JP5490301B1 - Drive shaft position detection method in ground improvement method or soil cement continuous wall method - Google Patents

Drive shaft position detection method in ground improvement method or soil cement continuous wall method Download PDF

Info

Publication number
JP5490301B1
JP5490301B1 JP2013254020A JP2013254020A JP5490301B1 JP 5490301 B1 JP5490301 B1 JP 5490301B1 JP 2013254020 A JP2013254020 A JP 2013254020A JP 2013254020 A JP2013254020 A JP 2013254020A JP 5490301 B1 JP5490301 B1 JP 5490301B1
Authority
JP
Japan
Prior art keywords
drive shaft
excavation
detection
recording device
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013254020A
Other languages
Japanese (ja)
Other versions
JP2015113564A (en
Inventor
卓 平井
一生 小西
常康 大西
政之 今井
達也 野口
忠司 中馬
良輔 西野
孝昭 清水
裕司 田屋
宏亮 幸加木
誠 浦瀬
謙一 三幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Takenaka Civil Engineering and Construction Co Ltd
Estech Corp
Original Assignee
Takenaka Corp
Takenaka Civil Engineering and Construction Co Ltd
Estech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp, Takenaka Civil Engineering and Construction Co Ltd, Estech Corp filed Critical Takenaka Corp
Priority to JP2013254020A priority Critical patent/JP5490301B1/en
Application granted granted Critical
Publication of JP5490301B1 publication Critical patent/JP5490301B1/en
Publication of JP2015113564A publication Critical patent/JP2015113564A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

【課題】シンプル、且つ計測用のワイヤを用いない構成で掘削軸の位置を検出することができる、経済性に優れた、使い勝手のよい、地盤改良工法又はソイルセメント連続壁工法における駆動軸の位置検出方法を提供する。
【解決手段】共回り防止翼4又は軸間保持部材17の側面部に検出記録装置5を収容した装置収容ボックス6を取り付けた状態で駆動軸1を回転駆動させ、駆動軸1の掘削貫入時間に対応する方位角と傾斜角を検出記録装置により検出し、駆動軸1の引抜時に地上に現れた検出記録装置5の検出データ情報を読み取り、該データ情報と、駆動軸1の掘削貫入時間と掘削貫入深度を測定する地上の施工管理装置のデータ情報とをコンピュータへ入力し、両データ情報に共通する掘削貫入時間を基に掘削貫入深度における駆動軸1の方位角と傾斜角から駆動軸1の位置を演算処理して求める。
【選択図】図1
The position of a driving shaft in a ground improvement method or a soil cement continuous wall method, which is simple and can detect the position of an excavation shaft with a configuration that does not use a measuring wire, is excellent in economy and easy to use. A detection method is provided.
The drive shaft is driven to rotate while the device housing box containing the detection recording device is attached to the side surface portion of the co-rotation preventing blade or the inter-axis holding member. Is detected by the detection recording device, the detection data information of the detection recording device 5 appearing on the ground when the drive shaft 1 is pulled out is read, the data information, and the excavation penetration time of the drive shaft 1 The data of the construction management device on the ground for measuring the depth of excavation is input to the computer, and the drive shaft 1 is calculated from the azimuth angle and the inclination angle of the drive shaft 1 at the depth of excavation based on the excavation penetration time common to both data information. The position of is calculated and calculated.
[Selection] Figure 1

Description

この発明は、地盤改良工法又はソイルセメント連続壁工法における駆動軸の位置検出方法に技術分野に属する。   The present invention belongs to the technical field of a position detection method for a drive shaft in a ground improvement method or a soil cement continuous wall method.

深層混合処理工法の中でも、特に液状化対策工事として採用される格子状改良(TOFT工法)は、深層混合処理工法で造成される円柱状の改良体をラップさせて連続した壁(連続壁)を造り、その連続壁を格子状に造る工法である。
格子状改良は、改良体の確実な連続性(ラップ)や強度管理が重要である。特に、改良径(φ)を1.0mとした場合の20cmのラップについては、止水性、格子壁厚(平均80cm)の確保、および改良体の格子構造としての一体性、の各観点から、確実な施工が要求される。
また、地中連続壁を施工する工法として、ソイルセメント連続壁工法の一つであるいわゆるSMW工法(登録商標)についても、ソイルセメント連続壁(柱列壁)の確実な連続性(ラップ)や強度管理が重要であり、止水性、連続壁の壁厚の確保、連続壁の一体性の観点から、やはり確実な施工が要求される。
さらに、下記の特許文献1、2にかかる、本出願人の一人が近年開発した小型の地盤改良施工機は、掘削長が13.0m程度であるのに対し、使用する駆動軸の軸径(ロッド径)が0.1〜0.2m程度と細いことから同施工機の駆動軸の垂直性の確保や証明が問題となっている。そのため、品質を確保しながら施工できるように、駆動軸の垂直精度(鉛直精度)について、何らかの孔曲がりの管理を行う必要があった。
Among the deep mixing treatment method, the lattice improvement (TOFT method) adopted as a liquefaction countermeasure construction is a continuous wall (continuous wall) wrapped with a cylindrical improvement body created by the deep mixing treatment method. It is a construction method to make the continuous wall in a lattice shape.
In the lattice improvement, it is important to ensure the continuity (wrap) and strength of the improved body. In particular, for the 20 cm wrap when the improved diameter (φ) is 1.0 m, from the viewpoints of water stopping, securing the lattice wall thickness (average 80 cm), and the integrity of the improved structure as a lattice structure, Certain construction is required.
In addition, as a method of constructing the underground continuous wall, the so-called SMW method (registered trademark), which is one of the soil cement continuous wall methods, is also used for reliable continuity (lap) of the soil cement continuous wall (column wall). Strength management is important, and reliable construction is required from the viewpoint of water-stopping, securing the wall thickness of the continuous wall, and the integrity of the continuous wall.
Furthermore, the small ground improvement construction machine recently developed by one of the applicants according to the following Patent Documents 1 and 2 has an excavation length of about 13.0 m, whereas the shaft diameter of the drive shaft used ( Since the rod diameter is as thin as about 0.1 to 0.2 m, it is problematic to ensure and prove the perpendicularity of the drive shaft of the construction machine. Therefore, it is necessary to manage some kind of hole bending with respect to the vertical accuracy (vertical accuracy) of the drive shaft so that construction can be performed while ensuring quality.

従来、深層混合処理工法等における掘削翼などを備えた駆動軸(ロッド)の孔曲がり防止(垂直性確保)は、当業者にとって以前から課題とされており、該課題を解決又は改善する技術は種々開示されている(例えば、特許文献3〜5参照)。   Conventionally, prevention of bending of a shaft (rod) of a drive shaft (rod) provided with a drilling blade or the like in a deep mixing treatment method has been a problem for a person skilled in the art, and a technique for solving or improving the problem is described below. Various disclosures are made (for example, see Patent Documents 3 to 5).

前記特許文献3には、傾斜計14とジャイロセンサ15とを組み合わせた3次元ジャイロセンサを攪拌掘削軸6の連結軸受10へ固定した防水型センサケース16の中に設置して実施することにより、改良装置先端位置を計測する地盤改良装置が開示されている。それぞれの計測値は、図1、図3の信号保護管18の中に通した信号線を通じて地上の図示を省略した演算処理装置(施工管理装置)へリアルタイムに送られる(請求項2〜6、明細書の段落[0034]の1〜7行目等、および図3等を参照)。
この地盤改良装置によれば、改良したソイル柱列杭のラップ長の施工管理方法は、先に施工したソイル柱列杭と、これに隣接してラップさせる今回施工のソイル柱列杭それぞれの施工軌跡を、両者の相対的な水平距離として、特には3次元オートジャイロセンサで計測する方位角に基づく補正を加えて実情に近い精度で記録表示すると共に、前記の管理により求めた今回の施工軌跡の曲がり傾向は、適時に先端掘削カッターを逆転貫入掘削に切り換えてリアルタイムに修正を行うので、高品質、高精度の施工を実現出来るとの記載が認められる(明細書の段落[0058]等を参照)。
In Patent Document 3, a three-dimensional gyro sensor in which an inclinometer 14 and a gyro sensor 15 are combined is installed in a waterproof sensor case 16 fixed to the connecting bearing 10 of the agitation excavation shaft 6. A ground improvement device for measuring the tip position of the improvement device is disclosed. Each measured value is sent in real time to an arithmetic processing device (construction management device) not shown on the ground through a signal line passed through the signal protection pipe 18 of FIGS. 1 and 3 (Claims 2 to 6, (Refer to paragraphs [0034], lines 1 to 7 of the specification, and FIG. 3).
According to this ground improvement device, the construction management method of the wrap length of the improved soil column piles is the same as the construction of the soil column piles previously constructed and the soil column piles of this construction to be wrapped adjacent to this. The track is recorded and displayed as a relative horizontal distance between the two, in particular with correction based on the azimuth angle measured by the three-dimensional auto gyro sensor, and with the accuracy close to the actual situation, and the current track of the construction determined by the above management It is recognized that high-quality and high-precision construction can be realized because the tip bending cutter is switched to reverse-penetration drilling in a timely manner, so that high-quality and high-precision construction can be realized (see paragraph [0058] of the specification, etc.). reference).

前記特許文献4には、回転軸とは別異に設けた補助ロッド16の内部に、地上の管理装置と接続されたX・Y傾斜計19を具備する地盤改良用の混合処理機が開示されている(請求項3、明細書の段落[0016]等、および図7等を参照)。
この混合処理機によれば、回転軸3が、その全長にわたり、補助ロッド16と一体的関係とされ補剛されているから、地盤中の地層の硬軟や障害物の有無あるいは先行の改良部分によって攪拌ヘッド5の逃げとか曲がり、傾斜を生ずるおそれがなく、リーダ2によって設定された垂直度の施工を高精度に実現できる。と同時に土中の建入施工管理は、傾斜計19によってリアルタイムに測定し記録表示されるから、速やかに施工にフィードバックして品質、信頼性の高い地盤改良に寄与するとの記載が認められる(明細書の段落[0018]等を参照)。
Patent Document 4 discloses a ground treatment improving mixing machine having an XY inclinometer 19 connected to a ground management device inside an auxiliary rod 16 provided separately from a rotating shaft. (See claim 3, paragraph [0016] of the specification, and FIG. 7, etc.).
According to this mixing processing machine, since the rotary shaft 3 is integrally connected with the auxiliary rod 16 over its entire length and is stiffened, it depends on the hardness of the formation in the ground, the presence or absence of obstacles, or the previous improved portion. There is no possibility that the stirring head 5 may escape or bend and cause an inclination, and the perpendicularity set by the reader 2 can be realized with high accuracy. At the same time, the construction management in the soil is measured and recorded and displayed in real time by the inclinometer 19, and it is recognized that it contributes to the ground improvement with high quality and reliability by promptly feeding back to the construction (details) (See paragraph [0018] etc.).

前記特許文献5には、複数本の単位掘削軸6cを長手方向に連結して構成された掘削軸(駆動軸)6内に傾斜計11x,11yなどの掘削情報検出器が設けられ、この傾斜計11x,11yの近傍に音響伝送管Sの下端に音響発振子12が配設され、さらに地上側の適宜の位置、たとえば掘削軸6の上端部における音響伝送管Sの上端に前記音響発振子12からの音響信号を受ける受信子13が設けられている構成の掘削装置が開示されている(明細書の段落[0037]等、および図4等を参照)。
この掘削装置によれば、信号ケーブル線が不要となり、掘削軸の継ぎ足しにおける信号ケーブル線の連結およびその付帯作業が不要となり、かつ掘削中に傾斜角度などの掘削情報をリアルタイムで得ることができ、もってきわめて高い精度の掘削を行うことが可能となるとともに、多数の単位掘削軸を連結した場合においても確実な信号伝送が可能となるなどの利点がもたらされるとの記載が認められる(明細書の段落[0071]等を参照)。
In Patent Document 5, excavation information detectors such as inclinometers 11x and 11y are provided in an excavation shaft (drive shaft) 6 formed by connecting a plurality of unit excavation shafts 6c in the longitudinal direction. The acoustic oscillator 12 is disposed at the lower end of the acoustic transmission pipe S in the vicinity of the total 11x, 11y, and further at the appropriate position on the ground side, for example, the upper end of the acoustic transmission pipe S at the upper end of the excavation shaft 6. An excavator having a configuration in which a receiver 13 that receives an acoustic signal from 12 is provided is disclosed (see paragraph [0037] and the like in the specification, and FIG. 4 and the like).
According to this excavator, the signal cable line becomes unnecessary, the connection of the signal cable line at the addition of the excavation shaft and the incidental work thereof become unnecessary, and excavation information such as an inclination angle can be obtained in real time during excavation, Thus, it is possible to perform excavation with extremely high accuracy, and it is recognized that there are advantages such as reliable signal transmission even when a large number of unit excavation shafts are connected (in the specification) (See paragraph [0071] etc.).

特許第5181068号公報Japanese Patent No. 5181068 特許第5191573号公報Japanese Patent No. 5191573 特許第3156049号公報Japanese Patent No. 3156049 特開平5−230825号公報Japanese Patent Laid-Open No. 5-283025 特許第3233874号公報Japanese Patent No. 3233874

上記特許文献3にかかる発明は、攪拌掘削軸6の直上位置の連結軸受10に固定した防水型センサケース16から地上の施工管理装置まで鉛直に立ち上がる信号保護管18を必要とする構成なので、必然的に、当該ケース16は、最上段の攪拌翼9より上方に取り付けて実施するほかない。
よって、最上段の攪拌翼9より下方の攪拌掘削軸6の掘削精度を計測できない問題があった。また、信号保護管18を安定した状態で鉛直方向に保持する構成を実現しなければならず、施工手間がかかり煩わしい上にコストが嵩む問題もあった。
Since the invention according to Patent Document 3 requires a signal protection tube 18 that rises vertically from the waterproof sensor case 16 fixed to the coupling bearing 10 directly above the stirring excavation shaft 6 to the construction management device on the ground, it is inevitably required. In particular, the case 16 must be mounted above the uppermost stirring blade 9.
Therefore, there has been a problem that the excavation accuracy of the stirring excavation shaft 6 below the uppermost stirring blade 9 cannot be measured. In addition, it is necessary to realize a configuration in which the signal protection tube 18 is held in the vertical direction in a stable state, which is troublesome and cumbersome in addition to the problem of increasing the cost.

上記特許文献4にかかる発明は、掘削孔から地上へ立ち上がる補助ロッド16内にX・Y傾斜計19を設ける構成なので、必然的に、当該傾斜計19は、最上段の攪拌ヘッド(攪拌翼)5より上方に取り付けて実施するほかない。
よって、最上段の攪拌ヘッド5より下方の回転軸3の掘削精度を計測できない等、上記特許文献3と同様の問題がった。
Since the invention according to Patent Document 4 has a configuration in which the XY inclinometer 19 is provided in the auxiliary rod 16 rising from the excavation hole to the ground, the inclinometer 19 is inevitably provided in the uppermost stirring head (stirring blade). There is no other way but to install it above 5.
Therefore, there is a problem similar to that of the above-mentioned Patent Document 3 in that the excavation accuracy of the rotary shaft 3 below the uppermost stirring head 5 cannot be measured.

上記特許文献5にかかる発明は、掘削軸(駆動軸)6内に傾斜計11x,11yなどの掘削情報検出器を内蔵して実施する構成なので、前記特許文献3、4にかかる問題は生じない。
しかし、前記掘削軸6内に音響伝送管S、音響発振子12等の精密機器を設ける複雑な構成であるが故に、機器自体のコストのほか、機器の取付作業、メンテナンス等が大変煩わしい問題があった。また、前記掘削軸6は、複数本の単位掘削軸6cを長手方向に連結してなる構成であるが故に、該単位掘削軸6cの各連結部での回転伝達不良や信号伝達不良が生じやすく、精緻な連結作業を要求される煩わしさがある上に、定期的なメンテナンスを必要とする問題もあった。
また、上記特許文献1、2にかかる小型の地盤改良施工機は、駆動軸の軸径が小さいので、当該特許文献4にかかる発明は実施できない問題もあった。
Since the invention according to Patent Document 5 is configured to incorporate excavation information detectors such as inclinometers 11x and 11y in the excavation shaft (drive shaft) 6, the problems according to Patent Documents 3 and 4 do not occur. .
However, because of the complicated configuration in which precision instruments such as the acoustic transmission pipe S and the acoustic oscillator 12 are provided in the excavation shaft 6, in addition to the cost of the equipment itself, the installation work and maintenance of the equipment are very troublesome. there were. In addition, since the excavation shaft 6 has a configuration in which a plurality of unit excavation shafts 6c are connected in the longitudinal direction, poor rotation transmission and signal transmission are likely to occur at each connecting portion of the unit excavation shaft 6c. In addition to being bothered by the need for precise connection work, there are also problems that require regular maintenance.
Moreover, since the small ground improvement construction machine concerning the said patent documents 1 and 2 has a small shaft diameter of a drive shaft, there also existed a problem which cannot implement the invention concerning the said patent document 4. FIG.

本発明の目的は、シンプル、且つ計測用のワイヤ等の線材を用いない構成で掘削軸の位置を検出することができる、経済性に優れた地盤改良工法又はソイルセメント連続壁工法における駆動軸の位置検出方法を提供することにある。
本発明の次の目的は、検出データ情報をリアルタイムでなく、あえて、前記装置収容ボックスが駆動軸の引抜時に地上に現れた段階で読み取れば足りる構成としたことにより、構成全体を簡略化でき、事後の施工に反映させることができる、使い勝手のよい地盤改良工法又はソイルセメント連続壁工法における駆動軸の位置検出方法を提供することにある。
また、駆動軸の位置検出のために掘削作業を中断することなく、従来一般の工法と同様の施工を行うことができる、地盤改良工法又はソイルセメント連続壁工法における駆動軸の位置検出方法を提供することにある。
本発明の更なる目的は、上記特許文献1、2にかかる小型の地盤改良施工機に好適に実施できる地盤改良工法における駆動軸の位置検出方法を提供することにある。
The object of the present invention is to detect the position of an excavation shaft with a simple configuration without using a wire such as a measurement wire, and to improve the drive shaft in a ground improvement method or a soil cement continuous wall method excellent in economic efficiency. The object is to provide a position detection method.
The next object of the present invention is that the detection data information is not real-time, and it is sufficient to read the device storage box when it appears on the ground when the drive shaft is pulled out. An object of the present invention is to provide an easy-to-use ground improvement method or a soil cement continuous wall method for detecting the position of a drive shaft that can be reflected in subsequent construction.
Also provided is a method for detecting the position of the drive shaft in the ground improvement method or the soil cement continuous wall method, which can perform the same construction as the conventional method without interrupting excavation work for detecting the position of the drive shaft. There is to do.
A further object of the present invention is to provide a drive shaft position detection method in a ground improvement method that can be suitably implemented in the small ground improvement construction machine according to Patent Documents 1 and 2.

上記背景技術の課題を解決するための手段として、請求項1に記載した発明にかかる地盤改良工法における駆動軸の位置検出方法は、垂直下向きの配置で回転可能に支持された駆動軸と、同駆動軸の下端部に備えた掘削翼と、同掘削翼の上部に備えた攪拌翼および共回り防止翼とを有し、前記駆動軸のスラリー注入管を通じてセメント系固化材を注入する構成の単軸の掘削施工機を用いた地盤改良工法における駆動軸の位置検出方法であって、
前記共回り防止翼の側面部に、方位角を検出する3軸角速度センサと傾斜角を検出する3軸加速度センサとを備え、駆動軸の方位角と傾斜角を検出する検出記録装置を収容した装置収容ボックスを取り付け、
前記駆動軸を回転駆動させて、駆動軸の掘削貫入時間に対応する方位角と傾斜角を前記検出記録装置により検出し、
前記駆動軸の引抜時に地上に現れた前記装置収容ボックス内の検出記録装置の検出データ情報を読み取り、該検出記録装置の検出データ情報(図10のボックスa参照)と、駆動軸の掘削貫入時間と掘削貫入深度を測定する地上の施工管理装置のデータ情報(図10のボックスb参照)とをコンピュータへ入力し、両データ情報に共通する掘削貫入時間を基に掘削貫入深度における駆動軸の方位角と傾斜角から駆動軸の位置を演算処理して求める(図10のボックスc参照)ことを特徴とする。
As a means for solving the above-described background art, the position detection method of the drive shaft in the ground improvement method according to the invention described in claim 1 is the same as the drive shaft supported rotatably in a vertically downward arrangement. A drilling blade provided at the lower end of the drive shaft, a stirring blade and a co-rotation prevention blade provided at the upper portion of the drilling blade, and a cement-type solidification material is injected through a slurry injection pipe of the drive shaft. A drive shaft position detection method in a ground improvement method using a shaft excavation construction machine,
A side surface of the co-rotation preventing wing includes a triaxial angular velocity sensor that detects an azimuth angle and a triaxial acceleration sensor that detects an inclination angle, and a detection recording device that detects the azimuth angle and the inclination angle of the drive shaft is housed. Install the equipment storage box,
The drive shaft is driven to rotate, the azimuth angle and the tilt angle corresponding to the excavation penetration time of the drive shaft are detected by the detection recording device,
The detection data information of the detection recording device in the device housing box that appears on the ground when the drive shaft is pulled out is read, the detection data information of the detection recording device (see box a in FIG. 10), and the excavation penetration time of the drive shaft And the data information (see box b in FIG. 10) of the ground construction management device for measuring the depth of excavation into the computer, and the direction of the drive shaft at the depth of excavation based on the excavation penetration time common to both data information The position of the drive shaft is calculated from the angle and the inclination angle (see box c in FIG. 10).

請求項2に記載した発明にかかる地盤改良工法における駆動軸の位置検出方法は、垂直下向きの配置で回転可能に支持された駆動軸と、同駆動軸の下端部に備えた掘削翼と、同掘削翼の上部に備えた攪拌翼および軸間保持部材とを有し、前記駆動軸のスラリー注入管を通じてセメント系固化材を注入する構成の多軸の掘削施工機を用いた地盤改良工法又はソイルセメント連続壁工法における駆動軸の位置検出方法であって、
前記軸間保持部材の側面部に、方位角を検出する3軸角速度センサと傾斜角を検出する3軸加速度センサとを備え、駆動軸の方位角と姿勢角を検出する検出記録装置を収容した装置収容ボックスを取り付け、
前記駆動軸を回転駆動させて、駆動軸の掘削貫入時間に対応する方位角と姿勢角を前記検出記録装置により検出し、
前記駆動軸の引抜時に地上に現れた前記装置収容ボックス内の検出記録装置の検出データ情報を読み取り、該検出記録装置の検出データ情報(図10のボックスa参照)と、駆動軸の掘削貫入時間と掘削貫入深度を測定する地上の施工管理装置のデータ情報(図10のボックスb参照)とをコンピュータへ入力し、両データ情報に共通する掘削貫入時間を基に掘削貫入深度における駆動軸の方位角と姿勢角から駆動軸の位置を演算処理して求める(図10のボックスc参照)ことを特徴とする。
In the ground improvement method according to the second aspect of the present invention, there is provided a drive shaft position detection method comprising: a drive shaft that is rotatably supported in a vertically downward arrangement; an excavation blade provided at a lower end portion of the drive shaft; A ground improvement method or soil using a multi-axis excavator having a stirring blade and an inter-axis holding member provided on the upper portion of the excavating blade, and injecting cement-based solidified material through a slurry injection pipe of the drive shaft A drive shaft position detection method in a cement continuous wall method,
A side surface of the inter-axis holding member includes a triaxial angular velocity sensor that detects an azimuth angle and a triaxial acceleration sensor that detects an inclination angle, and houses a detection recording device that detects the azimuth angle and attitude angle of a drive shaft. Install the equipment storage box,
The drive shaft is driven to rotate, and the azimuth angle and posture angle corresponding to the excavation penetration time of the drive shaft are detected by the detection recording device,
The detection data information of the detection recording device in the device housing box that appears on the ground when the drive shaft is pulled out is read, the detection data information of the detection recording device (see box a in FIG. 10), and the excavation penetration time of the drive shaft And the data information (see box b in FIG. 10) of the ground construction management device for measuring the depth of excavation into the computer, and the direction of the drive shaft at the depth of excavation based on the excavation penetration time common to both data information The position of the drive shaft is calculated from the angle and the attitude angle (see box c in FIG. 10).

請求項3に記載した発明は、請求項1又は2に記載した地盤改良工法又はソイルセメント連続壁工法における駆動軸の位置検出方法において、前記装置収容ボックスは、前記共回り防止翼又は前記軸間保持部材の側面部に据え付けるための方形状の基部と、基部より幅狭で該基部から立ち上がる装置収容部と、装置収容部の開口部を塞ぐ蓋材とからなり、
前記共回り防止翼又は前記軸間保持部材は、複数の部材をボルト接合して組み立ててなる構成であり、
前記基部の四隅位置には、前記部材に設けたボルト通し孔と芯が一致するボルト通し孔が設けられており、前記各ボルト通し孔を利用して当該装置収容ボックスを前記共回り防止翼又は前記軸間保持部材の側面部にボルト接合により取り付けることを特徴とする。
The invention described in claim 3 is the position detection method of the drive shaft in the ground improvement construction method or the soil cement continuous wall construction method described in claim 1 or 2, wherein the device housing box is the co-rotation preventing wing or the inter-shaft A rectangular base for installation on the side surface of the holding member, a device storage portion that is narrower than the base and rises from the base, and a lid that closes the opening of the device storage portion,
The co-rotation preventing wing or the inter-axis holding member is configured by assembling a plurality of members by bolting,
At the four corner positions of the base portion, bolt through holes whose cores coincide with the bolt through holes provided in the member are provided, and the device housing box is connected to the co-rotation preventing wings by using the bolt through holes. It attaches to the side part of the said holding | maintenance member between shafts by bolt joining, It is characterized by the above-mentioned.

請求項4に記載した発明は、請求項1〜3のいずれか一に記載した地盤改良工法又はソイルセメント連続壁工法における駆動軸の位置検出方法において、前記検出記録装置の検出データ情報は、前記装置収容ボックスから検出記録装置を取り出して読み取ること、又は前記装置収容ボックス内の検出記録装置から伝送された地上の施工管理装置の画面から読み取ることを特徴とする。   The invention described in claim 4 is the position detection method of the drive shaft in the ground improvement method or the soil cement continuous wall method described in any one of claims 1 to 3, wherein the detection data information of the detection recording device is the The detection recording device is taken out from the device storage box and read, or read from the screen of the ground construction management device transmitted from the detection recording device in the device storage box.

請求項5に記載した発明は、請求項1〜4のいずれか一に記載した地盤改良工法又はソイルセメント連続壁工法における駆動軸の位置検出方法において、前記掘削施工機は、幅寸が2.5m以下、前後方向の長さが4.0〜8.0m、前記駆動軸の軸径は、0.1〜0.2mの小型の地盤改良施工機であることを特徴とする。   The invention described in claim 5 is the position detection method of the drive shaft in the ground improvement method or soil cement continuous wall method described in any one of claims 1 to 4, wherein the excavation machine has a width of 2. It is a small ground improvement construction machine having a length of 5 m or less, a length in the front-rear direction of 4.0 to 8.0 m, and a shaft diameter of the drive shaft of 0.1 to 0.2 m.

本発明にかかる地盤改良工法又はソイルセメント連続壁工法における駆動軸の位置検出方法によれば、以下の効果を奏する。
(1)シンプル、且つ計測用のワイヤ等の線材を用いない構成で掘削軸の位置を検出することができるので、経済性に優れている。また、前記線材を設置する煩わしさもない。
(2)検出データ情報をリアルタイムでなく、あえて、前記装置収容ボックスが駆動軸の引抜時に地上に現れた段階で読み取れば足りる構成としたので、構成全体を簡略化でき、事後の施工に反映させることができる。また、使い勝手がよい。
(3)駆動軸の位置検出のために掘削作業を中断することなく、従来一般の地盤改良工法又はソイルセメント連続壁工法と同様の施工を行うことができる。
(4)駆動軸内にセンサ等を取り付ける必要が一切ないので、駆動軸の軸径が小さい小型の地盤改良施工機でも好適に実施できる。
(5)請求項3にかかる発明によれば、上記(1)〜(4)に加え、既存の掘削施工機の共回り防止翼に用いたボルトの一部を長尺のボルトに代えるだけで装置収容ボックスを簡易、かつ確実に取り付けることができる。よって、至極合理的であり、作業性、経済性に優れた実施を行い得る。
The method for detecting the position of the drive shaft in the ground improvement method or the soil cement continuous wall method according to the present invention has the following effects.
(1) Since the position of the excavation shaft can be detected with a simple configuration that does not use a wire such as a measurement wire, the cost is excellent. Moreover, there is no troublesome installation of the wire.
(2) The detection data information is not real time, and it is sufficient to read the device storage box when it appears on the ground when the drive shaft is pulled out, so that the entire configuration can be simplified and reflected in subsequent construction. be able to. In addition, it is easy to use.
(3) The construction similar to the conventional general ground improvement method or soil cement continuous wall method can be performed without interrupting the excavation work for detecting the position of the drive shaft.
(4) Since there is no need to attach a sensor or the like in the drive shaft, it can be suitably implemented even with a small ground improvement construction machine with a small shaft diameter of the drive shaft.
(5) According to the invention according to claim 3, in addition to the above (1) to (4), only a part of the bolt used for the co-rotation preventing wing of the existing excavator can be replaced with a long bolt. The device storage box can be easily and securely attached. Therefore, it is extremely rational and can be carried out with excellent workability and economy.

Aは、実施例1にかかる単軸の掘削施工機の駆動軸の下部構造を拡大して示した立面図であり、Bは、Aの変位抑止板(4b)と鉛直板(4c)を示すb矢視図である。A is the elevation which expanded and showed the lower structure of the drive shaft of the single-axis excavation construction machine concerning Example 1, and B is the displacement suppression board (4b) and vertical board (4c) of A. FIG. Aは、図1の共回り防止翼を抽出して示した正面図であり、Bは、同平面図であり、Cは、Bのb−b矢視概略図である。なお、本来は見えない装置収容ボックス内の検出記録装置は、あえて図示している。FIG. 2A is a front view showing the co-rotation prevention wing of FIG. 1 extracted, FIG. 1B is a plan view thereof, and FIG. In addition, the detection recording device in the device storage box that is not originally visible is intentionally illustrated. Aは、前記駆動軸の下部構造の異なる実施例(実施例2)を示した立面図であり、Bは、Aのb−b矢視図である。A is an elevational view showing a different embodiment (Example 2) of the lower structure of the drive shaft, and B is a bb arrow view of A. FIG. Aは、図3の共回り防止翼を抽出して示した立面図であり、Bは、同平面図であり、Cは、Bのb−b矢視概略図である。なお、本来は見えない装置収容ボックス内の検出記録装置は、あえて図示している。3A is an elevation view showing the co-rotation preventing wing of FIG. 3 extracted, FIG. 3B is a plan view thereof, and FIG. 3C is a schematic view of B taken along line bb. In addition, the detection recording device in the device storage box that is not originally visible is intentionally illustrated. 実施例3にかかる2軸の掘削施工機の駆動軸の下部構造を概略的に示した平面図である。FIG. 6 is a plan view schematically showing a lower structure of a drive shaft of a two-axis excavator according to a third embodiment. Aは、実施例4にかかる2軸の掘削施工機の駆動軸の下部構造を概略的に示した平面図(Bのa−a矢視概略図)であり、Bは、同立面図である。A is the top view (B-a arrow schematic diagram of B) which showed roughly the lower structure of the drive shaft of the biaxial excavation construction machine concerning Example 4, and B is the same elevational view. is there. Aは、図6の軸間保持部材を抽出して示した平面図であり、Bは、Aの部分正面図であり、Cは、Bのb−b矢視概略図である。なお、本来は見えない装置収容ボックス内の検出記録装置は、あえて図示している。A is a plan view showing the inter-axis holding member of FIG. 6 extracted, B is a partial front view of A, and C is a schematic view of B along bb. In addition, the detection recording device in the device storage box that is not originally visible is intentionally illustrated. 実施例5にかかる3軸の掘削施工機の駆動軸の下部構造を概略的に示した立面図である。FIG. 10 is an elevation view schematically showing a lower structure of a drive shaft of a three-axis excavator according to a fifth embodiment. 実施例5にかかる5軸の掘削施工機の駆動軸の下部構造を概略的に示した立面図である。FIG. 10 is an elevational view schematically showing a lower structure of a drive shaft of a 5-axis excavator according to a fifth embodiment. 本発明にかかる地盤改良工法又はソイルセメント連続壁工法における駆動軸の位置検出方法の手順を概略的に示したフロー図である。It is the flowchart which showed roughly the procedure of the position detection method of the drive shaft in the ground improvement construction method or soil cement continuous wall construction method concerning this invention.

次に、本発明に係る地盤改良工法又はソイルセメント連続壁工法における駆動軸の位置検出方法の実施例を図面に基づいて説明する。   Next, an embodiment of the drive shaft position detection method in the ground improvement method or the soil cement continuous wall method according to the present invention will be described with reference to the drawings.

実施例1に係る発明は、図1に示すように、垂直下向きの配置で回転可能に支持された駆動軸1と、同駆動軸1の下端部に備えた掘削翼2と、同掘削翼2の上部に備えた攪拌翼3および共回り防止翼4とを有し、前記駆動軸1に内蔵したスラリー注入管(図示略)を通じてセメント系固化材を注入する構成の単軸の掘削施工機10を用いた地盤改良工法における駆動軸1の位置検出方法であり、
前記共回り防止翼4の側面部に、図2にも示すように、方位角を検出する3軸角速度センサと傾斜角を検出する3軸加速度センサとを備え、駆動軸1の方位角と傾斜角を検出する検出記録装置5を収容した装置収容ボックス6を取り付けており、
前記駆動軸1を回転駆動させて、駆動軸1の掘削貫入時間に対応する方位角と傾斜角を前記検出記録装置5により検出し、
しかる後、前記駆動軸1の引抜時に地上に現れた前記装置収容ボックス6内の検出記録装置5の検出データ情報を読み取り、該検出記録装置5の検出データ情報(図10のボックスa参照)と、駆動軸1の掘削貫入時間と掘削貫入深度を測定する地上の施工管理装置のデータ情報(図10のボックスb参照)とをコンピュータへ入力し、両データ情報に共通する掘削貫入時間を基に掘削貫入深度における駆動軸1の方位角と傾斜角から駆動軸1の位置をコンピュータで演算処理して求める(図10のボックスc参照)ことを特徴とする。
As shown in FIG. 1, the invention according to the first embodiment includes a drive shaft 1 that is rotatably supported in a vertically downward arrangement, an excavation blade 2 provided at a lower end portion of the drive shaft 1, and the excavation blade 2. A single-shaft excavator 10 having a stirring blade 3 and a co-rotation-preventing blade 4 provided at the top of the shaft and injecting cement-based solidified material through a slurry injection pipe (not shown) built in the drive shaft 1. Is a method for detecting the position of the drive shaft 1 in the ground improvement method using
As shown in FIG. 2, the side surface portion of the co-rotation preventing wing 4 includes a triaxial angular velocity sensor that detects an azimuth angle and a triaxial acceleration sensor that detects an inclination angle. A device housing box 6 that houses a detection recording device 5 for detecting a corner is attached,
The drive shaft 1 is driven to rotate, the azimuth angle and the tilt angle corresponding to the excavation penetration time of the drive shaft 1 are detected by the detection recording device 5,
Thereafter, the detection data information of the detection recording device 5 in the device housing box 6 that appears on the ground when the drive shaft 1 is pulled out is read, and the detection data information (see box a in FIG. 10) of the detection recording device 5 is read. , The data information (see box b in FIG. 10) of the ground construction management device for measuring the excavation penetration time of the drive shaft 1 and the excavation penetration depth is input to the computer, and based on the excavation penetration time common to both data information The position of the drive shaft 1 is calculated by a computer from the azimuth angle and the inclination angle of the drive shaft 1 at the depth of excavation (see box c in FIG. 10).

ちなみに、図1中の符号11、11は上下のスラスト受け板、符号12は回転軸筒、符号13は掘削翼軸、符号14は攪拌翼軸を示している。
具体的には、駆動軸1の下端部へ攪拌翼軸14が、嵌め込み式の軸継手により同心状態に接続され、該攪拌翼軸14の下端部へ掘削翼軸13が、やはり嵌め込み式の軸継手により同心状態に接続されている。すなわち、前記駆動軸1が回転駆動されると、前記攪拌翼軸14に取り付けられた攪拌翼3、3、および前記掘削翼軸13に取り付けられた掘削翼2が連動して回転する構造とされている。一方、前記攪拌翼軸14の外周には、所定の間隔をあけてスラスト軸受け板11、11が延設され、該スラスト軸受け板11、11の間に該攪拌翼軸14と共回りしない構成で回転軸筒12が挟持され、該回転軸筒12に共回り防止翼4が設けられている。
Incidentally, reference numerals 11 and 11 in FIG. 1 denote upper and lower thrust receiving plates, reference numeral 12 denotes a rotating shaft cylinder, reference numeral 13 denotes a drilling blade shaft, and reference numeral 14 denotes a stirring blade shaft.
Specifically, the stirring blade shaft 14 is concentrically connected to the lower end portion of the drive shaft 1 by a fitting-type shaft joint, and the excavation blade shaft 13 is also fitted to the lower end portion of the stirring blade shaft 14. Connected concentrically by a joint. That is, when the drive shaft 1 is rotationally driven, the stirring blades 3 and 3 attached to the stirring blade shaft 14 and the excavation blade 2 attached to the excavation blade shaft 13 are rotated in conjunction with each other. ing. On the other hand, on the outer periphery of the stirring blade shaft 14, thrust bearing plates 11, 11 are extended at a predetermined interval, and the thrust blade plates 11, 11 do not rotate with the stirring blade shaft 14. The rotating shaft cylinder 12 is sandwiched, and the rotating shaft cylinder 12 is provided with a co-rotation preventing blade 4.

この実施例1に用いる単軸の掘削施工機10の本体は、地盤中に良質の円柱状の改良体を構築できるものであれば種々のバリエーションの掘削施工機(地盤改良施工機)を採用することができる。すなわち、地盤を掘削する掘削翼と、土壌とセメント系固化材とを攪拌混合する攪拌翼と、未改良土の共回りを防止する共回り防止翼とを備えた掘削施工機であれば好適に実施できる。本出願人の一人が近年開発した特許第5191573号にかかる地盤改良施工機、或いは特許第4988061号にかかる地盤改良装置でも好適に実施できる。
ちなみに、実施例1にかかる単軸の掘削施工機10は、幅寸が2.5m以下、前後方向の長さが4.0〜8.0m、前記駆動軸の軸径は、0.1〜0.2mの小型の地盤改良施工機を想定している。
The main body of the single-axis excavation machine 10 used in the first embodiment employs various variations of excavation machines (ground improvement construction machines) as long as a high-quality cylindrical improvement body can be constructed in the ground. be able to. That is, if it is a drilling construction machine equipped with a drilling blade for excavating the ground, a stirring blade for stirring and mixing soil and cement-based solidified material, and a co-rotation preventing blade for preventing co-rotation of unmodified soil Can be implemented. The present invention can also be suitably implemented with a ground improvement construction machine according to Japanese Patent No. 5195173, or a ground improvement device according to Japanese Patent No. 4980661, which was recently developed by one of the present applicants.
Incidentally, the single-shaft excavator 10 according to the first embodiment has a width dimension of 2.5 m or less, a length in the front-rear direction of 4.0 to 8.0 m, and a shaft diameter of the drive shaft of 0.1 to 0.1 m. A small ground improvement construction machine of 0.2m is assumed.

この実施例1にかかる単軸の掘削施工機10の大きな特徴点は、前記掘削施工機本体の前記共回り防止翼4の側面部に、前記検出記録装置5を収容した装置収容ボックス6を取り付けている点にある。よって、以下、この点の構成を中心に説明する。   A major feature of the single-axis excavator 10 according to the first embodiment is that a device storage box 6 that accommodates the detection recording device 5 is attached to a side surface of the co-rotation prevention wing 4 of the excavator main body. There is in point. Therefore, the configuration of this point will be mainly described below.

図示例にかかる共回り防止翼4は、鋼製で、図2Bが分かりやすいように、駆動軸1の径よりも大きい半円状の凹部を有する一対の枠材4a、4aと、掘削孔の円周方向の曲率と等しい円弧面状をなす一対の変位抑止板4b、4bとをボルト接合して組み立てられている。
具体的に、前記一対の枠材4a、4aはそれぞれ、前記半円状の凹部で前記駆動軸1を取り囲み、各々が反対方向の直径線方向に配置された状態でボルト7、8で接合され、駆動軸1へ、共回りしない状態に、且つ軸方向へは不動の状態に取り付けられている。
前記一対の変位抑止板4b、4bは、前記各枠材4aの外側端部であって掘削翼4で掘削した掘削孔の孔壁内面へ接する位置にボルト7、8で接合されている。前記変位抑止板4bの外面中央部には、半径方向外向きに鉛直板4cが突き出され、掘削孔の孔壁土中へ食い込む構成とされている。
なお、前記共回り防止翼4の構成は、もちろん図示例に限定されない。例えば、前記特許第4988061号にかかる共回り防止翼5など、駆動軸1へ、共回りしない状態に、且つ軸方向へは不動の状態に取り付けられている部材であれば好適に実施できる。
また、前記ボルト8は、後述する装置収容ボックス6の取り付け態様を考慮し、前記ボルト7よりも長いボルト(長ボルト)を用いている。
The co-rotation preventing wing 4 according to the illustrated example is made of steel, and as shown in FIG. 2B, a pair of frame members 4a and 4a having a semicircular recess larger than the diameter of the drive shaft 1, A pair of displacement restraining plates 4b and 4b having an arc surface shape equal to the curvature in the circumferential direction are assembled by bolting.
Specifically, each of the pair of frame members 4a and 4a surrounds the drive shaft 1 with the semicircular recesses, and is joined with bolts 7 and 8 in a state where each is arranged in the opposite diametric line direction. It is attached to the drive shaft 1 in a state where it does not rotate together and is stationary in the axial direction.
The pair of displacement restraining plates 4b and 4b are joined by bolts 7 and 8 to positions at the outer ends of the respective frame members 4a and in contact with the inner surface of the hole wall of the excavation hole excavated by the excavation blade 4. A vertical plate 4c protrudes radially outward from the central portion of the outer surface of the displacement restraining plate 4b, and bites into the hole wall soil of the excavation hole.
Of course, the configuration of the co-rotation preventing blade 4 is not limited to the illustrated example. For example, any member that is attached to the drive shaft 1 in a state that does not co-rotate and is stationary in the axial direction, such as the co-rotation prevention wing 5 according to the above-mentioned Japanese Patent No. 4988061, can be suitably implemented.
In addition, the bolt 8 is a bolt (long bolt) longer than the bolt 7 in consideration of the mounting mode of the device housing box 6 described later.

次に、図示例にかかる装置収容ボックス6は、ステンレス製で、前記共回り防止翼4のせいより若干小さく、前記共回り防止翼4を組み立てる際に用いた4本のボルト8を利用して、該共回り防止翼4(枠材4a)の側面部にボルト接合して取り付けられている。
前記装置収容ボックス6は、前記共回り防止翼4に据え付けるための基部6aと、基部6aより幅狭で該基部6aから立ち上がる装置収容部6bと、装置収容部6bの前面開口部を塞ぐ蓋材6cとからなる。
前記基部6aは、その四隅部に前記ボルト8の通し孔が設けられている。すなわち、このボルト通し孔は、枠材4a側に設けた対応するボルト通し孔と芯が一致する配置に穿設されている。なお、このボルト通し孔は、スムーズな取り付け作業を実現するべく、水平方向に長い長孔を用いて実施することもできる。
前記装置収容部6bは、前記基部6aと一体成形され、その内部に、後述する検出記録装置5を鉛直姿勢でほぼぴったり嵌め込み得る直方体状の凹部が形成されている。
前記蓋材6cは、前記装置収容部6bの断面形状とほぼ一致する大きさで、該装置収容部6bの前端部(天端部)の四隅部に設けたボルト孔と一致するボルト通し孔を備え、該通し孔にボルト9をねじ込んで開口部を塞ぐ構成とされている。この蓋材6cは透明板で実施してもよい。
なお、図示例にかかる装置収容ボックス6は、前記共回り防止翼4(枠材4a)の側面部に設けたスチフナー15の存在を考慮し、いわば、装置収容部6bを嵩上げした構成で実施している(図2C参照)。スチフナー15が無い場合はその分だけ突き出し長さを小さくして実施でき、土圧抵抗も小さくすることができる。
また、前記装置収容ボックス6の構成は、図示例に限定されない。前記共回り防止翼4の側面部に確実に取り付けることができ、後述する検出記録装置5を安定した状態で収容でき、該検出記録装置5を必要に応じてスムーズに取り出すことができる構成であれば好適に実施できる。ただし、地盤中の障害物に衝突して破損等する虞をできるだけ回避するべく、前記共回り防止翼4のせいより小さくするなど小型化(コンパクト化)した方が好ましい。そのためには、小型の検出記録装置5を採用した方が好適と云える。
ちなみに、本実施例1にかかる装置収容ボックス6は、共回り防止翼4に、ボルト接合手段で取り付けているがこれに限定されず、溶接接合手段で取り付けて実施することも勿論できる。以下の実施例2〜5についても同様の技術的思想とする。
Next, the device housing box 6 according to the illustrated example is made of stainless steel and is slightly smaller than the co-rotation prevention wing 4, and uses the four bolts 8 used when assembling the co-rotation prevention wing 4. , And are attached to the side surface portion of the co-rotation preventing blade 4 (frame member 4a) by bolting.
The device storage box 6 includes a base portion 6a for installation on the co-rotation prevention wing 4, a device storage portion 6b that is narrower than the base portion 6a and rises from the base portion 6a, and a lid member that closes the front opening of the device storage portion 6b. 6c.
The base portion 6a is provided with through holes for the bolts 8 at four corners. In other words, the bolt through holes are formed in an arrangement in which the cores coincide with the corresponding bolt through holes provided on the frame member 4a side. In addition, this bolt through-hole can also be implemented using a long hole long in a horizontal direction in order to implement | achieve a smooth attachment operation | work.
The device accommodating portion 6b is integrally formed with the base portion 6a, and a rectangular parallelepiped concave portion into which a detection recording device 5 described later can be fitted almost vertically is formed.
The lid member 6c has a size that substantially matches the cross-sectional shape of the device accommodating portion 6b, and has bolt through holes that coincide with bolt holes provided at the four corners of the front end portion (top end portion) of the device accommodating portion 6b. And a bolt 9 is screwed into the through hole to close the opening. The lid member 6c may be implemented with a transparent plate.
Note that the device storage box 6 according to the illustrated example is implemented with a configuration in which the device storage portion 6b is raised in consideration of the presence of the stiffener 15 provided on the side surface portion of the co-rotation prevention blade 4 (frame member 4a). (See FIG. 2C). When the stiffener 15 is not provided, the projecting length can be reduced correspondingly, and the earth pressure resistance can be reduced.
Moreover, the structure of the said apparatus accommodation box 6 is not limited to the example of illustration. A structure that can be securely attached to the side surface portion of the co-rotation preventing wing 4, can accommodate a detection recording device 5 described later in a stable state, and can smoothly take out the detection recording device 5 as necessary. Can be suitably implemented. However, it is preferable to make it smaller (compact), for example, by making it smaller than the co-rotation preventing wing 4 in order to avoid the possibility of colliding with an obstacle in the ground and causing damage. For that purpose, it can be said that it is preferable to employ a small detection recording apparatus 5.
Incidentally, although the apparatus accommodation box 6 concerning the present Example 1 is attached to the co-rotation prevention wing | blade 4 with a bolt joining means, it is not limited to this, Of course, it can also be implemented by attaching with a welding joining means. The following technical examples 2 to 5 have the same technical idea.

次に、図示例にかかる検出記録装置5は、多摩川精機株式会社製の小型3軸慣性センサユニットが好適に用いられる。前記センサユニットは、電源が供給された前記3軸角速度センサおよび前記3軸加速度センサ等を備え、駆動軸1の方位角と傾斜角を検出することができる。
具体的に、3軸角速度センサ(3軸ジャイロとも云う。)は、PITCH・ROLL・YAWの3軸の角速度を検出することにより、地球の角速度(360度/24時間)から真北方位に対する相対角度を検出して掘削施工機10の駆動軸1が配置されている方位角を検出するものである。
3軸加速度センサは、例えば、振り子の位置ずれをトルクモータにフィードバックし、トルクモータの電流から傾斜角を得るサーボ加速度計式の傾斜計をXYZの3軸方向に配置し、それぞれの方向の傾斜角を検出して掘削施工機10の駆動軸1の姿勢変化を検出するものである。なお、3軸加速度センサに利用される傾斜計としては、ひずみゲージ式、或いは差動トランス式を利用してもよい。
なお、本実施例に用いる検出記録装置5は、前記小型3軸慣性センサユニットに限定されない。振動や衝撃に強く、精度や耐久性に優れており、掘削施工機10の駆動軸1の変位量を連続的かつ自動的に検出できるセンサであれば、適宜採用可能である。
Next, as the detection recording device 5 according to the illustrated example, a small triaxial inertial sensor unit manufactured by Tamagawa Seiki Co., Ltd. is preferably used. The sensor unit includes the triaxial angular velocity sensor and the triaxial acceleration sensor to which power is supplied, and can detect the azimuth angle and the tilt angle of the drive shaft 1.
Specifically, the 3-axis angular velocity sensor (also referred to as 3-axis gyro) detects the three-axis angular velocity of PITCH, ROLL, and YAW, and is relative to the true north direction from the Earth's angular velocity (360 degrees / 24 hours). By detecting the angle, the azimuth angle at which the drive shaft 1 of the excavator 10 is arranged is detected.
For example, the triaxial acceleration sensor feeds back the displacement of the pendulum to the torque motor and arranges the servo accelerometer type inclinometer to obtain the inclination angle from the torque motor current in the three axis directions of XYZ. A change in the attitude of the drive shaft 1 of the excavator 10 is detected by detecting a corner. As an inclinometer used for the triaxial acceleration sensor, a strain gauge type or a differential transformer type may be used.
The detection recording device 5 used in this embodiment is not limited to the small triaxial inertial sensor unit. Any sensor that is resistant to vibration and impact, has excellent accuracy and durability, and can continuously and automatically detect the amount of displacement of the drive shaft 1 of the excavator 10 can be used as appropriate.

ここで、前記検出記録装置5を収容した装置収容ボックス6を、前記共回り防止翼4の側面部に設置する意義について説明する。
(1)先ず、装置収容ボックス6を共回り防止翼4に設置するのは、共回り防止翼4は自ら回転しないので、駆動軸1の正確な検出データを計測できるからである。
(2)掘削する地盤中には、ガラや礫などの障害物が存在している場合が多い。仮に、装置収容ボックス6を共回り防止翼4の下部に設置すると、掘削貫入時に装置収容ボックス6が障害物に当たって損傷する虞がある。よって、装置収容ボックス6を側面部に設置すれば、下部に設置するよりも、障害物に当たって損傷する虞を低減できる。
(3)仮に、装置収容ボックス6を共回り防止翼4の上部に設置すると、引き抜き攪拌時に改良土が装置収容ボックス6に覆い被さり、付着しやすい問題がある。この付着状態が重度であれば、装置収容ボックス6の蓋材6cを取り外して検出データを読み取る手法を採用する場合、蓋材6cの取り外し作業に難渋し、スムーズな施工に悪影響を及ぼす虞がある。よって、装置収容ボックス6を側面部に設置すれば、上部に設置するよりも、装置収容ボックス6に改良土が付着する虞を低減できる。
(4)仮に、装置収容ボックス6を共回り防止翼4の上部又は下部に設置すると、必然的に、装置収容ボックス6のせいの分だけ、該共回り防止翼4とその上方または下方に設ける攪拌翼3との間隔が大きくなる。そうすると、攪拌翼3全体の設置間隔が長くなる。当該設置間隔は、本来、掘削施工機10の制約上なるべく短くする方が好ましいので不合理である。よって、装置収容ボックス6を側面部に設置することで、攪拌翼3全体の設置間隔を短くでき、合理的な構成の掘削施工機10を実現できる。
(5)また、前記攪拌翼3全体の設置間隔が長くなると、共回り防止効果が十分に発揮できない問題もある。そもそも共回り防止翼4は、回転する攪拌翼3と合わせて粘性土などの共回りを防止する役割もあり、この点から云えば、攪拌翼3との間隔は短い方が効果的である。よって、装置収容ボックス6を側面部に設置すると、攪拌翼3との距離を従来通りに保持でき、従来通りの共回り防止効果を発揮できる。
(6)その他、装置収容ボックス6の取り付け作業、取り外し作業をスムーズに行うことができる。
Here, the significance of installing the device storage box 6 containing the detection recording device 5 on the side surface of the co-rotation preventing wing 4 will be described.
(1) First, the device housing box 6 is installed on the co-rotation preventing blade 4 because the co-rotation preventing blade 4 does not rotate by itself, and thus accurate detection data of the drive shaft 1 can be measured.
(2) There are many obstacles such as gravel and gravel in the ground to be excavated. If the device storage box 6 is installed below the co-rotation prevention wing 4, the device storage box 6 may hit an obstacle during the excavation and be damaged. Therefore, if the device storage box 6 is installed on the side surface, it is possible to reduce the risk of being hit by an obstacle rather than installing it in the lower part.
(3) If the device storage box 6 is installed on the upper part of the co-rotation prevention wing 4, there is a problem that the improved soil covers the device storage box 6 during pulling and stirring and is likely to adhere. If this adhesion state is severe, when the method of reading the detection data by removing the cover 6c of the device housing box 6 is adopted, the removal work of the cover 6c is difficult, and there is a possibility of adversely affecting the smooth construction. . Therefore, if the device storage box 6 is installed on the side surface portion, it is possible to reduce the possibility that the improved soil adheres to the device storage box 6 rather than the device storage box 6.
(4) If the device housing box 6 is installed above or below the co-rotation preventing wing 4, the device housing box 6 is necessarily provided above and below the co-rotation preventing wing 4 by the amount of the device housing box 6. The distance from the stirring blade 3 is increased. If it does so, the installation space | interval of the stirring blade 3 whole will become long. The installation interval is originally unreasonable because it is preferable to shorten it as much as possible due to the limitations of the excavator 10. Therefore, by installing the apparatus storage box 6 on the side surface, the installation interval of the entire stirring blade 3 can be shortened, and the excavation machine 10 having a rational configuration can be realized.
(5) Moreover, when the installation interval of the agitating blade 3 as a whole becomes long, there is a problem that the co-rotation preventing effect cannot be sufficiently exhibited. In the first place, the co-rotation prevention blade 4 also has a role of preventing co-rotation of viscous soil and the like together with the rotating stirring blade 3. From this point of view, it is more effective that the distance from the stirring blade 3 is shorter. Therefore, when the apparatus storage box 6 is installed on the side surface, the distance from the stirring blade 3 can be maintained as usual, and the conventional co-rotation preventing effect can be exhibited.
(6) Besides, the attaching operation and the removing operation of the device storage box 6 can be performed smoothly.

次に、上記構成の単軸の掘削施工機10を用いて地盤改良工法における駆動軸の位置を検出する方法について説明する。    Next, a method for detecting the position of the drive shaft in the ground improvement method using the single-axis excavator 10 having the above-described configuration will be described.

先ず、図1、図2に示したように、地盤改良工法に用いる単軸の掘削施工機(地盤改良施工機)10の共回り防止翼4の側面部に、前記検出記録装置5を収容した装置収容ボックス6をボルト8(又は溶接)で接合して取り付ける。この取り付け作業は、掘削施工機10を、円柱状の改良体を構築する場所に位置決めする前でもよいし後でもよい。   First, as shown in FIGS. 1 and 2, the detection recording device 5 is accommodated on the side surface of the co-rotation prevention wing 4 of a single-axis excavation construction machine (ground improvement construction machine) 10 used in the ground improvement construction method. The device housing box 6 is attached by being joined with bolts 8 (or welding). This attachment work may be performed before or after positioning the excavation machine 10 at the place where the cylindrical improvement body is constructed.

次に、円柱状の改良体を構築する部位に位置決めした掘削施工機10の回転駆動部を起動させて駆動軸1を回転駆動させ、駆動軸1の掘削翼2および攪拌翼3により地盤の掘削と固化材スラリー注入による機械式攪拌方式の地盤改良工程を、該掘削翼2が目標深度に到達するまで垂直下向きに進める。
この工程の間、先ず、前記検出記録装置5の3軸加速度センサで検出される加速度により駆動軸1の初期の傾斜角が算出され、この傾斜角より3軸角速度センサで検出される方位角(角速度)が水平成分及び垂直成分に分解される。そして、駆動軸1を回転させて掘削方向に降下させると、印加される角速度は3軸角速度センサで検出され、検出された角速度信号を積分することにより、駆動軸1の傾斜角及び方位角を検出することができる。
Next, the rotary drive unit of the excavator 10 positioned at the site for constructing the cylindrical improvement body is activated to drive the drive shaft 1 to rotate, and the excavation blade 2 and the stirring blade 3 of the drive shaft 1 excavate the ground. Then, the ground improvement process of the mechanical stirring method by injecting the solidified slurry is advanced vertically downward until the excavation blade 2 reaches the target depth.
During this process, first, the initial inclination angle of the drive shaft 1 is calculated from the acceleration detected by the triaxial acceleration sensor of the detection recording device 5, and the azimuth angle (detected by the triaxial angular velocity sensor) from this inclination angle ( Angular velocity) is broken down into horizontal and vertical components. When the drive shaft 1 is rotated and lowered in the excavation direction, the applied angular velocity is detected by a triaxial angular velocity sensor, and the detected angular velocity signal is integrated to obtain the tilt angle and azimuth angle of the drive shaft 1. Can be detected.

前記駆動軸1(掘削翼2)が目標深度に到達した後は、掘削施工機10の回転駆動部により駆動軸1を引き抜き攪拌させて地上へ引き抜く。   After the drive shaft 1 (excavation blade 2) reaches the target depth, the drive shaft 1 is pulled out and agitated by the rotary drive unit of the excavator 10 and pulled out to the ground.

しかる後、次の円柱状の改良体を構築する部位へ掘削施工機10を移動させると共に、地上に現れた装置収容ボックス6内の検出記録装置5の検出データ情報を、地上の掘削施工機10などに設けた施工管理装置のコンピュータ画面に伝送して(又は装置収容ボックスから検出記録装置を取り出して)読み取る(図10のボックスa参照)。   Thereafter, the excavator 10 is moved to a site for constructing the next cylindrical improvement body, and the detection data information of the detection recording device 5 in the apparatus storage box 6 that appears on the ground is used as the excavator 10 on the ground. The data is transmitted to a computer screen of a construction management device provided in the above (or the detection recording device is taken out from the device storage box) and read (see box a in FIG. 10).

一方、駆動軸1の掘削貫入時間と掘削貫入深度は、地上の掘削施工機10等に設けた従来一般の施工管理装置により計測される(図10のボックスb参照)。
よって、前記検出記録装置5の検出データ情報と前記施工管理装置により計測されたデータ情報とをコンピュータへ入力し、両データ情報に共通する掘削貫入時間を基に掘削貫入深度における駆動軸1の方位角と傾斜角から駆動軸1の位置をコンピュータで演算処理して求める(図10のボックスc参照)ことにより、掘削作業中の掘削施工機10の駆動軸1の絶対位置(3軸方向の傾き)、すなわち掘削貫入深度、方位角(変位)、傾斜角(傾斜姿勢)を連続的且つ自動的に検出することができる。
On the other hand, the excavation penetration time and the excavation penetration depth of the drive shaft 1 are measured by a conventional general construction management device provided in the excavation construction machine 10 on the ground (see box b in FIG. 10).
Therefore, the detection data information of the detection recording device 5 and the data information measured by the construction management device are inputted to the computer, and the direction of the drive shaft 1 at the excavation penetration depth based on the excavation penetration time common to both data information The absolute position of the drive shaft 1 of the excavator 10 during the excavation work (inclination in the three-axis directions) is obtained by calculating the position of the drive shaft 1 from the angle and the inclination angle by a computer (see box c in FIG. 10). ), That is, the excavation depth, the azimuth angle (displacement), and the inclination angle (inclination posture) can be detected continuously and automatically.

所定の部位に移動させた掘削施工機10は、掘削作業を再開し、前述の工程を次に構築する円柱状の改良体について行う(前記段落[0030]〜[0033]参照)。
以後、前述の工程を繰り返し行い、所定の範囲にわたり良質の円柱状の改良体を構築する。
The excavator 10 moved to a predetermined site resumes excavation work and performs the above-described steps on the cylindrical improvement body (see paragraphs [00 30 ] to [00 33 ] above).
Thereafter, the above-described steps are repeated to construct a high-quality cylindrical improvement body over a predetermined range.

そして、構築した改良体毎に取得した駆動軸1の位置に関するデータ情報について、構造設計上の許容値を超える孔曲がりをしていないと判断される場合は、孔曲がりしていないことを確認、証明するデータとして保存(管理)する。前記許容値を超える孔曲がりをしていると判断される場合は、孔曲がりしている改良体の近傍位置に掘削施工機10を位置決めし、掘削作業を再開し、当該改良体とラップする新たな改良体を構築する等の補完作業を行う。
かくして、信頼性の高い高品質の連続壁を格子状等に形成した地下構造物を実現することができる。
And, regarding the data information regarding the position of the drive shaft 1 acquired for each constructed improved body, when it is determined that the hole is not bent exceeding the allowable value in the structural design, confirm that the hole is not bent, Save (manage) as proof data. When it is determined that the hole is bent beyond the allowable value, the excavator 10 is positioned near the improved body that is bending the hole, the excavation work is resumed, and a new wrapping with the improved body is performed. Complementary work such as constructing an improved body.
Thus, it is possible to realize an underground structure in which a high-quality continuous wall with high reliability is formed in a lattice shape or the like.

図3と図4は、上記実施例1にかかる単軸の掘削施工機10の異なる実施例を示している。上記実施例1と同一の構成部材は同一の符号を付してその説明を適宜省略する。   3 and 4 show different embodiments of the single-shaft excavator 10 according to the first embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted as appropriate.

この実施例2は、上記実施例1と比し、上記共回り防止翼4を上下二段の配置で実施している点が主に相違する。
すなわち、実施例2にかかる共回り防止翼4’は、水平方向に一連にボルト接合してなる枠材4a’、4a’を、小径の攪拌翼3を間に挟んで上下二段の配置とし、これを上下方向に長い変位抑止板4b’で一体的に接合したダブルタイプに構成している。前記変位抑止板4b’の外面から突き出された鉛直板4c’も前記変位抑止板4b’に沿って上下に長く構成し、掘削孔16の孔壁土中へ例えば10cm程度食い込んで前記掘削翼2及び攪拌翼3とは共回りしない構成としている。
このダブルタイプの共回り防止翼4’によれば、実施例1に係るシングルタイプの共回り防止翼4の構成では、地盤土壌が柔らかい等の原因で必要十分な土圧抵抗が得られず、芯ブレや変位の防止効果に乏しい条件下での地盤改良施工において、鉛直貫入精度を高めることに効果的に機能する。すなわち、上下二段のダブルタイプの共回り防止翼4’としたので、その分だけ変位抑止板4b’および鉛直板4c’の受圧面積が十分に大きく構成できるからである。
この実施例2では、上下二段構成の共回り防止翼4’の中間部位に攪拌翼3が設置されているから、掘削土と固化材スラリーとの攪拌効果も高いものとなる。
The second embodiment is mainly different from the first embodiment in that the co-rotation preventing wings 4 are arranged in two upper and lower stages.
In other words, the co-rotation preventing blade 4 ′ according to the second embodiment has frame members 4 a ′ and 4 a ′ formed by bolting in series in the horizontal direction, and arranged in two upper and lower stages with the small-diameter stirring blade 3 interposed therebetween. These are configured as a double type in which the displacement restraining plates 4b ′ long in the vertical direction are integrally joined. The vertical plate 4c ′ protruding from the outer surface of the displacement restraint plate 4b ′ is also configured to be vertically long along the displacement restraint plate 4b ′, and digs into the hole wall soil of the excavation hole 16 by about 10 cm, for example. It is set as the structure which does not rotate with the stirring blade 3. FIG.
According to the double-type co-rotation preventing wing 4 ', the configuration of the single-type co-rotation preventing wing 4 according to the first embodiment does not provide a necessary and sufficient earth pressure resistance due to the soft ground soil, etc. It functions effectively to improve vertical penetration accuracy in ground improvement work under conditions where the effect of preventing core blur and displacement is poor. That is, because the double-type double-rotation prevention blade 4 'is arranged in the upper and lower stages, the displacement receiving plate 4b' and the vertical plate 4c 'can be configured to have a sufficiently large pressure receiving area.
In the second embodiment, since the stirring blade 3 is installed at an intermediate portion of the two-stage co-rotation prevention blade 4 ', the stirring effect between the excavated soil and the solidified material slurry is high.

この実施例2にかかる単軸の掘削施工機10’の大きな特徴点は、上記実施例1と同様に、前記掘削施工機本体の前記共回り防止翼4’の上段部分(又は下段部分)の側面部に、前記検出記録装置5を収容した装置収容ボックス6を取り付けている点にある。
前記共回り防止翼4’、前記検出記録装置5、および前記装置収容ボックス6の具体的構成は既に説明しているので省略する(前記段落[0024]〜[0026]、[0037]参照)。
前記検出記録装置5を収容した装置収容ボックス6を、前記共回り防止翼4’の側面部に設置する意義についても既に説明しているので省略する(前記段落[0027]参照)。
The major feature of the single-axis excavator 10 'according to the second embodiment is that the upper part (or the lower part) of the co-rotation preventing wing 4' of the excavator main body is the same as in the first embodiment. The device storage box 6 that stores the detection recording device 5 is attached to the side surface portion.
Since specific configurations of the co-rotation preventing wing 4 ′, the detection recording device 5, and the device housing box 6 have already been described, they are omitted (the paragraphs [00 24 ] to [00 26 ], [00 37 ]). reference).
Since the significance of installing the device storage box 6 containing the detection recording device 5 on the side surface portion of the co-rotation preventing wing 4 'has already been described, a description thereof will be omitted (see paragraph [00 27 ] above).

要するに、この実施例2は、上記実施例1と比し、装置収容ボックス6を取り付ける共回り防止翼4’の形態が相違するだけで、駆動軸1の位置の検出については、何ら影響を与えるものではない。
よって、前記掘削施工機10’を用いた地盤改良工法における駆動軸1の位置は、上記実施例1と同様の手順で検出することができる(前記段落[0029]〜[0034]、及び図10参照)。
したがって、構築した改良体毎に取得した駆動軸1の位置に関するデータ情報について、構造設計上の許容値を超える孔曲がりをしていないと判断される場合は、孔曲がりしていないことを確認、証明するデータとして保存(管理)する。前記許容値を超える孔曲がりをしていると判断される場合は、孔曲がりしている改良体の近傍位置に掘削施工機10’を位置決めし、掘削作業を再開し、当該改良体とラップする新たな改良体を構築する等の補完作業を行う。
かくして、信頼性の高い高品質の連続壁を格子状等に形成した地下構造物を実現することができる。
In short, the second embodiment is different from the first embodiment only in the form of the co-rotation preventing wing 4 ′ to which the device housing box 6 is attached, and has no effect on the detection of the position of the drive shaft 1. It is not a thing.
Therefore, the position of the drive shaft 1 in the ground improvement method using the excavator 10 ′ can be detected by the same procedure as in the first embodiment (the paragraphs [00 29 ] to [00 34 ], and (See FIG. 10).
Therefore, for the data information regarding the position of the drive shaft 1 acquired for each improved body constructed, if it is determined that the hole does not exceed the allowable value in the structural design, confirm that the hole is not bent. Save (manage) as proof data. When it is determined that the hole is bent beyond the allowable value, the excavator 10 'is positioned in the vicinity of the improved body that is bending the hole, the excavation work is resumed, and the improved body is wrapped. Complementary work such as building new improvements.
Thus, it is possible to realize an underground structure in which a high-quality continuous wall with high reliability is formed in a lattice shape or the like.

図5は、上記実施例1、2にかかる駆動軸1を2軸とした掘削施工機30の実施例を示している。
この実施例3にかかる掘削施工機30は、前記共回り防止翼4(4’)を構成する枠材4a(4a’)に、該枠材4a(4a’)と直交する配置で軸間保持部材17を設け、隣接する枠材4a(4a’)の軸筒部同士をボルト、溶接等の接合手段で連結している。なお、両端部に軸筒部を備えた軸間保持部材17に枠材4a(4’)をボルト、溶接等の接合手段で接合して実施することも勿論できる。実施例2にかかる共回り防止翼4’の場合は、上部および下部の枠材4a’にそれぞれ軸間保持部材17を上下二段の配置で設ける。
FIG. 5 shows an embodiment of the excavator 30 with the drive shaft 1 according to the first and second embodiments as two axes.
The excavation machine 30 according to the third embodiment is held between the shafts in an arrangement orthogonal to the frame material 4a (4a ') on the frame material 4a (4a') constituting the co-rotation prevention blade 4 (4 '). The member 17 is provided, and the shaft tube portions of the adjacent frame members 4a (4a ′) are connected to each other by a joining means such as a bolt or welding. Needless to say, the frame member 4a (4 ') may be joined to the inter-axis holding member 17 provided with the shaft tube portions at both ends by joining means such as bolts and welding. In the case of the co-rotation preventing wing 4 ′ according to the second embodiment, the inter-axis holding members 17 are provided on the upper and lower frame members 4 a ′ in a two-stage arrangement.

上記構成の2軸の掘削施工機30を用いて地盤改良工法を実施する場合、前記検出記録装置5を収容した装置収容ボックス6は、より正確な検出データ情報を取得するべく、前記軸間保持部材17の側面部に、上記実施例1、2と同様の手法で取り付けて駆動軸1の位置を検出する作業を行う。実施例2にかかる共回り防止翼4’の場合は、上部側(又は下部側)の枠材4a’の側面部に取り付けて駆動軸1の位置を検出する作業を行う。   When the ground improvement method is implemented using the two-axis excavation machine 30 having the above-described configuration, the device storage box 6 that stores the detection recording device 5 holds the inter-shaft in order to obtain more accurate detection data information. An operation for detecting the position of the drive shaft 1 is performed by attaching to the side surface of the member 17 in the same manner as in the first and second embodiments. In the case of the co-rotation preventing wing 4 ′ according to the second embodiment, the operation of detecting the position of the drive shaft 1 is performed by attaching it to the side surface of the upper (or lower) frame member 4 a ′.

要するに、この実施例3は、上記実施例1、2と比し、装置収容ボックス6を取り付ける相手材が相違するだけで、駆動軸1の位置の検出については、何ら影響を与えるものではない。
よって、前記2軸の掘削施工機30を用いた地盤改良工法における駆動軸1の位置は、上記実施例1、2と同様の手順で検出することができる(前記段落[0029]〜[0034]、及び図10参照)。
したがって、構築した改良体毎に取得した駆動軸1の位置に関するデータ情報について、構造設計上の許容値を超える孔曲がりをしていないと判断される場合は、孔曲がりしていないことを確認、証明するデータとして保存(管理)する。前記許容値を超える孔曲がりをしていると判断される場合は、孔曲がりしている改良体の近傍位置に掘削施工機30を位置決めし、掘削作業を再開し、当該改良体とラップする新たな改良体を構築する等の補完作業を行う。
かくして、この実施例3によれば、上記実施例1、2と同様に、信頼性の高い高品質の連続壁を格子状等に形成した地下構造物を実現することができる。
In short, the third embodiment is different from the first and second embodiments in that the counterpart material to which the apparatus housing box 6 is attached is different, and the detection of the position of the drive shaft 1 is not affected at all.
Therefore, the position of the drive shaft 1 in the ground improvement method using the biaxial excavation machine 30 can be detected by the same procedure as in the first and second embodiments (see paragraphs [00 29 ] to [00]). 34 ] and FIG.
Therefore, for the data information regarding the position of the drive shaft 1 acquired for each improved body constructed, if it is determined that the hole does not exceed the allowable value in the structural design, confirm that the hole is not bent. Save (manage) as proof data. If it is determined that the hole is bent beyond the allowable value, the excavator 30 is positioned in the vicinity of the improved body that is bending the hole, the excavation work is resumed, and a new wrapping with the improved body is performed. Complementary work such as constructing an improved body.
Thus, according to the third embodiment, as in the first and second embodiments, it is possible to realize an underground structure in which high-quality continuous walls with high reliability are formed in a lattice shape or the like.

図6A、Bは、2軸の掘削施工機40の異なる実施例を示している。上記実施例1、2と同様の役割を果たす構成部材は同一の符号を付してその説明を適宜省略する。
この実施例4にかかる掘削施工機40は、上下二段に配置された両端部に軸筒部を備えた軸間保持部材17のうち、下段側(又は上段側)の側面部に、前記検出記録装置5を収容した装置収容ボックス6を、上記実施例1、2と同様の手法で取り付けて実施している(図7も参照)。
ちなみに、図6中の符号41は先端注入孔、符号42は上部注入孔、符号43は先導カッター、符号44は前記軸間保持部材17の両端部にボルト、溶接等の接合手段で設けた共回り防止板を示している。
6A and 6B show different embodiments of the biaxial excavator 40. Constituent members that play the same role as in the first and second embodiments are given the same reference numerals, and descriptions thereof are omitted as appropriate.
In the excavator 40 according to the fourth embodiment, the detection is performed on the lower side (or upper side) side surface portion of the inter-axis holding member 17 provided with the shaft tube portions at both ends arranged in the upper and lower stages. The apparatus storage box 6 in which the recording apparatus 5 is stored is mounted by the same method as in the first and second embodiments (see also FIG. 7).
Incidentally, reference numeral 41 in FIG. 6 is a tip injection hole, reference numeral 42 is an upper injection hole, reference numeral 43 is a leading cutter, and reference numeral 44 is a common joint provided at both ends of the inter-axis holding member 17 by means of joining means such as bolts and welding. A rotation prevention plate is shown.

要するに、この実施例4は上記実施例3と同様に、上記実施例1、2と比し、装置収容ボックス6を取り付ける相手材が相違するだけで、駆動軸1の位置の検出については、何ら影響を与えるものではない。
よって、前記2軸の掘削施工機40を用いた地盤改良工法における駆動軸1の位置は、上記実施例1、2と同様の手順で検出することができる(前記段落[0029]〜[0034]、及び図10参照)。
したがって、構築した改良体毎に取得した駆動軸1の位置に関するデータ情報について、構造設計上の許容値を超える孔曲がりをしていないと判断される場合は、孔曲がりしていないことを確認、証明するデータとして保存(管理)する。前記許容値を超える孔曲がりをしていると判断される場合は、孔曲がりしている改良体の近傍位置に掘削施工機40を位置決めし、掘削作業を再開し、当該改良体とラップする新たな改良体を構築する等の補完作業を行う。
かくして、この実施例4によれば、上記実施例1〜3と同様に、信頼性の高い高品質の連続壁を格子状等に形成した地下構造物を実現することができる。
In short, the fourth embodiment is different from the first and second embodiments in the same manner as the third embodiment, except that the counterpart material to which the apparatus housing box 6 is attached is different. It has no effect.
Therefore, the position of the drive shaft 1 in the ground improvement method using the two-axis excavator 40 can be detected in the same procedure as in the first and second embodiments (see paragraphs [00 29 ] to [00]). 34 ] and FIG.
Therefore, for the data information regarding the position of the drive shaft 1 acquired for each improved body constructed, if it is determined that the hole does not exceed the allowable value in the structural design, confirm that the hole is not bent. Save (manage) as proof data. If it is determined that the hole is bent beyond the allowable value, the excavator 40 is positioned in the vicinity of the improved body that is bending the hole, the excavation work is resumed, and a new wrapping with the improved body is performed. Complementary work such as constructing an improved body.
Thus, according to the fourth embodiment, similarly to the first to third embodiments, it is possible to realize an underground structure in which high-quality continuous walls with high reliability are formed in a lattice shape or the like.

図8と図9は、3軸又は5軸の掘削施工機50、50’を用いたソイルセメント連続壁工法における駆動軸1の位置検出方法の実施例を示している。上記実施例1〜4と同様の役割を果たす構成部材は同一の符号を付してその説明を適宜省略する。
上記実施例1〜4は、地盤改良工法を中心に説明したが、この実施例5にかかるソイルセメント連続壁工法であっても同様に駆動軸1の位置を検出することができる。なぜなら、掘削施工機50、50’や駆動軸1の形態、セメント系固化材の配合、掘削翼2等の構成部材の形態の違いこそあれ、上記実施例3、4と同様に、軸間保持部材17に前記検出記録装置5を収容した装置収容ボックス6を取り付けることができる点においては、何ら変わりはないからである。
8 and 9 show an embodiment of a method for detecting the position of the drive shaft 1 in a soil cement continuous wall construction method using a 3-axis or 5-axis excavator 50, 50 '. Constituent members that play the same role as in the first to fourth embodiments are given the same reference numerals, and descriptions thereof are omitted as appropriate.
Although the said Examples 1-4 demonstrated centering on the ground improvement construction method, even if it is the soil cement continuous wall construction method concerning this Example 5, the position of the drive shaft 1 can be detected similarly. The reason is that the excavator 50, 50 'and the drive shaft 1, the cemented solidified material, the excavator blade 2 and other components are different in shape, as in the third and fourth embodiments. This is because there is no change in that the device storage box 6 that houses the detection recording device 5 can be attached to the member 17.

要するに、この実施例5は上記実施例3、4と同様に、上記実施例1、2と比し、装置収容ボックス6を取り付ける相手材が相違するだけで、駆動軸1の位置の検出については、何ら影響を与えるものではない。
よって、前記3軸又は5軸の掘削施工機50、50’を用いたソイルセメント連続壁工法における駆動軸1の位置は、上記実施例1、2と同様の手順で検出することができる(前記段落[0029]〜[0034]、及び図10参照)。
したがって、構築した各改良体(エレメント)毎に取得した駆動軸1の位置に関するデータ情報について、構造設計上の許容値を超える孔曲がりをしていないと判断される場合は、孔曲がりしていないことを確認、証明するデータとして保存(管理)する。前記許容値を超える孔曲がりをしていると判断される場合は、孔曲がりしている改良体の近傍位置に掘削施工機50、50’を位置決めし、掘削作業を再開し、当該改良体とラップする新たな改良体を構築する等の補完作業を行う。
かくして、この実施例5によれば、信頼性の高い高品質の山留め壁を実現することができる。
In short, the fifth embodiment is different from the first and second embodiments in the same manner as the third and fourth embodiments, except that the counterpart material to which the device housing box 6 is attached is different, and the position of the drive shaft 1 is detected. It has no effect.
Therefore, the position of the drive shaft 1 in the soil cement continuous wall construction method using the 3-axis or 5-axis excavator 50, 50 ′ can be detected by the same procedure as in the first and second embodiments (see above). Paragraphs [00 29 ] to [00 34 ] and FIG. 10).
Therefore, when it is determined that the data information regarding the position of the drive shaft 1 acquired for each constructed improvement body (element) does not exceed the allowable value in the structural design, the hole is not bent. Save (manage) data as confirmation and proof. When it is determined that the hole is bent beyond the allowable value, the excavator 50, 50 'is positioned in the vicinity of the improved body that is bending the hole, and the excavation work is resumed. Complementary work such as building a new improved body to wrap.
Thus, according to the fifth embodiment, a high-quality mountain retaining wall with high reliability can be realized.

以上、実施例を図面に基づいて説明したが、本発明は、図示例の限りではなく、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更、応用のバリエーションの範囲を含むことを念のために言及する。   Although the embodiments have been described with reference to the drawings, the present invention is not limited to the illustrated examples and includes a range of design changes and application variations that are usually made by those skilled in the art without departing from the technical idea thereof. I will mention that just in case.

1 駆動軸
2 掘削翼
3 攪拌翼
4 共回り防止翼
4a 枠材
4b 変位抑止板
4c 鉛直板
4’ 共回り防止翼
4a’枠材
4b’変位抑止板
4c’鉛直板
5 検出記録装置(センサユニット)
6 装置収容ボックス
6a 基部
6b 装置収容部
6c 蓋材
7 ボルト
8 ボルト(長ボルト)
9 ボルト
10 単軸の掘削施工機
10’ 単軸の掘削施工機
11 スラスト受け板
12 回転軸筒
13 掘削翼軸
14 攪拌翼軸
15 スチフナー
16 掘削孔
17 軸間保持部材
30 2軸の掘削施工機
40 2軸の掘削施工機
41 先端注入孔
42 上部注入孔
43 先導カッター
44 共回り防止板
50 3軸の掘削施工機
50’ 5軸の掘削施工機
DESCRIPTION OF SYMBOLS 1 Drive shaft 2 Excavation blade 3 Stirring blade 4 Co-rotation prevention blade 4a Frame material 4b Displacement suppression plate 4c Vertical plate 4 'Co-rotation prevention blade 4a' Frame material 4b 'Displacement suppression plate 4c' Vertical plate 5 Detection recording device (sensor unit) )
6 Device storage box 6a Base 6b Device storage 6c Lid 7 Bolt 8 Bolt (long bolt)
9 Bolt 10 Single-axis excavation machine 10 'Single-axis excavation machine 11 Thrust receiving plate 12 Rotary shaft cylinder 13 Excavation blade axis 14 Stirring blade axis 15 Stiffener 16 Excavation hole 17 Interaxial holding member 30 Two-axis excavation machine 40 2-axis drilling machine 41 tip injection hole 42 upper injection hole 43 leading cutter 44 co-rotation prevention plate 50 3-axis drilling machine 50 '5-axis drilling machine

Claims (5)

垂直下向きの配置で回転可能に支持された駆動軸と、同駆動軸の下端部に備えた掘削翼と、同掘削翼の上部に備えた攪拌翼および共回り防止翼とを有し、前記駆動軸のスラリー注入管を通じてセメント系固化材を注入する構成の単軸の掘削施工機を用いた地盤改良工法における駆動軸の位置検出方法であって、
前記共回り防止翼の側面部に、方位角を検出する3軸角速度センサと傾斜角を検出する3軸加速度センサとを備え、駆動軸の方位角と傾斜角を検出する検出記録装置を収容した装置収容ボックスを取り付け、
前記駆動軸を回転駆動させて、駆動軸の掘削貫入時間に対応する方位角と傾斜角を前記検出記録装置により検出し、
前記駆動軸の引抜時に地上に現れた前記装置収容ボックス内の検出記録装置の検出データ情報を読み取り、該検出記録装置の検出データ情報と、駆動軸の掘削貫入時間と掘削貫入深度を測定する地上の施工管理装置のデータ情報とをコンピュータへ入力し、両データ情報に共通する掘削貫入時間を基に掘削貫入深度における駆動軸の方位角と傾斜角から駆動軸の位置を演算処理して求めることを特徴とする、地盤改良工法における駆動軸の位置検出方法。
A drive shaft rotatably supported in a vertically downward arrangement, a drilling blade provided at a lower end portion of the drive shaft, and a stirring blade and a co-rotation prevention blade provided at an upper portion of the drilling blade; A method for detecting a position of a drive shaft in a ground improvement method using a single-shaft excavation machine configured to inject cement-based solidified material through a slurry injection pipe of a shaft,
A side surface of the co-rotation preventing wing includes a triaxial angular velocity sensor that detects an azimuth angle and a triaxial acceleration sensor that detects an inclination angle, and a detection recording device that detects the azimuth angle and the inclination angle of the drive shaft is housed. Install the equipment storage box,
The drive shaft is driven to rotate, the azimuth angle and the tilt angle corresponding to the excavation penetration time of the drive shaft are detected by the detection recording device,
The detection data information of the detection recording device in the device housing box that appears on the ground when the drive shaft is pulled out is read, and the detection data information of the detection recording device, the excavation penetration time and the excavation penetration depth of the drive shaft are measured. The data of the construction management device is input to the computer, and the position of the drive shaft is calculated from the azimuth and tilt angle of the drive shaft at the drilling penetration depth based on the drilling penetration time common to both data information. A method for detecting the position of a drive shaft in a ground improvement method.
垂直下向きの配置で回転可能に支持された駆動軸と、同駆動軸の下端部に備えた掘削翼と、同掘削翼の上部に備えた攪拌翼および軸間保持部材とを有し、前記駆動軸のスラリー注入管を通じてセメント系固化材を注入する構成の多軸の掘削施工機を用いた地盤改良工法又はソイルセメント連続壁工法における駆動軸の位置検出方法であって、
前記軸間保持部材の側面部に、方位角を検出する3軸角速度センサと傾斜角を検出する3軸加速度センサとを備え、駆動軸の方位角と姿勢角を検出する検出記録装置を収容した装置収容ボックスを取り付け、
前記駆動軸を回転駆動させて、駆動軸の掘削貫入時間に対応する方位角と姿勢角を前記検出記録装置により検出し、
前記駆動軸の引抜時に地上に現れた前記装置収容ボックス内の検出記録装置の検出データ情報を読み取り、該検出記録装置の検出データ情報と、駆動軸の掘削貫入時間と掘削貫入深度を測定する地上の施工管理装置のデータ情報とをコンピュータへ入力し、両データ情報に共通する掘削貫入時間を基に掘削貫入深度における駆動軸の方位角と姿勢角から駆動軸の位置を演算処理して求めることを特徴とする、地盤改良工法又はソイルセメント連続壁工法における駆動軸の位置検出方法。
A drive shaft rotatably supported in a vertically downward arrangement, a drilling blade provided at a lower end portion of the drive shaft, a stirring blade provided at an upper portion of the drilling blade, and an inter-axis holding member; A method for detecting the position of a drive shaft in a ground improvement method or a soil cement continuous wall method using a multi-axis excavation construction machine configured to inject cement-based solidified material through a slurry injection pipe of a shaft,
A side surface of the inter-axis holding member includes a triaxial angular velocity sensor that detects an azimuth angle and a triaxial acceleration sensor that detects an inclination angle, and houses a detection recording device that detects the azimuth angle and attitude angle of a drive shaft. Install the equipment storage box,
The drive shaft is driven to rotate, and the azimuth angle and posture angle corresponding to the excavation penetration time of the drive shaft are detected by the detection recording device,
The detection data information of the detection recording device in the device housing box that appears on the ground when the drive shaft is pulled out is read, and the detection data information of the detection recording device, the excavation penetration time and the excavation penetration depth of the drive shaft are measured. The data of the construction management device is input to the computer, and the position of the drive shaft is calculated from the azimuth angle and attitude angle of the drive shaft at the drilling penetration depth based on the drilling penetration time common to both data information. A method for detecting a position of a drive shaft in a ground improvement method or a soil cement continuous wall method characterized by the above.
前記装置収容ボックスは、前記共回り防止翼又は前記軸間保持部材の側面部に据え付けるための方形状の基部と、基部より幅狭で該基部から立ち上がる装置収容部と、装置収容部の開口部を塞ぐ蓋材とからなり、
前記共回り防止翼又は前記軸間保持部材は、複数の部材をボルト接合して組み立ててなる構成であり、
前記基部の四隅位置には、前記部材に設けたボルト通し孔と芯が一致するボルト通し孔が設けられており、前記各ボルト通し孔を利用して当該装置収容ボックスを前記共回り防止翼又は前記軸間保持部材の側面部にボルト接合により取り付けることを特徴とする、請求項1又は2に記載した地盤改良工法又はソイルセメント連続壁工法における駆動軸の位置検出方法。
The device storage box includes a rectangular base for installation on the side surface of the co-rotation prevention wing or the inter-axis holding member, a device storage that is narrower than the base and rises from the base, and an opening of the device storage And a lid that closes
The co-rotation preventing wing or the inter-axis holding member is configured by assembling a plurality of members by bolting,
At the four corner positions of the base portion, bolt through holes whose cores coincide with the bolt through holes provided in the member are provided, and the device housing box is connected to the co-rotation preventing wings by using the bolt through holes. The method for detecting the position of a drive shaft in a ground improvement method or a soil cement continuous wall method according to claim 1 or 2, wherein the shaft is attached to a side surface portion of the inter-shaft holding member by bolting.
前記検出記録装置の検出データ情報は、前記装置収容ボックスから検出記録装置を取り出して読み取ること、又は前記装置収容ボックス内の検出記録装置から伝送された地上の施工管理装置の画面から読み取ることを特徴とする、請求項1〜3のいずれか一に記載した地盤改良工法又はソイルセメント連続壁工法における駆動軸の位置検出方法。   The detection data information of the detection recording device is read by taking out the detection recording device from the device storage box, or reading from the screen of the ground construction management device transmitted from the detection recording device in the device storage box. The position detection method of the drive shaft in the ground improvement construction method or soil cement continuous wall construction method as described in any one of Claims 1-3. 前記掘削施工機は、幅寸が2.5m以下、前後方向の長さが4.0〜8.0m、前記駆動軸の軸径は、0.1〜0.2mの小型の地盤改良施工機であることを特徴とする、請求項1〜4のいずれか一に記載した地盤改良工法又はソイルセメント連続壁工法における駆動軸の位置検出方法。   The excavation construction machine is a small ground improvement construction machine having a width dimension of 2.5 m or less, a longitudinal length of 4.0 to 8.0 m, and a shaft diameter of the drive shaft of 0.1 to 0.2 m. The position detection method of the drive shaft in the ground improvement construction method or soil cement continuous wall construction method as described in any one of Claims 1-4 characterized by the above-mentioned.
JP2013254020A 2013-12-09 2013-12-09 Drive shaft position detection method in ground improvement method or soil cement continuous wall method Active JP5490301B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013254020A JP5490301B1 (en) 2013-12-09 2013-12-09 Drive shaft position detection method in ground improvement method or soil cement continuous wall method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013254020A JP5490301B1 (en) 2013-12-09 2013-12-09 Drive shaft position detection method in ground improvement method or soil cement continuous wall method

Publications (2)

Publication Number Publication Date
JP5490301B1 true JP5490301B1 (en) 2014-05-14
JP2015113564A JP2015113564A (en) 2015-06-22

Family

ID=50792256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013254020A Active JP5490301B1 (en) 2013-12-09 2013-12-09 Drive shaft position detection method in ground improvement method or soil cement continuous wall method

Country Status (1)

Country Link
JP (1) JP5490301B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109610525A (en) * 2018-12-04 2019-04-12 中国十七冶集团有限公司 A kind of method of quick judgement water-stop curtain construction quality
JP2022001727A (en) * 2020-06-19 2022-01-06 Ksコンサルタント株式会社 Ground improving stirring device
JP7012893B1 (en) 2021-06-02 2022-02-14 小野田ケミコ株式会社 Soil improvement status monitoring system and soil improvement status monitoring method
CN116734702A (en) * 2023-08-07 2023-09-12 江苏烨培干燥工程有限公司 Screw blade continuous detection equipment for blade dryer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6678020B2 (en) * 2015-12-03 2020-04-08 株式会社ワイビーエム Ground improvement wing rotation detector
WO2018003889A1 (en) * 2016-06-28 2018-01-04 国立大学法人九州大学 Specific resistance detector using ground improvement blade
KR102448924B1 (en) * 2021-07-29 2022-09-28 김현수 Cement supply path change device for excavation shaft

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932457A (en) * 1995-07-17 1997-02-04 Fudo Constr Co Ltd Detecting system for underground end position of excavating/stirring machine
JP3156049B2 (en) * 1998-11-27 2001-04-16 株式会社竹中土木 Ground improvement device, ground improvement method, and improved soil column pile pile lap length management method
JP3233874B2 (en) * 1997-05-23 2001-12-04 ライト工業株式会社 Single and multi-axis drilling rigs
JP5181068B1 (en) * 2012-03-29 2013-04-10 株式会社竹中土木 Small two-axis type ground improvement construction machine suitable for construction in confined places and ground improvement method using the construction machine
JP5191573B1 (en) * 2012-02-27 2013-05-08 株式会社竹中土木 Ground improvement construction machine and ground improvement method suitable for construction in confined spaces

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932457A (en) * 1995-07-17 1997-02-04 Fudo Constr Co Ltd Detecting system for underground end position of excavating/stirring machine
JP3233874B2 (en) * 1997-05-23 2001-12-04 ライト工業株式会社 Single and multi-axis drilling rigs
JP3156049B2 (en) * 1998-11-27 2001-04-16 株式会社竹中土木 Ground improvement device, ground improvement method, and improved soil column pile pile lap length management method
JP5191573B1 (en) * 2012-02-27 2013-05-08 株式会社竹中土木 Ground improvement construction machine and ground improvement method suitable for construction in confined spaces
JP5181068B1 (en) * 2012-03-29 2013-04-10 株式会社竹中土木 Small two-axis type ground improvement construction machine suitable for construction in confined places and ground improvement method using the construction machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109610525A (en) * 2018-12-04 2019-04-12 中国十七冶集团有限公司 A kind of method of quick judgement water-stop curtain construction quality
JP2022001727A (en) * 2020-06-19 2022-01-06 Ksコンサルタント株式会社 Ground improving stirring device
JP7502747B2 (en) 2020-06-19 2024-06-19 Ksコンサルタント株式会社 Ground improvement mixing equipment
JP7012893B1 (en) 2021-06-02 2022-02-14 小野田ケミコ株式会社 Soil improvement status monitoring system and soil improvement status monitoring method
JP2022185457A (en) * 2021-06-02 2022-12-14 小野田ケミコ株式会社 Soil improvement state monitoring system and soil improvement state monitoring method
CN116734702A (en) * 2023-08-07 2023-09-12 江苏烨培干燥工程有限公司 Screw blade continuous detection equipment for blade dryer
CN116734702B (en) * 2023-08-07 2023-10-13 江苏烨培干燥工程有限公司 Screw blade continuous detection equipment for blade dryer

Also Published As

Publication number Publication date
JP2015113564A (en) 2015-06-22

Similar Documents

Publication Publication Date Title
JP5490301B1 (en) Drive shaft position detection method in ground improvement method or soil cement continuous wall method
JP2008101388A (en) Construction work management method for soil improving construction method and processing machine for soil improvement
JP5246669B2 (en) Rolling correction device for rectangular machine
CN208721031U (en) Deeply mixing cement-soil pile monitoring device
JP3233874B2 (en) Single and multi-axis drilling rigs
JP4608440B2 (en) Excavator twist management device
JP6729902B1 (en) Construction method of soil cement continuous wall
JP2756119B2 (en) Soil auger measurement method
JP2007146642A (en) Trench wall device and method for forming groove in soil
JPH09125854A (en) Control method of vertical precision of excavated hole by all-casing excavator
KR20140064467A (en) Drilling device for blasting core center-cut
CN108955603A (en) Deeply mixing cement-soil pile monitoring device and application method
JP2012012928A (en) Device for collecting core with known direction and method therefor
JP2006283289A (en) Drilling control device for use in construction of column-row type continuous underground wall
JPS6342073B2 (en)
KR101395869B1 (en) Drilling device for blasting core center-cut
JPH08320228A (en) Attitude measuring device for boring rod
WO2003072882A1 (en) Wire type excavating accuracy control device of soil improving machine
JP2008255764A (en) Pile hole drilling unit
JPS6319397A (en) Shield excavator
JP2002038869A (en) Shaft excavating device and correcting method for shaft excavating direction
JP2005232834A (en) Ground hole drilling device and hole bend measuring method in ground drilling hole
JPH033633Y2 (en)
JP2005232834A5 (en)
JPH0932457A (en) Detecting system for underground end position of excavating/stirring machine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5490301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250