JP5489844B2 - Electronic equipment - Google Patents

Electronic equipment Download PDF

Info

Publication number
JP5489844B2
JP5489844B2 JP2010102597A JP2010102597A JP5489844B2 JP 5489844 B2 JP5489844 B2 JP 5489844B2 JP 2010102597 A JP2010102597 A JP 2010102597A JP 2010102597 A JP2010102597 A JP 2010102597A JP 5489844 B2 JP5489844 B2 JP 5489844B2
Authority
JP
Japan
Prior art keywords
electronic device
resistance value
specific resistance
common wiring
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010102597A
Other languages
Japanese (ja)
Other versions
JP2011232539A (en
Inventor
康由 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010102597A priority Critical patent/JP5489844B2/en
Priority to KR1020110038966A priority patent/KR101446829B1/en
Priority to TW100114427A priority patent/TWI468824B/en
Publication of JP2011232539A publication Critical patent/JP2011232539A/en
Application granted granted Critical
Publication of JP5489844B2 publication Critical patent/JP5489844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136204Arrangements to prevent high voltage or static electricity failures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • H01L27/1244Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits for preventing breakage, peeling or short circuiting

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、電子装置に関し、特に、マトリックス状に複数のスイッチング素子が配置された電子装置に関する。   The present invention relates to an electronic device, and more particularly to an electronic device in which a plurality of switching elements are arranged in a matrix.

マトリックス状に複数のスイッチング素子が配置された電子装置、特に、絶縁基板上に複数のスイッチング素子が配置された電子装置は、静電気の影響を受けて、スイッチング素子の特性が変化したり、スイッチング素子が破壊されたりすることを防止するために、マトリックス状に配置された複数のスイッチング素子の周辺部に出した信号線と走査線とを共通に接続しておき、大きな静電気が発生する可能性が低くなった段階で共通接続部が設けられた周辺部を切断することが提案されている(特許文献1参照)。   In an electronic device in which a plurality of switching elements are arranged in a matrix, particularly an electronic device in which a plurality of switching elements are arranged on an insulating substrate, the characteristics of the switching elements change or the switching elements are affected by static electricity. In order to prevent damage to the device, signal lines and scanning lines connected to the periphery of a plurality of switching elements arranged in a matrix are connected in common, which may generate large static electricity. It has been proposed to cut the peripheral portion where the common connection portion is provided at the stage of lowering (see Patent Document 1).

一方、このような周辺部の切断を行わなくていいように、薄膜トランジスタで作成したリングダイオード等の保護素子を信号線や走査線と共通接続配線との間に設けることも提案されている(特許文献2参照)。   On the other hand, it has also been proposed to provide a protective element such as a ring diode made of a thin film transistor between a signal line or a scanning line and a common connection wiring so that the peripheral portion is not cut (patent) Reference 2).

特開2009−130273号JP 2009-130273 A 特表2004−538512号Special table 2004-538512

しかしながら、共通接続部が設けられた周辺部を後に切断する方法では、切断時での静電気に対しては無防備である。また、基板がガラス基板の場合には、周辺部の切断は比較的容易に行えるが、フレキシブル基板を採用した場合には、ガラス基板のように周辺部を切断することが難しい上に、静電気がガラス基板の場合よりもさらに発生する可能性がある。   However, the method of cutting the peripheral portion where the common connection portion is provided later is vulnerable to static electricity at the time of cutting. In addition, when the substrate is a glass substrate, the peripheral portion can be cut relatively easily. However, when a flexible substrate is used, it is difficult to cut the peripheral portion like the glass substrate, and static electricity is generated. It may occur even more than in the case of a glass substrate.

一方、薄膜トランジスタで作成したリングダイオード等の保護素子を信号線や走査線と共通接続配線との間に設ける方法(特許文献2参照)では、保護素子が負荷になる場合があり、設計が複雑になるという問題があった。   On the other hand, in a method of providing a protection element such as a ring diode made of a thin film transistor between a signal line or a scanning line and a common connection wiring (see Patent Document 2), the protection element may become a load, and the design is complicated. There was a problem of becoming.

本発明の主な目的は、複数のスイッチング素子が配置された領域の周辺部の切断を行う必要がないと共に、周辺部に保護素子を設ける必要がない静電対策手段を備える電子装置を提供することにある。   A main object of the present invention is to provide an electronic device including an electrostatic countermeasure means that does not require cutting of a peripheral portion of a region where a plurality of switching elements are arranged and does not require a protective element in the peripheral portion. There is.

本発明によれば、
複数の走査線と、
前記複数の走査線と交差する複数の信号線と、
前記複数の走査線と前記複数の信号線の交差点に対応してそれぞれ設けられた複数のスイッチング素子と、
前記複数のスイッチング素子が配置されたスイッチング素子配置領域の外側で、前記複数の走査線と前記複数の信号線とに接続された共通配線であって、固有抵抗値が可変な材料から成る前記共通配線と、を備える電子装置が提供される。
According to the present invention,
A plurality of scan lines;
A plurality of signal lines intersecting the plurality of scanning lines;
A plurality of switching elements respectively provided corresponding to intersections of the plurality of scanning lines and the plurality of signal lines;
The common wiring connected to the plurality of scanning lines and the plurality of signal lines outside the switching element arrangement region where the plurality of switching elements are arranged, the common resistance being made of a material having a variable specific resistance value And an electronic device including the wiring .

好ましくは、前記共通配線は、固有抵抗値が可逆的に可変な材料から成る。 Preferably, the common wiring is made of a material whose specific resistance value is reversibly variable.

また、好ましくは、前記固有抵抗値が可変な材料は、前記材料への光の照射または前記材料が存在している環境の変更によって固有抵抗値が変化する材料である。   Preferably, the material having a variable specific resistance value is a material whose specific resistance value is changed by irradiating the material with light or changing an environment in which the material exists.

また、好ましくは、前記固有抵抗値が可変な材料は、前記材料のバンドギャップに相当するエネルギーを有する光の波長以下の波長の光の照射または10−4Pa以下の真空雰囲気に晒すことによって照射前の固有抵抗値よりも低い固有抵抗値に変化し、大気雰囲気、酸素雰囲気、水蒸気雰囲気または水に晒すと、晒す前の固有抵抗値よりも高い固有抵抗値に変化する材料である。 Preferably, the material having a variable specific resistance value is irradiated by irradiation with light having a wavelength equal to or less than the wavelength of light having energy corresponding to the band gap of the material or exposure to a vacuum atmosphere of 10 −4 Pa or less. It is a material that changes to a specific resistance value lower than the previous specific resistance value, and changes to a specific resistance value higher than the specific resistance value before exposure when exposed to air atmosphere, oxygen atmosphere, water vapor atmosphere or water.

好ましくは、前記固有抵抗値が可変な材料は、酸化物半導体である。   Preferably, the material having a variable specific resistance value is an oxide semiconductor.

好ましくは、前記酸化物半導体がIn、GaおよびZnからなる群より選ばれる少なくとも一つの元素の酸化物である。   Preferably, the oxide semiconductor is an oxide of at least one element selected from the group consisting of In, Ga, and Zn.

好ましくは、前記酸化物半導体がInを含む酸化物である。   Preferably, the oxide semiconductor is an oxide containing In.

好ましくは、前記共通配線は、前記固有抵抗値が可変な材料のバンドギャップに相当するエネルギーを有する光の波長以下の波長の光を通さない膜で覆われている。 Preferably, the common wiring is covered with a film that does not transmit light having a wavelength equal to or less than a wavelength of light having energy corresponding to a band gap of the material having a variable specific resistance value.

好ましくは、前記有抵抗値が可変な材料がIn、GaおよびZnの三種の元素の酸化物であり、前記共通配線は、430nm以下の波長の光を通さない膜で覆われている。 Preferably, the material having a variable resistance value is an oxide of three kinds of elements of In, Ga, and Zn, and the common wiring is covered with a film that does not transmit light having a wavelength of 430 nm or less.

好ましくは、前記スイッチング素子が電界効果トランジスタであり、前記走査線は前記電界効果トランジスタのゲートに接続され、前記信号線は、前記電界効果トランジスタのソースおよびドレインのいずれか一方に接続されている。   Preferably, the switching element is a field effect transistor, the scanning line is connected to a gate of the field effect transistor, and the signal line is connected to one of a source and a drain of the field effect transistor.

好ましくは、前記電子装置は画像表示装置である。   Preferably, the electronic device is an image display device.

好ましくは、前記電子装置は画像検出装置である。   Preferably, the electronic device is an image detection device.

また、本発明によれば、
複数の走査線と、
前記複数の走査線と交差する複数の信号線と、
前記複数の走査線と前記複数の信号線の交差点に対応してそれぞれ設けられた複数のスイッチング素子と、
前記複数のスイッチング素子が配置されたスイッチング素子配置領域の外側で、前記複数の走査線と前記複数の信号線とに接続された共通配線であって、固有抵抗値が可変な材料から成る前記共通配線と、を備える基板を形成する工程と、
前記共通配線を低抵抗化する工程と、
を備える電子装置の製造方法が提供される、
Moreover, according to the present invention,
A plurality of scan lines;
A plurality of signal lines intersecting the plurality of scanning lines;
A plurality of switching elements respectively provided corresponding to intersections of the plurality of scanning lines and the plurality of signal lines;
The common wiring connected to the plurality of scanning lines and the plurality of signal lines outside the switching element arrangement region where the plurality of switching elements are arranged, the common resistance being made of a material having a variable specific resistance value Forming a substrate comprising wiring; and
Reducing the resistance of the common wiring ;
An electronic device manufacturing method comprising:

好ましくは、前記共通配線は、固有抵抗値が可逆的に可変な材料から成る。 Preferably, the common wiring is made of a material whose specific resistance value is reversibly variable.

また、好ましくは、前記固有抵抗値が可変な材料は、前記材料への光の照射または前記材料が存在している環境の変更によって固有抵抗値が変化する材料である。   Preferably, the material having a variable specific resistance value is a material whose specific resistance value is changed by irradiating the material with light or changing an environment in which the material exists.

好ましくは、前記固有抵抗値が可変な材料は、前記材料のバンドギャップに相当するエネルギーを有する光の波長以下の波長の光の照射または10−4Pa以下の真空雰囲気に晒すことによって照射前の固有抵抗値よりも低い固有抵抗値に変化し、大気雰囲気、酸素雰囲気、水蒸気雰囲気または水に晒すと、晒す前の固有抵抗値よりも高い固有抵抗値に変化する材料である。 Preferably, the material having a variable specific resistance value is irradiated with light having a wavelength equal to or less than the wavelength of light having energy corresponding to the band gap of the material or exposed to a vacuum atmosphere of 10 −4 Pa or less before irradiation. It is a material that changes to a specific resistance value lower than the specific resistance value, and changes to a specific resistance value higher than the specific resistance value before exposure when exposed to air atmosphere, oxygen atmosphere, water vapor atmosphere or water.

好ましくは、前記固有抵抗値が可変な材料は、酸化物半導体である。   Preferably, the material having a variable specific resistance value is an oxide semiconductor.

好ましくは、前記酸化物半導体がIn、GaおよびZnからなる群より選ばれる少なくとも一つの元素の酸化物である。   Preferably, the oxide semiconductor is an oxide of at least one element selected from the group consisting of In, Ga, and Zn.

好ましくは、前記酸化物半導体がInを含む酸化物である。   Preferably, the oxide semiconductor is an oxide containing In.

好ましくは、前記共通配線を低抵抗化する工程は、前記共通配線に前記固有抵抗値が可変な材料のバンドギャップに相当するエネルギーを有する光の波長以下の波長の光を照射する工程を含む。 Preferably, the step of reducing the resistance of the common wiring includes the step of irradiating the common line to the resistivity variable light having a wavelength less than the wavelength of light having an energy corresponding to the band gap of the material.

好ましくは、前記共通配線を低抵抗化する工程の後に、前記基板を実装する工程をさらに備える。 Preferably, the method further includes a step of mounting the substrate after the step of reducing the resistance of the common wiring .

好ましくは、前記共通配線を低抵抗化する工程の後に、前記共通配線を、前記固有抵抗値が可変な材料のバンドギャップに相当するエネルギーを有する光の波長以下の波長の光を通さない膜で覆う工程をさらに備える。 Preferably, the common wiring after the step of reducing the resistance of the common wiring in the resistivity impervious to light having a wavelength less than the wavelength of light having an energy corresponding to the band gap of the variable material layer The method further includes a covering step.

好ましくは、前記固有抵抗値が可変な材料がIn、GaおよびZnの三種の元素の酸化物であり、前記共通配線を低抵抗化する工程の後に、前記共通配線を、430nm以下の波長の光を通さない膜で覆う工程をさらに備える。 Preferably, the resistivity variable material is an oxide of three kinds of the elements In, Ga and Zn, after the step of reducing the resistance of the common wiring, the common wiring, the light of a wavelength 430nm The method further includes a step of covering with a non-permeable film.

好ましくは、前記スイッチング素子が電界効果トランジスタであり、前記走査線は前記電界効果トランジスタのゲートに接続され、前記信号線は、前記電界効果トランジスタのソースおよびドレインのいずれか一方に接続されている。   Preferably, the switching element is a field effect transistor, the scanning line is connected to a gate of the field effect transistor, and the signal line is connected to one of a source and a drain of the field effect transistor.

本発明によれば、複数のスイッチング素子が配置された領域の周辺部の切断を行う必要がないと共に、周辺部に保護素子を設ける必要がない静電対策手段を備える電子装置が提供される。   According to the present invention, there is provided an electronic device including an electrostatic countermeasure means that does not require cutting of a peripheral portion of a region where a plurality of switching elements are disposed and does not require a protective element in the peripheral portion.

本発明の好ましい実施の形態の電子装置を説明するための概略図である。It is the schematic for demonstrating the electronic device of preferable embodiment of this invention. 本発明の好ましい実施の形態の電子装置の画素部の他の例を説明するための図である。It is a figure for demonstrating the other example of the pixel part of the electronic device of preferable embodiment of this invention. 本発明の好ましい実施の形態の電子装置の画素部のさらに他の例を説明するための図である。It is a figure for demonstrating the further another example of the pixel part of the electronic device of preferable embodiment of this invention. 本発明の好ましい実施の形態の電子装置の画素部の構造を説明するための概略縦断面図である。It is a schematic longitudinal cross-sectional view for demonstrating the structure of the pixel part of the electronic device of preferable embodiment of this invention. 図1のC部のX5−X5線概略縦断面図である。It is a X5-X5 line schematic longitudinal cross-sectional view of the C section of FIG. 図1のA部のX6−X6線概略縦断面図である。It is a X6-X6 line schematic longitudinal cross-sectional view of the A section of FIG. 図1のB部のX7−X7線概略縦断面図である。It is a X7-X7 line schematic longitudinal cross-sectional view of the B section of FIG. IGZO膜の光照射による抵抗値変化を説明するための図である。It is a figure for demonstrating the resistance value change by the light irradiation of an IGZO film. 本発明の好ましい実施の形態の電子装置の製造方法を説明するための画素部の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the pixel part for demonstrating the manufacturing method of the electronic device of preferable embodiment of this invention. 本発明の好ましい実施の形態の電子装置の製造方法を説明するための画素部の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the pixel part for demonstrating the manufacturing method of the electronic device of preferable embodiment of this invention. 本発明の好ましい実施の形態の電子装置の製造方法を説明するための図1のC部のX5−X5線概略縦断面図である。FIG. 5 is a schematic vertical sectional view taken along line X5-X5 in part C of FIG. 1 for describing a method for manufacturing an electronic device according to a preferred embodiment of the present invention. 本発明の好ましい実施の形態の電子装置の製造方法を説明するための図1のC部のX5−X5線概略縦断面図である。FIG. 5 is a schematic vertical sectional view taken along line X5-X5 in part C of FIG. 1 for describing a method for manufacturing an electronic device according to a preferred embodiment of the present invention. 本発明の好ましい実施の形態の電子装置の製造方法を説明するための図1のA部のX6−X6線概略縦断面図である。FIG. 6 is a schematic vertical sectional view taken along line X6-X6 of part A of FIG. 1 for illustrating a method for manufacturing an electronic device according to a preferred embodiment of the present invention. 本発明の好ましい実施の形態の電子装置の製造方法を説明するための図1のA部のX6−X6線概略縦断面図である。FIG. 6 is a schematic vertical sectional view taken along line X6-X6 of part A of FIG. 1 for illustrating a method for manufacturing an electronic device according to a preferred embodiment of the present invention. 本発明の好ましい実施の形態の電子装置の製造方法を説明するための図1のB部のX7−X7線概略縦断面図である。It is a X7-X7 line schematic longitudinal cross-sectional view of the B section of FIG. 1 for demonstrating the manufacturing method of the electronic device of preferable embodiment of this invention. 本発明の好ましい実施の形態の電子装置の製造方法を説明するための図1のB部のX7−X7線概略縦断面図である。It is a X7-X7 line schematic longitudinal cross-sectional view of the B section of FIG. 1 for demonstrating the manufacturing method of the electronic device of preferable embodiment of this invention.

以下、本発明の好ましい実施の形態について図面を参照しながら説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

(第1の実施の形態)
図1 を参照すれば、本発明の好ましい第1の実施の形態の電子装置1は、スイッチング素子としての薄膜トランジスタ40が複数配置されたスイッチング素子配置領域20と、スイッチング素子配置領域20の外側に設けられた共通配線10とを備えている。この電子装置1は光学部材70で光を電荷に変えて蓄積容量60に蓄え電位を発生させ、その電位を薄膜トランジスタ40がスイッチング素子として読み出す構成になっている。この光学部材70を液晶、電子ペーパ用インク材料等にした場合は、蓄積容量60と光学部材70が並列配置となり図2のように配置される。光学部材70がエレクトロルミネッセンス部材のような駆動電流が必要な部材の場合も、基本は蓄積容量60と光学部材70の直並列配置となる。すなわち、図3に示すように、電源線Vddと接地電位82との間に、エレクトロルミネッセンス部材等の光学部材70と駆動用トランジスタ90が直列に接続され、駆動用トランジスタ90のゲート電極92とドレイン電極との間に蓄積容量60が設けられ、並列配置した蓄積容量60およびゲート電極92と信号線12との間にスイッチング素子としての薄膜トランジスタ40が接続されている。
(First embodiment)
Referring to FIG. 1, an electronic device 1 according to a first preferred embodiment of the present invention includes a switching element arrangement region 20 in which a plurality of thin film transistors 40 as switching elements are arranged, and an outside of the switching element arrangement region 20. Common wiring 10 is provided. The electronic device 1 has a configuration in which light is converted into electric charges by an optical member 70 and stored in a storage capacitor 60 to generate a potential, and the thin film transistor 40 reads the potential as a switching element. When the optical member 70 is made of liquid crystal, electronic paper ink material, or the like, the storage capacitor 60 and the optical member 70 are arranged in parallel as shown in FIG. Even when the optical member 70 is a member that requires a drive current such as an electroluminescence member, the storage capacitor 60 and the optical member 70 are basically arranged in series and parallel. That is, as shown in FIG. 3, an optical member 70 such as an electroluminescence member and a driving transistor 90 are connected in series between a power supply line Vdd and a ground potential 82, and the gate electrode 92 and the drain of the driving transistor 90 are connected. A storage capacitor 60 is provided between the electrodes, and a thin film transistor 40 serving as a switching element is connected between the storage capacitor 60 arranged in parallel and the gate electrode 92 and the signal line 12.

再び、図1を参照すれば、複数の走査線14が行方向(紙面横方向)に互いに平行に配置され、複数の信号線12が列方向(紙面縦方向)に互いに平行に配置されている。複数の走査線14および複数の信号線12は、スイッチング素子配置領域20の外側で共通配線10に接続されている。   Referring to FIG. 1 again, a plurality of scanning lines 14 are arranged in parallel to each other in the row direction (lateral direction on the paper surface), and a plurality of signal lines 12 are arranged in parallel to each other in the column direction (vertical direction on the paper surface). . The plurality of scanning lines 14 and the plurality of signal lines 12 are connected to the common wiring 10 outside the switching element arrangement region 20.

複数の走査線14と複数の信号線12は複数の交差点16で互い交差し、各交差点16に対応して各画素部30が配置されている。各画素部30は、薄膜トランジスタ40と、光学部材70と、蓄積容量60とを備えている。   The plurality of scanning lines 14 and the plurality of signal lines 12 intersect each other at a plurality of intersections 16, and each pixel unit 30 is arranged corresponding to each intersection 16. Each pixel unit 30 includes a thin film transistor 40, an optical member 70, and a storage capacitor 60.

各行に配置された複数の薄膜トランジスタ40のゲート電極42が各行の走査線14に接続されている。各列に配置された複数の薄膜トランジスタ40のドレイン電極54が各列の信号線12に接続されている。薄膜トランジスタ40のソース電極52は、蓄積容量60の蓄積容量上部電極66と、光学部材70の画素電極68に接続されている。蓄積容量60の蓄積容量下部電極62は接地電位82に接続されている。   Gate electrodes 42 of the plurality of thin film transistors 40 arranged in each row are connected to the scanning lines 14 in each row. The drain electrodes 54 of the plurality of thin film transistors 40 arranged in each column are connected to the signal lines 12 in each column. The source electrode 52 of the thin film transistor 40 is connected to the storage capacitor upper electrode 66 of the storage capacitor 60 and the pixel electrode 68 of the optical member 70. The storage capacitor lower electrode 62 of the storage capacitor 60 is connected to the ground potential 82.

次に、図4を参照して、各画素部30について説明する。   Next, each pixel unit 30 will be described with reference to FIG.

基板110の表面上には、蓄積容量60および薄膜トランジスタ40が設けられている。蓄積容量60は、蓄積容量上部電極66と、蓄積容量下部電極62と、これらの電極間にある誘電体層114(この誘電体層114は、絶縁膜としても機能する)によって構成されている。   A storage capacitor 60 and a thin film transistor 40 are provided on the surface of the substrate 110. The storage capacitor 60 is constituted by a storage capacitor upper electrode 66, a storage capacitor lower electrode 62, and a dielectric layer 114 (the dielectric layer 114 also functions as an insulating film) between these electrodes.

薄膜トランジスタ40は、ゲート電極42と、ゲート電極42を覆って設けられた誘電体層114と、誘電体層114を介して、ゲート電極42上およびゲート電極42の両側に設けられた活性層46と、活性層46のゲート電極42直上を覆って設けられた保護層48と、ゲート電極42の両側にそれぞれ設けられたソース電極52およびドレイン電極54とを備えている。保護層48の幅はゲート電極42の幅より小さく構成されておりソース電極52およびドレイン電極54は保護層48の両側で活性層46とそれぞれ接続されている。ソース電極52の端部53およびドレイン電極54の端部55は活性層46上に延在して設けられている。   The thin film transistor 40 includes a gate electrode 42, a dielectric layer 114 provided so as to cover the gate electrode 42, and an active layer 46 provided on the gate electrode 42 and on both sides of the gate electrode 42 through the dielectric layer 114. , A protective layer 48 provided directly above the gate electrode 42 of the active layer 46, and a source electrode 52 and a drain electrode 54 provided on both sides of the gate electrode 42, respectively. The width of the protective layer 48 is smaller than the width of the gate electrode 42, and the source electrode 52 and the drain electrode 54 are connected to the active layer 46 on both sides of the protective layer 48. An end 53 of the source electrode 52 and an end 55 of the drain electrode 54 are provided extending on the active layer 46.

ソース電極52、ドレイン電極54および蓄積容量上部電極66は同じ配線層120で形成されており、ソース電極52と蓄積容量上部電極66は接続されている。なお、ゲート電極42と蓄積容量下部電極62も同じ配線層112で形成されている。   The source electrode 52, the drain electrode 54, and the storage capacitor upper electrode 66 are formed of the same wiring layer 120, and the source electrode 52 and the storage capacitor upper electrode 66 are connected. The gate electrode 42 and the storage capacitor lower electrode 62 are also formed of the same wiring layer 112.

蓄積容量60および薄膜トランジスタ40上に、層間絶縁膜122が設けられている。蓄積容量上部電極66上の層間絶縁膜122にはコンタクトホール94が設けられている。層間絶縁膜122上に、画素電極68が設けられている。電荷収集電極68は、コンタクトホール94を介して、蓄積容量上部電極66と接続されている。   An interlayer insulating film 122 is provided on the storage capacitor 60 and the thin film transistor 40. A contact hole 94 is provided in the interlayer insulating film 122 on the storage capacitor upper electrode 66. A pixel electrode 68 is provided on the interlayer insulating film 122. The charge collection electrode 68 is connected to the storage capacitor upper electrode 66 through the contact hole 94.

スイッチング素子配置領域0(図1参照)に対向して対向電極84が設けられている。各画素電極68、光学部材層126および対向電極84により画素毎の各光学部材70を構成している。共通配線10(図1参照)は平面視で対向電極84の外側に設けられている。 A counter electrode 84 is provided facing the switching element arrangement region 20 (see FIG. 1). Each pixel electrode 68, the optical member layer 126, and the counter electrode 84 constitute each optical member 70 for each pixel. The common wiring 10 (see FIG. 1) is provided outside the counter electrode 84 in plan view.

画素電極30と対向電極84との間の光学部材層126として、液晶等の光の透過や反射等を制御可能な材料を配置すれば、電子装置1は図2に示すような構成で液晶表示装置等の画像表示装置として機能し、エレクトロルミネセンス材料等を配置すれば、電子装置1は図3に示すような構成でエレクトロルミネセンス表示装置等の画像表示装置として機能し、電子ペーパ用インク、電子粉流体等を配置すれば、電子装置1は電子ペーパ等の画像表示装置として機能する。これらの場合に、例えば、各画素電極68に与える電圧や電流を薄膜トランジスタ40で個々に制御して各画素電極68と対向電極84との間の電界等を画素毎に制御して表示の制御を行う。   If a material capable of controlling transmission and reflection of light such as liquid crystal is disposed as the optical member layer 126 between the pixel electrode 30 and the counter electrode 84, the electronic device 1 has a configuration as shown in FIG. If an electroluminescent material or the like is arranged and the electronic device 1 functions as an image display device such as a device, the electronic device 1 functions as an image display device such as an electroluminescence display device with the configuration shown in FIG. If an electronic powder fluid or the like is disposed, the electronic device 1 functions as an image display device such as electronic paper. In these cases, for example, the voltage and current applied to each pixel electrode 68 are individually controlled by the thin film transistor 40, and the electric field between each pixel electrode 68 and the counter electrode 84 is controlled for each pixel to control display. Do.

画素電極68と対向電極との間の光学部材層126として、光を電荷に変換する光電変換層を配置すれば、電子装置1は画像検出装置等として機能する。その場合には、例えば構成を図1のようにし、複数の画素電極68と対向電極との間に所定の電位差を与えておき、発生した電荷を画素毎に薄膜トランジスタ40を介して読み出すことで、検出された画像情報を得る。さらにX線等の放射線を可視光等に変換可能なシンチレータを設ければ、間接変換型放射線撮像装置として使用することもできる。   If a photoelectric conversion layer that converts light into electric charge is disposed as the optical member layer 126 between the pixel electrode 68 and the counter electrode, the electronic device 1 functions as an image detection device or the like. In that case, for example, the configuration is as shown in FIG. 1, a predetermined potential difference is given between the plurality of pixel electrodes 68 and the counter electrode, and the generated charges are read out through the thin film transistor 40 for each pixel. Obtain detected image information. Furthermore, if a scintillator capable of converting radiation such as X-rays into visible light or the like is provided, it can be used as an indirect conversion type radiation imaging apparatus.

図5を参照すれば、共通配線10は、基板110上の誘電体層114上に形成されている。共通配線10は、保護膜130で覆われている。図5は、図1のC部の拡大部分概略断面図であるが、図1のD部も同じ構造である。   Referring to FIG. 5, the common wiring 10 is formed on the dielectric layer 114 on the substrate 110. The common wiring 10 is covered with a protective film 130. FIG. 5 is an enlarged partial schematic cross-sectional view of a portion C in FIG. 1, but a portion D in FIG. 1 has the same structure.

図6を参照すれば、信号線12と共通配線10との交点においては、基板110上の誘電体層114上に共通配線10が設けられ、共通配線10上に、信号線12の端部が設けられている。共通配線10は、信号線12を介して保護膜130で覆われている。信号線12は、ソース電極52、ドレイン電極54と同じ配線層120で形成され、ドレイン電極54と繋がっている。   Referring to FIG. 6, at the intersection of the signal line 12 and the common line 10, the common line 10 is provided on the dielectric layer 114 on the substrate 110, and the end of the signal line 12 is on the common line 10. Is provided. The common wiring 10 is covered with a protective film 130 via the signal line 12. The signal line 12 is formed of the same wiring layer 120 as the source electrode 52 and the drain electrode 54, and is connected to the drain electrode 54.

図7を参照すれば、走査線14と共通配線10との交点においては、基板110上に走査線14が設けられ、走査線14上に誘電体層114が設けられている。誘電体層114上に共通配線10が設けられている。共通配線10と走査線14とは、接続部55によって接続されている。接続部55の一端は、誘電体層114に設けたコンタクトホール115を介して、走査線14と接続され、接続部55の他端は、共通配線10上に設けられている。共通配線10は、接続部55を介して保護膜130で覆われている。接続部55は、ソース電極52、ドレイン電極54と同じ配線層120で形成されている。走査線14はゲート電極42と同じ配線層112で形成され、ゲート電極42と繋がっている。   Referring to FIG. 7, at the intersection of the scanning line 14 and the common wiring 10, the scanning line 14 is provided on the substrate 110, and the dielectric layer 114 is provided on the scanning line 14. The common wiring 10 is provided on the dielectric layer 114. The common wiring 10 and the scanning line 14 are connected by a connecting portion 55. One end of the connecting portion 55 is connected to the scanning line 14 via a contact hole 115 provided in the dielectric layer 114, and the other end of the connecting portion 55 is provided on the common wiring 10. The common wiring 10 is covered with a protective film 130 via the connection portion 55. The connection portion 55 is formed of the same wiring layer 120 as the source electrode 52 and the drain electrode 54. The scanning line 14 is formed of the same wiring layer 112 as the gate electrode 42, and is connected to the gate electrode 42.

このように、ゲート電極42は走査線14と繋がっており、走査線14は、接続部55を介して共通配線10と繋がっており、共通配線10は信号線12と繋がっており、信号線12はドレイン電極54と繋がっているので、ゲート電極42は共通配線10を介してドレイン電極54と繋がっている。   As described above, the gate electrode 42 is connected to the scanning line 14, and the scanning line 14 is connected to the common wiring 10 through the connection portion 55, and the common wiring 10 is connected to the signal line 12. Is connected to the drain electrode 54, the gate electrode 42 is connected to the drain electrode 54 through the common wiring 10.

本実施の形態では、薄膜トランジスタ40の活性層46および共通配線10に、酸化物半導体の一種であるIGZO(In-Ga-Zn-Oxide)を用いた。IGZOは、図に示すように、IGZOのバンドギャップに相当するエネルギーを有する光の波長以下の波長の光、好ましくは430nm以下の波長の光、の照射によって、絶縁性(10×1010Ωcmのオーダー)から導電性(10×10Ωcmのオーダー)に固有抵抗値が変化し、また、大気雰囲気、酸素雰囲気、水蒸気雰囲気または水が存在する環境に晒したり、特に長時間放置したりすると、導電性(10×10Ωcmのオーダー)から絶縁性(10×1010Ωcmのオーダー)に固有抵抗値が変化する材料である。この導電性から絶縁性への変化および絶縁性から導電性への変化は可逆的である。IGZOは、このように、IGZOへの光の照射または、IGZOが存在している雰囲気の変更によって固有抵抗値が変化する材料である。なお、図は、光照射によるIGZOの抵抗変化を表す図であるが、照射する光の波長は360〜460nmであり、入射フォトン数1×1015photons/cmの場合の抵抗変化を示している。
In this embodiment, IGZO (In-Ga-Zn-Oxide) which is a kind of oxide semiconductor is used for the active layer 46 and the common wiring 10 of the thin film transistor 40. As shown in FIG. 8 , IGZO has an insulating property (10 × 10 10 Ωcm) by irradiation with light having a wavelength equal to or less than the wavelength of light having energy corresponding to the band gap of IGZO, preferably light having a wavelength of 430 nm or less. The resistivity changes from conductivity (order of 10) to 10 × 10 2 Ωcm, and is exposed to an atmosphere where there is an air atmosphere, oxygen atmosphere, water vapor atmosphere or water, or is left for a long time. , A material whose specific resistance value changes from conductivity (in the order of 10 × 10 2 Ωcm) to insulation (in the order of 10 × 10 10 Ωcm). This change from conductivity to insulation and change from insulation to conductivity is reversible. In this way, IGZO is a material whose specific resistance value is changed by irradiating light to IGZO or changing the atmosphere in which IGZO exists. FIG. 8 is a diagram showing a change in resistance of IGZO due to light irradiation, and shows a change in resistance when the wavelength of light to be irradiated is 360 to 460 nm and the number of incident photons is 1 × 10 15 photons / cm 2. ing.

また、共通配線10を覆っている保護膜130(図3、4、5参照)は、IGZOのバンドギャップに相当するエネルギーを有する光の波長以下の波長の光を通さない膜であり、好ましくは430nm以下の波長の光を通さない膜である。保護膜130は、有機膜または無機膜で構成され全ての工程が終了後、共通配線の上を覆うことで光が当たらないようにできる。また、全ての工程を終了後、実装時に筐体で光が当たらないようにすることでも対処できる。実際には共通配線10の上に信号線12、もしくは接続部55が共通配線10上に乗っているため配線後は上部からの光はかなり減衰する。そのためコンタクト部は高抵抗化しやすいため、ESD対策としては光を基板110の下方から照射する場合もある。   Further, the protective film 130 (see FIGS. 3, 4, and 5) covering the common wiring 10 is a film that does not transmit light having a wavelength equal to or less than the wavelength of light having energy corresponding to the band gap of IGZO. It is a film that does not transmit light having a wavelength of 430 nm or less. The protective film 130 is composed of an organic film or an inorganic film, and after all the steps are completed, the protective film 130 can be covered with the common wiring so as not to be exposed to light. In addition, after all the steps are completed, it can be dealt with by preventing the case from being exposed to light during mounting. Actually, since the signal line 12 or the connecting portion 55 is on the common wiring 10 on the common wiring 10, the light from above is considerably attenuated after the wiring. For this reason, since the contact portion is likely to have a high resistance, light may be irradiated from below the substrate 110 as an ESD countermeasure.

次に、本実施の形態の電子装置1の製造方法を説明する。   Next, a method for manufacturing the electronic device 1 according to the present embodiment will be described.

図9(a)、図11(a)、図13(a)、図15(a)に示すように、まず、基板110として、絶縁基板であるガラス基板を使用し、基板110上にスパッタ法により配線層112を形成する。その後、フォトリソグラフィ技術、エッチング技術により所望の形に加工して、ゲート電極42、蓄積容量下部電極62および走査線14を形成する。配線層112の電極材料としては、例えば、Mo、Al、Ti、Cu、Ta等の金属、もしくはAl−Nd等の合金、InSnO等の酸化物導電膜またはこれらの多層膜が好ましく用いられる。   As shown in FIG. 9A, FIG. 11A, FIG. 13A, and FIG. 15A, first, a glass substrate that is an insulating substrate is used as the substrate 110, and sputtering is performed on the substrate 110. Thus, the wiring layer 112 is formed. Thereafter, the gate electrode 42, the storage capacitor lower electrode 62, and the scanning line 14 are formed by processing into a desired shape by a photolithography technique and an etching technique. As the electrode material of the wiring layer 112, for example, a metal such as Mo, Al, Ti, Cu, or Ta, an alloy such as Al—Nd, an oxide conductive film such as InSnO, or a multilayer film thereof is preferably used.

次に、図9(b)、図11(b)、図13(b)、図15(b)に示すように、誘電体層114、活性層46および保護膜48を形成する。誘電体層114はSiOをスパッタ法により成膜して形成し、活性層46はIGZOをスパッタ法により成膜して形成し、保護膜48もスパッタ法により形成した。 Next, as shown in FIGS. 9B, 11B, 13B, and 15B, the dielectric layer 114, the active layer 46, and the protective film 48 are formed. The dielectric layer 114 was formed by depositing SiO 2 by sputtering, the active layer 46 was formed by depositing IGZO by sputtering, and the protective film 48 was also formed by sputtering.

その後、図9(c)、図11(c)、図13(c)、図15(c)に示すように、保護膜48および活性層46をフォトリソグラフィ技術、エッチング技術により所望の形に加工して、薄膜トランジスタ40の活性層46および保護膜48とすると共に、活性層46と同じ層で共通配線10を形成した。なお。誘電体層114は加工せず、そのまま残した。   Thereafter, as shown in FIGS. 9 (c), 11 (c), 13 (c), and 15 (c), the protective film 48 and the active layer 46 are processed into a desired shape by a photolithography technique and an etching technique. Then, the active layer 46 and the protective film 48 of the thin film transistor 40 were formed, and the common wiring 10 was formed in the same layer as the active layer 46. Note that. The dielectric layer 114 was left without being processed.

次に、誘電体層114にコンタクトホール115(図15(c)参照)をフォトリソグラフィ技術、エッチング技術により形成する。   Next, contact holes 115 (see FIG. 15C) are formed in the dielectric layer 114 by a photolithography technique and an etching technique.

配線層120をスパッタ法により形成する。その後、図10(a)、図12(a)、図14(a)、図16(a)に示すように、配線層120をフォトリソグラフィ技術、エッチング技術により所望の形に加工して、薄膜トランジスタ40のソース電極52、ドレイン電極54、蓄積容量上部電極66、ドレイン電極54と蓄積容量上部電極66の接続部、信号線12および接続部55を形成する。   The wiring layer 120 is formed by sputtering. Thereafter, as shown in FIGS. 10A, 12A, 14A, and 16A, the wiring layer 120 is processed into a desired shape by a photolithography technique and an etching technique. 40, the source electrode 52, the drain electrode 54, the storage capacitor upper electrode 66, the connection part between the drain electrode 54 and the storage capacitor upper electrode 66, the signal line 12 and the connection part 55 are formed.

信号線12は共通配線10と接続される(図6、図14(a)参照)。接続部55は誘電体層114に設けたコンタクトホール115を介して、走査線14と接続されると共に、共通配線10に接続される(図7、図16(a)参照)。このようにして、走査線14は共通配線10を介して信号線12と接続され、走査線14にはゲート電極42が接続されており、信号線12にはドレイン電極54が接続されているので、ゲート電極42は共通配線10を介してドレイン電極54と接続される。   The signal line 12 is connected to the common wiring 10 (see FIGS. 6 and 14A). The connecting portion 55 is connected to the scanning line 14 and the common wiring 10 through a contact hole 115 provided in the dielectric layer 114 (see FIGS. 7 and 16A). In this way, the scanning line 14 is connected to the signal line 12 through the common wiring 10, the gate electrode 42 is connected to the scanning line 14, and the drain electrode 54 is connected to the signal line 12. The gate electrode 42 is connected to the drain electrode 54 through the common wiring 10.

その後、図10(b)、図12(b)、図14(b)、図16(b)に示すように、層間絶縁膜122を形成し、層間絶縁膜122にコンタクトホール94を形成し、画素電極68を形成する。その後、画素電極68と対向電極84との間に光学部材層126を挟みこむ。   Thereafter, as shown in FIGS. 10B, 12B, 14B, and 16B, an interlayer insulating film 122 is formed, and a contact hole 94 is formed in the interlayer insulating film 122. A pixel electrode 68 is formed. Thereafter, the optical member layer 126 is sandwiched between the pixel electrode 68 and the counter electrode 84.

その後、スイッチング素子配置領域20および対向電極84の外側の部分に光を照射して、共通電極10を低抵抗化する。   Then, light is irradiated to the outside of the switching element arrangement region 20 and the counter electrode 84 to reduce the resistance of the common electrode 10.

その後に、TAB端子取り付け等の実装を行う。その後、大気中に放置し、共通電極10を高抵抗化する。その後、図12(c)、図14(c)、図16(c)に示すように、共通配線10を覆う保護膜130を形成する。   After that, mounting such as TAB terminal attachment is performed. Thereafter, the common electrode 10 is left in the atmosphere to increase the resistance. Thereafter, as shown in FIGS. 12C, 14C, and 16C, a protective film 130 that covers the common wiring 10 is formed.

本実施の形態では、ゲート電極42は共通配線10を介してドレイン電極54と接続されており、共通配線10はIGZOからなり、光を照射して低抵抗化した後に、TAB取り付け等の実装を行っている。静電気が発生しやすいのは素子工程終了後の実装工程が主である。そのため素子形成後、周辺部のみ光照射して共通配線10を低抵抗化することで、その後のTAB取り付け等の実装時に静電気を逃がしやすくなる。この場合光を照射する方向として基板下方から行う場合もある。その結果、薄膜トランジスタ40の特性が変動したり、薄膜トランジスタ40が破壊されたりすることを防止または抑制できる。   In the present embodiment, the gate electrode 42 is connected to the drain electrode 54 through the common wiring 10, and the common wiring 10 is made of IGZO, and is mounted with TAB attachment after irradiating light to reduce resistance. Is going. Static electricity is likely to occur mainly in the mounting process after the element process. Therefore, after the element is formed, only the peripheral portion is irradiated with light to reduce the resistance of the common wiring 10, so that static electricity can be easily released during subsequent mounting such as TAB attachment. In this case, the light irradiation may be performed from below the substrate. As a result, it is possible to prevent or suppress the characteristics of the thin film transistor 40 from changing or the thin film transistor 40 from being destroyed.

本実施の形態では、実装工程後に、大気中に放置し、共通電極10を高抵抗化している。従って、共通電極10の切断を行う必要もなくなり、切断時の静電気の影響を受けることを防止できる。切断する必要がないので、ガラス基板だけでなく、フレキシブル基板の場合にも好適に適用できる。また、ダイオード等の保護素子を設ける必要もないので、保護素子が負荷となり設計が複雑になることを防止できる。   In the present embodiment, after the mounting process, the common electrode 10 is increased in resistance by being left in the atmosphere. Therefore, it is not necessary to cut the common electrode 10, and it is possible to prevent the influence of static electricity at the time of cutting. Since it does not need to cut | disconnect, it can apply suitably also in the case of not only a glass substrate but a flexible substrate. Further, since there is no need to provide a protective element such as a diode, it is possible to prevent the protective element from becoming a load and complicating the design.

さらに、共通配線10を覆う保護膜130を設けているので、共通配線10に光が照射されて低抵抗化されるのを防止できる。   Furthermore, since the protective film 130 covering the common wiring 10 is provided, it is possible to prevent the common wiring 10 from being irradiated with light and being reduced in resistance.

(第2の実施の形態)
第1の実施の形態では、薄膜トランジスタ40の活性層46を利用して共通配線10を形成したが、薄膜トランジスタ40の活性層46がSi系である場合は、素子工程終了後に共通配線10としてIGZO等の酸化物半導体をスパッタ法で形成する。その後、TAB端子実装工程前に共通配線10に光を照射し低抵抗化し、その後の大気中の放置で絶縁分離した。
(Second Embodiment)
In the first embodiment, the common wiring 10 is formed using the active layer 46 of the thin film transistor 40. However, when the active layer 46 of the thin film transistor 40 is Si-based, IGZO or the like is used as the common wiring 10 after the element process is completed. The oxide semiconductor is formed by sputtering. Thereafter, before the TAB terminal mounting process, the common wiring 10 was irradiated with light to reduce its resistance, and then insulated and separated by being left in the atmosphere.

(第3の実施の形態)
本実施の形態では、共通配線10は画素電極68と同時に形成した。画素電極68をIGZOなどの酸化物半導体で形成し、同時に共通配線10もIGZOなどの酸化物半導体で形成する。酸化物半導体の場合、真空装置に入れたりして、10−4Pa以下の真空下にすると、表面からの水分、付着酸素を除去することで低抵抗化することが知られており、画素電極68や共通配線10形成後に液晶工程、有機EL工程で真空を利用した場合、画素電極68や共通配線10は自然と低抵抗化している。画素部分68はその上に対向側の基板がきて遮蔽されるためそのまま低抵抗が維持される。周辺の共通配線10は一旦大気中に出るため高抵抗となるが、実装前に光を照射し低抵抗化してTAB端子の実装工程を行い、その後、大気中で高抵抗化する。
(Third embodiment)
In the present embodiment, the common wiring 10 is formed simultaneously with the pixel electrode 68. The pixel electrode 68 is formed of an oxide semiconductor such as IGZO, and the common wiring 10 is also formed of an oxide semiconductor such as IGZO. In the case of an oxide semiconductor, it is known that when it is put in a vacuum apparatus and is under a vacuum of 10 −4 Pa or less, the resistance is reduced by removing moisture and attached oxygen from the surface. When the vacuum is used in the liquid crystal process and the organic EL process after the formation of the 68 and the common wiring 10, the pixel electrode 68 and the common wiring 10 are naturally reduced in resistance. Since the pixel portion 68 is shielded by the opposite substrate, the low resistance is maintained as it is. The peripheral common wiring 10 once goes into the atmosphere and thus has a high resistance. However, before mounting, the resistance is lowered by irradiating light to perform the TAB terminal mounting process, and then the resistance is increased in the atmosphere.

上記実施の形態では、共通配線10に使用する固有抵抗値が可変な材料として、IGZOを使用したが、IGZO以外の酸化物半導体も好適に使用できる。好ましくは、酸化物半導体としては、In、GaおよびZnからなる群より選ばれる少なくとも一つの元素の酸化物を使用する。また、酸化物半導体として、Inを含む酸化物を使用することもできる。   In the above embodiment, IGZO is used as a material having a variable specific resistance value used for the common wiring 10, but an oxide semiconductor other than IGZO can also be used suitably. Preferably, as the oxide semiconductor, an oxide of at least one element selected from the group consisting of In, Ga, and Zn is used. Alternatively, an oxide containing In can be used as the oxide semiconductor.

また、共通配線10を低抵抗化するには、好ましくは、共通配線10に使用している固有抵抗値が可変な材料(IGZO等の酸化物半導体等)のバンドギャップに相当するエネルギーを有する光の波長以下の波長の光を照射する。共通配線10を低抵抗化し、実装等を終えた後に、共通配線10を高抵抗化して絶縁した後は、共通配線10に使用している固有抵抗値が可変な材料(IGZO等の酸化物半導体等)のバンドギャップに相当するエネルギーを有する光の波長以下の波長の光を通さない膜で覆って、共通配線10が低抵抗化するのを防止することが好ましい。   In order to reduce the resistance of the common wiring 10, it is preferable that light having energy corresponding to the band gap of a material (such as an oxide semiconductor such as IGZO) having a variable specific resistance value used for the common wiring 10. Irradiate light with a wavelength equal to or less than the wavelength of. After the resistance of the common wiring 10 is reduced and the mounting is completed, after the common wiring 10 is increased in resistance and insulated, a material (an oxide semiconductor such as IGZO) having a variable specific resistance value used for the common wiring 10 is used. It is preferable to prevent the common wiring 10 from being lowered in resistance by covering with a film that does not transmit light having a wavelength equal to or less than the wavelength of light having energy corresponding to the band gap.

また、酸化物半導体の中でも特にIn(I),Ga(G), Zn(Z)を少なくとも1種以上含む酸化物,たとえばIGZO(In-Ga-Zn-Oxide)、IZO(In-Zn-Oxide)が好ましく用いられる。なお、IGZO(In-Ga-Zn-Oxide)を使用する場合は、In(I),Ga(G), Zn(Z)のおのおのの組成比はかならずしも整数比である必要はなく、組成比は成膜条件で変えることができ、IZO(In-Zn-Oxide)を使用する場合は、In(I), Zn(Z)のおのおのの組成比はかならずしも整数比である必要はなく、組成比は成膜条件で変えることができる。   Among oxide semiconductors, oxides containing at least one kind of In (I), Ga (G), and Zn (Z), such as IGZO (In-Ga-Zn-Oxide) and IZO (In-Zn-Oxide) ) Is preferably used. When using IGZO (In-Ga-Zn-Oxide), the composition ratios of In (I), Ga (G), and Zn (Z) do not necessarily have to be integer ratios. When IZO (In-Zn-Oxide) is used, the composition ratio of In (I) and Zn (Z) does not necessarily need to be an integer ratio. It can be changed depending on the film forming conditions.

以上、本発明の種々の典型的な実施の形態を説明してきたが、本発明はそれらの実施の形態に限定されない。従って、本発明の範囲は、次の特許請求の範囲によってのみ限定されるものである。   While various typical embodiments of the present invention have been described above, the present invention is not limited to these embodiments. Accordingly, the scope of the invention is limited only by the following claims.

1 電子装置
10 共通配線
12 信号線
14 走査線
16 交差点
20 スイッチング素子配置領域
30 画素部
40 薄膜トランジスタ
42 ゲート電極
46 活性層
48 保護層
52 ソース電極
54 ドレイン電極
55 接続部
60 蓄積容量
62 蓄積容量下部電極
66 蓄積容量上部電極
68 画素電極
70 光学部材
82 接地電位
84 対向電極
94、115 コンタクトホール
110 基板
112、120 配線層
114 誘電体層
122 層間絶縁膜
126 光学部材層
130 保護膜
DESCRIPTION OF SYMBOLS 1 Electronic device 10 Common wiring 12 Signal line 14 Scanning line 16 Crossing point 20 Switching element arrangement | positioning area | region 30 Pixel part 40 Thin film transistor 42 Gate electrode 46 Active layer 48 Protection layer 52 Source electrode 54 Drain electrode 55 Connection part 60 Storage capacity 62 Storage capacity lower electrode 66 Storage capacitor upper electrode 68 Pixel electrode 70 Optical member 82 Ground potential 84 Counter electrode 94, 115 Contact hole 110 Substrate 112, 120 Wiring layer 114 Dielectric layer 122 Interlayer insulating film 126 Optical member layer 130 Protective film

Claims (24)

複数の走査線と、
前記複数の走査線と交差する複数の信号線と、
前記複数の走査線と前記複数の信号線の交差点に対応してそれぞれ設けられた複数のスイッチング素子と、
前記複数のスイッチング素子が配置されたスイッチング素子配置領域の外側で、前記複数の走査線と前記複数の信号線とに接続された共通配線であって、固有抵抗値が可変な材料から成る前記共通配線と、を備える電子装置。
A plurality of scan lines;
A plurality of signal lines intersecting the plurality of scanning lines;
A plurality of switching elements respectively provided corresponding to intersections of the plurality of scanning lines and the plurality of signal lines;
The common wiring connected to the plurality of scanning lines and the plurality of signal lines outside the switching element arrangement region where the plurality of switching elements are arranged, the common resistance being made of a material having a variable specific resistance value electronic device comprising wiring and, a.
前記共通配線は、固有抵抗値が可逆的に可変な材料から成る請求項1記載の電子装置。 The electronic device according to claim 1, wherein the common wiring is made of a material whose specific resistance value is reversibly variable. 前記固有抵抗値が可変な材料は、前記材料への光の照射または前記材料が存在している環境の変更によって固有抵抗値が変化する材料である請求項1または2記載の電子装置。   The electronic device according to claim 1, wherein the material having a variable specific resistance value is a material whose specific resistance value is changed by irradiation of light to the material or change of an environment in which the material exists. 前記固有抵抗値が可変な材料は、前記材料のバンドギャップに相当するエネルギーを有する光の波長以下の波長の光の照射または10−4Pa以下の真空雰囲気に晒すことによって照射前の固有抵抗値よりも低い固有抵抗値に変化し、大気雰囲気、酸素雰囲気、水蒸気雰囲気または水に晒すと、晒す前の固有抵抗値よりも高い固有抵抗値に変化する材料である請求項1〜3のいずれか一項に記載の電子装置。 The material having a variable specific resistance value is irradiated with light having a wavelength equal to or lower than the wavelength of light having energy corresponding to the band gap of the material or exposed to a vacuum atmosphere of 10 −4 Pa or lower before the specific resistance value before irradiation. Any one of claims 1 to 3, which is a material that changes to a lower specific resistance value and changes to a specific resistance value higher than the specific resistance value before exposure when exposed to air atmosphere, oxygen atmosphere, water vapor atmosphere or water. The electronic device according to one item. 前記固有抵抗値が可変な材料は、酸化物半導体である請求項1〜4のいずれか一項に記載の電子装置。   The electronic device according to claim 1, wherein the material having a variable specific resistance value is an oxide semiconductor. 前記酸化物半導体がIn、GaおよびZnからなる群より選ばれる少なくとも一つの元素の酸化物である請求項5記載の電子装置。   The electronic device according to claim 5, wherein the oxide semiconductor is an oxide of at least one element selected from the group consisting of In, Ga, and Zn. 前記酸化物半導体がInを含む酸化物である請求項5記載の電子装置。   The electronic device according to claim 5, wherein the oxide semiconductor is an oxide containing In. 前記共通配線は、前記固有抵抗値が可変な材料のバンドギャップに相当するエネルギーを有する光の波長以下の波長の光を通さない膜で覆われている請求項1〜7のいずれか一項に記載の電子装置。 The said common wiring is covered with the film | membrane which does not allow the light of the wavelength below the wavelength of the light which has the energy equivalent to the band gap of the material with which the said specific resistance value is variable to pass. The electronic device described. 前記固有抵抗値が可変な材料がIn、GaおよびZnの三種の元素の酸化物であり、前記共通配線は、430nm以下の波長の光を通さない膜で覆われている請求項8記載の電子装置。 9. The electron according to claim 8, wherein the material having a variable specific resistance value is an oxide of three elements of In, Ga, and Zn, and the common wiring is covered with a film that does not transmit light having a wavelength of 430 nm or less. apparatus. 前記スイッチング素子が電界効果トランジスタであり、前記走査線は前記電界効果トランジスタのゲートに接続され、前記信号線は、前記電界効果トランジスタのソースおよびドレインのいずれか一方に接続されている請求項1〜9のいずれか一項に記載の電子装置。   The switching element is a field effect transistor, the scanning line is connected to a gate of the field effect transistor, and the signal line is connected to one of a source and a drain of the field effect transistor. The electronic device according to claim 9. 前記電子装置は画像表示装置である請求項1〜10のいずれか一項に記載の電子装置。   The electronic device according to claim 1, wherein the electronic device is an image display device. 前記電子装置は画像検出装置である請求項1〜10のいずれか一項に記載の電子装置。   The electronic device according to claim 1, wherein the electronic device is an image detection device. 複数の走査線と、
前記複数の走査線と交差する複数の信号線と、
前記複数の走査線と前記複数の信号線の交差点に対応してそれぞれ設けられた複数のスイッチング素子と、
前記複数のスイッチング素子が配置されたスイッチング素子配置領域の外側で、前記複数の走査線と前記複数の信号線とに接続された共通配線であって、固有抵抗値が可変な材料から成る前記共通配線と、を備える基板を形成する工程と、
前記共通配線を低抵抗化する工程と、
を備える電子装置の製造方法。
A plurality of scan lines;
A plurality of signal lines intersecting the plurality of scanning lines;
A plurality of switching elements respectively provided corresponding to intersections of the plurality of scanning lines and the plurality of signal lines;
The common wiring connected to the plurality of scanning lines and the plurality of signal lines outside the switching element arrangement region where the plurality of switching elements are arranged, the common resistance being made of a material having a variable specific resistance value Forming a substrate comprising wiring; and
Reducing the resistance of the common wiring ;
An electronic device manufacturing method comprising:
前記共通配線は、固有抵抗値が可逆的に可変な材料から成る請求項13記載の電子装置の製造方法。 14. The method of manufacturing an electronic device according to claim 13, wherein the common wiring is made of a material whose specific resistance value is reversibly variable. 前記固有抵抗値が可変な材料は、前記材料への光の照射または前記材料が存在している環境の変更によって固有抵抗値が変化する材料である請求項13または14記載の電子装置の製造方法。   The method of manufacturing an electronic device according to claim 13 or 14, wherein the material having a variable specific resistance value is a material whose specific resistance value is changed by irradiating the material with light or changing an environment in which the material exists. . 前記固有抵抗値が可変な材料は、前記材料のバンドギャップに相当するエネルギーを有する光の波長以下の波長の光の照射または10−4Pa以下の真空雰囲気に晒すことによって照射前の固有抵抗値よりも低い固有抵抗値に変化し、大気雰囲気、酸素雰囲気、水蒸気雰囲気または水に晒すと、晒す前の固有抵抗値よりも高い固有抵抗値に変化する材料である請求項13〜15のいずれか一項に記載の電子装置の製造方法。 The material having a variable specific resistance value is irradiated with light having a wavelength equal to or lower than the wavelength of light having energy corresponding to the band gap of the material or exposed to a vacuum atmosphere of 10 −4 Pa or lower before the specific resistance value before irradiation. The specific resistance value is changed to a lower specific resistance value, and when exposed to air atmosphere, oxygen atmosphere, water vapor atmosphere or water, the material changes to a specific resistance value higher than the specific resistance value before exposure. A method for manufacturing an electronic device according to one item. 前記固有抵抗値が可変な材料は、酸化物半導体である請求項13〜16のいずれか一項に記載の電子装置の製造方法。   The method for manufacturing an electronic device according to claim 13, wherein the material having a variable specific resistance value is an oxide semiconductor. 前記酸化物半導体がIn、GaおよびZnからなる群より選ばれる少なくとも一つの元素の酸化物である請求項17記載の電子装置の製造方法。   The method for manufacturing an electronic device according to claim 17, wherein the oxide semiconductor is an oxide of at least one element selected from the group consisting of In, Ga, and Zn. 前記酸化物半導体がInを含む酸化物である請求項17記載の電子装置の製造方法。   The method for manufacturing an electronic device according to claim 17, wherein the oxide semiconductor is an oxide containing In. 前記共通配線を低抵抗化する工程は、前記共通配線に前記固有抵抗値が可変な材料のバンドギャップに相当するエネルギーを有する光の波長以下の波長の光を照射する工程を含む請求項13〜19のいずれか一項に記載の電子装置の製造方法。 Wherein the step of reducing the resistance of the common wiring claim 13 comprising the step of irradiating the common line to the resistivity variable light having a wavelength less than the wavelength of light having an energy corresponding to the band gap of the material 20. A method for manufacturing an electronic device according to any one of 19 above. 前記共通配線を低抵抗化する工程の後に、前記基板を実装する工程をさらに備える請求項13〜20のいずれか一項に記載の電子装置の製造方法。 The method for manufacturing an electronic device according to claim 13, further comprising a step of mounting the substrate after the step of reducing the resistance of the common wiring . 前記共通配線を低抵抗化する工程の後に、前記共通配線を、前記固有抵抗値が可変な材料のバンドギャップに相当するエネルギーを有する光の波長以下の波長の光を通さない膜で覆う工程をさらに備える請求項13〜20のいずれか一項に記載の電子装置の製造方法。 After the step of reducing the resistance of the common wiring , a step of covering the common wiring with a film that does not transmit light having a wavelength equal to or less than the wavelength of light having energy corresponding to a band gap of the material having a variable specific resistance value. Furthermore, the manufacturing method of the electronic device as described in any one of Claims 13-20. 前記固有抵抗値が可変な材料がIn、GaおよびZnの三種の元素の酸化物であり、前記共通配線を低抵抗化する工程の後に、前記共通配線を、430nm以下の波長の光を通さない膜で覆う工程をさらに備える請求項17〜21のいずれか一項に記載の電子装置の製造方法。 The resistivity variable material is an oxide of three kinds of the elements In, Ga and Zn, after the step of reducing the resistance of the common wiring, the common wiring, does not transmit light of a wavelength 430nm The method for manufacturing an electronic device according to any one of claims 17 to 21, further comprising a step of covering with a film. 前記スイッチング素子が電界効果トランジスタであり、前記走査線は前記電界効果トランジスタのゲートに接続され、前記信号線は、前記電界効果トランジスタのソースおよびドレインのいずれか一方に接続されている請求項13〜23のいずれか一項に記載の電子装置の製造方法。   The switching element is a field effect transistor, the scanning line is connected to a gate of the field effect transistor, and the signal line is connected to one of a source and a drain of the field effect transistor. 24. A method of manufacturing an electronic device according to any one of 23.
JP2010102597A 2010-04-27 2010-04-27 Electronic equipment Active JP5489844B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010102597A JP5489844B2 (en) 2010-04-27 2010-04-27 Electronic equipment
KR1020110038966A KR101446829B1 (en) 2010-04-27 2011-04-26 Electronic device and manufacturing method thereof
TW100114427A TWI468824B (en) 2010-04-27 2011-04-26 Electronic device on which a plurality of switching devices are arranged in a matrix from and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010102597A JP5489844B2 (en) 2010-04-27 2010-04-27 Electronic equipment

Publications (2)

Publication Number Publication Date
JP2011232539A JP2011232539A (en) 2011-11-17
JP5489844B2 true JP5489844B2 (en) 2014-05-14

Family

ID=45321902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010102597A Active JP5489844B2 (en) 2010-04-27 2010-04-27 Electronic equipment

Country Status (3)

Country Link
JP (1) JP5489844B2 (en)
KR (1) KR101446829B1 (en)
TW (1) TWI468824B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102000738B1 (en) 2013-01-28 2019-07-23 삼성디스플레이 주식회사 Circuit for preventing static electricity and display device comprising the same
US9964799B2 (en) * 2015-03-17 2018-05-08 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
JP6801891B2 (en) * 2016-03-02 2020-12-16 国立研究開発法人産業技術総合研究所 Semiconductor-insulator reversible change thin film and its manufacturing method
CN106094272B (en) * 2016-06-22 2019-06-07 京东方科技集团股份有限公司 A kind of display base plate, its production method and display device
CN107490890B (en) * 2017-09-26 2019-09-20 武汉华星光电技术有限公司 Display base plate, display panel and display equipment
KR102181003B1 (en) * 2020-02-07 2020-11-20 삼성디스플레이 주식회사 Circuit for preventing static electricity and display device comprising the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2766442B2 (en) * 1992-06-03 1998-06-18 株式会社フロンテック Matrix wiring board
JPH08220557A (en) * 1995-02-09 1996-08-30 Mitsubishi Electric Corp Liquid crystal display device, its examination method, and static electricity preventive method
JP3640224B2 (en) * 1996-06-25 2005-04-20 株式会社半導体エネルギー研究所 LCD panel
JP3628125B2 (en) * 1996-09-24 2005-03-09 株式会社東芝 Active matrix substrate and active matrix type liquid crystal display device
JP2006003552A (en) * 2004-06-16 2006-01-05 Mitsubishi Chemicals Corp Light emitting device
JP2009099847A (en) * 2007-10-18 2009-05-07 Canon Inc Thin-film transistor, its manufacturing method, and display device
JP5268132B2 (en) * 2007-10-30 2013-08-21 富士フイルム株式会社 Oxide semiconductor element and manufacturing method thereof, thin film sensor, and electro-optical device
US8575615B2 (en) * 2008-09-17 2013-11-05 Sharp Kabushiki Kaisha Semiconductor device

Also Published As

Publication number Publication date
JP2011232539A (en) 2011-11-17
KR101446829B1 (en) 2014-10-01
TWI468824B (en) 2015-01-11
TW201229639A (en) 2012-07-16
KR20110119573A (en) 2011-11-02

Similar Documents

Publication Publication Date Title
KR102695428B1 (en) Organic light emitting display
JP6458103B2 (en) Organic light emitting display
CN110047880B (en) Display panel
JP5489844B2 (en) Electronic equipment
US10644269B2 (en) Organic light-emitting display device
JP5964807B2 (en) Flexible organic electroluminescent device and manufacturing method thereof
KR101994227B1 (en) Organic light emitting diode device and method for fabricating the same
JP5280671B2 (en) Image detector and radiation detection system
US8803210B2 (en) X-ray detector
KR20160088978A (en) Organic light emitting display device and method of manufacturing the same
KR20150017978A (en) Organic light emitting diode display
KR20150044083A (en) Organic light emitting diode display and method for preparing the same
KR20220151137A (en) Electroluminescent display device
JP6654466B2 (en) Semiconductor device, display device, method of manufacturing display device, and electronic apparatus
US11011665B2 (en) Thin film transistor array substrate for high-resolution digital X-ray detector and high-resolution digital X-ray detector including the same
KR20110133349A (en) Organic light emitting display apparatus
WO2016111192A1 (en) Imaging panel and x-ray imaging device
JP5710904B2 (en) X-ray detector
JP2010003766A (en) Electromagnetic wave detection element
KR102014169B1 (en) Organic light emitting display apparatus and method of manufacturing the same
JP2016054046A (en) Display device and electronic apparatus
WO2013161738A1 (en) Semiconductor device and method of manufacture thereof
KR20210044362A (en) Display device and method for manufacturing the same
KR20160055648A (en) Thin film transistor for display device and method for fabricating the same, and organic electroluminescent emitted diode device
US11335706B2 (en) Thin film transistor array substrate for high-resolution digital X-ray detector and high-resolution digital X-ray detector including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5489844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250