JP5487743B2 - Thin battery and manufacturing method thereof - Google Patents

Thin battery and manufacturing method thereof Download PDF

Info

Publication number
JP5487743B2
JP5487743B2 JP2009140751A JP2009140751A JP5487743B2 JP 5487743 B2 JP5487743 B2 JP 5487743B2 JP 2009140751 A JP2009140751 A JP 2009140751A JP 2009140751 A JP2009140751 A JP 2009140751A JP 5487743 B2 JP5487743 B2 JP 5487743B2
Authority
JP
Japan
Prior art keywords
thin battery
tube
battery
conductor portion
internal space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009140751A
Other languages
Japanese (ja)
Other versions
JP2010287451A (en
Inventor
紀之 松風
隆行 平尾
浄 一瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009140751A priority Critical patent/JP5487743B2/en
Publication of JP2010287451A publication Critical patent/JP2010287451A/en
Application granted granted Critical
Publication of JP5487743B2 publication Critical patent/JP5487743B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、薄型電池及びその製造方法に関するものである。   The present invention relates to a thin battery and a manufacturing method thereof.

缶状のリチウム二次電池において、缶内部に向けて膨らませて形成された凹部の注液口から電解液を注入したのち凹部内に金属球を装填し、次いで初充電を行うとともに初充電により発生したガスを注液口から排出し、最後に金属球を注液口に溶接するものが知られている(特許文献1)。 In a can-type lithium secondary battery, an electrolytic solution is injected from the injection port of a recess formed by inflating into the inside of the can, and then a metal ball is loaded into the recess, and then the first charge and the first charge are generated. It is known that the discharged gas is discharged from the injection port and finally a metal ball is welded to the injection port (Patent Document 1).

特許第3174289号公報Japanese Patent No. 3174289

ところで、薄型電池においても、電解液の注入、初充電により発生したガスの排出および電圧検出といった処理が必要とされるが、薄型電池に上記従来技術の構造を適用すると、不必要に厚くなり延いては電池の占有体積が増加するという問題がある。 By the way, even in a thin battery, treatments such as injection of electrolyte, discharge of gas generated by initial charging, and voltage detection are required. However, if the structure of the above prior art is applied to a thin battery, the thickness becomes unnecessarily thick. In this case, the occupied volume of the battery increases.

本発明が解決しようとする課題は、占有体積を増加させることなく電解液の注入、ガスの排出及び電圧の検出の各処理が実行できる薄型電池及びその製造方法を提供することである。   The problem to be solved by the present invention is to provide a thin battery and a method for manufacturing the same that can perform the processes of injecting electrolyte, discharging gas, and detecting voltage without increasing the occupied volume.

本発明は、絶縁性外筒部に被覆された封止可能な第1導体部および第2導体部を有するチューブを、電池内外部を封止するシール部を貫通するように設けることによって上記課題を解決する。 The present invention provides the above-described problem by providing a tube having a sealable first conductor portion and a second conductor portion covered with an insulating outer cylinder portion so as to penetrate a seal portion that seals the inside and outside of the battery. To solve.

本発明では、電池の内外部を封止するシール部にチューブを設け、当該チューブを介して電解液を注入したのちチューブの電池外部側の第2導体部を封止する。ついで、初充電をしたのちに電池内部のガスを排出する際は電池外部側の第2導体部を切除し、ガス排出後はチューブの電池内部側の第1導体部を封止する。これにより、電池の占有体積を増加させることなく電解液の注入とガス排出を行うことができる。   In the present invention, a tube is provided in a seal portion that seals the inside and outside of the battery, and after the electrolyte is injected through the tube, the second conductor portion on the battery outside of the tube is sealed. Next, when the gas inside the battery is discharged after the initial charge, the second conductor part on the battery outer side is cut off, and after the gas discharge, the first conductor part on the battery inner side of the tube is sealed. As a result, the electrolyte can be injected and the gas discharged without increasing the occupied volume of the battery.

一方、発電要素に接続された第1導体部と電池外部の第2導体部は導通しているので、電池外部の第2導体部を介して発電要素の電圧検出を行うことができる。   On the other hand, since the first conductor portion connected to the power generation element is electrically connected to the second conductor portion outside the battery, the voltage of the power generation element can be detected via the second conductor portion outside the battery.

本発明の一実施の形態を適用したバイポーラ薄型電池を示す断面図である。It is sectional drawing which shows the bipolar thin battery to which one embodiment of this invention is applied. 図1のバイポーラ薄型電池を示す外観斜視図である。It is an external appearance perspective view which shows the bipolar thin battery of FIG. 図1のチューブを示す斜視図である。It is a perspective view which shows the tube of FIG. 図1のチューブの装着状態を示す拡大断面図である。It is an expanded sectional view which shows the mounting state of the tube of FIG. 図1のバイポーラ薄型電池の製造方法を示す断面図(その1)である。FIG. 3 is a sectional view (No. 1) showing a method for manufacturing the bipolar thin battery of FIG. 図1のバイポーラ薄型電池の製造方法を示す断面図(その2)である。FIG. 4 is a sectional view (No. 2) showing the method for manufacturing the bipolar thin battery of FIG. 図1のバイポーラ薄型電池の製造方法を示す断面図(その3)である。FIG. 4 is a sectional view (No. 3) showing the method for manufacturing the bipolar thin battery of FIG. 図1のバイポーラ薄型電池の製造方法を示す断面図(その4)である。FIG. 6 is a sectional view (No. 4) showing the method for manufacturing the bipolar thin battery of FIG. 本発明の他の実施の形態を適用したバイポーラ薄型電池を示す平面図である。It is a top view which shows the bipolar thin battery to which other embodiment of this invention is applied.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施の形態を適用したバイポーラ薄型電池を示す主要断面図、図2はその外観斜視図である。なお、図1に示す各部材は、薄型電池の構造をより理解しやすくするために特に厚さ寸法を誇張して示すが、実際の厚さ等の寸法は後述するとおりである。また、本例のバイポーラ電池はリチウムイオン二次電池として説明するが、二次電池の種類には特に限定されず他の二次電池にも適用することができる。   FIG. 1 is a main sectional view showing a bipolar thin battery to which an embodiment of the present invention is applied, and FIG. 2 is an external perspective view thereof. In addition, although each member shown in FIG. 1 exaggerates especially the thickness dimension in order to make the structure of a thin battery easier to understand, the dimensions such as the actual thickness are as described later. In addition, although the bipolar battery of this example will be described as a lithium ion secondary battery, the type of the secondary battery is not particularly limited, and can be applied to other secondary batteries.

図1に示すように、本例のバイポーラ薄型電池1(以下、単に電池1とも言う)は、正極132、負極133および集電体131を有するバイポーラ電極13と、セパレータ134および電解液135を含む電解質層136と、第1シール部141および第2シール部142を含むシール部14と、これらを外包する上部外装部材151及び下部外装部材152を含む外装部材15と、を備える。   As shown in FIG. 1, the bipolar thin battery 1 (hereinafter also simply referred to as the battery 1) of this example includes a bipolar electrode 13 having a positive electrode 132, a negative electrode 133, and a current collector 131, a separator 134, and an electrolyte solution 135. An electrolyte layer 136, a seal portion 14 including a first seal portion 141 and a second seal portion 142, and an exterior member 15 including an upper exterior member 151 and a lower exterior member 152 that enclose them are provided.

発電要素の一単位となるバイポーラ電極13は、集電体131の一方の主面に正極132が形成され、他方の主面に負極133が形成されてなる。   The bipolar electrode 13, which is a unit of the power generation element, has a positive electrode 132 formed on one main surface of the current collector 131 and a negative electrode 133 formed on the other main surface.

集電体131は、ステンレススチール箔、アルミニウム箔、ニッケルとアルミニウムのクラッド材、銅とアルミニウムのクラッド材、あるいはこれらの金属の組み合わせのめっき材などの導電性材料から構成されている。   The current collector 131 is made of a conductive material such as a stainless steel foil, an aluminum foil, a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of a combination of these metals.

正極132の正極活物質は、容量および出力特性の観点から、マンガン酸リチウムLiMn、コバルト酸リチウムその他のリチウム−遷移金属複合酸化物などの材料から構成されている。一方、負極133の負極活物質は、容量および出力特性の観点から、ハードカーボン(難黒鉛化炭素材料)、黒鉛系炭素材料、リチウム−遷移金属複合酸化物などの材料から構成されている。 The positive electrode active material of the positive electrode 132 is made of a material such as lithium manganate LiMn 2 O 4 , lithium cobaltate, or other lithium-transition metal composite oxide from the viewpoint of capacity and output characteristics. On the other hand, the negative electrode active material of the negative electrode 133 is made of a material such as hard carbon (non-graphitizable carbon material), a graphite-based carbon material, or a lithium-transition metal composite oxide from the viewpoint of capacity and output characteristics.

これら正極132および負極133の厚さは、電池の使用目的、例えば出力重視の電池か否か、エネルギー重視の電池か否かといった目的や、イオン伝導性を考慮して適宜設定される。   The thicknesses of the positive electrode 132 and the negative electrode 133 are appropriately set in consideration of the purpose of use of the battery, for example, whether the battery is output-oriented or energy-oriented, and ion conductivity.

第1シール部141は、集電体131の一方の主面に、正極132を取り囲むように配置されている。また第2シール部142は、集電体131の他方の面であって第1シール部141の位置と同じ背面位置に、負極133を取り囲むように配置されている。   The first seal portion 141 is disposed on one main surface of the current collector 131 so as to surround the positive electrode 132. The second seal portion 142 is disposed on the other surface of the current collector 131 and at the same back surface position as the first seal portion 141 so as to surround the negative electrode 133.

これら第1シール部141および第2シール部142を構成するシール材は、一液硬化性エポキシ樹脂その他の熱硬化型樹脂、ポリプロピレン、ポリエチレンその他の熱可塑型樹脂などの絶縁性材料から構成されている。シール部14を構成する材料は、使用環境下において良好なシール効果を発揮するものを電池の用途に応じて適宜選択することが好ましい。   The sealing material constituting the first seal part 141 and the second seal part 142 is made of an insulating material such as a one-part curable epoxy resin or other thermosetting resin, polypropylene, polyethylene or other thermoplastic resin. Yes. It is preferable that the material constituting the seal portion 14 is appropriately selected according to the intended use of the battery so as to exhibit a good sealing effect in the use environment.

セパレータ134は、隣接する2つの集電体131,131の間であって、一方の主面が正極132および第1シール部141を覆い、他方の主面が負極133および第2シール部142を覆うように配置されている。   The separator 134 is between two adjacent current collectors 131, 131, one main surface covering the positive electrode 132 and the first seal portion 141, and the other main surface covering the negative electrode 133 and the second seal portion 142. It is arranged to cover.

セパレータ134は、正極と負極を区分けする通気性を有するポーラス状部材であって、当該セパレータ134内にゲルポリマー系電解質を含浸させる。このセパレータ134は、正極132と負極133との直接的な接触を阻止する絶縁体であるが、セパレータ134に形成された多数の孔の内部に電解質が浸透することで、イオン及び電流が流れることになる。   The separator 134 is a porous member having air permeability that separates the positive electrode and the negative electrode, and the separator 134 is impregnated with a gel polymer electrolyte. The separator 134 is an insulator that prevents direct contact between the positive electrode 132 and the negative electrode 133, but ions and current flow when the electrolyte permeates into a large number of holes formed in the separator 134. become.

また、セパレータ134、集電体131および第1シール部141又は第2シール部142で画成された空間には、セパレータ134と正極132または負極133との間でイオンを伝導する電解液(電解質)135が封入されている。これら電解質を含浸したセパレータ134および電解液135を併せて電解質層136と称する。   Further, in a space defined by the separator 134, the current collector 131 and the first seal portion 141 or the second seal portion 142, an electrolyte solution (electrolyte) that conducts ions between the separator 134 and the positive electrode 132 or the negative electrode 133 is used. ) 135 is enclosed. The separator 134 impregnated with the electrolyte and the electrolytic solution 135 are collectively referred to as an electrolyte layer 136.

上述したセパレータ134の通気性(多孔性)を有する素材として、ポリエチレンPE、ポリプロピレンPPその他のポリオレフィン系樹脂、PP/PE/PPの3層構造をした積層体、ポリアミド、ポリイミド、アラミド、不織布などを使用することができる。不織布としては、例えば、綿、レーヨン、アセテート、ナイロン、ポリエステルを挙げることができる。   As the material having the air permeability (porosity) of the separator 134 described above, polyethylene PE, polypropylene PP and other polyolefin resins, laminates having a three-layer structure of PP / PE / PP, polyamide, polyimide, aramid, non-woven fabric, etc. Can be used. Examples of the non-woven fabric include cotton, rayon, acetate, nylon, and polyester.

電解質の電解液は、プロピレンカーボネートPCおよびエチレンカーボネートECからなる有機溶媒、支持塩としてのリチウム塩LiPFを含んでいる。有機溶媒は、PCおよびECに特に限定されず、例えば、その他の環状カーボネート類、ジメチルカーボネート等の鎖状カーボネート類、テトラヒドロフラン等のエーテル類を使用することができる。またリチウム塩は、LiPFその他の無機酸陰イオン塩、LiCFSO等の有機酸陰イオン塩を使用することができる。 The electrolytic solution of the electrolyte contains an organic solvent composed of propylene carbonate PC and ethylene carbonate EC, and a lithium salt LiPF 6 as a supporting salt. The organic solvent is not particularly limited to PC and EC, and for example, other cyclic carbonates, chain carbonates such as dimethyl carbonate, and ethers such as tetrahydrofuran can be used. As the lithium salt, organic acid anion salts such as LiPF 6 and other inorganic acid anion salts and LiCF 3 SO 3 can be used.

電解質のホストポリマーは、HFP(ヘキサフルオロプロピレン)コポリマーを10%含むPVDF−HFP(ポリフッ化ビニリデンとヘキサフルオロプロピレンの共重合体)その他のリチウムイオン伝導性を持たない高分子や、イオン伝導性を有する高分子(固体高分子電解質)を使用することができる。リチウムイオン伝導性を持たない高分子としては、ポリアクリロニトリルPANやポリメチルメタクリレートPMMAを挙げることができる。また、イオン伝導性を有する高分子としては、ポリエチレンオキシドPEOやポリプロピレンオキシドPPOを挙げることができる。   The electrolyte host polymer is PVDF-HFP (polyvinylidene fluoride-hexafluoropropylene copolymer) containing 10% HFP (hexafluoropropylene) copolymer, other polymers that do not have lithium ion conductivity, and ion conductivity. The polymer (solid polymer electrolyte) which has can be used. Examples of the polymer having no lithium ion conductivity include polyacrylonitrile PAN and polymethyl methacrylate PMMA. Examples of the polymer having ion conductivity include polyethylene oxide PEO and polypropylene oxide PPO.

図2に示すバイポーラ電池1は、図1に示すように複数のバイポーラ電極13(発電要素)を積層体137とした形態で、外部からの衝撃や環境劣化を防止するための外装部材15に収容されている。バイポーラ電極13の積層体137の最外層(最上位および最下位)には、正極端子プレート11と負極端子プレート12がそれぞれ配置される。なお、これら端子プレート11,12の更に外側に補強板を配置することもできる。   A bipolar battery 1 shown in FIG. 2 is housed in an exterior member 15 for preventing impact from the outside and environmental degradation in the form of a laminated body 137 having a plurality of bipolar electrodes 13 (power generation elements) as shown in FIG. Has been. The positive electrode terminal plate 11 and the negative electrode terminal plate 12 are disposed on the outermost layers (the uppermost layer and the lowermost layer) of the stacked body 137 of the bipolar electrode 13. In addition, a reinforcing plate can be disposed further outside the terminal plates 11 and 12.

正極端子プレート11および負極端子プレート12は、アルミニウム、銅、チタン、ニッケル、ステンレス、これらの合金などの高導電性部材からなり、少なくとも積層体137の最外層の電極投影面の全てを覆うように構成されている。これにより、最外層の電流取り出し部の抵抗が低くなり、面方向の電流取り出しにおける低抵抗化を図ることで、電池の高出力化が可能になる。   The positive electrode terminal plate 11 and the negative electrode terminal plate 12 are made of a highly conductive member such as aluminum, copper, titanium, nickel, stainless steel, or an alloy thereof so as to cover at least all the electrode projection surfaces of the outermost layer of the laminate 137. It is configured. As a result, the resistance of the current extraction portion in the outermost layer is lowered, and the reduction in resistance in the current extraction in the surface direction makes it possible to increase the output of the battery.

正極端子プレート11および負極端子プレート12は、それぞれ外装部材15の外部に引き出され、積層体137から電流を引き出すための電極タブとして機能する。なお、独立した別体の電極タブを、直接的あるいはリードを利用して端子プレート11,12と接続することで、積層体137から電流を引き出すこともできる。また、積層体137の最外層に位置する集電体131によって、端子プレート11,12を構成してもよい。   The positive electrode terminal plate 11 and the negative electrode terminal plate 12 are each drawn out of the exterior member 15 and function as electrode tabs for drawing current from the stacked body 137. In addition, an electric current can also be drawn from the laminated body 137 by connecting an independent separate electrode tab to the terminal plates 11 and 12 directly or using a lead. Further, the terminal plates 11 and 12 may be configured by the current collector 131 located in the outermost layer of the stacked body 137.

外装部材15は、軽量化および熱伝導性の観点から、アルミニウム、ステンレス、ニッケル、銅などの金属(合金を含む)をポリプロピレンフィルム等の絶縁体で被覆した高分子−金属複合ラミネートフィルムなどのシート材からなり、その外周部の一部または全部を熱融着することで形成される。   The exterior member 15 is a sheet such as a polymer-metal composite laminate film in which a metal (including an alloy) such as aluminum, stainless steel, nickel, or copper is covered with an insulator such as a polypropylene film from the viewpoint of weight reduction and thermal conductivity. It is made of a material and is formed by heat-sealing part or all of the outer periphery.

なお、図2に示す電池1を単独で使用することも可能であるが、複数の電池1を直列および/または並列に接続し、組電池の形態で使用することもできる。組電池を構成する際に、直列および並列の組み合わせを適宜設定することで、容量および電圧を自由に調整することができる。電池1の電極タブ(端子プレート11,12)の接続は、超音波溶接、熱溶接、レーザー溶接、リベット、かしめ、電子ビームなどの諸方法により行うことができる。   The battery 1 shown in FIG. 2 can be used alone, but a plurality of batteries 1 can be connected in series and / or in parallel to be used in the form of an assembled battery. When configuring the assembled battery, the capacity and voltage can be freely adjusted by appropriately setting the combination of series and parallel. The electrode tabs (terminal plates 11 and 12) of the battery 1 can be connected by various methods such as ultrasonic welding, heat welding, laser welding, rivets, caulking, and electron beam.

こうした組電池や組電池をさらに組み合わせた組電池モジュールは、大出力を確保し得るため、電気自動車、ハイブリッド自動車、電車などの各種車両のモータ駆動用電源として利用することができる。組電池や組電池モジュールは、それを構成する電池1ごと又は組電池ごとに、非常にきめ細かい充放電制御ができるため、1回の充電あたりの走行距離の延長や、車載電池としての寿命の長期化などの性能の向上を図ることが可能である。   Such an assembled battery or an assembled battery module obtained by further combining the assembled batteries can ensure a large output, and can be used as a power source for driving motors of various vehicles such as electric vehicles, hybrid vehicles, and trains. The assembled battery and the assembled battery module can perform very fine charge / discharge control for each battery 1 or each assembled battery constituting the assembled battery and the assembled battery module, so that the travel distance per charge can be extended and the life of the vehicle battery can be extended. It is possible to improve the performance, such as.

本例の電池1は、シール部14(図1に示す例では第2シール部142)を貫通するチューブ20をさらに備える。このチューブ20の一端は、セパレータ134、集電体131および第2シール部142で画成された内部空間Sに臨み、他端は第2シール部142の外部空間に臨むように設けられている。   The battery 1 of this example further includes a tube 20 that penetrates the seal portion 14 (second seal portion 142 in the example shown in FIG. 1). One end of the tube 20 faces the internal space S defined by the separator 134, the current collector 131 and the second seal portion 142, and the other end faces the external space of the second seal portion 142. .

本例のチューブ20の外観を図3に示し、バイポーラ電極13に装着した状態を図4に示す。図4は、図1に示す3つのバイポーラ電極13のうちのひとつのバイポーラ電極13の要部を示す断面図である。   The external appearance of the tube 20 of this example is shown in FIG. 3, and the state attached to the bipolar electrode 13 is shown in FIG. FIG. 4 is a cross-sectional view showing the main part of one of the three bipolar electrodes 13 shown in FIG.

図3に示すように、本例のチューブ20は、一端に設けられた第1導体部201と、他端に設けられた第2導体部202と、これら第1導体部201および第2導体部202を被覆する外筒部203と、を備える。   As shown in FIG. 3, the tube 20 of this example includes a first conductor portion 201 provided at one end, a second conductor portion 202 provided at the other end, and the first conductor portion 201 and the second conductor portion. And an outer cylinder portion 203 that covers 202.

第1導体部201は、後述する封止前には所定の開口面積を有するとともに封止後は当該開口を閉塞して所定の厚さを有する可撓性の材料から構成され、本例では軸方向に所定長を有する、銅、アルミニウム、これらの合金、導電性樹脂などの導体からなる筒状体で構成されている。この第1導体部201は、図4に示すように、セパレータ134、集電体131および第2シール部142で画成された内部空間Sに臨むように設けられる。   The first conductor portion 201 is made of a flexible material having a predetermined opening area before sealing, which will be described later, and having a predetermined thickness by closing the opening after sealing. It is comprised with the cylindrical body which consists of conductors, such as copper, aluminum, these alloys, and conductive resin, which has predetermined length in a direction. As shown in FIG. 4, the first conductor portion 201 is provided so as to face the internal space S defined by the separator 134, the current collector 131, and the second seal portion 142.

第2導体部202は、第1導体部201に接続されて軸方向に延在する接続部202Aと、この接続部202Aに接続され、封止前に所定の開口面積を有するとともに後述する初充電後に切除される封止切除部202Bとを有する。本例の第2導体部202は、板状の接続部202Aと、軸方向に所定長を有する筒状の封止切除部202Bとを備え、上述した第1導体部201と同じように、銅、アルミニウム、これらの合金、導電性樹脂などの可撓性を有する導体から構成されている。この第2導体部202の封止切除部202Bは、第2シール部142の外部空間に臨むように設けられる。   The second conductor portion 202 is connected to the first conductor portion 201 and extends in the axial direction. The second conductor portion 202 is connected to the connection portion 202A, has a predetermined opening area before sealing, and has an initial charge described later. And a sealing excision part 202B to be excised later. The second conductor portion 202 of this example includes a plate-like connection portion 202A and a cylindrical sealing cutout portion 202B having a predetermined length in the axial direction, and, like the first conductor portion 201 described above, , Aluminum, alloys thereof, and conductive conductors. The sealing cut portion 202B of the second conductor portion 202 is provided so as to face the external space of the second seal portion 142.

なお、第1導体部201と第2導体部202は同じ材料で一体的に形成してもよく、また異なる材料で別々に形成したのち接合してもよい。   In addition, the 1st conductor part 201 and the 2nd conductor part 202 may be integrally formed with the same material, and after forming separately with a different material, you may join.

外筒部203は、ポリイミド樹脂などの絶縁体からなる所望長を有する筒体であって、先端から上記第1導体部201の一部が露出するように、第1導体部201と第2導体部202を外筒部203の先端から挿入することで、これら第1導体部201と第2導体部202を被覆する。外筒部203の外径は、バイポーラ電極13の大きさに応じて適宜選択され、たとえば0.1mm〜3mmである。外筒部203の他端(図3及び図4において左端)は、電解液の注入装置に装着される。   The outer cylinder part 203 is a cylinder having a desired length made of an insulator such as polyimide resin, and the first conductor part 201 and the second conductor are exposed so that a part of the first conductor part 201 is exposed from the tip. The first conductor portion 201 and the second conductor portion 202 are covered by inserting the portion 202 from the tip of the outer cylinder portion 203. The outer diameter of the outer cylinder part 203 is appropriately selected according to the size of the bipolar electrode 13 and is, for example, 0.1 mm to 3 mm. The other end (the left end in FIGS. 3 and 4) of the outer cylinder portion 203 is attached to an electrolytic solution injection device.

なお、外筒部203は断面円形にのみ限定されず、第1導体部201や封止切除部202Bとともに断面矩形とすることもできる。   The outer cylinder portion 203 is not limited to a circular cross section, and may be a rectangular cross section together with the first conductor portion 201 and the sealing cutout portion 202B.

このように構成されたチューブ20は、図4に示すように一つのバイポーラ電極13に1つ設けられ、図1に示す薄型電池1全体では3つ設けられている。そして、図4に示すようにチューブ20は第2シール部142を貫通し、第1導体部202が集電体131に溶接または接着などにより接合されている。   As shown in FIG. 4, one tube 20 configured as described above is provided for one bipolar electrode 13, and three thin batteries 1 shown in FIG. 1 are provided as a whole. As shown in FIG. 4, the tube 20 passes through the second seal portion 142, and the first conductor portion 202 is joined to the current collector 131 by welding or adhesion.

これにより、薄型電池1全体として3つの集電体131それぞれにチューブ20の第1導体部202が接続され、そのチューブ20の他端である第2導体部202が外装部材15の外まで導出されるので、各バイポーラ電極13の電圧測定が可能となる。   Accordingly, the first conductor portion 202 of the tube 20 is connected to each of the three current collectors 131 as the thin battery 1 as a whole, and the second conductor portion 202 that is the other end of the tube 20 is led out of the exterior member 15. Therefore, voltage measurement of each bipolar electrode 13 becomes possible.

次に製法を説明する。   Next, the production method will be described.

図5A〜図5Dは、図1に示すバイポーラ薄型電池1の製造方法を示す断面図であり、一つのバイポーラ電極13の要部を示す図(図4に相当する断面図)である。   5A to 5D are cross-sectional views showing a method of manufacturing the bipolar thin battery 1 shown in FIG. 1, and are views (a cross-sectional view corresponding to FIG. 4) showing the main part of one bipolar electrode 13. FIG.

バイポーラ薄型電池1は、たとえば集電体131の両面に正極132および負極133を形成し、これにセパレータ134を積層したサブアッシユニットとしての集成体を形成したのち、これら複数の集成体をさらに積層して積層体を形成し、最後に積層体を外装ケースに収容することにより製造される。   In the bipolar thin battery 1, for example, a positive electrode 132 and a negative electrode 133 are formed on both surfaces of a current collector 131, and an assembly as a subassembly unit in which a separator 134 is stacked thereon is formed, and then the plurality of assemblies are further stacked. The laminate is formed, and finally the laminate is housed in an exterior case.

集電体131の両面に正極132および負極133を形成するには、スラリー状に調製された正極材料および負極材料をステンレススチール箔などからなる集電体131の両面のそれぞれに塗布し、真空オーブンなどにより乾燥する。   In order to form the positive electrode 132 and the negative electrode 133 on both surfaces of the current collector 131, the positive electrode material and the negative electrode material prepared in the form of slurry are applied to both surfaces of the current collector 131 made of stainless steel foil or the like, and a vacuum oven Dry by etc.

次いで、両面に正極132および負極133が形成された集電体131の外周に、正極132または負極133を取り囲むように1液硬化型エポキシ樹脂などのシール材を塗布し、これにセパレータ134を重ねる。これにより、集電体131の正極132が形成された主面の外周に第1シール部141が形成され、集電体131の負極133が形成された主面の外周に第2シール部142が形成される。なお、シール材を塗布したら自然乾燥または所定の温度に保持し、これを乾燥硬化させる。   Next, a sealing material such as a one-component curable epoxy resin is applied to the outer periphery of the current collector 131 having the positive electrode 132 and the negative electrode 133 formed on both sides so as to surround the positive electrode 132 or the negative electrode 133, and the separator 134 is stacked thereon. . Thus, the first seal portion 141 is formed on the outer periphery of the main surface of the current collector 131 where the positive electrode 132 is formed, and the second seal portion 142 is formed on the outer periphery of the main surface of the current collector 131 where the negative electrode 133 is formed. It is formed. When the sealing material is applied, it is naturally dried or kept at a predetermined temperature and dried and cured.

本例では、第2シール部142を構成するシール材を集電体131の外周に塗布する際に、図5Aに示すように薄型電池1の1辺にチューブ20を介装する。このとき、チューブ20の第1導体部201と集電体131とを接合する。また、それぞれのチューブ20は外装部材15の外周部から外部へ導出するので、互いに干渉しないように平面視において少しずつずれた位置に設けられる。   In this example, when the sealing material constituting the second seal portion 142 is applied to the outer periphery of the current collector 131, the tube 20 is interposed on one side of the thin battery 1 as shown in FIG. 5A. At this time, the first conductor 201 of the tube 20 and the current collector 131 are joined. Moreover, since each tube 20 is derived | led-out from the outer peripheral part of the exterior member 15, it is provided in the position shifted | deviated little by little in planar view so that it may not mutually interfere.

この状態で、図5Aに示すようにチューブ20の左端から内部空間Sへ電解液135を注入する。このとき、第1導体部201および第2導体部202の封止切除部202Bは所定の開口面積を有するので、外筒部203によって内部空間Sへ電解液135を充填することができる。なお、本例ではチューブ20を第2シール部142のみに貫通するように設け、第1シール部141には設けていないが、内部空間Sから注入された電解液はセパレータ134を介して対面する内部空間(第1シール部141に相当する空間)にも浸透することになる。   In this state, as shown in FIG. 5A, the electrolytic solution 135 is injected into the internal space S from the left end of the tube 20. At this time, since the sealing cut portion 202B of the first conductor portion 201 and the second conductor portion 202 has a predetermined opening area, the inner space S can be filled with the electrolyte solution 135 by the outer cylinder portion 203. In this example, the tube 20 is provided so as to penetrate only the second seal portion 142 and is not provided in the first seal portion 141, but the electrolyte injected from the internal space S faces through the separator 134. It also penetrates into the internal space (the space corresponding to the first seal portion 141).

各集成体(サブアッシユニット)に電解液を注入したら、図5Bに示すようにチューブ20の封止切除部202Bを外筒部203とともに押し潰し、チューブ20から電解液が漏洩しないように封止する。   After injecting the electrolyte into each assembly (sub-assembly unit), as shown in FIG. 5B, the sealing and cutting part 202B of the tube 20 is crushed together with the outer cylinder part 203 and sealed so that the electrolyte does not leak from the tube 20 To do.

チューブ20の封止切除部202Bが封止された集成体をさらに複数積層して図1の実線で示す積層体を形成し、さらにこの積層体を外装部材15にて封止する。   A plurality of assemblies in which the sealing cut portions 202B of the tubes 20 are sealed are further stacked to form a stacked body indicated by a solid line in FIG. 1, and the stacked body is further sealed with the exterior member 15.

なお、電解液の注入は集成体(サブアッシユニット)を形成したのちに行ってもよい。また、後述する初充電とガス抜きは積層体を外装部材15にて封止する前に行ってもよい。   In addition, you may perform injection | pouring of electrolyte solution, after forming an assembly (sub assembly unit). In addition, initial charging and degassing described later may be performed before the laminate is sealed with the exterior member 15.

次いで、図5Bに示すようにチューブ20の封止切除部202Bが封止された状態で、図1に示す正極端子プレート11および負極端子プレート12に電圧を印加し、初充電を実行する。これにより、薄型電池1の各バイポーラ電極13に充電が行われるが、この充電反応によるガスが電池内部に発生する。   Next, as shown in FIG. 5B, in a state where the sealing cut portion 202B of the tube 20 is sealed, a voltage is applied to the positive terminal plate 11 and the negative terminal plate 12 shown in FIG. As a result, each bipolar electrode 13 of the thin battery 1 is charged, but gas due to this charging reaction is generated inside the battery.

初充電を終了したら、図5Cに示すようにチューブ20の封止切除部202Bを切除し、再びチューブ20によって内部空間Sと電池外部とを連通させる。そして、この状態で所定気圧に減圧した減圧室に電池1を入れ、電池内部に発生したガスを、チューブ20を介して電池外部へ排出する。   When the initial charging is completed, as shown in FIG. 5C, the sealing cut portion 202 </ b> B of the tube 20 is cut, and the internal space S and the outside of the battery are communicated again by the tube 20. In this state, the battery 1 is placed in a decompression chamber decompressed to a predetermined pressure, and the gas generated inside the battery is discharged to the outside of the battery via the tube 20.

ガスの排出を終了したら、図5Dに示すように今度はチューブ20の第1導体部201の左端を外筒部203とともに押し潰し、チューブ20を封止する。これにより、チューブ20から電解液が漏洩することを防止できる。第1導体部201を押し潰すには、たとえば外装部材15の上から局部的な力を加えることで可撓性を有する第1導体部201を押し潰すことができる。   When the gas discharge is completed, as shown in FIG. 5D, the left end of the first conductor portion 201 of the tube 20 is now crushed together with the outer cylinder portion 203 to seal the tube 20. Thereby, it is possible to prevent the electrolytic solution from leaking from the tube 20. In order to crush the first conductor part 201, for example, the first conductor part 201 having flexibility can be crushed by applying a local force from above the exterior member 15.

このとき、チューブ20の第1導体部201の右端、すなわち内部空間Sに望む部分を押し潰してもよいが、本例では開口させておく。これにより、薄型電池1を使用中に内部の圧力が上昇すると、当該第1導体部201の開口にガス圧が集中し、チューブ20が安全弁として機能する。   At this time, the right end of the first conductor portion 201 of the tube 20, that is, a desired portion in the internal space S may be crushed, but in this example, it is opened. Thereby, when an internal pressure rises while using the thin battery 1, the gas pressure concentrates on the opening of the first conductor portion 201, and the tube 20 functions as a safety valve.

一方、第1導体部201の押し潰した部分は集電体131に重なるように接するので、電池1の外周部に積層方向の外力が作用すると、これを集電体131だけでなく第1導体部201の押し潰した部分でも受けることになる。したがって、集電体131への応力集中を緩和することができる。   On the other hand, since the crushed portion of the first conductor portion 201 is in contact with the current collector 131, when an external force in the stacking direction acts on the outer peripheral portion of the battery 1, not only the current collector 131 but also the first conductor Even the crushed part of the part 201 is received. Therefore, stress concentration on the current collector 131 can be reduced.

以上の工程により本例の薄型電池1が得られる(図1参照)が、チューブ20の第2導体部202の接続部202Aは第1導体部201を介して集電体131に電気的に接続されているので、この接続部202Aに電圧検出端子を接続することで集電体131間の電圧を測定することができる。   Although the thin battery 1 of this example is obtained by the above steps (see FIG. 1), the connection portion 202A of the second conductor portion 202 of the tube 20 is electrically connected to the current collector 131 via the first conductor portion 201. Therefore, the voltage between the current collectors 131 can be measured by connecting a voltage detection terminal to the connecting portion 202A.

以上のとおり、本例の薄型電池1によれば、第2シール部142を貫通するようにチューブ20を設けているので、薄型電池1の厚さ方向の寸法はそのままの寸法を維持することができ、占有体積は変わらない。その上で、当該チューブ20により電解液の注入とガス抜きを行うことができる。   As described above, according to the thin battery 1 of this example, since the tube 20 is provided so as to penetrate the second seal portion 142, the thickness of the thin battery 1 can be maintained as it is. Yes, the occupied volume does not change. Then, the electrolyte solution can be injected and degassed by the tube 20.

また、薄型電池完成後においては、残った第1導体部201と第2導体部202とを用いて集電体131間の電圧、すなわちバイポーラ電極13の電圧を測定することもできる。   In addition, after the thin battery is completed, the voltage between the current collectors 131, that is, the voltage of the bipolar electrode 13 can be measured using the remaining first conductor portion 201 and second conductor portion 202.

さらに、第1導体部201を封止する際に、一端を開口させておくことで完成後のガス抜き安全弁としても機能するので別途安全弁を設ける必要がない。   Furthermore, when the first conductor portion 201 is sealed, by opening one end, the first conductor portion 201 also functions as a degassing safety valve after completion, so there is no need to provide a separate safety valve.

なお、図2に示す実施形態では、チューブ20は外装部材15の4辺のうち正極端子プレート11および負極端子プレート12が導出される対向辺のそれぞれに設けたが、図6に示すように正極端子プレート11および負極端子プレート12が導出される辺以外の辺にチューブ20を設けることもできる。これにより、電解液の注入やガス抜きの時間を短縮することができる。また、こうした集電体131へ接続しないチューブ20は封止される機能を備えればよいので第1導体部201や第2導体部202を省略してもよい。   In the embodiment shown in FIG. 2, the tube 20 is provided on each of the opposing sides from which the positive electrode terminal plate 11 and the negative electrode terminal plate 12 are led out of the four sides of the exterior member 15, but as shown in FIG. The tube 20 can also be provided on a side other than the side from which the terminal plate 11 and the negative electrode terminal plate 12 are led out. Thereby, the time of injection | pouring of electrolyte solution and degassing can be shortened. In addition, since the tube 20 that is not connected to the current collector 131 only needs to have a sealing function, the first conductor portion 201 and the second conductor portion 202 may be omitted.

また、チューブ20は第2シール部142を貫通するように設けたが、これに代えて第1シール部141を貫通するように設けてもよい。   Further, although the tube 20 is provided so as to penetrate the second seal portion 142, it may be provided so as to penetrate the first seal portion 141 instead.

さらに、上述した実施形態ではバイポーラ型薄型電池に適用したものを示したが、両面に正極を形成した集電体と両面に負極を形成した集電体とをセパレータを介して積層し、これを外装部材で封止するとともに、内部に電解質を封入した薄型電池にも適用することができる。この場合は、外装部材の外周のシール部に上述したチューブ20を設ければよい。   Further, in the above-described embodiment, the present invention is applied to a bipolar thin battery. However, a current collector having a positive electrode formed on both sides and a current collector having a negative electrode formed on both surfaces are laminated via a separator, While being sealed with an exterior member, it can also be applied to a thin battery in which an electrolyte is enclosed. In this case, what is necessary is just to provide the tube 20 mentioned above in the seal part of the outer periphery of an exterior member.

また、図5Dに示す第1導体部201の封止に代えて、チューブ20内に電池外部から電池内部への流通を阻止する逆止弁を設けることもできる。   Moreover, it can replace with sealing of the 1st conductor part 201 shown to FIG. 5D, and can also provide the check valve which prevents the distribution | circulation from the battery exterior to the battery inside in the tube 20. FIG.

上記接続部202Aと封止切除部202Bが本発明の第2導体部に相当する。   The connecting portion 202A and the sealing cutout portion 202B correspond to the second conductor portion of the present invention.

1…バイポーラ薄型電池
11…正極端子プレート
12…負極端子プレート
13…バイポーラ電極(発電要素)
131…集電体
132…正極
133…負極
134…セパレータ
135…電解液
136…電解質層
137…積層体
14…シール部
141…第1シール部
142…第2シール部
15…外装部材
151…上部外装部材
152…下部外装部材
20…チューブ
201…第1導体部
202…第2導体部
202A…接続部
202B…封止切除部
203…外筒部
S…内部空間
DESCRIPTION OF SYMBOLS 1 ... Bipolar thin battery 11 ... Positive electrode terminal plate 12 ... Negative electrode terminal plate 13 ... Bipolar electrode (power generation element)
131 ... current collector 132 ... positive electrode 133 ... negative electrode 134 ... separator 135 ... electrolyte solution 136 ... electrolyte layer 137 ... laminate 14 ... seal part 141 ... first seal part 142 ... second seal part 15 ... exterior member 151 ... upper exterior Member 152 ... Lower exterior member 20 ... Tube 201 ... First conductor portion 202 ... Second conductor portion 202A ... Connection portion 202B ... Sealed cut portion 203 ... Outer cylinder portion S ... Inner space

Claims (7)

シール部により形成された内部空間に、正極及び負極がセパレータを含む電解質層を介して積層された発電要素と、前記正極及び前記負極のそれぞれに接続された集電体とが内装された薄型電池において、
前記シール部を貫通し、一端が前記内部空間に臨み、他端が前記シール部の外部空間に臨むチューブをさらに備え、
前記チューブは、
前記内部空間に臨んで前記集電体に接続され、封止前に内部空間へ電解液を充填することができる開口面積を有するとともに押し潰して封止した後に前記チューブから前記電解液が漏洩しない厚さを有する可撓性の第1導体部と、
前記第1導体部を被覆する絶縁性外筒部と、を有することを特徴とする薄型電池。
A thin battery in which a power generation element in which a positive electrode and a negative electrode are stacked via an electrolyte layer including a separator and a current collector connected to each of the positive electrode and the negative electrode are provided in an internal space formed by the seal portion In
Further comprising a tube penetrating the seal portion, one end facing the internal space and the other end facing the external space of the seal portion;
The tube
It faces the internal space, is connected to the current collector, has an opening area that can be filled with an electrolytic solution into the internal space before sealing, and does not leak from the tube after being crushed and sealed A flexible first conductor portion having a thickness;
A thin battery comprising: an insulating outer cylinder portion covering the first conductor portion.
請求項1に記載の薄型電池において、
前記第1導体部は、前記内部空間のガス排出後にその開口が封止されることを特徴とする薄型電池。
The thin battery according to claim 1 ,
The first conductor part is a thin battery characterized in that its opening is sealed after the gas is discharged from the internal space.
請求項に記載の薄型電池において、
前記第1導体部は、電池外部側の開口が封止され、電池内部側の開口は封止されないことを特徴とする薄型電池。
The thin battery according to claim 2 ,
The thin battery, wherein the first conductor portion has an opening on the outside of the battery sealed and an opening on the inside of the battery is not sealed.
請求項1〜のいずれか一項に記載の薄型電池において、
複数の前記チューブを有することを特徴とする薄型電池。
In the thin battery as described in any one of Claims 1-3 ,
A thin battery comprising a plurality of the tubes.
請求項に記載の薄型電池において、
前記薄型電池は矩形に形成され、
前記複数のチューブは、前記矩形薄型電池の少なくとも異なる辺のシール部を貫通するように配置されていることを特徴とする薄型電池。
The thin battery according to claim 4 ,
The thin battery is formed in a rectangular shape,
The thin tube is characterized in that the plurality of tubes are disposed so as to penetrate at least different side seal portions of the rectangular thin battery.
請求項1〜のいずれか一項に記載の薄型電池において、
前記薄型電池は、集電体の一方の主面に正極が形成され他方の主面に負極が形成されたバイポーラ電極と、前記電解液が浸透するセパレータを含む電解質層と、前記バイポーラ電極と前記電解質層との間の外周を封止するシール部と、が積層されたバイポーラ電池であることを特徴とする薄型電池。
In the thin battery as described in any one of Claims 1-5 ,
The thin battery includes a bipolar electrode in which a positive electrode is formed on one main surface of a current collector and a negative electrode is formed on the other main surface, an electrolyte layer including a separator through which the electrolytic solution permeates, the bipolar electrode, A thin battery characterized in that it is a bipolar battery in which a seal part for sealing the outer periphery between the electrolyte layer and the electrolyte layer is laminated.
シール部により形成された内部空間に、正極及び負極がセパレータを含む電解質層を介して積層された発電要素と、前記正極及び前記負極のそれぞれに接続された集電体とが内装された薄型電池の製造方法において、
前記内部空間に臨んで前記集電体に接続され、所定の開口面積を有するとともに押し潰して封止した後に所定の厚さを有する可撓性の第1導体部と、一端が前記第1導体部に接続され、他端が、前記シール部の外部空間に臨むとともに所定の開口面積を有する可撓性の第2導体部と、前記第1導体部および前記第2導体部を被覆する絶縁性外筒部と、を有するチューブを、その一端が前記内部空間に臨み、他端が前記シール部の外部空間に臨むように前記シール部を貫通して設ける工程と、
前記チューブの前記他端から前記内部空間へ電解液を注入する工程と、
前記第2導体部の前記他端を封止する工程と、
前記発電要素を充電する工程と、
前記第2導体部の前記他端を切除して前記チューブの前記他端を開口する工程と、
前記内部空間のガスを排出する工程と、
前記第1導体部を封止する工程と、を備えることを特徴とする薄型電池の製造方法。
A thin battery in which a power generation element in which a positive electrode and a negative electrode are stacked via an electrolyte layer including a separator and a current collector connected to each of the positive electrode and the negative electrode are provided in an internal space formed by the seal portion In the manufacturing method of
A flexible first conductor portion that faces the internal space and is connected to the current collector, has a predetermined opening area, and has a predetermined thickness after being crushed and sealed, and one end of the first conductor A flexible second conductor portion having a predetermined opening area while the other end faces the external space of the seal portion, and an insulating property that covers the first conductor portion and the second conductor portion A tube having an outer tube portion, and a step of providing the tube through the seal portion so that one end thereof faces the internal space and the other end faces the external space of the seal portion;
Injecting electrolyte from the other end of the tube into the internal space;
Sealing the other end of the second conductor portion;
Charging the power generating element;
Cutting the other end of the second conductor portion to open the other end of the tube;
Exhausting the gas in the internal space;
And a step of sealing the first conductor portion.
JP2009140751A 2009-06-12 2009-06-12 Thin battery and manufacturing method thereof Expired - Fee Related JP5487743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009140751A JP5487743B2 (en) 2009-06-12 2009-06-12 Thin battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009140751A JP5487743B2 (en) 2009-06-12 2009-06-12 Thin battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010287451A JP2010287451A (en) 2010-12-24
JP5487743B2 true JP5487743B2 (en) 2014-05-07

Family

ID=43542998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009140751A Expired - Fee Related JP5487743B2 (en) 2009-06-12 2009-06-12 Thin battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5487743B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690721A (en) * 2015-06-09 2018-02-13 拉德博伊尔-科斯维希工业伙伴有限公司 Produce the method for the packed battery of the electrolyte of battery structure, corresponding intrument and the packed battery of electrolyte
KR20180076158A (en) 2016-12-27 2018-07-05 주식회사 엘지화학 Buffer Plate for Uniform SEI Formation, and Battery Manufacturing Method thereof

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012133729A (en) 2010-12-24 2012-07-12 Sony Corp Information processing device, information processing method and program
JPWO2013136445A1 (en) * 2012-03-13 2015-08-03 株式会社東芝 Battery manufacturing method
CN103848014B (en) * 2014-03-22 2016-08-17 东莞市佳的自动化设备科技有限公司 The cut-out of a kind of high speed pole piece Bag Making Machine and receiving mechanism
JP6911347B2 (en) * 2016-12-22 2021-07-28 株式会社豊田自動織機 Liquid injection device and liquid injection method
US11411279B2 (en) 2017-02-28 2022-08-09 Kabushiki Kaisha Toyota Jidoshokki Power storage module and method for manufacturing power storage module
JP6953840B2 (en) * 2017-07-04 2021-10-27 株式会社豊田自動織機 Power storage device and its manufacturing method
JP6835976B2 (en) 2017-09-26 2021-02-24 株式会社豊田自動織機 Power storage module
WO2019064843A1 (en) 2017-09-26 2019-04-04 株式会社豊田自動織機 Power storage module and method for manufacturing power storage module
KR102555751B1 (en) 2017-10-17 2023-07-14 주식회사 엘지에너지솔루션 Gas Dischargeable Pouch-Type Case for Secondary Battery
JP6409940B2 (en) * 2017-10-31 2018-10-24 住友金属鉱山株式会社 Evaluating gas generated from non-aqueous electrolyte secondary batteries
JP7102757B2 (en) * 2018-02-02 2022-07-20 株式会社豊田自動織機 Battery module and manufacturing method of battery module
JP7102825B2 (en) * 2018-03-23 2022-07-20 株式会社豊田自動織機 Manufacturing method of nickel-metal hydride battery and power storage module
JP6870641B2 (en) 2018-03-27 2021-05-12 株式会社豊田自動織機 Battery module
JP7070284B2 (en) * 2018-09-21 2022-05-18 株式会社豊田自動織機 Power storage module and manufacturing method of power storage module
CN111430656A (en) * 2020-03-31 2020-07-17 苏州锂盾储能材料技术有限公司 Double-sealing-free high-bonding type aluminum plastic film soft package battery and preparation method thereof
JP7459764B2 (en) 2020-11-11 2024-04-02 株式会社豊田自動織機 Storage cell and storage device
KR20230152126A (en) 2021-04-28 2023-11-02 엔오케이 가부시키가이샤 pressure regulating valve

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092905A (en) * 2004-09-24 2006-04-06 Toyota Motor Corp Laminated battery module
JP4249698B2 (en) * 2004-11-25 2009-04-02 日本電気株式会社 Film-clad electrical device and film-clad electrical device assembly
US8062780B2 (en) * 2005-03-17 2011-11-22 Nec Corporation Film-covered electric device and method of manufacturing same
JP5315653B2 (en) * 2006-12-08 2013-10-16 日産自動車株式会社 Bipolar battery manufacturing method
JP3129895U (en) * 2006-12-19 2007-03-08 伍必翔 Plastic battery can safety structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690721A (en) * 2015-06-09 2018-02-13 拉德博伊尔-科斯维希工业伙伴有限公司 Produce the method for the packed battery of the electrolyte of battery structure, corresponding intrument and the packed battery of electrolyte
CN107690721B (en) * 2015-06-09 2021-03-23 拉德博伊尔-科斯维希工业伙伴有限公司 Method for producing electrolyte pouch cells for cell construction, corresponding device and electrolyte pouch cells
KR20180076158A (en) 2016-12-27 2018-07-05 주식회사 엘지화학 Buffer Plate for Uniform SEI Formation, and Battery Manufacturing Method thereof

Also Published As

Publication number Publication date
JP2010287451A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
JP5487743B2 (en) Thin battery and manufacturing method thereof
JP4828458B2 (en) Secondary battery with improved sealing safety
JP4720384B2 (en) Bipolar battery
JP4892893B2 (en) Bipolar battery
KR100987849B1 (en) Bipolar battery and manufacturing method for the same
JP5505218B2 (en) Sealed storage battery
JP6315269B2 (en) Sealed battery module and manufacturing method thereof
JP3758629B2 (en) Laminate sheet and laminate battery using the same
JP2007018917A (en) Stacked battery, and battery pack
JP2004111219A (en) Laminate secondary cell, cell pack module made of a plurality of laminated secondary cells, cell pack made of a plurality of cell pack modules, and electric car loading either thereof
KR101229228B1 (en) Secondary Battery with Improved Moisture Barrier
KR20160123246A (en) Battery pack
JP2007213990A (en) Battery module, battery pack, and vehicle with same battery
JP2009187889A (en) Battery case and battery pack
KR101375398B1 (en) Pouch type secondary battery having enhanced electrical insulation and wetting properties
JP4096664B2 (en) Laminated battery
KR20130097881A (en) Method for manufacturing a secondary battery and the secondary battery manufactured thereby
US20160028051A1 (en) Pouch-type secondary battery for preventing water permeation
JP2009272161A (en) Laminated battery, battery pack, and vehicle
JP2006202680A (en) Polymer battery
JP4670275B2 (en) Bipolar battery and battery pack
JP2010277907A (en) Secondary battery and manufacturing method of the secondary battery
KR101115382B1 (en) High Power Secondary Battery of Series Connection Structure
JP2016039094A (en) Laminated battery and battery module
JP6264663B2 (en) battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R151 Written notification of patent or utility model registration

Ref document number: 5487743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees