上、500℃でHv500以上あると好ましい。
(3) Film thickness and hardness Although the total film thickness of the DLC-Si film is not limited, even when used in a high temperature environment, the low friction coefficient is stably maintained. A thickness of about 30 μm is preferable. If the film thickness is too small, the durability is lowered and the friction coefficient cannot be reduced for a long period of time. If the film thickness is too large, cracking or peeling tends to occur.
The hardness of the DLC-Si film does not matter, but in order to ensure wear resistance and reduce the friction coefficient for a long period of time, the Vickers hardness of the surface portion is Hv 800 to 3000, particularly Hv 600 or more at 400 ° C., Hv 500 at 500 ° C. It is preferable to have the above.

《中間層》
DLC−Si膜により被覆される可動軸または軸受の基材表面には、DLC−Si膜の成膜前に別の表層(中間層)が形成されていてもよい。このような中間層として、例えば、窒化層、浸炭層、浸炭窒化層、窒化クロム層、硬質クロム層などのメッキ層等がある。このような中間層を設けることで、DLC−Si膜の基材への密着性の向上や基材自体の高温強度や高温耐食性の向上等を図れる。
《Middle layer》
Another surface layer (intermediate layer) may be formed on the surface of the base material of the movable shaft or the bearing covered with the DLC-Si film before the DLC-Si film is formed. Examples of such an intermediate layer include a plating layer such as a nitride layer, a carburized layer, a carbonitrided layer, a chromium nitride layer, and a hard chromium layer. By providing such an intermediate layer, it is possible to improve the adhesion of the DLC-Si film to the base material, the high temperature strength and high temperature corrosion resistance of the base material itself, and the like.

また基材の表面に微細な凹凸が形成されていると、アンカー効果が生じてDLC−Si膜の密着性が高まる。このような基材の表面性状は、例えば、ガス窒化、塩浴窒化またはイオン窒化等の窒化処理、グロー放電またはイオンビーム等のイオン衝撃、研磨処理等などにより得られる。   Moreover, when the fine unevenness | corrugation is formed in the surface of a base material, an anchor effect will arise and the adhesiveness of a DLC-Si film will increase. Such surface properties of the substrate can be obtained, for example, by nitriding treatment such as gas nitriding, salt bath nitriding or ion nitriding, ion bombardment such as glow discharge or ion beam, polishing treatment or the like.

《DLC−Si膜の成膜方法》
(1)本発明に係るDLC−Si膜の成膜方法は問わないが、例えば、化学蒸着法(CVD)や物理蒸着法(PVD)などを用いることができる。具体的には、プラズマ化学蒸着法、イオンプレーティング法、スパッタリング法等により成膜できる。中でも、基材の形状にかかわらず比較的安価に成膜できるプラズマ化学蒸着法(以下「プラズマCVD法」という。)が好ましい。
<< DLC-Si film formation method >>
(1) Although the DLC-Si film forming method according to the present invention is not limited, for example, chemical vapor deposition (CVD), physical vapor deposition (PVD), or the like can be used. Specifically, the film can be formed by plasma chemical vapor deposition, ion plating, sputtering, or the like. Among these, a plasma chemical vapor deposition method (hereinafter referred to as “plasma CVD method”) capable of forming a film relatively inexpensively regardless of the shape of the substrate is preferable.

プラズマCVD法により成膜するには、先ず、基材を載置した処理炉内を排気して真空状態とする(排気工程)。この処理炉内へ原料ガス(反応ガス)を導入する(ガス導入工程)。その処理炉内で放電させ、原料ガスのプラズマを生成する(プラズマ生成工程)。このプラズマイオン化されたガスを基材の表面に付着させることで、非晶質炭素膜が成膜される(成膜工程)。ちなみにプラズマCVD法にも、直流プラズマCVD法、パルスプラズマCVD法、高周波プラズマCVD法、マイクロ波プラズマCVDさらにはそれらを組み合わせた複合プラズマCVD法などがある。成膜性の点で直流プラズマCVD法が好ましい。   In order to form a film by the plasma CVD method, first, the inside of the processing furnace on which the substrate is placed is evacuated to a vacuum state (exhaust process). A source gas (reaction gas) is introduced into the processing furnace (gas introduction step). It discharges in the processing furnace, and produces | generates the plasma of source gas (plasma production | generation process). By attaching this plasma ionized gas to the surface of the base material, an amorphous carbon film is formed (film formation step). Incidentally, the plasma CVD method includes a direct-current plasma CVD method, a pulse plasma CVD method, a high frequency plasma CVD method, a microwave plasma CVD, and a composite plasma CVD method combining them. The direct current plasma CVD method is preferable in terms of film formability.

(2)成膜に用いる原料ガス(反応ガス)には、炭化水素ガスとケイ素化合物ガスとの混合ガスを用いるとよい。炭化水素ガスには、例えば、メタン、アセチレン、ベンゼン、トルエン、キシレン、ナフタレン、シクロヘキサン等がある。ケイ素化合物ガスには、例えば、Si(CH[TMS]、SiH、SiCl、SiH等がある。また、原料ガスの濃度や流量調整に、水素ガス(H)、アルゴンガス(Ar)等のキャリアガスを用いるとよい。 (2) A mixed gas of a hydrocarbon gas and a silicon compound gas may be used as a source gas (reaction gas) used for film formation. Examples of the hydrocarbon gas include methane, acetylene, benzene, toluene, xylene, naphthalene, and cyclohexane. Examples of the silicon compound gas include Si (CH 3 ) 4 [TMS], SiH 4 , SiCl 4 , SiH 2 F 4, and the like. A carrier gas such as hydrogen gas (H 2 ) or argon gas (Ar) may be used for adjusting the concentration and flow rate of the source gas.

(3)ところでDLC−Si膜中のSi濃度を臨界部と表面部とで変化させたり、傾斜部を形成するには、例えば原料ガスを用いる場合なら、次のような方法が考えられる。すなわち、成膜工程中に導入する原料ガス中のSi濃度を、成膜初期には小さく、その後大きくなるように、直接的または間接的に変化させる。例えば、導入する原料ガス(特にケイ素化合物ガス)の濃度を経時的に変化させてもよいし、成膜工程中に成膜温度を経時的に変化させてもよい。ちなみにメタン等の炭化水素ガスとTMS等のケイ素化合物ガスを用いて成膜温度を変化させる場合なら、成膜初期に成膜温度を高くすると、炭化水素ガスの反応性が増してケイ素化合物ガスの反応が抑制され、Si濃度の低いDLC−Si膜(臨界部または傾斜部)が成膜され得る。その後、成膜温度を低くすれば、相対的にケイ素化合物ガスの反応が促進され、Si濃度の高いDLC−Si膜(表面部)が成膜され得る。 (3) By the way, in order to change the Si concentration in the DLC-Si film between the critical part and the surface part or to form the inclined part, for example, when using a raw material gas, the following method can be considered. That is, the Si concentration in the raw material gas introduced during the film formation process is changed directly or indirectly so that it is small at the initial stage of film formation and then increased. For example, the concentration of the raw material gas (especially silicon compound gas) to be introduced may be changed over time, or the film formation temperature may be changed over time during the film formation process. Incidentally, if the film formation temperature is changed using a hydrocarbon gas such as methane and a silicon compound gas such as TMS, if the film formation temperature is increased at the initial stage of film formation, the reactivity of the hydrocarbon gas increases and the silicon compound gas The reaction is suppressed, and a DLC-Si film (critical portion or inclined portion) having a low Si concentration can be formed. Thereafter, when the film formation temperature is lowered, the reaction of the silicon compound gas is relatively accelerated, and a DLC-Si film (surface portion) having a high Si concentration can be formed.

この成膜温度の調整は、例えば、グロー放電による基材の加熱を調整することで行える。さらに、プラズマ電源の印加電力を調整して、成膜中の基材の温度を漸増させ、Si濃度を傾斜させることも可能である。成膜温度は、通常、450〜580℃程度である。この範囲内で5〜30℃の温度差を生じさせ、Si濃度を変化させてもよい。H濃度等についても同様のことがいえる。   The film formation temperature can be adjusted, for example, by adjusting the heating of the substrate by glow discharge. Furthermore, it is possible to gradually increase the temperature of the substrate during film formation and to incline the Si concentration by adjusting the power applied to the plasma power source. The film forming temperature is usually about 450 to 580 ° C. Within this range, a temperature difference of 5 to 30 ° C. may be generated to change the Si concentration. The same can be said for the H concentration and the like.

実施例を用いて、本発明の内容を具体的に説明する。先ず、本発明に係るDLC−Si膜の具体例について詳述する。次に、そのDLC−Si膜を用いた排気ガス制御装置の具体例について詳述する。
《DLC−Si膜》
[供試材の製造]
基材表面が非晶質炭素膜で被膜された供試材を以下のように製造した。
(1)直流プラズマCVD成膜装置
図1に示す直流プラズマCVDを行う成膜装置1を用いて、基材15に非晶質炭素膜を成膜した。成膜装置1は、円筒形の炉室をもつステンレス鋼製のチャンバー10と、このチャンバー10内に配置された載置台11と、チャンバー10の上方内に連通するガス導入管12と、チャンバー10の下方内に連通する排気管13とを備えてなる。
ガス導入管12には、マスフローコントローラ(MFC:図略)が設けてある。このMFCの上流側には、種々の原料ガスが個別に封入された複数のガスボンベ(図略)が接続されている。MFCにより、チャンバー10内へ導入するガスの種類、配合、流量等を制御できる。これにより、非晶質炭素膜の組成等が調整可能となる。
The contents of the present invention will be specifically described using examples. First, specific examples of the DLC-Si film according to the present invention will be described in detail. Next, a specific example of an exhaust gas control device using the DLC-Si film will be described in detail.
<< DLC-Si film >>
[Manufacture of test materials]
A test material having a substrate surface coated with an amorphous carbon film was produced as follows.
(1) DC Plasma CVD Film Forming Apparatus An amorphous carbon film was formed on the substrate 15 using the film forming apparatus 1 that performs DC plasma CVD shown in FIG. The film forming apparatus 1 includes a stainless steel chamber 10 having a cylindrical furnace chamber, a mounting table 11 disposed in the chamber 10, a gas introduction pipe 12 communicating with an upper portion of the chamber 10, and a chamber 10. And an exhaust pipe 13 communicating with the inside of the lower part.
The gas introduction pipe 12 is provided with a mass flow controller (MFC: not shown). A plurality of gas cylinders (not shown) in which various source gases are individually sealed are connected to the upstream side of the MFC. The type, composition, flow rate, etc. of the gas introduced into the chamber 10 can be controlled by the MFC. Thereby, the composition and the like of the amorphous carbon film can be adjusted.

排気管13には、排気されるガス流量を調整する排気調整バルブ(図略)が設けてある。その下流側にはチャンバー10内を真空排気する真空ポンプ(油回転ポンプ、メカニカルブースターポンプ、油拡散ポンプ等:図略)が接続されている。
チャンバー10の内壁が陽極板14を兼ねる。この陽極板14と陰極側となる載置台11との間に、プラズマ直流電源16が直流電圧を印加する。なお、プラズマ直流電源16の正極および陽極板14は接地されている。
The exhaust pipe 13 is provided with an exhaust adjustment valve (not shown) for adjusting the flow rate of the exhausted gas. A vacuum pump (oil rotary pump, mechanical booster pump, oil diffusion pump, etc .: not shown) for evacuating the chamber 10 is connected to the downstream side.
The inner wall of the chamber 10 also serves as the anode plate 14. A plasma DC power supply 16 applies a DC voltage between the anode plate 14 and the mounting table 11 on the cathode side. Note that the positive electrode and the anode plate 14 of the plasma DC power supply 16 are grounded.

(2)成膜
基材15の表面への成膜は次のようにして行った。
先ず、チャンバー10内の載置台11上に基材15を載置した。この後、チャンバー10を密封し、排気管13から排気して、チャンバー10内の到達真空度を6.7×10−3Paにした(排気工程)。排気後のチャンバー10内へ、ガス導入管12から、水素ガスを15sccm(standard cc/min:以下単に「sccm」という。)の流量で導入し、チャンバー10内の圧力を約133Paとした。この後、陽極板14と載置台11との間に200Vの直流電圧を印加し、グロー放電を開始させた。こうして基材15の温度が500℃になるまでイオン衝撃による昇温を行った(予熱工程)。なお、基材15の表面温度は、チャンバー10の側面から炉外へ突出する透光窓(図略)を介して赤外線放射温度計(図略)により測定した(表面温度の測定は以下同様の方法で行った)。
(2) Film formation The film formation on the surface of the base material 15 was performed as follows.
First, the base material 15 was mounted on the mounting table 11 in the chamber 10. Thereafter, the chamber 10 was sealed, and the exhaust pipe 13 was evacuated, so that the ultimate vacuum in the chamber 10 was 6.7 × 10 −3 Pa (exhaust process). Hydrogen gas was introduced into the chamber 10 after evacuation from the gas introduction pipe 12 at a flow rate of 15 sccm (standard cc / min: hereinafter simply referred to as “sccm”), and the pressure in the chamber 10 was set to about 133 Pa. Thereafter, a DC voltage of 200 V was applied between the anode plate 14 and the mounting table 11 to start glow discharge. Thus, the temperature was raised by ion bombardment until the temperature of the substrate 15 reached 500 ° C. (preheating step). In addition, the surface temperature of the base material 15 was measured with an infrared radiation thermometer (not shown) through a translucent window (not shown) protruding from the side surface of the chamber 10 to the outside of the furnace (the measurement of the surface temperature is the same hereinafter). Was done by the method).

さらにガス導入管12からチャンバー10内へ、窒素ガス500sccmおよび水素ガス40sccmを導入した。このチャンバー10内の圧力を約800Paにして、温度530℃にした基材15へ、電圧400V(電流1.5A)を印加した。このプラズマ窒化処理を基材15の表面に2時間施した(窒化工程)。基材15の表面の断面を顕微鏡観察したところ、窒化深さ:約30μmの窒化層が形成されていた。   Furthermore, nitrogen gas 500 sccm and hydrogen gas 40 sccm were introduced into the chamber 10 from the gas introduction tube 12. The pressure in the chamber 10 was set to about 800 Pa, and a voltage of 400 V (current 1.5 A) was applied to the base material 15 at a temperature of 530 ° C. This plasma nitriding treatment was performed on the surface of the substrate 15 for 2 hours (nitriding step). When the cross section of the surface of the base material 15 was observed with a microscope, a nitrided layer having a nitridation depth of about 30 μm was formed.

プラズマ窒化処理後、チャンバー10に、ガス導入管12から水素ガスおよびアルゴンガス(キャリアガス)を30sccmずつ導入した。このチャンバー10内の圧力を約533Paにして、温度500℃にした基材15へ電圧300V(電流1.6A)を印加した。こうして基材15の表面にスパッタリングを1時間施した。こうして基材15の表面には微細な凹凸が形成された(粗面化工程)。   After the plasma nitriding treatment, 30 sccm of hydrogen gas and argon gas (carrier gas) were introduced into the chamber 10 from the gas introduction pipe 12. The pressure in the chamber 10 was set to about 533 Pa, and a voltage of 300 V (current 1.6 A) was applied to the base material 15 at a temperature of 500 ° C. Thus, sputtering was performed on the surface of the substrate 15 for 1 hour. Thus, fine irregularities were formed on the surface of the substrate 15 (roughening step).

上記のプラズマ窒化処理後、後述する原料ガス(反応ガス)、水素ガスおよびアルゴンガスをガス導入管12からチャンバー10へ導入した。この際、チャンバー10内の圧力を400〜600Pa、基材15の温度を530℃、基材15へ印可する電圧300〜550V(電流1.5〜2.1A)とした。この状態を1〜2時間継続して、基材15の表面に非晶質炭素膜を成膜した(成膜工程)。   After the above plasma nitriding treatment, raw material gas (reaction gas), hydrogen gas and argon gas, which will be described later, were introduced into the chamber 10 from the gas introduction pipe 12. At this time, the pressure in the chamber 10 was set to 400 to 600 Pa, the temperature of the base material 15 was set to 530 ° C., and the voltage applied to the base material 15 was set to 300 to 550 V (current 1.5 to 2.1 A). This state was continued for 1 to 2 hours, and an amorphous carbon film was formed on the surface of the base material 15 (film formation process).

ところで、原料ガスには、TMS:テトラメチルシラン(Si(CH)、CH:メタン、C:アセチレン、C:ベンゼンを用いた。TMSがSi供給源となる。このTMSを供給する際には、成膜初期はTMSの供給量(導入ガス全体に対する濃度)を低く抑え、その後、TMSの供給量を漸増させていった。具体的には、基材15の界面近傍の臨界部を形成する際に導入したTMS量は、臨界部に続く表面部を形成する際に安定的に導入したTMS量の10〜20体積%とした。その後、TMS量を連続的または段階的に漸増させて、所望する厚さの臨界部が形成され得る時間後に、TMS量を安定にして表面部を形成した。なお表4に示した試験No.SC1aで用いた供試材は、TMS量を漸増させず導入当初から一定量をチャンバー10に供給して製造したものである。この点を除けば、表1に示した試験No.1aで用いた供試材と成膜方法は共通する。 By the way, TMS: tetramethylsilane (Si (CH 3 ) 4 ), CH 4 : methane, C 2 H 2 : acetylene, C 6 H 6 : benzene was used as the source gas. TMS is the Si supply source. When supplying this TMS, the supply amount of TMS (concentration relative to the entire introduced gas) was kept low at the initial stage of film formation, and then the supply amount of TMS was gradually increased. Specifically, the amount of TMS introduced when forming the critical portion near the interface of the base material 15 is 10 to 20% by volume of the amount of TMS stably introduced when forming the surface portion following the critical portion. did. Thereafter, the amount of TMS was gradually or gradually increased to stabilize the amount of TMS and form a surface portion after a time during which a critical portion having a desired thickness could be formed. Note that the test numbers shown in Table 4 were obtained. The specimen used in SC1a was manufactured by supplying a constant amount to the chamber 10 from the beginning of introduction without gradually increasing the amount of TMS. Except for this point, the test numbers shown in Table 1 were obtained. The test material used in 1a and the film formation method are common.

こうして表1〜5に示す各種の試験に供する供試材を得た。なお、比較のために、ここでいう成膜を基材表面に行わない供試材も用意した。   Thus, test materials for use in various tests shown in Tables 1 to 5 were obtained. For comparison, a test material that does not form the film on the substrate surface was also prepared.

(3)基材
上記の成膜を行う基材として、次の3種類を用意した。基材a:ステンレス(JIS SUS304C)からなるディスク(φ30x厚さ3:mm)、基材b:ステンレス製(JIS SUS440C)からなるボール(φ6:mm)、基材c:高速度鋼(JIS SKH51)からなる板片(13x13x5:mm)である。表1〜3の試験No.に付した添字は基材の種類を意味する。
(3) Substrate The following three types were prepared as the substrate on which the film was formed. Base material a: Disc (φ30 × thickness 3: mm) made of stainless steel (JIS SUS304C), Base material b: Ball (φ6: mm) made of stainless steel (JIS SUS440C), Base material c: High speed steel (JIS SKH51) ) (13 × 13 × 5: mm). Test No. of Tables 1-3. The subscripts attached to indicate the type of substrate.

なお、成膜前の基材表面には特に断らない限り、前述したイオン窒化処理による窒化層が形成されている。この窒化層が、基材と非晶質炭素膜との界面に介在する中間層となる。   A nitride layer formed by the above-described ion nitriding treatment is formed on the surface of the base material before film formation unless otherwise specified. This nitride layer becomes an intermediate layer interposed at the interface between the base material and the amorphous carbon film.

[膜組成]
各供試材の非晶質炭素膜中のC濃度、Si濃度おおびH濃度は次のように求めた。先ず、電子プローブ微小部分析法(EPMA)を用いた測定により、膜中に存在するCとSiの量比(原子比)を求める。次に、あらかじめ燃焼法で求めた膜中のH量と弾性反跳粒子検出法(ERDA)法で求めた電子線強度との関係から膜中に存在するHの原子割合(原子%)を求める。これらの結果に基づき、膜全体を100原子%として、膜中のC、SiおよびHの原子%を特定した。ちなみに、ERDAは、2MeVのヘリウムイオンビームを膜表面に照射して、膜からはじき出される水素イオンを半導体検出器により検出し、膜中の水素濃度を測定する方法である。
[Membrane composition]
The C concentration, Si concentration and H concentration in the amorphous carbon film of each test material were determined as follows. First, the amount ratio (atomic ratio) of C and Si present in the film is determined by measurement using an electron probe microanalysis method (EPMA). Next, the atomic ratio (atomic%) of H present in the film is obtained from the relationship between the amount of H in the film obtained in advance by the combustion method and the electron beam intensity obtained by the elastic recoil detection method (ERDA) method. . Based on these results, the atomic% of C, Si and H in the film was specified with the whole film as 100 atomic%. Incidentally, ERDA is a method of measuring the hydrogen concentration in the film by irradiating the surface of the film with a 2 MeV helium ion beam, detecting hydrogen ions ejected from the film with a semiconductor detector.

なお表1〜3に示した膜組成は、非晶質炭素膜の表面側で組成が比較的安定している領域の組成である。つまり本発明でいうなら、DLC−Si膜の臨界部ではなく表面部の中央付近に相当する安定領域の膜組成である。測定領域の具体的な特定方法は前述した通りである。参考例として、試験No.2aに用いた供試材に関するEPMAによる組成分析結果を図4に示した。図4中の横軸は膜厚方向の距離(厚さ)を示し、縦軸はX線強度比を示す。   Note that the film compositions shown in Tables 1 to 3 are compositions in a region where the composition is relatively stable on the surface side of the amorphous carbon film. That is, in the present invention, the film composition of the stable region corresponding to the vicinity of the center of the surface portion, not the critical portion of the DLC-Si film. The specific method for specifying the measurement region is as described above. As a reference example, test no. The composition analysis result by EPMA regarding the test material used for 2a was shown in FIG. The horizontal axis in FIG. 4 indicates the distance (thickness) in the film thickness direction, and the vertical axis indicates the X-ray intensity ratio.

[試験]
(1)耐酸化性(表1:試験No.1a〜C2a)
上記の基材aに非晶質炭素膜を設けた供試材の耐酸化性を調べた。具体的には、表1に示した各供試材を電気炉に入れ、350〜550℃x1時間の大気中に曝して酸化させた。この加熱前後の各供試材の重量(質量)変化を調べた。この結果を表1に示した。
[test]
(1) Oxidation resistance (Table 1: Test Nos. 1a to C2a)
The oxidation resistance of the test material in which an amorphous carbon film was provided on the substrate a was examined. Specifically, each specimen shown in Table 1 was put in an electric furnace and oxidized by exposure to the atmosphere at 350 to 550 ° C. for 1 hour. Changes in the weight (mass) of each specimen before and after heating were examined. The results are shown in Table 1.

(2)高温硬さ(表2:試験No.1c〜C1c)
上記の基材cに非晶質炭素膜を設けた供試材の高温硬さを調べた。具体的には表2に示した各供試材について、400℃および500℃の真空中における表面硬さを、ビッカース硬さ計を用いて荷重25gで測定した。この結果を表2に示した。これら各供試材の非晶質炭素膜の厚さは約12μmであった。
(2) High temperature hardness (Table 2: Test Nos. 1c to C1c)
The high temperature hardness of the test material in which an amorphous carbon film was provided on the substrate c was examined. Specifically, for each specimen shown in Table 2, the surface hardness in vacuum at 400 ° C. and 500 ° C. was measured with a load of 25 g using a Vickers hardness meter. The results are shown in Table 2. The thickness of the amorphous carbon film of each of these test materials was about 12 μm.

(3)摩擦摺動特性(表3:試験No.2abおよびC3ab)
図2に示すボール・オン・ディスクタイプの試験装置(CSM INSTRUMENTS社製 高温摩擦試験機)2を用いて、各供試材の摩擦摺動特性を調べた。ボール・オン・ディスク試験装置2は、基材aからなるディスク20を回転させる回転装置(図略)と、基材bからなるボール21(相手材)のディスク20上への押付け荷重を付与する荷重装置(図略)を備える。この装置を用いて、ボール21の荷重1N、摺動速度0.2m/s、摺動距離600mの条件下で摩擦摩耗試験を行った。この試験の際、ディスク20を300〜480℃に加熱した。
(3) Friction / sliding characteristics (Table 3: Test No. 2ab and C3ab)
Using a ball-on-disk type test apparatus (high temperature friction tester manufactured by CSM INSTRUMENTS) 2 shown in FIG. 2, the frictional sliding characteristics of each test material were examined. The ball-on-disk testing apparatus 2 applies a rotating device (not shown) for rotating the disk 20 made of the base material a and a pressing load on the disk 20 of the ball 21 (the counterpart material) made of the base material b. A load device (not shown) is provided. Using this apparatus, a frictional wear test was conducted under the conditions of a load of the ball 21 of 1 N, a sliding speed of 0.2 m / s, and a sliding distance of 600 m. During this test, the disk 20 was heated to 300-480 ° C.

この摩擦摩耗試験により、摺動性の指標となる摩擦係数、耐摩耗性の指標となるディスク摩耗深さおよび焼き付き状況、相手攻撃性の指標となるボール摩耗痕径を測定または観察した。   By this friction and wear test, the friction coefficient as a slidability index, the disc wear depth and seizure situation as a wear resistance index, and the ball wear scar diameter as an index of opponent attack were measured or observed.

ディスク摩耗深およびボール摩耗痕径は、それぞれ図3(a)および図3(b)にそれぞれ示すように定義した。ちなみに、ディスク20とボール21の摺動距離およびディスク20の回転速度が一定でも、両者の接する位置(回転半径r)によって、ディスク20とボール21の接触回数が変化し、結果的にディスク摩耗深さは変化し得る。そこでディスク摩耗深さは、1回転当りの摩耗深さ(μm/回)で評価した。   The disk wear depth and the ball wear scar diameter were defined as shown in FIGS. 3 (a) and 3 (b), respectively. Incidentally, even if the sliding distance of the disk 20 and the ball 21 and the rotational speed of the disk 20 are constant, the number of contact between the disk 20 and the ball 21 varies depending on the position (rotation radius r) where both contact each other, resulting in the disk wear depth. It can change. Therefore, the disc wear depth was evaluated by the wear depth per rotation (μm / time).

摩擦摩耗試験により得られた結果を表3に示した。表3に示した各試験はディスク20およびボール21に同じ表面処理(成膜)を施した場合である。このとき成膜した供試材の非晶質炭素膜の厚さは約10μmであった。   The results obtained by the friction and wear test are shown in Table 3. Each test shown in Table 3 is the case where the same surface treatment (film formation) was performed on the disk 20 and the ball 21. At this time, the thickness of the amorphous carbon film of the test material formed was about 10 μm.

(4)スクラッチ試験(表4:試験No.S1aおよびNo.SCa)
スクラッチ試機(CSM INSTRUMENTS社製 AEセンサー付き自動スクラッチ試験機 REVETEST RST)を用いて、DLC−Si膜の密着性を調べた。DLC−Si膜の成膜直後の供試材と、DLCその成膜後に冷熱サイクルを与えた供試材についてそれぞれ、密着力を測定した。その結果を表4に示した。冷熱サイクルは、「成膜後の供試材を大気雰囲気の加熱炉内に入れて500℃で5分間保持した後、3℃冷却水に2分間浸漬し、その後500℃の前記炉内に戻す」という操作を50回繰り返しておこなった。
(4) Scratch test (Table 4: Test No. S1a and No. SCa)
The adhesion of the DLC-Si film was examined using a scratch tester (automatic scratch tester REVETEST RST with an AE sensor manufactured by CSM INSTRUMENTS). Adhesion force was measured for each of the test material immediately after the formation of the DLC-Si film and the test material that was subjected to a cooling cycle after the DLC film was formed. The results are shown in Table 4. The cooling cycle is as follows: “The specimen after film formation is placed in a heating furnace in the atmosphere and held at 500 ° C. for 5 minutes, then immersed in 3 ° C. cooling water for 2 minutes, and then returned to the furnace at 500 ° C. Was repeated 50 times.

[評価]
(1)耐酸化性
表1に示す結果から解るように、DLC−Si膜で表面が被覆された供試材(No.1a、No.2a)は、高温加熱の前後で重量変化がほとんどなかった。つまり350〜550℃という高温の大気中にあっても、非常に安定した耐酸化性を示すことが明らかとなった。
一方、Siを含有しないDLC膜で被覆された供試材(No.C1a)では、高温加熱すると供試材の重量が大きく変化した。特に、500℃で加熱すると酸化が激しくDLC膜が消失した。
[Evaluation]
(1) Oxidation resistance As can be seen from the results shown in Table 1, the specimens (No. 1a, No. 2a) whose surfaces were coated with a DLC-Si film had almost no change in weight before and after high-temperature heating. It was. That is, it became clear that even in a high temperature atmosphere of 350 to 550 ° C., very stable oxidation resistance was exhibited.
On the other hand, in the sample material (No. C1a) coated with the DLC film not containing Si, the weight of the sample material changed greatly when heated at a high temperature. In particular, when heated at 500 ° C., the oxidation was severe and the DLC film disappeared.

少ないながらもSiを含有するDLC−Si膜で被覆された供試材(No.C2a)では、Siを含有しない場合よりも加熱前後の重量変化はかなり小さい。もっとも、Siを十分に含有したDLC−Si膜で被覆されている供試材と比較すると、加熱前後の重量変化が大きく、耐熱温度は550℃には至らなかった。
この試験から、耐酸化性ひいては耐熱性の確保には、Siを含有したDLC−Si膜であることが必要であることがわかった。特に500℃以上の高温域でも耐え得るには、Siを少なくとも6原子%以上含有していることが必要であった。
In the test material (No. C2a) coated with the DLC-Si film containing Si, although there are few, the change in weight before and after heating is considerably smaller than in the case of not containing Si. However, the weight change before and after heating was large and the heat resistant temperature did not reach 550 ° C. as compared with the test material covered with the DLC-Si film sufficiently containing Si.
From this test, it was found that a DLC-Si film containing Si is necessary to ensure oxidation resistance and thus heat resistance. In particular, in order to endure even in a high temperature range of 500 ° C. or higher, it was necessary to contain at least 6 atomic% of Si.

(2)高温硬さ
表2に示す結果から解るように、DLC−Si膜で表面が被覆された供試材(No.1c、No.2c)は、500℃という高温加熱下でも、非常に大きな硬さを保持していた。一方、Siを含有しないDLC膜で被覆された供試材(No.C1c)は、高温加熱すると、400℃で硬さが急減し、500℃では測定すらできない状況であった。
(2) High-temperature hardness As can be seen from the results shown in Table 2, the specimens (No. 1c, No. 2c) whose surfaces were coated with the DLC-Si film were very high even when heated at a high temperature of 500 ° C. It had a great hardness. On the other hand, the specimen (No. C1c) coated with the DLC film not containing Si was in a situation where the hardness rapidly decreased at 400 ° C. and could not be measured at 500 ° C. when heated at a high temperature.

これらの試験から高温硬さひいては高温耐摩耗性等を確保するには、やはり非晶質炭素膜がDLC−Si膜であることが必要であることがわかった。特に500℃以上の高温域でも十分な硬さを維持するためには、Siを少なくとも14原子%以上含有していると好ましいことがわかる。
ちなみに、基材c自体の硬さは、加熱前にHv1100、500℃でHv650となる。本発明に係るDLC−Si膜を設けると、基材自体よりも硬質になることがわかる。特に表面部のSi濃度が22%程度になると、500℃でも基材の常温硬さに相当する硬さをほぼ維持することもわかった。
From these tests, it was found that the amorphous carbon film must be a DLC-Si film in order to ensure high-temperature hardness and thus high-temperature wear resistance. In particular, it can be seen that it is preferable to contain at least 14 atomic% of Si in order to maintain sufficient hardness even in a high temperature range of 500 ° C. or higher.
Incidentally, the hardness of the base material c itself becomes Hv650 at Hv1100 and 500 ° C. before heating. It can be seen that when the DLC-Si film according to the present invention is provided, it becomes harder than the base material itself. It was also found that when the Si concentration in the surface portion is about 22%, the hardness corresponding to the normal temperature hardness of the substrate is maintained substantially even at 500 ° C.

(3)高温摩擦摺動特性
表3に示す結果から解るように、適量のSiを含むDLC−Si膜で表面被覆された供試材同士を摺接させた場合(No.2ab)、摩擦係数は300〜480℃の高温域であまり変化せず、いずれも0.25以下で安定していた。一方、DLC−Si膜で被覆されない供試材を用いた場合(No.C3ab)、摩擦係数が0.63〜0.43と相当に高く、不安定であった。
(3) High-temperature frictional sliding characteristics As can be seen from the results shown in Table 3, when the specimens surface-coated with a DLC-Si film containing an appropriate amount of Si are brought into sliding contact (No. 2ab), the friction coefficient Did not change much in the high temperature range of 300 to 480 ° C., and all were stable at 0.25 or less. On the other hand, when the test material not covered with the DLC-Si film was used (No. C3ab), the friction coefficient was as high as 0.63 to 0.43 and was unstable.

ボール摩耗痕径およびディスク摩耗深さに関しても、同様の傾向がいえる。つまりSi濃度が適切なDLC−Si膜で被覆された供試材を用いた場合、ボール摩耗痕径およびディスク摩耗深さが、比較的小さい値で安定していた。一方、DLC−Si膜がない場合、ボール摩耗痕径およびディスク摩耗深さが共に大きくなり、特に温度が400℃から480℃に上昇すると急増する傾向を示した。   The same tendency can be said with respect to the ball wear scar diameter and the disk wear depth. That is, when a test material coated with a DLC-Si film having an appropriate Si concentration was used, the ball wear scar diameter and the disk wear depth were stable at relatively small values. On the other hand, in the absence of the DLC-Si film, both the ball wear scar diameter and the disk wear depth increased, and particularly when the temperature rose from 400 ° C. to 480 ° C., it showed a tendency to increase rapidly.

さらにディスク摩耗深さを観ると解るように、Si濃度の適切なDLC−Si膜で被覆された供試材では、高温摺動させたときでも、相手材(ボール21)の凝着を生じず、相手攻撃性が低いことが確認された。またこのときのディスク摩耗深さは、摺動距離が増加してもほぼ一定で、摩耗の進展は見られなかった。従ってSi濃度の適切なDLC−Si膜で被覆された供試材は、それ自身の摩耗も小さいことが確認された。一方、DLC−Si膜がない場合、表面に相手材の凝着が観られ、特に480℃では大きな凝着が観られた。この凝着は焼き付きによるものと考えられる。   Further, as can be seen from the disk wear depth, the specimen coated with the DLC-Si film having an appropriate Si concentration does not cause adhesion of the mating material (ball 21) even when it is slid at a high temperature. , It was confirmed that the opponent's aggressiveness is low. Further, the disc wear depth at this time was substantially constant even when the sliding distance was increased, and no progress of wear was observed. Therefore, it was confirmed that the specimen coated with the DLC-Si film having an appropriate Si concentration has small wear. On the other hand, in the absence of the DLC-Si film, adhesion of the counterpart material was observed on the surface, and large adhesion was observed particularly at 480 ° C. This adhesion is thought to be due to seizure.

(4)臨界部(傾斜部)の影響
DLC−Si膜の高温摩擦摺動特性には、その表面部が大きく寄与し得る。ただ実用性を考慮すると、摩擦摺動特性のみならず、DLC−Si膜が剥離等せず基材表面に長期にわたって付着していることも重要である。つまり、DLC−Si膜には、常温域は勿論のこと高温域においても高い密着性が求められる。
(4) Influence of critical part (inclined part) The surface part can greatly contribute to the high temperature frictional sliding characteristics of the DLC-Si film. However, considering practicality, it is important not only for the frictional sliding properties but also for the DLC-Si film to adhere to the substrate surface for a long time without peeling off. That is, the DLC-Si film is required to have high adhesiveness not only in the normal temperature range but also in the high temperature range.

図4に示すように、本発明に係るDLC−Si膜は、基材と接する境界付近からSi濃度が徐々に増加している。このSi濃度の漸増または濃度傾斜が、常温域のみならず高温域におけるDLC−Si膜の密着性、さらにはDLC−Si膜の高温耐久性を高めていると考えられる。   As shown in FIG. 4, in the DLC-Si film according to the present invention, the Si concentration gradually increases from the vicinity of the boundary in contact with the substrate. This gradual increase or concentration gradient of the Si concentration is considered to improve the adhesion of the DLC-Si film in the high temperature region as well as the normal temperature region, and further increase the high temperature durability of the DLC-Si film.

このことは表4に示すスクラッチ試験結果から明らかである。すなわち、成膜初期にTMSガス量を調整せずに成膜した供試材を用いた場合(試験No.SCa)、DLC−Si膜の成膜直後の密着力自体が低く、厳しい冷熱サイクルの経過後の密着力は初期の密着力の半分以下となった。従って、従来の方法で成膜したDLC−Si膜は、常温域で使用し得るとしても、高温耐久性に乏しいことが明らかとなった。これに対して表面部よりも臨界部のSi濃度が低くなるようにした供試材を用いた場合(試験No.S1a)、DLC−Si膜の成膜直後の密着力自体が高く、厳しい冷熱サイクルの経過後でも、その密着力はあまり低下しなかった。よって、本発明に係るDLC−Si膜は、成膜直後から高い密着力を有し、高温環境下で使用される場合でもその高い密着力を安定的に維持して、常温域は勿論高温域で使用される場合でも、優れた耐久性を発現することが明らかとなった。   This is clear from the scratch test results shown in Table 4. That is, when using a test material formed without adjusting the amount of TMS gas at the beginning of film formation (Test No. SCa), the adhesion force itself immediately after the formation of the DLC-Si film is low, and a severe cooling / heating cycle is performed. The adhesive strength after the lapse was less than half of the initial adhesive strength. Therefore, it has been clarified that the DLC-Si film formed by the conventional method has poor high-temperature durability even if it can be used in a normal temperature range. On the other hand, when using a test material in which the Si concentration in the critical part is lower than the surface part (test No. S1a), the adhesion force itself immediately after the formation of the DLC-Si film is high, and severe cooling Even after cycling, the adhesion did not decrease much. Therefore, the DLC-Si film according to the present invention has a high adhesive force immediately after the film formation, and stably maintains the high adhesive force even when used in a high temperature environment. It was revealed that even when used in the above, excellent durability was exhibited.

このように本発明に係るDLC−Si膜は、相対的にSi濃度の大きな表面部とSi濃度の小さい臨界部とが相乗的に作用して、高温環境下で使用される場合でも、低い摩擦係数が長期にわたって安定的に発現される。このDLC−Si膜は、高温環境下で摺接する排気ガス制御装置の可動軸または軸受に好適であると考えられる。そこで、具体的な排気ガス制御装置に、そのDLC−Si膜を適用した場合について以降で検討する。   As described above, the DLC-Si film according to the present invention has a low friction even when the surface portion having a relatively high Si concentration and the critical portion having a low Si concentration act synergistically to be used in a high temperature environment. The coefficient is stably expressed over a long period of time. This DLC-Si film is considered to be suitable for a movable shaft or a bearing of an exhaust gas control device that is slidably contacted in a high temperature environment. Therefore, the case where the DLC-Si film is applied to a specific exhaust gas control device will be examined hereinafter.

《排気ガス制御装置》
本発明の排気ガス制御装置に係る一例として、図5に示すようなディーゼルエンジン用の再生DPF装置(図略)の下流に配設される排気圧力制御装置3がある。再生DPF装置は、ディーゼルエンジンの排気ガス中に含まれるパティキュレート(PM)や黒鉛を捕集するセラミック製フィルタ(DPF)と酸化触媒とからなる。この再生DPF装置を排気ガスが通過することで、排気ガスは浄化されて外部へ排出可能となる。
<Exhaust gas control device>
As an example according to the exhaust gas control device of the present invention, there is an exhaust pressure control device 3 disposed downstream of a regeneration DPF device (not shown) for a diesel engine as shown in FIG. The regenerated DPF device includes a ceramic filter (DPF) that collects particulates (PM) and graphite contained in exhaust gas of a diesel engine and an oxidation catalyst. By passing the exhaust gas through the regenerated DPF device, the exhaust gas is purified and can be discharged to the outside.

この排気圧力制御装置3に用いられるシャフト27(可動軸)の摺動面(端部外周面)またはそれを支承する軸受34、39の摺受面(内周面)に上述したDLC−Si膜を成膜する。そうすると、両者間の摩擦係数が高温環境下でも低減され、ひいてはシャフト27の駆動力が低減されて、排気圧力制御装置3の小型軽量化や駆動エネルギーの省力化が図られる。そこで先ず、排気圧力制御装置3の概要を説明し、その後、上記の摺動面または摺受面にDLC−Si膜を成膜したときの具体的な効果について説明する。   The above-mentioned DLC-Si film on the sliding surface (end outer peripheral surface) of the shaft 27 (movable shaft) used in the exhaust pressure control device 3 or the sliding surfaces (inner peripheral surfaces) of the bearings 34 and 39 that support the shaft 27 (movable shaft). Is deposited. As a result, the coefficient of friction between the two is reduced even in a high-temperature environment, and the driving force of the shaft 27 is reduced, so that the exhaust pressure control device 3 can be reduced in size and weight and drive energy can be saved. Therefore, first, the outline of the exhaust pressure control device 3 will be described, and then specific effects when the DLC-Si film is formed on the sliding surface or the sliding surface will be described.

[排気圧力制御装置]
(1)排気圧力制御装置3は、ボア21とバイパス通路22を含むケーシング23(筐体)と、ボア21を開閉するバタフライ式のスロットルバルブ24(制御弁)と、バイパス通路22を開閉するバイパスバルブ25とを備える。
[Exhaust pressure control device]
(1) The exhaust pressure control device 3 includes a casing 23 (housing) including a bore 21 and a bypass passage 22, a butterfly throttle valve 24 (control valve) that opens and closes the bore 21, and a bypass that opens and closes the bypass passage 22. And a valve 25.

ボア21の上流側(図面左側)は再生DPF装置(図略)へ接続され、ボア21の下流側(図面右側)はマフラ(図略)に接続される。シャフト27(可動軸)に固定されたスロットルバルブ24が回動することにより、ボア21は全開状態又は全閉状態が選択的に切り替えられる。バイパス通路22は、ボア21に隣接して設けられ、仕切壁26で区画される。バイパスバルブ25は、フラッパ弁であり、アーム28の先端にボルト29で固定される。アーム28は、支軸30を中心に回動可能に設けられ、排気ガスの圧力が所定値を超えたとき、バイパスバルブ25を持ち上げてバイパス通路22を開く。   The upstream side (left side of the drawing) of the bore 21 is connected to a regenerating DPF device (not shown), and the downstream side (right side of the drawing) of the bore 21 is connected to a muffler (not shown). As the throttle valve 24 fixed to the shaft 27 (movable shaft) rotates, the bore 21 is selectively switched between the fully open state and the fully closed state. The bypass passage 22 is provided adjacent to the bore 21 and is partitioned by a partition wall 26. The bypass valve 25 is a flapper valve, and is fixed to the tip of the arm 28 with a bolt 29. The arm 28 is provided so as to be rotatable about the support shaft 30. When the pressure of the exhaust gas exceeds a predetermined value, the arm 28 lifts the bypass valve 25 and opens the bypass passage 22.

シャフト27は、ボア21を貫通し、一対をなす第1支持部32及び第2支持部33にて回転可能に支持される。シャフト27の一端部(第1端部)27aは、ケーシング23から外部へ突出し、その途中で軸受34により回転可能に支持される。軸受34に隣接して配設されたシールリング35が排気ガスの洩れを抑える。第1支持部32から突出した第1端部27aは、レバー38を介して、アクチュエータ36のロッド37に連結される。アクチュエータ36は負圧により作動するダイアフラム式である。アクチュエータ36に負圧が印加されると、ロッド37が伸張し、レバー38を介してシャフト27が回動してスロットルバルブ24が閉じられる。アクチュエータ36へ印加される負圧は、バキューム・スイッチング・バルブ(VSV:図略)により切替えられ、VSVは電子制御装置(ECU:図略)により制御される。シャフト27の他端部(第2端部)27bは、第2支持部33の開口に配設された軸受39により回転可能に支持される。なお、軸受34および軸受39はいずれも薄肉円筒状のブッシュである。   The shaft 27 passes through the bore 21 and is rotatably supported by a pair of first support portion 32 and second support portion 33. One end portion (first end portion) 27a of the shaft 27 protrudes from the casing 23 to the outside, and is supported rotatably by the bearing 34 in the middle thereof. A seal ring 35 disposed adjacent to the bearing 34 suppresses leakage of exhaust gas. The first end portion 27 a protruding from the first support portion 32 is connected to the rod 37 of the actuator 36 via the lever 38. The actuator 36 is a diaphragm type that operates by negative pressure. When a negative pressure is applied to the actuator 36, the rod 37 extends, the shaft 27 rotates through the lever 38, and the throttle valve 24 is closed. The negative pressure applied to the actuator 36 is switched by a vacuum switching valve (VSV: not shown), and the VSV is controlled by an electronic control unit (ECU: not shown). The other end portion (second end portion) 27 b of the shaft 27 is rotatably supported by a bearing 39 disposed in the opening of the second support portion 33. The bearing 34 and the bearing 39 are both thin cylindrical bushes.

(2)排気圧力制御装置3は、ECUからの指令に基づきVSVを介してスロットルバルブ24を回動させ、ボア21の開閉を行う。これにより、ディーゼルエンジンの排気ガス圧力(排圧)が制御され、再生DPF装置によるPM等の捕集と再生が繰り返しなされる。この過程を具体的にいうと、再生DPF装置中にあるDPFがPM等を捕集して圧力損失(再生DPF装置の上流側と下流側との間の排気ガス圧力差)が大きくなると、ECUはスロットルバルブ24を閉じる。これにより排圧が上昇し、ディーゼルエンジンへ供給される燃料が増量され、再生DPF装置へ未燃成分を含んだ排気ガスが流入する。その未燃成分は酸化触媒によって燃焼し、DPF内の温度を上昇させる。この結果、既に捕集していた黒鉛やPMが燃焼し、DPFが再生される。このDPFの再生が完了すると、ECUはスロットルバルブ24を開き、ディーゼルエンジンの運転を通常状態に戻す。 (2) The exhaust pressure control device 3 opens and closes the bore 21 by rotating the throttle valve 24 via the VSV based on a command from the ECU. Thereby, the exhaust gas pressure (exhaust pressure) of the diesel engine is controlled, and PM and the like are repeatedly collected and regenerated by the regenerative DPF device. Specifically, when the DPF in the regenerated DPF device collects PM or the like and the pressure loss (exhaust gas pressure difference between the upstream side and the downstream side of the regenerated DPF device) increases, the ECU Closes the throttle valve 24. As a result, the exhaust pressure rises, the amount of fuel supplied to the diesel engine increases, and the exhaust gas containing unburned components flows into the regenerated DPF device. The unburned components are combusted by the oxidation catalyst and raise the temperature in the DPF. As a result, the graphite and PM that have already been collected are burned, and the DPF is regenerated. When the regeneration of the DPF is completed, the ECU opens the throttle valve 24 and returns the operation of the diesel engine to the normal state.

(3)スロットルバルブ24には大きな排圧が作用するので、それを支持するシャフト27の摺動面と軸受34、39の摺受面との間には大きな力が作用する。しかも、スロットルバルブ24およびシャフト27は高温の排気ガスに曝されるので、その摺動部も高温になる。このような高温環境下でスロットルバルブ24を円滑に安定して作動させるには、摺動部における高温摩擦摺動性が重要となる。 (3) Since a large exhaust pressure acts on the throttle valve 24, a large force acts between the sliding surface of the shaft 27 supporting it and the sliding surfaces of the bearings 34 and 39. In addition, since the throttle valve 24 and the shaft 27 are exposed to high-temperature exhaust gas, their sliding portions also become high temperature. In order to operate the throttle valve 24 smoothly and stably in such a high temperature environment, the high temperature friction sliding property at the sliding portion is important.

[摺動試験装置]
本発明に係るDLC−Si膜がその摺動部に介在していると、長期にわたり、高温時の摩擦係数を安定的に低減できると考えられる。これを実証するため、上述したシャフト27および軸受34、39の関係を模擬的に再現できる摺動試験装置を考案した。この装置を用いて、DLC−Si膜およびそれ以外の表面被膜を摺動部に設けた場合についても評価した。
[Sliding test equipment]
When the DLC-Si film according to the present invention is interposed in the sliding portion, it is considered that the friction coefficient at high temperature can be stably reduced over a long period of time. In order to verify this, a sliding test apparatus that can simulate the relationship between the shaft 27 and the bearings 34 and 39 was devised. Using this apparatus, the case where a DLC-Si film and other surface coatings were provided on the sliding portion was also evaluated.

(1)図6Aに示す摺動試験装置4は、ベース40と、ベース40上に所定距離隔てて一直線上に配設した一対の軸受ホルダ41、42と、シャフトSにボールベアリング46を介して取り付けられるアーム47およびその下端に取り付けられた錘48と、軸受ホルダ42を貫いて延びるシャフトSの端部に連結された駆動源であるモータ45とを備える。 (1) A sliding test apparatus 4 shown in FIG. 6A includes a base 40, a pair of bearing holders 41 and 42 arranged on a straight line at a predetermined distance on the base 40, and a shaft S via a ball bearing 46. An arm 47 to be attached, a weight 48 attached to the lower end thereof, and a motor 45 as a drive source connected to the end of the shaft S extending through the bearing holder 42 are provided.

軸受B1、B2は、軸受ホルダ41、42に設けた凹部に嵌挿される。さらに軸受B1、B2の外周囲にはヒータ41a、42aがそれぞれ配設される。軸受B1、B2の摺受面B1a、B2aはシャフトSの摺動面S1a、S2aにそれぞれ摺接する。これら摺動部を介して、シャフトSは軸受B1、B2により支承される。軸受B1と軸受B2の中央部では、錘48による鉛直方向下向きの荷重がアーム47を介してシャフトSへ印加される。
この摺動試験装置4を上述の排気圧力制御装置3と対比すると、支持部32、33は軸受ホルダ41、42に、シャフト27はシャフトSに、スロットルバルブ24へ作用する排圧よりシャフト27へ印可される荷重は錘48の荷重に、アクチュエータ36、ロッド37およびレバー38はモータ45に、それぞれ相当する。
The bearings B1 and B2 are fitted into recesses provided in the bearing holders 41 and 42. Further, heaters 41a and 42a are disposed around the outer periphery of the bearings B1 and B2, respectively. The bearing surfaces B1a and B2a of the bearings B1 and B2 are in sliding contact with the sliding surfaces S1a and S2a of the shaft S, respectively. The shaft S is supported by bearings B1 and B2 through these sliding portions. A vertically downward load due to the weight 48 is applied to the shaft S via the arm 47 at the center of the bearings B1 and B2.
When this sliding test device 4 is compared with the exhaust pressure control device 3 described above, the support portions 32 and 33 are applied to the bearing holders 41 and 42, the shaft 27 is applied to the shaft S, and the exhaust pressure acting on the throttle valve 24 is applied to the shaft 27. The applied load corresponds to the load of the weight 48, and the actuator 36, the rod 37, and the lever 38 correspond to the motor 45, respectively.

(2)摺動試験装置4による摩擦摺動試験は次の条件下で行った。すなわち、シャフトS:JIS SUS310S製/φ12mmx140mm、軸受B1、B2:JIS SUS430製/外径φ18mmx内径φ12mmx9.5mm、軸受B1と軸受B2との間隔(中央線間):80mm、錘48の荷重:25kg、シャフトSの作動角:70°とした。摺動試験装置4による耐久試験は、図6Bに示す作動パターンを1サイクルとして行った。すなわち耐久試験は、シャフトSを0°〜70°回転させる1.5秒間とシャフトSの回転を元に戻す0.5秒間とを一周期とする動作を繰り返して行った。 (2) The friction sliding test by the sliding test apparatus 4 was performed under the following conditions. That is, shaft S: made of JIS SUS310S / φ12 mm × 140 mm, bearing B1, B2: made of JIS SUS430 / outer diameter φ18 mm × inner diameter φ12 mm × 9.5 mm, distance between bearing B1 and bearing B2 (between the center line): 80 mm, weight 48 load: 25 kg The operating angle of the shaft S was 70 °. In the durability test by the sliding test device 4, the operation pattern shown in FIG. 6B was performed as one cycle. That is, the endurance test was performed by repeating an operation in which 1.5 seconds for rotating the shaft S from 0 ° to 70 ° and 0.5 seconds for returning the rotation of the shaft S to one cycle were repeated.

[摩擦摺動試験]
(1)摺動試験装置4を用いて、種々の表面処理を行ったシャフトSおよび軸受B1、B2の摩擦摺動特性を測定した。シャフトSの摺動面S1a、S2aおよび軸受B1、B2の摺受面B1a、B2aに施した表面処理の組み合わせは表5にまとめて示した。表5中の「DLC−Si」は、試験No.1aに用いた供試材と同様の方法でDLC−Si膜を成膜したものである。表5中の「窒化」および「CrN」はそれぞれ、次のような表面処理を行ったものである。すなわち、「窒化」処理はタフトライド法により、「CrN」処理はイオンプレーティング法により行った。表5中に示した膜組成は、摺動面または摺受面の表面部の組成である。
[Friction sliding test]
(1) Using the sliding test apparatus 4, the frictional sliding characteristics of the shaft S and bearings B1 and B2 subjected to various surface treatments were measured. Table 5 summarizes the combinations of surface treatments applied to the sliding surfaces S1a, S2a of the shaft S and the sliding surfaces B1a, B2a of the bearings B1, B2. “DLC-Si” in Table 5 indicates test no. A DLC-Si film is formed by the same method as the test material used in 1a. “Nitriding” and “CrN” in Table 5 are the following surface treatments. That is, the “nitriding” treatment was performed by a tuftride method, and the “CrN” treatment was performed by an ion plating method. The film composition shown in Table 5 is the composition of the surface portion of the sliding surface or the sliding surface.

(2)この摩擦摺動試験により、それぞれのシャフトSおよび軸受B1、B2を用いたときの常温域の摩擦係数、高温域(500℃)の摩擦係数および耐久性(繰返し作動させたときの摩擦係数の変化)を測定した。その結果を表5にあわせて示した。なお、各摩擦係数は、摺動試験装置4のモータ45のシャフトにトルクレンチ(株式会社東日製作所製:DB1.5N4)を取付けて測定した。
表5に示した試験No.F1〜F5について、常温域および500℃で測定した摩擦係数を図7に棒グラフで示した。また試験No.F1およびF5について、耐久試験中の摩擦係数の変化を図8および図9に折れ線グラフで示した。図8はその摩擦係数を常温域で測定したものであり、図9は500℃で測定したものである。
(2) By this friction sliding test, the friction coefficient in the normal temperature region, the friction coefficient in the high temperature region (500 ° C.) and the durability when using the shaft S and the bearings B1 and B2 (the friction when repeatedly operated) Change in coefficient) was measured. The results are shown in Table 5. Each friction coefficient was measured by attaching a torque wrench (manufactured by Tohnichi Manufacturing Co., Ltd .: DB1.5N4) to the shaft of the motor 45 of the sliding test apparatus 4.
Test No. shown in Table 5 About F1-F5, the friction coefficient measured by normal temperature range and 500 degreeC was shown with the bar graph in FIG. In addition, Test No. For F1 and F5, changes in the coefficient of friction during the durability test are shown by line graphs in FIGS. FIG. 8 shows the friction coefficient measured at room temperature, and FIG. 9 shows the measurement at 500.degree.

[評価]
(1)摩擦係数
表5および図7に示す結果から明らかなように、シャフトSの摺動面または軸受B1、B2の摺受面のいずれか一方に本発明に係るDLC−Si膜が存在する場合、DLC−Si膜が存在しない場合(試験No.F5)に比べて、摩擦係数が大幅に低減することがわかる。特に常温域の摩擦係数は1/3以下にまで低下した。またDLC−Si膜が存在する場合、常温域と500℃の高温域との摩擦係数差が小さかった。つまり、DLC−Si膜が存在すると、常温域から高温域まで摩擦係数が安定的に低減されることが明らかとなった。
[Evaluation]
(1) Friction coefficient As is apparent from the results shown in Table 5 and FIG. 7, the DLC-Si film according to the present invention is present on either the sliding surface of the shaft S or the sliding surfaces of the bearings B1 and B2. In this case, it can be seen that the coefficient of friction is greatly reduced as compared with the case where the DLC-Si film is not present (test No. F5). In particular, the coefficient of friction in the normal temperature range decreased to 1/3 or less. When the DLC-Si film was present, the difference in friction coefficient between the normal temperature range and the high temperature range of 500 ° C. was small. That is, it has been clarified that when the DLC-Si film is present, the friction coefficient is stably reduced from the normal temperature range to the high temperature range.

さらに摺接する両面にDLC−Si膜が存在するよりも、一方がDLC−Si膜で他方がCrN膜(窒化クロム膜)であると、摩擦係数が一層低減されることが明らかとなった。特に、シャフトS(可動軸)の摺動面にCrN膜、軸受B1、B2の摺受面にDLC−Si膜が存在すると、常温域および高温域の両方で、摩擦係数がより一層低減されることが明らかとなった。   Further, it has been clarified that the friction coefficient is further reduced when one is a DLC-Si film and the other is a CrN film (chromium nitride film) rather than the DLC-Si film on both surfaces in sliding contact. In particular, when a CrN film is present on the sliding surface of the shaft S (movable shaft) and a DLC-Si film is present on the sliding surfaces of the bearings B1 and B2, the friction coefficient is further reduced both in the normal temperature range and in the high temperature range. It became clear.

ちなみに、シャフトSおよび軸受B1、B2を500℃の大気中に250時間放置した後に同様の方法で測定した摩擦係数は、摺動部にDLC−Si膜が存在する場合、表5および図7に示す値とほぼ同様であった。従って本発明に係るDLC−Si膜は、高温環境下でもほとんど劣化せず、高温安定性または高温耐久性に優れることもわかった。   Incidentally, the coefficient of friction measured by the same method after leaving the shaft S and the bearings B1 and B2 in the atmosphere of 500 ° C. for 250 hours is shown in Table 5 and FIG. 7 when the DLC-Si film is present in the sliding portion. It was almost the same as the value shown. Therefore, it was also found that the DLC-Si film according to the present invention hardly deteriorates even in a high temperature environment and is excellent in high temperature stability or high temperature durability.

(2)作動耐久性
表5、図8および図9に示す結果から明らかなように、シャフトSと軸受B1、B2の摺動部にDLC−Si膜が存在すると、500℃で繰り返し摺動させても、摩擦係数はあまり変化しない。特に、摺動面がDLC−Si膜で摺受面がCrN膜である場合、摩擦係数は摺動回数が増加しても、ほぼ一定値であった。この傾向は摩擦係数を常温域で測定しても高温域(500℃)で測定してもほぼ同様であった。これらのことから、その摺動部に用いたDLC−Si膜は耐摩耗性に優れ、使用温度が変化しても低い摩擦係数を長期的に維持することを示す。
(2) Operation durability As is clear from the results shown in Table 5, FIG. 8 and FIG. 9, when a DLC-Si film is present on the sliding portion of the shaft S and the bearings B1 and B2, the sliding is repeated at 500 ° C. However, the coefficient of friction does not change much. In particular, when the sliding surface was a DLC-Si film and the sliding surface was a CrN film, the friction coefficient was almost constant even when the number of sliding operations increased. This tendency was almost the same whether the coefficient of friction was measured in the normal temperature range or in the high temperature range (500 ° C.). From these facts, it is shown that the DLC-Si film used for the sliding portion has excellent wear resistance and maintains a low coefficient of friction for a long time even if the use temperature changes.

Figure 0005490590
Figure 0005490590

Figure 0005490590
Figure 0005490590

Figure 0005490590
Figure 0005490590

Figure 0005490590
Figure 0005490590

Figure 0005490590
Figure 0005490590

Claims (5)

燃焼機関の排気ガスの経路に配設され該排気ガスの流れを制御する制御弁と、
該制御弁と一体的に可動する可動軸と、
該可動軸を摺動させつつ支承し該可動軸の摺動面に摺接する摺受面を有する軸受と、
を備える排気ガス制御装置であって、
前記摺動面または前記摺受面の少なくとも一方は、ケイ素(Si)、水素(H)および残部である炭素(C)からなる非晶質炭素膜を有し、
該非晶質炭素膜は、付着する界面に臨む臨界部と該臨界部に連なり表面側へ延びる表面部とからなり、
該表面部は、Si濃度が8〜30原子%である部分を有し、
該臨界部は、該表面部よりもSi濃度が低いと共に該界面側から該表面部側にかけてSi濃度が漸増する傾斜部を有し、
該臨界部の付着界面近傍におけるSi濃度が該非晶質炭素膜中で最も低くなっていることを特徴とする排気ガス制御装置。
A control valve disposed in the exhaust gas path of the combustion engine to control the flow of the exhaust gas;
A movable shaft movable integrally with the control valve;
A bearing having a sliding surface that is supported while sliding the movable shaft and is in sliding contact with the sliding surface of the movable shaft;
An exhaust gas control device comprising:
At least one of the sliding surface or the sliding surface has an amorphous carbon film made of silicon (Si), hydrogen (H), and the remaining carbon (C),
The amorphous carbon film is composed of a critical portion facing the interface to be attached and a surface portion extending to the surface side connected to the critical portion,
The surface portion has a portion having a Si concentration of 8 to 30 atomic%,
The critical portion has an inclined portion where the Si concentration is lower than the surface portion and the Si concentration gradually increases from the interface side to the surface portion side,
An exhaust gas control apparatus characterized in that the Si concentration in the vicinity of the adhesion interface of the critical part is the lowest in the amorphous carbon film .
前記表面部は、H濃度が20〜40原子%である部分を有する請求項1に記載の排気ガス制御装置。   The exhaust gas control device according to claim 1, wherein the surface portion includes a portion having an H concentration of 20 to 40 atomic%. 前記臨界部は、前記非晶質炭素膜全体に対して厚さが50%以下である請求項1に記載の排気ガス制御装置。 The exhaust gas control device according to claim 1, wherein the critical portion has a thickness of 50% or less with respect to the entire amorphous carbon film. 前記摺受面と前記摺動面は、一方が前記非晶質炭素膜を有し、他方が窒化クロム膜を有する請求項1またはに記載の排気ガス制御装置。 It said sliding surface and the sliding receiving surface, one has the amorphous carbon layer, the exhaust gas control apparatus according to claim 1 or 3 the other has a chromium nitride film. 前記摺受面が前記非晶質炭素膜を有し、前記摺動面が窒化クロム膜を有する請求項1またはに記載の排気ガス制御装置。 The exhaust gas control device according to claim 1 or 4 , wherein the sliding surface has the amorphous carbon film, and the sliding surface has a chromium nitride film.
JP2010070982A 2010-03-25 2010-03-25 Exhaust gas control device Expired - Fee Related JP5490590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010070982A JP5490590B2 (en) 2010-03-25 2010-03-25 Exhaust gas control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070982A JP5490590B2 (en) 2010-03-25 2010-03-25 Exhaust gas control device

Publications (2)

Publication Number Publication Date
JP2011202596A JP2011202596A (en) 2011-10-13
JP5490590B2 true JP5490590B2 (en) 2014-05-14

Family

ID=44879488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070982A Expired - Fee Related JP5490590B2 (en) 2010-03-25 2010-03-25 Exhaust gas control device

Country Status (1)

Country Link
JP (1) JP5490590B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2971928B2 (en) * 1989-12-28 1999-11-08 株式会社豊田中央研究所 Hard amorphous carbon-hydrogen-silicon thin film having lubricity, iron-based metal material having the thin film on its surface, and method for producing the same
JPH08100686A (en) * 1994-09-30 1996-04-16 Ntn Corp Slide bearing, valve stem and valve gear for butterfly valve in exhaust brake
JP2006022882A (en) * 2004-07-07 2006-01-26 Koyo Seiko Co Ltd Driving shaft
JP4876464B2 (en) * 2005-07-19 2012-02-15 株式会社豊田中央研究所 Low friction sliding member
JP4922662B2 (en) * 2006-05-17 2012-04-25 トーヨーエイテック株式会社 Machine parts and manufacturing method thereof

Also Published As

Publication number Publication date
JP2011202596A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
KR101823893B1 (en) Coating material for exhaust system and the method for manufacturing thereof
US6821497B2 (en) Amorphous hard carbon film, mechanical parts and method for producing amorphous hard carbon film
US7700167B2 (en) Erosion-protective coatings on polymer-matrix composites and components incorporating such coated composites
JP2008522020A (en) Amorphous carbon film, method for forming the same, and high wear-resistant sliding member provided with amorphous carbon film
Cao et al. High temperature tribological performance and thermal conductivity of thick Ti/Ti-DLC multilayer coatings with the application potential for Al alloy pistons
KR20140038684A (en) Coating material for intake/exhaust valve and the method for manufacturing thereof
CN105088127B (en) A kind of coating and preparation method thereof
CN105908126A (en) High Al content AlTiN composite coating and preparation method thereof
JP5574165B2 (en) Manufacturing method of covering member
CN115287592B (en) High-temperature wear-resistant self-lubricating coating for fingertip sealing and preparation method thereof
KR101428600B1 (en) Coating material for pin or shaft and the method for manufacturing thereof
BRPI0901939B1 (en) PISTON RING FOR INTERNAL COMBUSTION ENGINE
CN113584438A (en) Periodic multilayer structure coating band saw blade and preparation method and application thereof
JP2006022666A (en) Piston, cylinder, piston pin and piston ring provided with amorphous hard carbon film
CN108265291A (en) A kind of carbon-base coating of soft matrix surface and preparation method thereof
CN107326363A (en) It is the high rigidity of matrix surface, wear-resistant, and corrosion resistant carbon-base coating and preparation method thereof in emulsion environment
KR101640912B1 (en) High temperature low friction coating layer and the method of the same
JP5724197B2 (en) Covering member and manufacturing method thereof
JP5490590B2 (en) Exhaust gas control device
JP2002097573A (en) Sliding member
WO2014196259A1 (en) Sliding component
WO1997014555A1 (en) Diamond-like nanocomposite thin films for automotive powertrain component coatings
JP7280578B2 (en) Sliding member provided with wear-resistant coating and method for forming wear-resistant coating
JP4372663B2 (en) Engine valve system parts
CN101550539B (en) Method for depositing protection film on the ceramics valve core surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130313

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140226

R150 Certificate of patent or registration of utility model

Ref document number: 5490590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees