JP5486196B2 - Pressure medium gas purification device and pressure medium gas supply and recovery device for hot isostatic pressurization device - Google Patents

Pressure medium gas purification device and pressure medium gas supply and recovery device for hot isostatic pressurization device Download PDF

Info

Publication number
JP5486196B2
JP5486196B2 JP2009022573A JP2009022573A JP5486196B2 JP 5486196 B2 JP5486196 B2 JP 5486196B2 JP 2009022573 A JP2009022573 A JP 2009022573A JP 2009022573 A JP2009022573 A JP 2009022573A JP 5486196 B2 JP5486196 B2 JP 5486196B2
Authority
JP
Japan
Prior art keywords
pressure
pressure medium
medium gas
gas
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009022573A
Other languages
Japanese (ja)
Other versions
JP2010179199A (en
Inventor
隆男 藤川
米田  慎
克充 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009022573A priority Critical patent/JP5486196B2/en
Publication of JP2010179199A publication Critical patent/JP2010179199A/en
Application granted granted Critical
Publication of JP5486196B2 publication Critical patent/JP5486196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Gas Separation By Absorption (AREA)
  • Press Drives And Press Lines (AREA)

Description

本発明は、熱間等方圧加圧装置へ圧媒ガスを供給及び回収する圧媒ガス供給回収装置に備えられて、圧媒ガス中の不純物として少なくとも酸素を除去する熱間等方圧加圧装置用の圧媒ガス浄化装置、及び、この圧媒ガス浄化装置を備えている熱間等方圧加圧装置用の圧媒ガス供給回収装置に関するものである。   The present invention is provided in a pressure medium gas supply / recovery device for supplying and recovering a pressure medium gas to a hot isotropic pressure pressurization device, and is subjected to hot isotropic pressure application for removing at least oxygen as an impurity in the pressure medium gas. The present invention relates to a pressure medium gas purification device for a pressure device, and a pressure medium gas supply and recovery device for a hot isostatic pressurization device including the pressure medium gas purification device.

熱間等方圧加圧装置(以下、HIP装置ともいう)は、処理室を形成する高圧容器内に不活性ガスでなる圧媒ガスを充填し、この高圧容器内に収容されている被処理品を高温高圧ガス雰囲気下で処理する装置であり、鋳物の巣やガス気孔、あるいは焼結体中の残留気孔を圧壊して消滅させる熱間等方圧加圧処理(以下、HIP処理ともいう)に使用されている。近年、このHIP装置の大型化が進み、HIP処理に使用するアルゴンガス等の不活性ガスの使用量(消費量)が増加しつつある。   A hot isostatic pressurization apparatus (hereinafter also referred to as a HIP apparatus) is filled with a pressure medium gas made of an inert gas in a high-pressure vessel forming a processing chamber, and the object to be processed accommodated in the high-pressure vessel This is an apparatus for processing a product in a high-temperature and high-pressure gas atmosphere. It is a hot isostatic pressing process (hereinafter also referred to as HIP process) that crushes and eliminates cast nests, gas pores, or residual pores in the sintered body. ). In recent years, the size of the HIP apparatus has been increased, and the amount of consumption (consumption) of inert gas such as argon gas used for HIP processing is increasing.

すなわち、通常、HIP処理では、圧媒ガスであるアルゴンガスは、ガス圧が15MPaあるいは20MPaのガスボンベ(圧媒ガス源)からHIP装置の高圧容器(以下、本体高圧容器ともいう)に、まず、本体高圧容器内の圧力が低い時点では両者の差圧を利用して供給される。次いで、本体高圧容器内の圧力がガスボンベと同等の圧力に到達したら、ガスボンベからのアルゴンガスは、圧縮機を駆動して加圧され、本体高圧容器内に所定の例えば100MPaにて充填される。そして、本体高圧容器内を高温高圧ガス雰囲気に保持してHIP処理した後、本体高圧容器内の温度が600℃以下程度に下がった時点で、本体高圧容器内のアルゴンは、まず、前記ガスボンベに両者の差圧を利用して回収される。次いで、本体高圧容器内の圧力がガスボンベと同等の圧力(通常は前記の15〜20MPa)になると、本体高圧容器内からのアルゴンは、圧縮機を駆動して加圧され、前記ガスボンベに回収される。   That is, normally, in the HIP process, argon gas, which is a pressure medium gas, is transferred from a gas cylinder (pressure medium gas source) having a gas pressure of 15 MPa or 20 MPa to a high pressure container (hereinafter also referred to as a main body high pressure container) of the HIP apparatus. When the pressure in the main body high-pressure vessel is low, the pressure is supplied using the pressure difference between the two. Next, when the pressure in the main body high-pressure container reaches a pressure equivalent to that of the gas cylinder, the argon gas from the gas cylinder is pressurized by driving the compressor, and is filled in the main body high-pressure container at a predetermined, for example, 100 MPa. And after maintaining the inside of the main body high-pressure vessel in a high-temperature high-pressure gas atmosphere and performing the HIP treatment, when the temperature inside the main body high-pressure vessel drops to about 600 ° C. or less, the argon in the main body high-pressure vessel is first put into the gas cylinder. It is recovered using the pressure difference between the two. Next, when the pressure in the main body high-pressure vessel reaches a pressure equivalent to that of the gas cylinder (usually 15 to 20 MPa), the argon from the main body high-pressure vessel is pressurized by driving the compressor and collected in the gas cylinder. The

しかし、本体高圧容器内の圧力が3MPa程度まで下がると、圧縮機の効率が低下して圧縮機を駆動してもアルゴンガスの回収速度が遅くなってしまい、その結果、本体高圧容器の蓋を開けて処理品を取り出すまでの時間が長くなってしまい生産性が低下する。   However, when the pressure in the main body high-pressure vessel is reduced to about 3 MPa, the efficiency of the compressor is reduced and the recovery rate of argon gas is slowed even if the compressor is driven. It takes a long time to open and take out the processed product, resulting in a decrease in productivity.

このため、通常は、本体高圧容器内の圧力が3MPa程度まで低下した時点で、本体高圧容器内に残ったアルゴンガスを大気放出して捨ててしまうこととなる。このアルゴンガス廃棄量は、HIP装置の大きさ(処理室容積)にも依存するが、最初に充填したアルゴンガスの8〜12%の量であり、HIP装置の大型化に伴い、また、HIP装置の運転頻度の増大に伴って非常に多量となる。使用されるアルゴンガスとしては純度99.99%以上のものが必要であり、その価格は500〜1000円/Nmと高価である。 For this reason, normally, when the pressure in the main body high-pressure vessel is reduced to about 3 MPa, the argon gas remaining in the main body high-pressure vessel is released into the atmosphere and discarded. This argon gas waste amount depends on the size (processing chamber volume) of the HIP apparatus, but it is 8 to 12% of the initially filled argon gas. It becomes very large as the frequency of operation of the apparatus increases. The argon gas used must have a purity of 99.99% or more, and its price is as high as 500 to 1000 yen / Nm 3 .

したがって、例えば、最近の大型のHIP装置、円柱状空間をなす処理室の寸法が直径1.6m×高さ4mであって、温度1200℃×圧力100MPaで運転される場合の例では、本体高圧容器内に充填されるアルゴンガスの量は6000Nmにもなり、その10%を1回のHIP処理で放出してしまうとすると、金額にして30万円〜60万円のガスを捨ててしまうこととなる。よって、大気放出されるアルゴンガスの量ができる少なくなるようにすべく、HIP処理後の本体高圧容器内のアルゴンガスできるだけ多く回収して使用することが好ましい。また、経済的観点に加えて、環境保全の観点からも、大気放出されるアルゴンガスの量ができる少なくなるようにすべきである。 Therefore, for example, in the case of a recent large HIP apparatus, the dimensions of a processing chamber forming a cylindrical space are 1.6 m in diameter × 4 m in height and operated at a temperature of 1200 ° C. × pressure of 100 MPa, The amount of argon gas filled in the container becomes 6000 Nm 3, and if 10% of the argon gas is released by one HIP process, the gas in the amount of 300,000 to 600,000 yen is thrown away. It will be. Therefore, it is preferable to collect and use as much argon gas as possible in the main body high-pressure vessel after the HIP treatment so that the amount of argon gas released into the atmosphere is as small as possible. Moreover, from the viewpoint of environmental conservation in addition to the economic viewpoint, the amount of argon gas released to the atmosphere should be as small as possible.

なお、アルゴンガスの回収量を増大するには、本体高圧容器に接続されたガス回収用の配管系大径化して、本体高圧容器内の圧力が例えば3MPa程度まで低下した時点で、大容量の圧縮機によって圧媒ガス源である10〜15MPaのガス集合装置、あるいはガスボンベに回収するようにすればその実現が可能となる。しかしながら、大型化されていない従来の処理室寸法が直径600mm×高さ2mのHIP装置では、このようなガス回収装置を設置することはアルゴンガスを放出するよりもコスト高となるために実施されずにきたというのが実情である。 Note that in order to increase the recovery of argon gas, a piping system for gas recovery connected to the body pressure vessel was larger diameter, at the time when lowered to a pressure of, for example, 3MPa about the body high pressure vessel, large This can be realized by collecting in a gas collecting device of 10 to 15 MPa, which is a pressure medium gas source, or in a gas cylinder. However, in a conventional HIP apparatus having a diameter of 600 mm and a height of 2 m, which is not increased in size, installing such a gas recovery apparatus is more expensive than discharging argon gas. The fact is that I have come.

さて、本体高圧容器内には、その蓋を開けて被処理品を装入する際に湿度を持った空気が混入し、また、被処理品に吸着している水分やガス成分がHIP処理の過程で圧媒ガスであるアルゴンガスに放出される。このため、HIP処理後の回収されたアルゴンガスは、通常、不純物として、水分に起因する酸素や水素、あるいは二酸化炭素や炭化水素成分を含んでいる。したがって、HIP処理に回収されたアルゴンガスを繰返し使用すると、これらの成分が濃縮されて、処理品表面を汚染するようになってしまう。   Now, when the lid is opened and the product to be processed is inserted into the main body high-pressure vessel, air with humidity is mixed, and moisture and gas components adsorbed on the product to be processed are HIP processed. In the process, it is released into argon gas, which is a pressure medium gas. For this reason, the argon gas recovered after the HIP treatment usually contains oxygen, hydrogen, carbon dioxide, or hydrocarbon components due to moisture as impurities. Therefore, when the argon gas recovered in the HIP process is repeatedly used, these components are concentrated and the surface of the processed product is contaminated.

このため、放出せずに回収して、不足分を新しいアルゴンガスを補充しつつ使用していても、繰返しの使用によってこの不純物成分の量が、許容値(例えば500ppm)を超えないように管理して使用されるのが通例であり、20〜30回のHIP処理後に1回の割合でアルゴンガス源のアルゴンガス全量を捨ててしまわざるをえないのが実情である。   For this reason, even if it is recovered without being released and the shortage is replenished with new argon gas, the amount of the impurity component is managed so as not to exceed the allowable value (for example, 500 ppm) by repeated use. The actual situation is that the entire amount of argon gas from the argon gas source must be discarded at a rate of once after 20 to 30 HIP treatments.

ところで、このようなHIP処理後のアルゴンガスを回収して再使用するためにアルゴンガス中の不純物を除去する技術(圧媒ガスの浄化技術)については、例えば、以下に述べる従来技術1、2が知られている。これらの従来技術では、特にTi合金やNi合金の鋳造品のHIP処理において問題とされる不純物である酸素の除去が対象となっており、アルゴンガス中の酸素を除去するため、容器内に酸素親和性の強い金属(ゲッタ材)を充填し、これを該容器外部に設けられている加熱装置で加熱するようになした反応容器を備えている。前記の酸素親和性の強い金属としては、Al、Ti、Zr等が挙げられている。   By the way, with regard to a technique for removing impurities in the argon gas in order to recover and reuse the argon gas after the HIP process (pressure gas purification technique), for example, conventional techniques 1 and 2 described below. It has been known. In these conventional techniques, removal of oxygen, which is an impurity which is a problem particularly in HIP processing of a cast product of Ti alloy or Ni alloy, is an object, and in order to remove oxygen in the argon gas, oxygen is contained in the container. A reaction vessel filled with a metal (getter material) having a strong affinity and heated by a heating device provided outside the vessel is provided. Examples of the metal having a strong oxygen affinity include Al, Ti, and Zr.

従来技術1(実公昭58−40975号公報)では、図6に示すように、HIP処理後のアルゴンガスを回収するガス回収ラインに、反応容器を設けるようにしたものが提案されている。   In prior art 1 (Japanese Utility Model Publication No. 58-40975), as shown in FIG. 6, there is proposed a reactor in which a reaction vessel is provided in a gas recovery line for recovering argon gas after HIP processing.

すなわち、図6に示すように、被処理品を装入した本体高圧容器201内に、アルゴンガスホルダー(圧媒ガス源)202のアルゴンガスを圧縮機203,204を介して圧入し、該本体高圧容器201内において高温高圧ガス雰囲気下で前記被処理品にHIP処理を施し、しかる後、該本体高圧容器201中のアルゴンガスを前記アルゴンガスホルダー202に回収する熱間等方圧加圧装置(熱間静水圧プレス装置)において、前記アルゴンガスホルダー202から前記本体高圧容器201へアルゴンガスを供給するガス供給ライン207と、前記本体高圧容器201から前記アルゴンガスホルダー202にアルゴンガスを回収するガス回収ライン208とが設けられるとともに、前記ガス回収ライン208に、容器内に酸素親和性の強い金属(ゲッタ材)が充填され、かつ、容器外部に加熱装置206,206‘を備えた反応容器205,205’が設けられている。V〜V10は弁である。 That is, as shown in FIG. 6, argon gas in an argon gas holder (pressure medium gas source) 202 is press-fitted through compressors 203 and 204 into a main body high-pressure vessel 201 charged with a product to be processed, and the main body A hot isotropic pressure pressurizing apparatus that performs HIP processing on the product to be processed in a high-pressure and high-pressure gas atmosphere in a high-pressure vessel 201 and then recovers the argon gas in the main body high-pressure vessel 201 to the argon gas holder 202. In the (hot isostatic pressing apparatus), a gas supply line 207 for supplying argon gas from the argon gas holder 202 to the main body high-pressure vessel 201 and an argon gas from the main body high-pressure vessel 201 to the argon gas holder 202 are recovered. A gas recovery line 208 is provided, and the gas recovery line 208 has a strong oxygen affinity in the container. Genus (getter material) is filled, and is provided 'reaction vessel 205 and 205 equipped with a' heating device 206 and 206 to the outside of the container. V 1 ~V 10 is a valve.

なお、前記反応容器205,205’は、一方の反応容器内の前記ゲッタ材の交換時には他方の反応容器に切り替えて運転可能なように、ガス回収ライン208において並列に設けられている。   The reaction vessels 205 and 205 ′ are provided in parallel in the gas recovery line 208 so that when the getter material in one reaction vessel is replaced, the reaction vessels 205 and 205 ′ can be operated by switching to the other reaction vessel.

このように構成されたHIP装置において、HIP処理が完了すると、ガス回収ライン208を通じてアルゴンガスの回収を行う。まず、ガス回収ライン208の弁V,V,Vを開き、当初は100MPaの高圧下に保持されている本体高圧容器201内と容器外の差圧によって本体高圧容器201内のアルゴンガスを自然回収することができ、100MPaのアルゴンガスを減圧弁Vで15MPa位に減圧してガス回収ライン208を通して回収する。このとき、アルゴンガス中に含まれている酸素を、ガス回収ライン208に備えられている反応容器205(又は205’)内のゲッタ材と反応させて除去するようにしている。 When the HIP process is completed in the HIP apparatus configured as described above, the argon gas is recovered through the gas recovery line 208. First, the valves V 4 , V 5 , and V 6 of the gas recovery line 208 are opened, and the argon gas in the main body high-pressure vessel 201 is initially generated by the pressure difference between the inside of the main body high-pressure vessel 201 and the outside of the vessel that is initially held at a high pressure of 100 MPa. The argon gas of 100 MPa is reduced to about 15 MPa by the pressure reducing valve V 5 and recovered through the gas recovery line 208. At this time, the oxygen contained in the argon gas is removed by reacting with the getter material in the reaction vessel 205 (or 205 ′) provided in the gas recovery line 208.

次いで、本体高圧容器201とアルゴンガスホルダー202との内圧が均衡して自然回収が不可能となると、弁Vを閉じ、弁V,Vを開いてバイパスライン209を通じ、本体高圧容器201からのアルゴンガスを低圧圧縮機203で圧力を高め、ガス回収ライン208の反応容器205を通してその強制回収を行う。そして、本体高圧容器201内の圧力が数気圧〜10気圧(1MPa)程度まで下がると、弁V,V,V,Vを閉じ、アルゴンガスの回収を終了するようにしている。 Next, when the internal pressure of the main body high pressure vessel 201 and the argon gas holder 202 is balanced and natural recovery becomes impossible, the valve V 6 is closed, the valves V 7 and V 8 are opened, and the main body high pressure vessel 201 is passed through the bypass line 209. The argon gas from is increased in pressure by the low-pressure compressor 203 and is forcibly recovered through the reaction vessel 205 of the gas recovery line 208. When the pressure in the main body high-pressure vessel 201 drops to about several to 10 atm (1 MPa), the valves V 4 , V 5 , V 7 , and V 8 are closed to complete the recovery of the argon gas.

また、従来技術2(実公昭58−40976号公報)では、図7に示すように、アルゴンガスホルダー302から本体高圧容器301へアルゴンガスを供給するガス供給ライン307における圧縮機303,304と本体高圧容器301との間に、容器外部に加熱装置306,306’を備えた反応容器305,305’を設けている熱間等方圧加圧装置(熱間静水圧プレス装置)が提案されている。なお、図7において、V〜Vは弁、308はガス回収ライン、309,309’はバイパスラインである。 Further, in the prior art 2 (Japanese Utility Model Publication No. 58-40976), as shown in FIG. 7, the compressors 303 and 304 in the gas supply line 307 for supplying argon gas from the argon gas holder 302 to the main body high-pressure vessel 301 and the main body. A hot isostatic pressing device (hot isostatic pressing device) is proposed in which reaction vessels 305 and 305 ′ having heating devices 306 and 306 ′ are provided outside the vessel between the high pressure vessel 301. Yes. In FIG. 7, V 1 to V 9 are valves, 308 is a gas recovery line, and 309 and 309 ′ are bypass lines.

実公昭58−40975号公報Japanese Utility Model Publication No. 58-40975 実公昭58−40976号公報Japanese Utility Model Publication No. 58-40976

しかしながら、前述した従来技術2では、ガス供給ライン307における高圧圧縮機304の吐出側と本体高圧容器301との間に反応容器305を設けるようにしたものであるから、反応容器305が本体高圧容器301と同じレベルの高圧状態となり、反応容器305は本体高圧容器301同じ耐圧性が必要であり、非常に厚肉の高圧容器となってしまう。   However, in the above-described prior art 2, since the reaction vessel 305 is provided between the discharge side of the high-pressure compressor 304 in the gas supply line 307 and the main body high-pressure vessel 301, the reaction vessel 305 is the main body high-pressure vessel. The high pressure state at the same level as 301 is required, and the reaction vessel 305 needs to have the same pressure resistance as the main body high pressure vessel 301, resulting in a very thick high pressure vessel.

また、前述した従来技術1、2では、反応容器(反応器)205,305は、該容器内に酸素親和性の強い金属を充填し、これを該容器外部に設けられている加熱装置206,306で加熱するようにした外熱式の高圧容器である。酸素親和性の強い金属、例えばTi、Zrを使用して酸素と反応させる場合には、反応容器内部の温度を450〜600℃程度にすることが好ましく、従来技術1、2の反応容器205,305は、外熱式のために容器の冷却がむずかしく、容器材料の耐熱性(容器の耐久性)の点から実用に供するものがなかった。このため、HIP装置を使用している生産現場では、本体高圧容器の処理室内に被処理品とともにTi箔などのゲッタ材を装入して、被処理品表面の酸化防止等を行っているのが実情であった。   In the prior arts 1 and 2 described above, the reaction vessels (reactors) 205 and 305 are filled with a metal having a strong oxygen affinity in the vessel, and this is heated by the heating devices 206 and 206 provided outside the vessel. This is an externally heated high-pressure vessel heated at 306. In the case of reacting with oxygen using a metal having a strong oxygen affinity, such as Ti or Zr, the temperature inside the reaction vessel is preferably about 450 to 600 ° C. 305 was difficult to cool the container due to the external heating type, and there was nothing to be put into practical use from the viewpoint of the heat resistance of the container material (container durability). For this reason, at the production site using the HIP apparatus, the getter material such as Ti foil is inserted into the processing chamber of the main body high-pressure vessel together with the processing object to prevent oxidation of the surface of the processing object. Was the actual situation.

そこで、本発明の課題は、熱間等方圧加圧装置へ不活性ガスでなる圧媒ガスを供給及び回収するに際し、圧媒ガス中の酸素等の不純物を除去することができ、しかも実用に供することのできる新規な熱間等方圧加圧装置用の圧媒ガス浄化装置、及び、該圧媒ガス浄化装置を備え、従来に比べて圧媒ガスの廃棄量を大幅に低減することができる熱間等方圧加圧装置用の圧媒ガス供給回収装置を提供することにある。   Therefore, an object of the present invention is to remove impurities such as oxygen in the pressure medium gas when supplying and recovering the pressure medium gas made of an inert gas to the hot isostatic pressure pressurizer, and in practical use. The pressure medium gas purification device for a new hot isostatic pressurization device that can be used for the same, and the pressure medium gas purification device are provided, and the waste amount of the pressure medium gas is greatly reduced compared to the conventional case. An object of the present invention is to provide a pressure medium gas supply / recovery device for a hot isostatic pressurizing device.

前記の課題を解決するため、本願発明では、次の技術的手段を講じている。   In order to solve the above problems, the present invention takes the following technical means.

請求項1の発明は、不活性ガスでなる圧媒ガスを用いて被処理品を高温高圧ガス雰囲気下で処理する熱間等方圧加圧装置へ圧媒ガスを供給及び回収する圧媒ガス供給回収装置に備えられ、圧媒ガスを導入して該圧媒ガス中の不純物として少なくとも酸素を除去する熱間等方圧加圧装置用の圧媒ガス浄化装置であって、圧媒ガス導入口及び圧媒ガス排出口がそれぞれ開設された高圧容器と、前記高圧容器の外側に装着されて該高圧容器を冷却する水冷式冷却手段と、前記高圧容器内に設けられ、前記圧媒ガス導入口から導入されて前記圧媒ガス排出口より排出される圧媒ガスの流路を形成する圧媒ガス流路形成部材と、前記圧媒ガス流路に沿って配置される不純物除去能を有する材料と、前記高圧容器内に設けられ、前記不純物除去能を有する材料を加熱する加熱手段と、を備え、前記不純物除去能を有する材料が金属材料であり、当該金属材料からなる電気抵抗加熱ヒータ線を前記圧媒ガス流路に沿って配置することにより、前記不純物除去能を有する材料と前記加熱手段とを兼用するようになされていることを特徴とする熱間等方圧加圧装置用の圧媒ガス浄化装置である。 The invention of claim 1 is a pressure medium gas that supplies and recovers a pressure medium gas to a hot isostatic pressurizing apparatus that treats an object to be processed in a high temperature and high pressure gas atmosphere using a pressure medium gas that is an inert gas. A pressure medium gas purification device for a hot isotropic pressure pressurization device, which is provided in a supply and recovery device and removes at least oxygen as an impurity in the pressure medium gas by introducing the pressure medium gas. A high-pressure vessel having an opening and a pressure-medium gas discharge port, water-cooling cooling means for cooling the high-pressure vessel attached to the outside of the high-pressure vessel, and the introduction of the pressure-medium gas provided in the high-pressure vessel A pressure medium gas flow path forming member that forms a flow path of a pressure medium gas introduced from the opening and discharged from the pressure medium gas discharge port; and an impurity removing ability that is disposed along the pressure medium gas flow path. Material, provided in the high-pressure vessel and having the ability to remove impurities And a heating means for heating the charge, a material is a metal material having the impurity removal ability, by disposing the electrical resistance heater wire made of the metal material along the medium gas flow path, wherein A pressure medium gas purifying device for a hot isostatic pressurizing device , wherein the material having an impurity removing ability and the heating means are combined .

請求項の発明は、請求項記載の熱間等方圧加圧装置用の圧媒ガス浄化装置において、前記圧媒ガス流路形成部材の材質がセラミックスからなり、該圧媒ガス流路形成部材の外周面に前記不純物除去能を有する金属材料からなる前記電気抵抗加熱ヒータ線が巻回されていることを特徴とするものである。 The invention of claim 2 is the pressure medium gas purifying apparatus for hot isostatic pressing device of claim 1, wherein the material of the medium gas flow path forming member is made of ceramics, piezoelectric medium gas channel The electric resistance heater wire made of a metal material having the impurity removing ability is wound around the outer peripheral surface of the forming member.

請求項の発明は、請求項又は記載の熱間等方圧加圧装置用の圧媒ガス浄化装置において、前記高圧容器が下蓋と、該下蓋に着脱可能に装着される倒立コップ状胴部とで構成されており、前記下蓋内に該高圧容器内部と連通する圧媒ガス導入配管及び圧媒ガス排出配管が収納されるとともに、前記電気抵抗加熱ヒータ線に電力を供給するためのヒータ電力供給用配線が該電気抵抗加熱ヒータ線に対して接続・切り離し可能に収納されていることを特徴とするものである。 A third aspect of the present invention is the pressure medium gas purification apparatus for a hot isostatic pressurization apparatus according to the first or second aspect , wherein the high-pressure vessel is mounted in a detachable manner to the lower lid and the lower lid. It is composed of a cup-shaped body, and a pressure medium gas introduction pipe and a pressure medium gas discharge pipe communicating with the inside of the high pressure vessel are housed in the lower lid, and power is supplied to the electric resistance heater wire. The heater power supply wiring for this purpose is housed so that it can be connected to and disconnected from the electric resistance heater wire.

請求項の発明は、請求項記載の熱間等方圧加圧装置用の圧媒ガス浄化装置において、前記圧媒ガス流路形成部材と前記電気抵抗加熱ヒータ線とが一体に組み立てられてなるガス浄化ユニット体が前記下蓋上に載置されており、前記電気抵抗加熱ヒータ線のコネクタにプラグイン構造で接続される前記ヒータ電力供給用配線のプラグインコネクタが前記下蓋に取り付けられていることを特徴とするものである。 According to a fourth aspect of the present invention, in the pressure medium gas purifying device for a hot isostatic pressurizing apparatus according to the third aspect, the pressure medium gas flow path forming member and the electric resistance heater wire are integrally assembled. A gas purification unit body is mounted on the lower lid, and a plug-in connector of the heater power supply wiring connected to the connector of the electric resistance heater wire in a plug-in structure is attached to the lower lid It is characterized by being.

請求項の発明は、請求項1〜のいずれか一項に記載の熱間等方圧加圧装置用の圧媒ガス浄化装置において、前記加熱手段の温度を測定するための測温センサを少なくとも一つを備えていることを特徴とするものである。 A fifth aspect of the present invention is the pressure sensor gas purification apparatus for a hot isostatic pressurization apparatus according to any one of the first to fourth aspects, wherein the temperature measuring sensor measures the temperature of the heating means. It is characterized by having at least one.

請求項の発明は、請求項1〜のいずれか一項に記載の熱間等方圧加圧装置用の圧媒ガス浄化装置を備え、不活性ガスでなる圧媒ガスを用いて被処理品を高温高圧ガス雰囲気下で処理する熱間等方圧加圧装置へ圧媒ガスを供給及び回収する圧媒ガス供給回収装置であって、高圧の圧媒ガスを収容している高圧圧媒ガス源と、中圧の圧媒ガスを収容している中圧圧媒ガス源と、低圧の圧媒ガスを収容している低圧圧媒ガス源と、圧縮機を有し、前記中圧圧媒ガス源と前記熱間等方圧加圧装置とを連絡する圧媒ガス供給ラインと、前記圧媒ガス浄化装置を有し、前記熱間等方圧加圧装置と前記中圧圧媒ガス源とを連絡する圧媒ガス回収ラインと、前記高圧圧媒ガス源と前記圧媒ガス供給ラインとを連絡する高圧圧媒ガス用供給ラインと、前記低圧圧媒ガス源と前記圧媒ガス供給ラインとを連絡する低圧圧媒ガス用供給ラインと、前記圧媒ガス回収ラインの前記圧媒ガス浄化装置の圧媒ガス出側と前記低圧圧媒ガス源とを連絡する低圧圧媒ガス用回収ラインと、を備えたことを特徴とする熱間等方圧加圧装置用の圧媒ガス供給回収装置である。 The invention of claim 6 comprises the pressure medium gas purification device for a hot isostatic pressurization device according to any one of claims 1 to 5 , and is covered with a pressure medium gas made of an inert gas. A pressure medium gas supply / recovery device for supplying and recovering a pressure medium gas to a hot isostatic pressure device for processing a processed product in a high temperature / high pressure gas atmosphere, and storing the high pressure medium gas A medium pressure source, a medium pressure medium gas source containing medium pressure medium gas, a low pressure medium gas source containing low pressure medium gas, and a compressor, the medium pressure medium A pressure medium gas supply line that communicates a gas source with the hot isostatic pressurization device; and the pressure medium gas purification device, the hot isostatic pressurization device and the intermediate pressure medium gas source; A high pressure pressure gas recovery line, a high pressure pressure gas supply line for connecting the high pressure pressure gas source and the high pressure gas supply line, and the low pressure gas recovery line. A low pressure pressure medium gas supply line connecting the pressure medium gas source and the pressure medium gas supply line, a pressure medium gas outlet side of the pressure medium gas purification device of the pressure medium gas recovery line, and the low pressure pressure medium gas source A pressure medium gas supply and recovery device for a hot isostatic pressurization device, comprising: a low pressure pressure gas recovery line that communicates with

請求項の発明は、請求項記載の熱間等方圧加圧装置用の圧媒ガス供給回収装置において、前記圧媒ガス回収ラインは前記圧媒ガス浄化装置を少なくとも2台有し、これらの圧媒ガス浄化装置が交互に切換え運転可能に設けられていることを特徴とするものである。 The invention of claim 7 is the pressure medium gas supply and recovery device for the hot isostatic pressurization device according to claim 6 , wherein the pressure medium gas recovery line has at least two pressure medium gas purification devices, These pressure medium gas purification devices are provided so that they can be switched alternately.

本発明による熱間等方圧加圧装置用の圧媒ガス浄化装置は、高圧容器内に配置された不純物除去能を有する材料を加熱する加熱手段を、従来装置とは違って前記高圧容器内に設けるようにしたので、前記高圧容器の冷却を該高圧容器の外側に装着された水冷式冷却手段によって行うことができる。したがって、本発明によれば、圧媒ガス中の少なくとも酸素を除去することができ、しかも高圧容器の冷却が可能で実用に供することのできる新規な熱間等方圧加圧装置用の圧媒ガス浄化装置の提供が可能となる。 A pressure medium gas purifying apparatus for a hot isostatic pressurizing apparatus according to the present invention comprises a heating means for heating a material having an impurity removing ability arranged in a high-pressure vessel, unlike the conventional apparatus. Therefore, the high-pressure vessel can be cooled by a water- cooled cooling means attached to the outside of the high-pressure vessel. Therefore, according to the present invention, at least oxygen in the pressure medium gas can be removed, and the pressure medium for a new hot isostatic pressure apparatus that can cool the high pressure vessel and can be put to practical use. A gas purification device can be provided.

本発明による熱間等方圧加圧装置用の圧媒ガス供給回収装置は、実用に供することのできる前記圧媒ガス浄化装置を備えている。したがって、従来と違って、20〜30回のHIP処理後に1回の割合で圧媒ガス源の圧媒ガス全量を捨てるということをなくすことができる。また、圧媒ガス源として、高圧圧媒ガス源及び中圧圧媒ガス源の他に、低圧の圧媒ガスを収容している低圧圧媒ガス源を備え、該低圧圧媒ガス源へもHIP処理後の圧媒ガスを回収するように構成されている。したがって、HIP処理後の圧媒ガスの回収に際し、大気放出を開始するHIP装置本体高圧容器内の圧媒ガスの圧力を従来の3MPa程度から0.3MPa程度にまで引き下げることができ、前記従来の3MPa程度から大気放出する場合に比べて操業時間を大幅に延長することなく、圧媒ガスの廃棄量を大幅に減らすことができる。   A pressure medium gas supply / recovery device for a hot isostatic pressurizing apparatus according to the present invention includes the pressure medium gas purification device that can be put to practical use. Therefore, unlike the prior art, it is possible to eliminate discarding the entire amount of the hydraulic fluid gas from the hydraulic fluid gas source at a rate of once after 20 to 30 HIP treatments. In addition to the high-pressure pressure medium gas source and the medium-pressure pressure medium gas source, the pressure medium gas source includes a low-pressure pressure medium gas source that contains a low-pressure pressure medium gas. It is comprised so that the pressure medium gas after a process may be collect | recovered. Therefore, when recovering the pressure medium gas after the HIP treatment, the pressure of the pressure medium gas in the HIP apparatus main body high-pressure vessel that starts to be released into the atmosphere can be reduced from about 3 MPa to about 0.3 MPa. Compared with the case of releasing to the atmosphere from about 3 MPa, it is possible to greatly reduce the amount of discarded pressure medium gas without significantly extending the operation time.

本発明の一実施形態による熱間等方圧加圧装置用の圧媒ガス浄化装置の構成を概略的に示す正面縦断面図である。1 is a front longitudinal sectional view schematically showing a configuration of a pressure medium gas purification device for a hot isotropic pressure pressurizing device according to an embodiment of the present invention. 図1に示す圧媒ガス浄化装置においてガス浄化ユニット体の交換の様子を説明するための図である。It is a figure for demonstrating the mode of replacement | exchange of a gas purification unit body in the pressure medium gas purification apparatus shown in FIG. 本発明の別の実施形態による熱間等方圧加圧装置用の圧媒ガス浄化装置の構成を概略的に示す正面縦断面図である。It is a front longitudinal cross-sectional view which shows schematically the structure of the hydraulic fluid gas purification apparatus for hot isostatic pressurization apparatuses by another embodiment of this invention. 参考例による熱間等方圧加圧装置用の圧媒ガス浄化装置の構成を概略的に示す正面縦断面図である。 It is a front longitudinal cross-sectional view which shows roughly the structure of the hydraulic fluid gas purification apparatus for hot isostatic pressurization apparatuses by a reference example . 本発明の一実施形態による熱間等方圧加圧装置用の圧媒ガス供給回収装置の構成を概略的に示す図である。It is a figure which shows roughly the structure of the hydraulic-medium gas supply and recovery apparatus for hot isostatic pressurization apparatuses by one Embodiment of this invention. 従来のHIP装置の構成を示す図である。It is a figure which shows the structure of the conventional HIP apparatus. 従来のHIP装置の構成を示す図である。It is a figure which shows the structure of the conventional HIP apparatus.

以下、図面を参照して本発明の実施形態について説明する。まず、本発明の熱間等方圧加圧装置用の圧媒ガス浄化装置(以下、単に圧媒ガス浄化装置ともいう)について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, a pressure medium gas purification device (hereinafter, also simply referred to as a pressure medium gas purification device) for a hot isostatic pressurization device of the present invention will be described.

図1は本発明の一実施形態による熱間等方圧加圧装置用の圧媒ガス浄化装置の構成を概略的に示す正面縦断面図である。   FIG. 1 is a front longitudinal sectional view schematically showing a configuration of a pressure medium gas purification device for a hot isostatic pressurizing device according to an embodiment of the present invention.

図1において、10は鋼製の高圧容器である。高圧容器10は、断面円形の倒立コップ状胴部20と円盤状をなす下蓋30とにより構成され、容器内部に形成された円柱状の空間に後述するガス浄化ユニット体80が収納されている。そして、高圧容器10の外側に装着されて該高圧容器10を冷却する冷却手段として、前記倒立コップ状胴部20の外周周りには、冷却水が流される冷却水通路41を有する水冷ジャケット40がシールリング42,43を介して装着されている。   In FIG. 1, 10 is a high-pressure vessel made of steel. The high-pressure vessel 10 is composed of an inverted cup-shaped body portion 20 having a circular cross section and a disc-like lower lid 30, and a gas purification unit body 80 described later is housed in a cylindrical space formed inside the vessel. . And as a cooling means that is mounted outside the high-pressure vessel 10 and cools the high-pressure vessel 10, a water cooling jacket 40 having a cooling water passage 41 through which cooling water flows is provided around the outer periphery of the inverted cup-shaped body 20. It is mounted via seal rings 42 and 43.

前記高圧容器10は、この実施形態では容器内の圧力が30MPa程度となる圧力レベル(中圧の圧力レベル)に適用されるものであり、前記倒立コップ状胴部20の下端部内周には雌ネジ20aが形成される一方、前記下蓋30の小径部の外周には前記雌ネジ20aに螺合可能な雄ネジ30aが形成されている(図3参照)。そして、架台等に固定されている下蓋30に対して倒立コップ状胴部20が、円周方向に45度回転させることにより前記ネジ20a,30aによって着脱可能となされている。   In this embodiment, the high-pressure vessel 10 is applied to a pressure level (medium pressure level) at which the pressure in the vessel is about 30 MPa. While the screw 20a is formed, a male screw 30a that can be screwed into the female screw 20a is formed on the outer periphery of the small diameter portion of the lower lid 30 (see FIG. 3). The inverted cup-shaped body 20 is detachably attached by the screws 20a and 30a by rotating 45 degrees in the circumferential direction with respect to the lower lid 30 fixed to the gantry or the like.

なお、下蓋と倒立コップ状胴部との着脱構造(取付け取外し構造)については、容器内の圧力レベルがさらに高いものに適用される場合には、前記のようなネジ構造ではなく、下蓋と倒立コップ状胴部がシールリングを介しての単純な嵌合構造であって、かつ、圧媒ガスのガス圧により生じる軸方向荷重を下蓋と倒立コップ状胴部を囲い込むように配置された窓枠状のプレス枠体で保持するようにした構造のものがよい。また、圧力レベルがさらに低い場合には、倒立コップ状胴部の肉厚がさらに薄いものでよく、下蓋と倒立コップ状胴部との着脱構造として、開閉が容易なクラッチ式構造が採用可能である。   Note that the attachment / detachment structure between the lower lid and the inverted cup-shaped body (attachment / detachment structure) is not the screw structure as described above when applied to a higher pressure level in the container. And the inverted cup-shaped body is a simple fitting structure through the seal ring, and the axial load generated by the gas pressure of the pressure medium gas is placed so as to surround the lower lid and the inverted cup-shaped body It is preferable to have a structure that is held by a pressed window frame-shaped press frame. In addition, when the pressure level is lower, the inverted cup-shaped body may be thinner, and a clutch-type structure that can be easily opened and closed can be used as the attachment / detachment structure between the lower lid and the inverted cup-shaped body. It is.

さて、前記下蓋30内には、HIP処理後にHIP装置の本体高圧容器からの圧媒ガスを高圧容器10内へ導入するための圧媒ガス導入配管31と、酸素が除去された圧媒ガスを高圧容器10内から排出するための圧媒ガス排出配管32とが収納されている。前記圧媒ガス導入配管31の先端は、下蓋30の半径方向における中心部に引き出されており、この圧媒ガス導入配管31によって高圧容器10に圧媒ガス導入口10aが開設されている。また、前記圧媒ガス排出配管32の先端は、下蓋30の半径方向における周辺部に引き出されており、この圧媒ガス排出配管32によって高圧容器10に圧媒ガス排出口10bが開設されている。   In the lower lid 30, a pressure medium gas introduction pipe 31 for introducing a pressure medium gas from the main body high pressure vessel of the HIP apparatus into the high pressure vessel 10 after the HIP treatment, and a pressure medium gas from which oxygen has been removed. Is stored in the high-pressure vessel 10. The tip of the pressure medium gas introduction pipe 31 is drawn out to the central portion in the radial direction of the lower lid 30, and the pressure medium gas introduction port 10 a is opened in the high pressure vessel 10 by the pressure medium gas introduction pipe 31. The tip of the pressure medium gas discharge pipe 32 is drawn out to the peripheral portion in the radial direction of the lower lid 30, and the pressure medium gas discharge port 32 opens the pressure medium gas discharge port 10 b in the high pressure vessel 10. Yes.

さらに、下蓋30内にはヒータ電力供給用配線33と、後述する熱電対62,63用の導線(図示せず)とが収納されるとともに、下蓋30の上面には前記ヒータ電力供給用配線33に接続されたプラグインコネクタ34と、前記導線に接続されたプラグインコネクタ(図示せず)が取り付けられている。   Further, a heater power supply wiring 33 and conductors (not shown) for thermocouples 62 and 63, which will be described later, are housed in the lower lid 30, and the heater power supply wiring is provided on the upper surface of the lower lid 30. A plug-in connector 34 connected to the wiring 33 and a plug-in connector (not shown) connected to the conducting wire are attached.

また、高圧容器10内には、円筒状をなし、上下方向に延びる内筒51と、断面円形で倒立コップ状をなし、前記内筒51の外側に該内筒51と間隔をあけて同心状に位置された外筒52とにより構成され、前記圧媒ガス導入口10aから導入されて前記圧媒ガス排出口10bより排出される圧媒ガスの流路を形成する圧媒ガス流路形成部材50が設けられている。前記の内筒51及び外筒52は、本実施形態では電気絶縁性を有するセラミックスであるアルミナからなっている。前記内筒51は、中心部に貫通孔を有し円形をなす鋼製のベース板70の上面に取り付けられており、前記圧媒ガス導入配管31の先端部が前記貫通孔から突出している。前記外筒52は、その天井面が前記内筒51の上端よりも上方に位置し、かつ、その下端が前記内筒51の下端よりも上方に位置するように、図示しない外筒支持部材によって支持されている。   In addition, the high-pressure vessel 10 has a cylindrical shape, an inner cylinder 51 extending in the vertical direction, and an inverted cup shape with a circular cross section, and is concentrically spaced from the inner cylinder 51 outside the inner cylinder 51. A pressure medium gas flow path forming member that forms a flow path of a pressure medium gas introduced from the pressure medium gas inlet 10a and discharged from the pressure medium gas outlet 10b. 50 is provided. In the present embodiment, the inner cylinder 51 and the outer cylinder 52 are made of alumina, which is an electrically insulating ceramic. The inner cylinder 51 is attached to the upper surface of a steel base plate 70 having a through hole at the center and forming a circle, and the tip of the pressure gas introducing pipe 31 protrudes from the through hole. The outer cylinder 52 is supported by an outer cylinder support member (not shown) so that its ceiling surface is located above the upper end of the inner cylinder 51 and its lower end is located above the lower end of the inner cylinder 51. It is supported.

また、外筒52の外側には、該外筒52と間隔をあけて同心状に円筒状の断熱体72が位置されている。この断熱体72は、その下端が前記ベース板70よりも下方に突出する状態で該ベース板70に取り付けられている。ベース板70の脚部にはシールリング71が取り付けられている。   A cylindrical heat insulator 72 is positioned outside the outer cylinder 52 concentrically with a space from the outer cylinder 52. The heat insulator 72 is attached to the base plate 70 with its lower end protruding below the base plate 70. A seal ring 71 is attached to the leg portion of the base plate 70.

そして、本実施形態では、圧媒ガス中の不純物として少なくとも酸素を除去する不純物除去能を有する材料と該不純物除去能を有する材料を加熱する加熱手段とが兼用されるように構成されている。   And in this embodiment, it is comprised so that the heating means which heats the material which has the impurity removal capability which removes at least oxygen as an impurity in pressure medium gas, and this material which has this impurity removal capability may be used.

すなわち、電気抵抗加熱ヒータ線60が、前記内筒51の外周面に長手方向に沿って巻回され、本実施形態ではこれに直列接続する態様で、前記外筒52の外周面に長手方向に沿って巻回されている。この電気抵抗加熱ヒータ線60は、不純物除去能を有する材料として、酸素親和性の強い金属からなっている。この酸素親和性の強い金属としては、室温下で安定であって、かつ加熱により活性となるTi、Zrが挙げられる。   That is, the electric resistance heater wire 60 is wound around the outer peripheral surface of the inner cylinder 51 along the longitudinal direction, and in the present embodiment, it is connected in series to the outer peripheral surface of the outer cylinder 52 in the longitudinal direction. It is wound along. The electric resistance heater wire 60 is made of a metal having a strong oxygen affinity as a material having an impurity removing ability. Examples of the metal having strong oxygen affinity include Ti and Zr which are stable at room temperature and become active by heating.

そして、前記電気抵抗加熱ヒータ線60の始端リードと終端リードとが接続されたヒータ線用のコネクタ61が、前記ベース板70に取り付けられている。この電気抵抗加熱ヒータ線60のコネクタ61と前記ヒータ電力供給用配線33のプラグインコネクタ34とがプラグイン構造で接続されるようになっている。   A heater wire connector 61 to which the start and end leads of the electric resistance heater wire 60 are connected is attached to the base plate 70. The connector 61 of the electric resistance heater wire 60 and the plug-in connector 34 of the heater power supply wiring 33 are connected in a plug-in structure.

また、電気抵抗加熱ヒータ線60の温度制御を目的として該電気抵抗加熱ヒータ線60の温度を測定するため、内筒51の外周面に巻回されている該電気抵抗加熱ヒータ線60の近傍位置に熱電対62が配置されるとともに、外筒52の外周面に巻回されている該電気抵抗加熱ヒータ線60の近傍位置に熱電対63が配置されている。なお、これらの熱電対62,63の導線用端子に接続されるコネクタ(図示せず)がベース板70に取り付けられており、このコネクタと前記した熱電対用のプラグインコネクタとがプラグイン構造で接続されるようになっている。   Further, in order to measure the temperature of the electric resistance heater wire 60 for the purpose of controlling the temperature of the electric resistance heater wire 60, the position near the electric resistance heater wire 60 wound around the outer peripheral surface of the inner cylinder 51 is measured. A thermocouple 62 is disposed on the outer peripheral surface of the outer cylinder 52, and a thermocouple 63 is disposed in the vicinity of the electric resistance heater wire 60 wound around the outer peripheral surface of the outer cylinder 52. A connector (not shown) connected to the conductor terminals of these thermocouples 62 and 63 is attached to the base plate 70, and this connector and the above-described thermocouple plug-in connector have a plug-in structure. It is to be connected with.

このようにして、前記の圧媒ガス流路形成部材50、電気抵抗加熱ヒータ線60、熱電対62,63、断熱体72及びベース板70を一体に組み立ててなるガス浄化ユニット体80(図2参照)が形成され、下蓋30上に載置されている。   In this way, the gas purification unit body 80 (FIG. 2) in which the pressure medium gas flow path forming member 50, the electric resistance heater wire 60, the thermocouples 62 and 63, the heat insulator 72, and the base plate 70 are assembled together. Is formed on the lower lid 30.

以下、前記のように構成される本実施形態の圧媒ガス浄化装置1の動作について説明する。   Hereinafter, the operation of the pressure medium gas purification apparatus 1 of the present embodiment configured as described above will be described.

HIP処理装置の本体高圧容器から高圧のアルゴンガスを回収するに際し、前記本体高圧容器から導かれたアルゴンガスは、前記圧媒ガス導入口10aから高圧容器10内に導入される。高圧容器10内に流入したアルゴンガスは、内筒51の内側を上昇した後に方向反転し、内筒51と外筒52との間に形成されているガス流路を内筒51の外周面に巻回され、抵抗発熱している電気抵抗加熱ヒータ線60に接触しながら下降し、再び方向反転して、外筒52と断熱体72との間に形成されているガス流路を外筒52の外周面に巻回され、抵抗発熱している電気抵抗加熱ヒータ線60に接触しながら上昇し、最後に、断熱体72と倒立コップ状胴部20との間に形成されているガス流路を下降して、前記圧媒ガス排出口10bから圧媒ガス排出配管32へと導かれる。   When the high-pressure argon gas is recovered from the main body high-pressure vessel of the HIP processing apparatus, the argon gas introduced from the main body high-pressure vessel is introduced into the high-pressure vessel 10 from the pressure medium gas inlet 10a. The argon gas that has flowed into the high-pressure vessel 10 rises inside the inner cylinder 51 and then reverses its direction, and a gas flow path formed between the inner cylinder 51 and the outer cylinder 52 is formed on the outer peripheral surface of the inner cylinder 51. The gas flow path formed between the outer cylinder 52 and the heat insulating body 72 is lowered by contacting the electric resistance heater wire 60 that is wound and generating resistance and descending, and reverses the direction again. The gas flow path is formed between the heat insulator 72 and the inverted cup-shaped body 20 and finally rises while being in contact with the electric resistance heater wire 60 generating resistance heat. And is led from the pressure medium gas discharge port 10b to the pressure medium gas discharge pipe 32.

そして、高圧容器10内に流入したアルゴンガスが前記した酸素親和性の強い金属からなる高温の電気抵抗加熱ヒータ線60と接触することにより、アルゴンガス中の酸素と該電気抵抗加熱ヒータ線60とが反応して、アルゴンガス中から酸素が除去される。   The argon gas flowing into the high-pressure vessel 10 comes into contact with the high-temperature electric resistance heater wire 60 made of a metal having a strong oxygen affinity, so that oxygen in the argon gas and the electric resistance heater wire 60 are Reacts to remove oxygen from the argon gas.

このように、本実施形態の圧媒ガス浄化装置1では、酸素親和性の強い金属からなる電気抵抗加熱ヒータ線60が発熱源であるため、高圧容器10内にて最高温度になる部材が電気抵抗加熱ヒータ線60であり、多く材料で酸素との反応は温度が高いほど活発なことと併せて非常に好都合である。   Thus, in the pressure medium gas purification apparatus 1 of the present embodiment, since the electric resistance heater wire 60 made of a metal having a strong oxygen affinity is a heat generation source, the member that reaches the maximum temperature in the high-pressure vessel 10 is an electric member. A resistance heater wire 60, which is very convenient in many materials in combination with the fact that the reaction with oxygen is more active at higher temperatures.

TiあるいはZrからなる電気抵抗加熱ヒータ線60を用いる場合、抵抗発熱による電気抵抗加熱ヒータ線60の温度は450〜600℃の範囲を満たすことがよい。そこで、前記熱電対62,63によって電気抵抗加熱ヒータ線60の温度を測定し、その測定結果に基づいて、電気抵抗加熱ヒータ線60の温度が前記範囲を満たすように該電気抵抗加熱ヒータ線60に与えるヒータ電力を制御するようにすればよい。   When the electric resistance heater wire 60 made of Ti or Zr is used, the temperature of the electric resistance heater wire 60 due to resistance heat generation preferably satisfies the range of 450 to 600 ° C. Therefore, the temperature of the electric resistance heater wire 60 is measured by the thermocouples 62 and 63, and based on the measurement result, the electric resistance heater wire 60 is adjusted so that the temperature of the electric resistance heater wire 60 satisfies the above range. What is necessary is just to control the heater electric power given to.

ここで、高圧容器10の内部温度が450〜600℃の高温となるため、鋼製の高圧容器10では、耐久性の点からその容器温度が150℃以下となるようにすることがよく、高圧容器10の冷却が必要となる。本実施形態の圧媒ガス浄化装置1では、酸素親和性の強い金属を高圧容器内に充填し、該金属を加熱するための加熱手段を高圧容器の外部に設けるようにした従来技術とは違って、電気抵抗加熱ヒータ線60によって酸素親和性の強い金属(不純物除去能を有する材料)とこれを加熱する手段とを兼用し、この電気抵抗加熱ヒータ線60を高圧容器10内に設けるようにしたので、倒立コップ状胴部20の外周周りに装着された前記水冷ジャケット40によって高圧容器10の冷却を行うことが可能となっている。   Here, since the internal temperature of the high-pressure vessel 10 becomes a high temperature of 450 to 600 ° C., the high-pressure vessel 10 made of steel is preferably made to have a vessel temperature of 150 ° C. or less from the viewpoint of durability. The container 10 needs to be cooled. The pressure medium gas purification apparatus 1 of the present embodiment is different from the prior art in which a metal having a strong oxygen affinity is filled in a high-pressure vessel and heating means for heating the metal is provided outside the high-pressure vessel. Thus, the electric resistance heater wire 60 is used as a metal having high affinity for oxygen (a material having an impurity removing ability) and a means for heating the same, and the electric resistance heater wire 60 is provided in the high-pressure vessel 10. Therefore, the high pressure vessel 10 can be cooled by the water cooling jacket 40 mounted around the outer periphery of the inverted cup-shaped body 20.

本実施形態の圧媒ガス浄化装置1では、TiあるいはZrからなる電気抵抗加熱ヒータ線60は、アルゴンガス中の酸素と反応することで、時間の経過とともに、その表面から酸化物が形成されて次第に電気抵抗が増加して、酸素の除去効率が低下してくる。そこで、適宜の期間ピッチにて電気抵抗加熱ヒータ線60の電気抵抗値を測定し、所定の電気抵抗値以上になった時点で、新品に交換するようにすればよい。このように、本実施形態の圧媒ガス浄化装置1は、電気抵抗加熱ヒータ線60の電気抵抗値の変化から容易に電気抵抗加熱ヒータ線60の交換時期を知ることができるという利点もある。   In the pressure medium gas purification device 1 of the present embodiment, the electric resistance heater wire 60 made of Ti or Zr reacts with oxygen in the argon gas, so that an oxide is formed from the surface as time passes. The electrical resistance gradually increases and the oxygen removal efficiency decreases. Therefore, the electric resistance value of the electric resistance heater wire 60 may be measured at an appropriate period pitch, and replaced with a new one when the electric resistance value becomes equal to or higher than a predetermined electric resistance value. As described above, the pressure medium gas purification apparatus 1 of the present embodiment also has an advantage that the replacement timing of the electric resistance heater wire 60 can be easily known from the change in the electric resistance value of the electric resistance heater wire 60.

そして、本実施形態の圧媒ガス浄化装置1では、前記ガス浄化ユニット体80を備えるとともに、下蓋30に載置されるガス浄化ユニット体80に組み込まれた電気抵抗加熱ヒータ線60が、下蓋30に取り付けられた前記プラグインコネクタ34に対してプラグイン構造で接続・切り離し可能に構成されているので、前記電気抵抗加熱ヒータ線60の交換を容易に短時間で行うことができる。   And in the pressure medium gas purification apparatus 1 of this embodiment, while being provided with the said gas purification unit body 80, the electrical resistance heating heater wire 60 incorporated in the gas purification unit body 80 mounted in the lower cover 30 is the bottom. Since the plug-in connector 34 attached to the lid 30 is configured to be connected / disconnected with a plug-in structure, the electric resistance heater wire 60 can be easily replaced in a short time.

すなわち、図2に示すように、水冷ジャケット40が装着されている倒立コップ状胴部20を、45度回転させて前記ねじ部20a,30aを緩めて、架台に固定されている下蓋30から取り外し、この倒立コップ状胴部20をつり上げて、所定の場所に運ぶ。次いで、ガス浄化ユニット体80を少しつり上げると、これに伴って、ガス浄化ユニット体80の電気抵抗加熱ヒータ線60のコネクタ61(該コネクタ61はベース板70に取り付けられている)が、下蓋30に取り付けられたプラグインコネクタ34から外れるので、そのまま、ガス浄化ユニット体80を所定の場所に運ぶことができる。そして、新品の電気抵抗加熱ヒータ線60が装着されたガス浄化ユニット体80を下蓋30の上方から下降させて下蓋30の所定位置に載置することで、そのままコネクタ61がプラグインコネクタ34にプラグイン構造で接続されることとなる。なお、前記熱電対62,63の着脱も同様になされる。   That is, as shown in FIG. 2, the inverted cup-shaped body 20 to which the water-cooling jacket 40 is attached is rotated 45 degrees to loosen the screw portions 20a and 30a, and the lower lid 30 fixed to the gantry is removed. The inverted cup-shaped body 20 is removed and carried to a predetermined place. Next, when the gas purification unit body 80 is slightly lifted, the connector 61 (the connector 61 is attached to the base plate 70) of the electric resistance heater wire 60 of the gas purification unit body 80 is attached to the lower lid. Since the plug-in connector 34 attached to the connector 30 is disconnected, the gas purification unit body 80 can be transported to a predetermined place as it is. Then, the gas purification unit body 80 equipped with the new electric resistance heater wire 60 is lowered from above the lower lid 30 and placed at a predetermined position of the lower lid 30, so that the connector 61 is directly connected to the plug-in connector 34. Will be connected with a plug-in structure. The thermocouples 62 and 63 are similarly attached and detached.

図3は本発明の別の実施形態による熱間等方圧加圧装置用の圧媒ガス浄化装置の構成を概略的に示す正面縦断面図である。ここで、前記図1に示される圧媒ガス浄化装置1と同一部分には図1と同一の符号を付して説明を省略し、異なる点について説明する。   FIG. 3 is a front longitudinal sectional view schematically showing a configuration of a pressure medium gas purification device for a hot isostatic pressurizing device according to another embodiment of the present invention. Here, the same parts as those in the pressure medium gas purification apparatus 1 shown in FIG. 1 are denoted by the same reference numerals as those in FIG.

図3に示すように、この圧媒ガス浄化装置2の高圧容器10’は、円筒状胴部21と円盤状をなす上蓋22とからなる倒立コップ状胴部と、下蓋30’とにより構成されている。円筒状胴部21の外周周りに水冷ジャケット40が装着されている。前記上蓋22内には、圧媒ガス排出配管32’が収納されている。   As shown in FIG. 3, the high pressure vessel 10 ′ of the pressure medium gas purification device 2 includes an inverted cup-shaped body portion including a cylindrical body portion 21 and a disc-shaped upper lid 22, and a lower lid 30 ′. Has been. A water cooling jacket 40 is attached around the outer periphery of the cylindrical body 21. A pressure medium gas discharge pipe 32 ′ is accommodated in the upper lid 22.

この実施形態の圧媒ガス浄化装置2では、図3に示すように、下蓋30’に収納されている圧媒ガス導入配管31を経て高圧容器10’内に流入したアルゴンガスは、内筒51の内側のガス流路→内筒51と外筒52との間のガス流路→外筒52と断熱体72’との間のガス流路を経て、上蓋22に収納されている圧媒ガス排出配管32’へと導かれるようになっている。   In the pressure medium gas purification device 2 of this embodiment, as shown in FIG. 3, the argon gas flowing into the high pressure vessel 10 ′ through the pressure medium gas introduction pipe 31 accommodated in the lower lid 30 ′ Gas passage inside 51 → Gas passage between inner cylinder 51 and outer cylinder 52 → Gas medium accommodated in upper lid 22 via a gas passage between outer cylinder 52 and heat insulator 72 ′ It is led to the gas discharge pipe 32 '.

このように構成される圧媒ガス浄化装置2でも、前記図1に示す圧媒ガス浄化装置1と同様に、HIP処理装置の本体高圧容器からの回収するアルゴンガス中の酸素を除去することができるとともに、高圧容器10’の冷却を円筒状胴部21の外周周りに装着された水冷ジャケット40によって行うことができる。なお、この圧媒ガス浄化装置2では、電気抵抗加熱ヒータ線60の交換に際し、上蓋22が装着された状態で円筒状胴部21を移動させるために、毎回、上蓋22に収納されている圧媒ガス排出配管32’の接続部分の切り離しを行う必要がある。   Also in the pressure medium gas purification device 2 configured in this way, as in the pressure medium gas purification device 1 shown in FIG. 1, oxygen in the argon gas recovered from the main body high-pressure vessel of the HIP processing apparatus can be removed. In addition, the high-pressure vessel 10 ′ can be cooled by the water cooling jacket 40 mounted around the outer periphery of the cylindrical body 21. In the pressure medium gas purification device 2, when the electric resistance heater wire 60 is replaced, the pressure stored in the upper lid 22 is moved each time in order to move the cylindrical body 21 with the upper lid 22 attached. It is necessary to disconnect the connecting portion of the medium gas discharge pipe 32 '.

図4は参考例による熱間等方圧加圧装置用の圧媒ガス浄化装置の構成を概略的に示す正面縦断面図である。 FIG. 4 is a front longitudinal sectional view schematically showing a configuration of a pressure medium gas purification device for a hot isostatic pressurizing device according to a reference example .

前記1の圧媒ガス浄化装置1と異なる点について説明する。図4に示すように、参考例の圧媒ガス浄化装置3では、材質が金属もしくはセラミックスからなる内筒51’及び外筒52’により圧媒ガス流路形成部材50'が構成されている。これらの内筒51’の外周面と外筒52’の内周面との間に、酸素親和性の強い金属、例えばTiあるいはZrの小片が充填された酸素親和性の強い金属の充填層90が形成されている。そして、外筒52’の外周面にニクロム線からなる電気抵抗加熱ヒータ線91が巻回されている。92は熱電対である。下蓋30内には、圧媒ガス導入配管31、圧媒ガス排出配管32'及びヒータ電力供給用配線33’が収納されている。下蓋30と倒立コップ状胴部20とにより高圧容器10”が構成されている。 A different point from the said pressure medium gas purification apparatus 1 is demonstrated. As shown in FIG. 4, in the pressure medium gas purification apparatus 3 of the reference example, a pressure medium gas flow path forming member 50 ′ is constituted by an inner cylinder 51 ′ and an outer cylinder 52 ′ made of metal or ceramics. Between the outer peripheral surface of the inner cylinder 51 ′ and the inner peripheral surface of the outer cylinder 52 ′, a packed layer 90 of a metal having a strong oxygen affinity, for example, a metal having a high oxygen affinity filled with small pieces of Ti or Zr. Is formed. An electric resistance heater wire 91 made of nichrome wire is wound around the outer peripheral surface of the outer cylinder 52 ′. 92 is a thermocouple. In the lower lid 30 , a pressure medium gas introduction pipe 31, a pressure medium gas discharge pipe 32 ′, and a heater power supply wiring 33 ′ are housed. The lower lid 30 and the inverted cup-shaped body portion 20 provide a high pressure. A container 10 "is constructed.

このように構成される圧媒ガス浄化装置3では、HIP処理装置の本体高圧容器から高圧のアルゴンガスを回収するに際し、圧媒ガス導入配管31を経て高圧容器10内に流入したアルゴンガスは、内筒51の内側を上昇した後に方向反転し、前記電気抵抗加熱ヒータ線91によって加熱されている前記した酸素親和性の強い金属の充填層90内を該金属に接触しながら下降し、圧媒ガス排出口10bから圧媒ガス排出配管32'へと導かれる。これにより、高圧容器10内に流入したアルゴンガスは、該ガス中の酸素が除去される。 In the pressure medium gas purification device 3 configured as described above, when the high pressure argon gas is recovered from the main body high pressure vessel of the HIP processing apparatus, the argon gas flowing into the high pressure vessel 10 through the pressure medium gas introduction pipe 31 is Then, the inside of the inner cylinder 51 is raised, the direction is reversed, and the inside of the packed layer 90 of the metal having high affinity for oxygen heated by the electric resistance heater wire 91 is lowered while being in contact with the metal. The medium gas discharge port 10b leads to the pressure medium gas discharge pipe 32 '. Thereby, the argon gas flowing into the high-pressure vessel 10 " removes oxygen in the gas.

次に、本発明の熱間等方圧加圧装置用の圧媒ガス供給回収装置(以下、単に圧媒ガス供給回収装置ともいう)について説明する。   Next, a pressure medium gas supply / recovery device (hereinafter, also simply referred to as a pressure medium gas supply / recovery device) for the hot isostatic pressurization device of the present invention will be described.

図5は本発明の一実施形態による熱間等方圧加圧装置用の圧媒ガス供給回収装置の構成を概略的に示す図である。   FIG. 5 is a diagram schematically showing a configuration of a pressure medium gas supply / recovery device for a hot isostatic pressurizing device according to an embodiment of the present invention.

図5において、100はHIP装置の本体高圧容器である。111は高圧圧媒ガス源としての高圧Arガス集合装置、112は中圧圧媒ガス源としての中圧Arガス集合装置、113は低圧圧媒ガス源としての低圧Arガス集合装置である。この実施形態では、高圧Arガス集合装置111のガス圧力は30MPa超50MPa以下の範囲であり、中圧Arガス集合装置112のガス圧力は3MPa以上30MPa以下の範囲であり、低圧Arガス集合装置113のガス圧力は1MPa以下である。   In FIG. 5, 100 is a main body high-pressure vessel of the HIP apparatus. 111 is a high pressure Ar gas collecting device as a high pressure medium gas source, 112 is a medium pressure Ar gas collecting device as a medium pressure medium gas source, and 113 is a low pressure Ar gas collecting device as a low pressure medium gas source. In this embodiment, the gas pressure of the high-pressure Ar gas collecting device 111 is in the range of more than 30 MPa and 50 MPa or less, the gas pressure of the medium-pressure Ar gas collecting device 112 is in the range of 3 MPa to 30 MPa, and the low-pressure Ar gas collecting device 113. The gas pressure is 1 MPa or less.

前記中圧Arガス集合装置112から前記HIP装置の本体高圧容器100に圧媒ガス供給ライン130が連絡している。この圧媒ガス供給ライン130は、上流側から順に、手動式塞止弁MV3、塞止弁V6、塞止弁V1、フィルタ161、圧縮機141、塞止弁V2、圧縮機142及び手動式塞止弁MV1を有している。   A pressure medium gas supply line 130 communicates from the intermediate pressure Ar gas collecting device 112 to the main body high-pressure vessel 100 of the HIP device. The pressure medium gas supply line 130 includes a manual closing valve MV3, a blocking valve V6, a blocking valve V1, a filter 161, a compressor 141, a blocking valve V2, a compressor 142, and a manual blocking in order from the upstream side. A stop valve MV1 is provided.

また、HIP装置の本体高圧容器100から中圧Arガス集合装置112に圧媒ガス回収ライン131が連絡している。この圧媒ガス回収ライン131は、上流側(本体高圧容器100側)から順に、塞止弁V3、減圧調整器151、及び並列に接続された圧媒ガス浄化装置120,120’を有している。圧媒ガス浄化装置120のガス導入側には手動式塞止弁MV5が備えられ、ガス排出側には手動式塞止弁MV6が備えられている。同様に、圧媒ガス浄化装置120’のガス導入側には手動式塞止弁MV5’が備えられ、ガス排出側には手動式塞止弁MV6’が備えられている。   Further, a pressure medium gas recovery line 131 communicates from the main body high-pressure vessel 100 of the HIP device to the medium pressure Ar gas collecting device 112. The pressure medium gas recovery line 131 includes, in order from the upstream side (the main body high-pressure vessel 100 side), a closing valve V3, a pressure reduction regulator 151, and pressure medium gas purification devices 120 and 120 ′ connected in parallel. Yes. A manual closing valve MV5 is provided on the gas introduction side of the pressure medium gas purification device 120, and a manual closing valve MV6 is provided on the gas discharge side. Similarly, a manual closing valve MV5 'is provided on the gas introduction side of the pressure medium gas purification device 120', and a manual closing valve MV6 'is provided on the gas discharge side.

なお、前記圧媒ガス浄化装置120,120’は、本実施形態では、前記図1に示される中圧レベル用の前述した構成の圧媒ガス浄化装置である。   In this embodiment, the pressure medium gas purification devices 120 and 120 'are the pressure medium gas purification devices having the above-described configuration for the intermediate pressure level shown in FIG.

これらの2台の圧媒ガス浄化装置120,120’は、通常片方のみが使用され、前述した酸素親和性の強い金属からなる電気抵抗加熱ヒータ線の交換などの場合に操業中であってもガス浄化が中断しないように交互に切換えて運転可能なように、備えられている。圧媒ガス浄化装置120の運転時には、他方の圧媒ガス浄化装置120’の前後にある手動式塞止弁MV5’,MV6’が閉じられている。   Of these two pressure medium gas purification devices 120 and 120 ', only one of them is normally used, even if the electric resistance heater wire made of a metal having a strong oxygen affinity is replaced. It is provided so that it can be operated by alternately switching so that the gas purification is not interrupted. During operation of the pressure medium gas purification device 120, the manual closing valves MV5 'and MV6' located before and after the other pressure medium gas purification device 120 'are closed.

また、前記高圧Arガス集合装置111から前記圧媒ガス供給ライン130における前記圧縮機141と前記塞止弁V2との間に、手動式塞止弁MV2と塞止弁V4とを有する高圧圧媒ガス用供給ライン132が連絡している。   Further, a high pressure medium having a manual closing valve MV2 and a blocking valve V4 between the compressor 141 and the blocking valve V2 in the pressure medium gas supply line 130 from the high pressure Ar gas collecting device 111. A gas supply line 132 is in communication.

また、前記低圧Arガス集合装置113から前記圧媒ガス供給ライン130における前記手動式塞止弁MV3と前記塞止弁V6との間に、手動式塞止弁MV4と圧縮機143とを有する低圧圧媒ガス用供給ライン133が連絡している。   Further, the low pressure Ar gas collecting device 113 includes a manual block valve MV4 and a compressor 143 between the manual block valve MV3 and the block valve V6 in the pressure medium gas supply line 130. A pressure medium gas supply line 133 communicates.

さらに、前記圧媒ガス回収ライン13における前記圧媒ガス浄化装置120,120’のガス排出側に位置する前記手動式塞止弁MV6,MV6’と前記塞止弁V6との間から前記低圧Arガス集合装置113に、塞止弁V7と減圧調整器162とを有する低圧圧媒ガス用回収ライン134が連絡している。 Furthermore, the low pressure from between 'the manual stop valve MV6, MV6 located on the gas discharge side of' the said stop valve V6 the medium gas purifying apparatus 120 and 120 in the medium gas recovery line 13 1 The Ar gas collecting device 113 communicates with a low-pressure medium gas recovery line 134 having a blocking valve V7 and a decompression regulator 162.

また、135は圧媒ガス供給ライン130の最上流部に連絡している新ガス補給用ライン、136は塞止弁V5及び真空ポンプP1を有し、圧媒ガス回収ライン131の最上流部に連絡しているガス置換用真空引きラインである。137は塞止弁V11及び真空ポンプP2を有し、圧媒ガス回収ライン131における手動式塞止弁MV6,MV6’の出側部(低圧圧媒ガス用回収ライン134の最上流部)に連絡している圧媒ガス浄化装置用真空引きラインである。138は塞止弁V9を有し、高圧圧媒ガス用供給ライン132における塞止弁V4の出側部から圧媒ガス回収ライン131における塞止弁V3の入側部に連絡するラインである。また、G1〜G6は圧力計である。   Reference numeral 135 denotes a new gas supply line that communicates with the most upstream part of the pressure medium gas supply line 130, and 136 includes a closing valve V <b> 5 and a vacuum pump P <b> 1. It is the evacuation line for gas replacement in communication. 137 has a closing valve V11 and a vacuum pump P2, and communicates with the outlet side of the manual closing valves MV6, MV6 ′ in the pressure medium gas recovery line 131 (the most upstream portion of the low pressure pressure medium gas recovery line 134). This is a vacuum line for a pressure medium gas purification device. Reference numeral 138 is a line that has a blocking valve V9 and communicates from the outlet side of the blocking valve V4 in the high pressure medium gas supply line 132 to the inlet side of the blocking valve V3 in the pressure medium gas recovery line 131. G1 to G6 are pressure gauges.

なお、前記圧媒ガス浄化装置用真空引きライン137の役目を説明すると、前記圧媒ガス浄化装置120について、前述した酸素親和性の強い金属からなる電気抵抗加熱ヒータ線の交換の際に高圧容器内に侵入して残存している空気を除去するため、交換終了後に、手動式塞止弁MV5,MV6’を閉じ、手動式塞止弁MV6と塞止弁V11を開き、真空ポンプP2を運転して前記空気を除去するようにしている。他方の圧媒ガス浄化装置120’についても同様である。   The role of the vacuum line 137 for the pressure medium gas purification device will be described. When the electric resistance heater wire made of a metal having a strong oxygen affinity is replaced with the pressure medium gas purification device 120, a high pressure container is used. In order to remove the remaining air that has entered the interior, after the replacement is completed, the manual block valves MV5 and MV6 ′ are closed, the manual block valves MV6 and V11 are opened, and the vacuum pump P2 is operated. Thus, the air is removed. The same applies to the other pressure medium gas purification device 120 '.

以下、前記のように構成される本実施形態の圧媒ガス供給回収装置の動作について説明する。   Hereinafter, the operation of the pressure medium gas supply and recovery apparatus of the present embodiment configured as described above will be described.

まず、通常、被処理品をHIP装置の本体高圧容器100内に収納後、本体高圧容器100の開閉に伴って混入した大気を除去するために、ガス置換用真空引きライン136によって本体高圧容器100内を真空引きする。さらに、本体高圧容器100内の残留空気を除去するため、低圧Arガス集合装置113からの0.3〜1MPaのアルゴンガスを低圧圧媒ガス用供給ライン133(ただし、圧縮機143は停止状態)及び圧媒ガス供給ライン130(ただし、手動式塞止弁MV3は閉じ、圧縮機141,142は停止状態)によって本体高圧容器100内に充填し、しかる後、塞止弁V10を開いて本体高圧容器100内のガスを大気放出する。このようないわゆるガス置換操作を1〜2回行う。このガス置換操作により、本体高圧容器100内の空気の濃度は数10ppmレベルとなる。   First, in order to remove the atmosphere mixed with the opening and closing of the main body high-pressure container 100 after the article to be processed is usually stored in the main body high-pressure container 100 of the HIP apparatus, the main body high-pressure container 100 is removed by the gas substitution vacuum drawing line 136. The inside is evacuated. Further, in order to remove residual air in the main body high-pressure vessel 100, 0.3 to 1 MPa argon gas from the low-pressure Ar gas collecting device 113 is supplied to the low-pressure pressure medium gas supply line 133 (however, the compressor 143 is stopped). And the pressure medium gas supply line 130 (however, the manual closing valve MV3 is closed and the compressors 141 and 142 are stopped), the main body high-pressure vessel 100 is filled, and then the closing valve V10 is opened to open the main body high pressure. The gas in the container 100 is released to the atmosphere. Such a so-called gas replacement operation is performed once or twice. By this gas replacement operation, the concentration of air in the main body high-pressure vessel 100 becomes several tens ppm level.

次いで、各Arガス集合装置111〜113のガス圧力と本体高圧容器100内のガス圧力との差圧を利用して、低圧Arガス集合装置111、中圧Arガス集合装置112、高圧Arガス集合装置113からこの順にアルゴンガスを本体高圧容器100に充填する。   Next, the low pressure Ar gas collecting device 111, the medium pressure Ar gas collecting device 112, and the high pressure Ar gas collecting are made using the differential pressure between the gas pressure of each of the Ar gas collecting devices 111 to 113 and the gas pressure in the main body high pressure vessel 100. The main body high-pressure vessel 100 is filled with argon gas in this order from the apparatus 113.

まず、低圧Arガス集合装置111からのアルゴンガスを、低圧圧媒ガス用供給ライン133(ただし、圧縮機143は停止状態)及び圧媒ガス供給ライン130(ただし、手動式塞止弁MV3は閉じ、圧縮機141,142は停止状態)によって本体高圧容器100内に充填する。次いで、中圧Arガス集合装置112からのアルゴンガスを、圧媒ガス供給ライン130(ただし、圧縮機141,142は停止状態)によって本体高圧容器100内に充填する。しかる後、高圧Arガス集合装置113からのアルゴンガスを、高圧圧媒ガス用供給ライン132、及び圧媒ガス供給ライン130における塞止弁V2、圧縮機142(ただし、圧縮機142は停止状態)及び手動式塞止弁MV1を介して、本体高圧容器100内に充填する。   First, argon gas from the low pressure Ar gas collecting device 111 is supplied to the low pressure pressure medium gas supply line 133 (where the compressor 143 is stopped) and the pressure medium gas supply line 130 (however, the manual shut-off valve MV3 is closed). The compressors 141 and 142 are filled in the main body high-pressure vessel 100 in a stopped state. Subsequently, the main body high-pressure vessel 100 is filled with the argon gas from the medium pressure Ar gas collecting device 112 through the pressure medium gas supply line 130 (where the compressors 141 and 142 are stopped). Thereafter, argon gas from the high-pressure Ar gas collecting device 113 is supplied from the high-pressure medium gas supply line 132 and the shutoff valve V2 in the pressure medium gas supply line 130 and the compressor 142 (however, the compressor 142 is stopped). And it fills in the main body high-pressure container 100 via the manual closing valve MV1.

次いで、圧縮機141,142を運転してアルゴンガスを本体高圧容器100に強制充填する。すなわち、前段の圧縮機141、又は前段の圧縮機141及び後段の圧縮機142を運転して、中圧Arガス集合装置112からのアルゴンガスを圧媒ガス供給ライン130によって本体高圧容器100内に充填する。このようにして、本体高圧容器100に本体高圧容器100内のガス圧力が100MPaとなるようにアルゴンガスが充填される。   Next, the compressors 141 and 142 are operated to forcibly fill the main body high-pressure vessel 100 with argon gas. That is, the front-stage compressor 141 or the front-stage compressor 141 and the rear-stage compressor 142 are operated, and the argon gas from the medium-pressure Ar gas collecting device 112 is moved into the main body high-pressure vessel 100 by the pressure medium gas supply line 130. Fill. In this manner, the main body high-pressure vessel 100 is filled with argon gas so that the gas pressure in the main body high-pressure vessel 100 becomes 100 MPa.

そして、本体高圧容器100内に収納された被処理品が所定の温度及び圧力にて所定時間保持された後、本体高圧容器100内のガス温度が当該高圧ガスを排出しても配管系の温度が安全である温度となった時点で、本体高圧容器100内のアルゴンガスのArガス集合装置112,113への回収を行う。   After the article to be processed stored in the main body high-pressure vessel 100 is held at a predetermined temperature and pressure for a predetermined time, the temperature of the piping system is maintained even if the gas temperature in the main body high-pressure vessel 100 is exhausted. When the temperature reaches a safe temperature, the argon gas in the main body high-pressure vessel 100 is recovered to the Ar gas collecting devices 112 and 113.

まず、本体高圧容器100→圧媒ガス回収ライン131(塞止弁V3→減圧調整器151→手動式塞止弁MV5→圧媒ガス浄化装置120→手動式塞止弁MV6)→塞止弁V6→手動式塞止弁MV3の経路で、本体高圧容器100からのアルゴンガスを中圧Arガス集合装置112に回収する。このとき、圧媒ガス浄化装置120によって本体高圧容器100からのアルゴンガス中の酸素(不純物)が除去される。   First, the main body high-pressure vessel 100 → pressure medium gas recovery line 131 (block valve V3 → depressurization regulator 151 → manual block valve MV5 → pressure medium gas purification device 120 → manual block valve MV6) → block valve V6. → The argon gas from the main body high-pressure vessel 100 is collected in the medium pressure Ar gas collecting device 112 through the route of the manual closing valve MV3. At this time, oxygen (impurities) in the argon gas from the main body high-pressure vessel 100 is removed by the pressure medium gas purification device 120.

そして、本体高圧容器100内の圧力と中圧Arガス集合装置112の圧力とが均衡してガス流量が低下すると、塞止弁V6及び手動式塞止弁MV3を閉じ、塞止弁V7及び手動式塞止弁MV4を開き、本体高圧容器100→圧媒ガス回収ライン131→低圧圧媒ガス用回収ライン134(塞止弁V7→減圧調整器152)→手動式塞止弁MV4の経路で、本体高圧容器100からのアルゴンガスを低圧Arガス集合装置113に回収する。なお、必要に応じて、前記の均衡した時点で、圧縮機143を運転して、本体高圧容器100→圧媒ガス回収ライン131→塞止弁V7→減圧調整器152→圧縮機143→手動式塞止弁MV3の経路で、本体高圧容器100からのアルゴンガスを中圧Arガス集合装置112に回収することも可能である。   When the pressure in the main body high-pressure vessel 100 and the pressure in the medium pressure Ar gas collecting device 112 are balanced and the gas flow rate is reduced, the closing valve V6 and the manual closing valve MV3 are closed, and the closing valve V7 and the manual closing valve V Open the type block valve MV4, the main body high-pressure vessel 100 → pressure medium gas recovery line 131 → low pressure pressure medium gas recovery line 134 (block valve V7 → decompression regulator 152) → manual type block valve MV4, Argon gas from the main body high-pressure vessel 100 is collected in the low-pressure Ar gas collecting device 113. If necessary, the compressor 143 is operated at the balanced time, and the main body high-pressure vessel 100 → the pressure medium gas recovery line 131 → the closing valve V7 → the pressure reducing regulator 152 → the compressor 143 → the manual type. It is also possible to recover the argon gas from the main body high-pressure vessel 100 to the medium-pressure Ar gas collecting device 112 through the path of the closing valve MV3.

このようにして、中圧Arガス集合装置112には、HIP処理に十分な清浄さを有したアルゴンガスを蓄えておくことができるとともに、本体高圧容器100から従来の3MPa程度までとは違って0.3MPa程度までの低圧で、かつ、圧媒ガス浄化装置120によってアルゴンガス中の酸素が除去されたアルゴンガスを低圧Arガス集合装置113に回収することができる。   In this way, the intermediate pressure Ar gas collecting device 112 can store argon gas having sufficient cleanness for HIP processing, and is different from the main body high-pressure vessel 100 to about 3 MPa in the past. Argon gas from which oxygen in the argon gas has been removed by the pressure medium gas purification device 120 at a low pressure up to about 0.3 MPa can be recovered in the low-pressure Ar gas collecting device 113.

また、実操業では高圧Arガス集合装置111のガス量が多い方が、HIP処理のガス加圧時間を短くするのに有利である。そこで、HIP装置の加圧に各圧縮機が使用されていないときには、圧縮機143を運転して低圧Arガス集合装置113内のアルゴンガスを中圧Arガス集合装置112に充填すること、また、圧縮機141を運転して、手動式塞止弁MV3→塞止弁V6→塞止弁V1→フィルタ161→圧縮機141→塞止弁V4→手動式塞止弁MV2の経路で、中圧Arガス集合装置112内のアルゴンガスを高圧Arガス集合装置111に充填することがよい。   Further, in actual operation, a larger amount of gas in the high-pressure Ar gas collecting device 111 is advantageous for shortening the gas pressurization time of the HIP process. Therefore, when each compressor is not used for pressurization of the HIP device, the compressor 143 is operated to fill the intermediate pressure Ar gas collecting device 112 with the argon gas in the low pressure Ar gas collecting device 113, The compressor 141 is operated, and the medium pressure Ar in the path of the manual closing valve MV3 → the blocking valve V6 → the blocking valve V1 → the filter 161 → the compressor 141 → the blocking valve V4 → the manual blocking valve MV2. It is preferable to fill the high-pressure Ar gas collecting device 111 with the argon gas in the gas collecting device 112.

また、中圧Arガス集合装置112内のガス量が不足している場合は、ほぼ同レベルの圧力の新ガスのボンベを前記新ガス補給ライン135に接続して、中圧Arガス集合装置112を常に満タンに近い状態としておくこともよい。このとき、圧縮機143を運転して、新ガス補給ライン135からのアルゴンガスを高圧Arガス集合装置113に補給することもよい。なお、高圧Arガス集合装置111内のアルゴンガスの浄化(酸素除去)を行う必要がある場合は、手動式塞止弁MV2→塞止弁V4→ライン138の塞止弁V9→塞止弁V3→減圧調整器151→手動式塞止弁MV5→圧媒ガス浄化装置120→手動式塞止弁MV6→塞止弁V1→フィルタ161→圧縮機141→塞止弁V4→手動式塞止弁MV2の経路により、高圧Arガス集合装置111内のアルゴンガスの浄化(酸素除去)を行うことができる。   When the amount of gas in the medium pressure Ar gas collecting device 112 is insufficient, a cylinder of new gas having substantially the same pressure is connected to the new gas supply line 135 so that the medium pressure Ar gas collecting device 112 is connected. It is also possible to keep the state almost full. At this time, the compressor 143 may be operated to supply argon gas from the new gas supply line 135 to the high-pressure Ar gas collecting device 113. If it is necessary to purify (remove oxygen) the argon gas in the high-pressure Ar gas collecting device 111, the manual closing valve MV2 → the blocking valve V4 → the blocking valve V9 on the line 138 → the blocking valve V3. → Depressurization regulator 151 → Manual block valve MV5 → Pressure medium gas purification device 120 → Manual block valve MV6 → Block valve V1 → Filter 161 → Compressor 141 → Block valve V4 → Manual block valve MV2 With this path, the argon gas in the high-pressure Ar gas collecting device 111 can be purified (oxygen removal).

このように、圧媒ガス浄化装置120,120’は、基本的に中圧Arガス集合装置112のガス圧レベル、すなわち3〜30MPaの範囲のガス圧のラインに組み込むことが最適である。   As described above, the pressure medium gas purification devices 120 and 120 ′ are basically optimally incorporated into the gas pressure level of the medium pressure Ar gas collecting device 112, that is, the gas pressure line in the range of 3 to 30 MPa.

その理由は、高圧Arガス集合装置111の圧力レベルのラインでは、アルゴンガス中の酸素等の不純物は濃縮されているので、圧媒ガス浄化装置の高圧容器を、比較的小さな内容積のものが使用できるものの、高い耐圧性が必要となるために全体として剛健な構造とせざるをえないためである。また、低圧Arガス集合装置113の集合装置の圧力レベルのラインでは、圧媒ガス浄化装置の高圧容器を、耐圧性の点では簡素化が可能であるものの、大容積の高圧容器となるため、設置スペースの点で大幅に不利となるためである。このような点から、中圧の圧力レベルのラインに圧媒ガス浄化装置を設置することがよい。   The reason is that, in the pressure level line of the high pressure Ar gas collecting device 111, impurities such as oxygen in the argon gas are concentrated, so that the high pressure vessel of the pressure medium gas purification device has a relatively small internal volume. This is because although it can be used, a high pressure resistance is required, so that the structure must be rigid as a whole. Further, in the pressure level line of the collecting device of the low pressure Ar gas collecting device 113, the high pressure vessel of the pressure medium gas purification device can be simplified in terms of pressure resistance, but it becomes a large volume high pressure vessel, This is because it is greatly disadvantageous in terms of installation space. From such a point, it is preferable to install the pressure medium gas purification device in the line of the medium pressure level.

このように、本実施形態の圧媒ガス供給回収装置は、実用に供することのできる圧媒ガス浄化装置120,120’を備えている。したがって、従来と違って、20〜30回のHIP処理後に1回の割合でアルゴンガス源のアルゴンガス全量を捨てるということをなくすことができる。また、圧媒ガス源として、高圧Arガス集合装置111及び中圧Arガス集合装置112の他に、低圧のアルゴンガスを収容している低圧Arガス集合装置113を備え、該低圧Arガス集合装置113へもHIP装置の本体高圧容器100からのアルゴンガスを回収するように構成されている。したがって、HIP処理後の圧媒ガスの回収に際し、大気放出を開始するHIP装置の本体高圧容器100内のアルゴンガスの圧力を従来の3MPa程度から0.3MPa程度にまで引き下げることができ、前記従来の3MPa程度から大気放出する場合に比べて操業時間を大幅に延長することなく、アルゴンガスの廃棄量を大幅に減らすことができる。   As described above, the pressure medium gas supply and recovery device of the present embodiment includes the pressure medium gas purification devices 120 and 120 ′ that can be put to practical use. Therefore, unlike the prior art, it is possible to eliminate the discarding of the entire amount of argon gas from the argon gas source at a rate of once after 20 to 30 HIP treatments. In addition to the high-pressure Ar gas collecting device 111 and the medium-pressure Ar gas collecting device 112, the low-pressure Ar gas collecting device 113 containing low-pressure argon gas is provided as a pressure medium gas source. 113 is also configured to collect argon gas from the main body high-pressure vessel 100 of the HIP device. Therefore, when recovering the pressure medium gas after the HIP treatment, the pressure of the argon gas in the main body high-pressure vessel 100 of the HIP device that starts to be released into the atmosphere can be reduced from about 3 MPa to about 0.3 MPa. The amount of argon gas discarded can be greatly reduced without significantly extending the operation time compared with the case of releasing from the atmosphere of about 3 MPa.

1,2,3…圧媒ガス浄化装置、
10,10’,10”…高圧容器
10a…圧媒ガス導入口 10b…圧媒ガス排出口
20…倒立コップ状胴部 20a…ねじ部
21…円筒状胴部
22…上蓋
30,30’,30”…下蓋 30a…ねじ部
31…圧媒ガス導入配管
32,32’,32”…圧媒ガス排出配管
33,33’…ヒータ電力供給用配線
34…プラグインコネクタ
40…水冷ジャケット 41…冷却水通路
50,50’…圧媒ガス流路形成部材
51,51’…内筒 52,52’…外筒
60…電気抵抗加熱ヒータ線 61…コネクタ 62,63…熱電対
70…ベース板 72,72’…断熱体
80…ガス浄化ユニット体
90…酸素親和性の強い金属の充填層
91…電気抵抗加熱ヒータ線(ニクロム線) 92…熱電対
100…HIP装置の本体高圧容器
111…高圧Arガス集合装置
112…中圧Arガス集合装置
113…低圧Arガス集合装置
120,120’…圧媒ガス浄化装置
130…圧媒ガス供給ライン
131…圧媒ガス回収ライン
132…高圧圧媒ガス用供給ライン
133…低圧圧媒ガス用供給ライン
134…低圧圧媒ガス用回収ライン
135…新ガス補給用ライン
141,142,143…圧縮機
151,152…減圧調整器
161…フィルタ
V1〜11…塞止弁 MV1〜MV4…手動式塞止弁
MV5,MV5’,MV6,MV6’…手動式塞止弁
P1,P2…真空ポンプ G1〜G6…圧力計
1, 2, 3 ... pressure medium gas purification device,
DESCRIPTION OF SYMBOLS 10,10 ', 10 "... High pressure vessel 10a ... Pressure medium gas inlet 10b ... Pressure medium gas outlet 20 ... Inverted cup-shaped trunk | drum 20a ... Screw part 21 ... Cylindrical trunk | drum 22 ... Top cover 30,30', 30 "... Lower lid 30a ... Screw part 31 ... Pressure medium gas introduction pipe 32, 32 ', 32" ... Pressure medium gas discharge pipe 33, 33' ... Heater power supply wiring 34 ... Plug-in connector 40 ... Water cooling jacket 41 ... Cooling Water passage 50, 50 '... Pressure medium gas flow path forming member 51, 51' ... Inner cylinder 52, 52 '... Outer cylinder 60 ... Electric resistance heater wire 61 ... Connector 62, 63 ... Thermocouple 70 ... Base plate 72, 72 '... heat insulator 80 ... gas purification unit body 90 ... packed layer of metal having strong oxygen affinity 91 ... electric resistance heater wire (nichrome wire) 92 ... thermocouple 100 ... main body high pressure vessel 111 of HIP device 111 ... high pressure Ar gas set 112 ... Medium pressure Ar gas collecting device 113 ... Low pressure Ar gas collecting device 120, 120 '... Pressure medium gas purifying device 130 ... Pressure medium gas supply line 131 ... Pressure medium gas recovery line 132 ... High pressure pressure medium gas supply line 133 ... Low-pressure pressure gas supply line 134 ... Low-pressure pressure gas recovery line 135 ... New gas supply line 141, 142, 143 ... Compressor 151, 152 ... Depressurization regulator 161 ... Filter V1-11 ... Shut-off valve MV1 -MV4 ... Manual block valve MV5, MV5 ', MV6, MV6' ... Manual block valve P1, P2 ... Vacuum pump G1-G6 ... Pressure gauge

Claims (7)

不活性ガスでなる圧媒ガスを用いて被処理品を高温高圧ガス雰囲気下で処理する熱間等方圧加圧装置へ圧媒ガスを供給及び回収する圧媒ガス供給回収装置に備えられ、圧媒ガスを導入して該圧媒ガス中の不純物として少なくとも酸素を除去する熱間等方圧加圧装置用の圧媒ガス浄化装置であって、
圧媒ガス導入口及び圧媒ガス排出口がそれぞれ開設された高圧容器と、
前記高圧容器の外側に装着されて該高圧容器を冷却する水冷式冷却手段と、
前記高圧容器内に設けられ、前記圧媒ガス導入口から導入されて前記圧媒ガス排出口より排出される圧媒ガスの流路を形成する圧媒ガス流路形成部材と、
前記圧媒ガス流路に沿って配置される不純物除去能を有する材料と、
前記高圧容器内に設けられ、前記不純物除去能を有する材料を加熱する加熱手段と、
を備え
前記不純物除去能を有する材料が金属材料であり、当該金属材料からなる電気抵抗加熱ヒータ線を前記圧媒ガス流路に沿って配置することにより、前記不純物除去能を有する材料と前記加熱手段とを兼用するようになされていることを特徴とする熱間等方圧加圧装置用の圧媒ガス浄化装置。
Provided in a pressure medium gas supply and recovery device for supplying and recovering a pressure medium gas to a hot isotropic pressure pressurizing apparatus that treats an object to be processed in a high temperature and high pressure gas atmosphere using a pressure medium gas composed of an inert gas, A pressure medium gas purification device for a hot isotropic pressure pressurizing apparatus that introduces a pressure medium gas and removes at least oxygen as an impurity in the pressure medium gas,
A high-pressure vessel in which a pressure medium gas inlet and a pressure medium gas outlet are respectively opened;
Water-cooled cooling means mounted on the outside of the high-pressure vessel to cool the high-pressure vessel;
A pressure medium gas flow path forming member provided in the high pressure vessel and forming a flow path of a pressure medium gas introduced from the pressure medium gas inlet and discharged from the pressure medium gas outlet;
A material having the ability to remove impurities disposed along the pressure medium gas flow path;
A heating means provided in the high-pressure vessel for heating the material having the ability to remove impurities;
Equipped with a,
The material having the impurity removing ability is a metal material, and an electric resistance heater wire made of the metal material is disposed along the pressure medium gas flow path, whereby the material having the impurity removing ability and the heating means A pressure medium gas purifying device for a hot isostatic pressurizing device, wherein the pressure medium gas purifying device is also used.
前記圧媒ガス流路形成部材の材質がセラミックスからなり、該圧媒ガス流路形成部材の外周面に前記不純物除去能を有する金属材料からなる前記電気抵抗加熱ヒータ線が巻回されていることを特徴とする請求項記載の熱間等方圧加圧装置用の圧媒ガス浄化装置。 The material of the pressure medium gas flow path forming member is made of ceramics, and the electric resistance heater wire made of the metal material having the impurity removing ability is wound around the outer peripheral surface of the pressure medium gas flow path forming member. The pressure medium gas purification device for a hot isostatic pressurization device according to claim 1 . 前記高圧容器が下蓋と、該下蓋に着脱可能に装着される倒立コップ状胴部とで構成されており、前記下蓋内に該高圧容器内部と連通する圧媒ガス導入配管及び圧媒ガス排出配管が収納されるとともに、前記電気抵抗加熱ヒータ線に電力を供給するためのヒータ電力供給用配線が該電気抵抗加熱ヒータ線に対して接続・切り離し可能に収納されていることを特徴とする請求項又は記載の熱間等方圧加圧装置用の圧媒ガス浄化装置。 The high-pressure vessel is composed of a lower lid and an inverted cup-shaped body portion detachably attached to the lower lid, and a pressure medium gas introduction pipe and a pressure medium communicating with the inside of the high-pressure vessel in the lower lid A gas discharge pipe is accommodated, and a heater power supply wiring for supplying electric power to the electric resistance heater wire is accommodated so as to be connectable to and disconnected from the electric resistance heater wire. A pressure medium gas purification device for a hot isostatic pressurization device according to claim 1 or 2 . 前記圧媒ガス流路形成部材と前記電気抵抗加熱ヒータ線とが一体に組み立てられてなるガス浄化ユニット体が前記下蓋上に載置されており、前記電気抵抗加熱ヒータ線のコネクタにプラグイン構造で接続される前記ヒータ電力供給用配線のプラグインコネクタが前記下蓋に取り付けられていることを特徴とする請求項記載の熱間等方圧加圧装置用の圧媒ガス浄化装置。 A gas purification unit body in which the pressure medium gas flow path forming member and the electric resistance heater wire are integrally assembled is placed on the lower lid, and is plugged into a connector of the electric resistance heater wire. The pressure medium gas purification device for a hot isostatic pressurization device according to claim 3, wherein a plug-in connector of the heater power supply wiring connected in a structure is attached to the lower lid. 前記加熱手段の温度を測定するための測温センサを少なくとも一つを備えていることを特徴とする請求項1〜のいずれか一項に記載の熱間等方圧加圧装置用の圧媒ガス浄化装置。 The pressure for the hot isostatic pressing device according to any one of claims 1 to 4 , further comprising at least one temperature measuring sensor for measuring the temperature of the heating means. Medium gas purification device. 請求項1〜のいずれか一項に記載の熱間等方圧加圧装置用の圧媒ガス浄化装置を備え、不活性ガスでなる圧媒ガスを用いて被処理品を高温高圧ガス雰囲気下で処理する熱間等方圧加圧装置へ圧媒ガスを供給及び回収する圧媒ガス供給回収装置であって、
高圧の圧媒ガスを収容している高圧圧媒ガス源と、
中圧の圧媒ガスを収容している中圧圧媒ガス源と、
低圧の圧媒ガスを収容している低圧圧媒ガス源と、
圧縮機を有し、前記中圧圧媒ガス源と前記熱間等方圧加圧装置とを連絡する圧媒ガス供給ラインと、
前記圧媒ガス浄化装置を有し、前記熱間等方圧加圧装置と前記中圧圧媒ガス源とを連絡する圧媒ガス回収ラインと、
前記高圧圧媒ガス源と前記圧媒ガス供給ラインとを連絡する高圧圧媒ガス用供給ラインと、
前記低圧圧媒ガス源と前記圧媒ガス供給ラインとを連絡する低圧圧媒ガス用供給ラインと、
前記圧媒ガス回収ラインの前記圧媒ガス浄化装置の圧媒ガス出側と前記低圧圧媒ガス源とを連絡する低圧圧媒ガス用回収ラインと、
を備えたことを特徴とする熱間等方圧加圧装置用の圧媒ガス供給回収装置。
A pressure medium gas purification device for a hot isotropic pressure pressurization device according to any one of claims 1 to 5, comprising a pressure medium gas made of an inert gas, and a product to be processed in a high-temperature high-pressure gas atmosphere A pressure medium gas supply and recovery device for supplying and recovering a pressure medium gas to a hot isostatic pressurizing device to be processed below;
A high-pressure pressure medium gas source containing a high-pressure pressure medium gas;
A medium-pressure medium gas source containing medium-pressure medium,
A low-pressure pressure medium gas source containing a low-pressure pressure medium gas;
A pressure medium gas supply line having a compressor and communicating the medium pressure medium gas source and the hot isostatic pressure device;
A pressure medium gas recovery line that has the pressure medium gas purification device and communicates the hot isostatic pressure pressurization device and the intermediate pressure medium gas source;
A high-pressure medium gas supply line connecting the high-pressure medium gas source and the pressure medium gas supply line;
A supply line for low-pressure pressure medium gas connecting the low-pressure pressure medium gas source and the pressure medium gas supply line;
A low-pressure pressure medium gas recovery line connecting the pressure medium gas outlet side of the pressure medium gas purification device of the pressure medium gas recovery line and the low pressure pressure medium gas source;
A pressure medium gas supply and recovery device for a hot isostatic pressurizing device.
前記圧媒ガス回収ラインは前記圧媒ガス浄化装置を少なくとも2台有し、これらの圧媒ガス浄化装置が交互に切換え運転可能に設けられていることを特徴とする請求項記載の熱間等方圧加圧装置用の圧媒ガス供給回収装置。 The hot medium according to claim 6, wherein the pressure medium gas recovery line has at least two pressure medium gas purification devices, and these pressure medium gas purification devices are provided so as to be capable of switching operation alternately. Pressure medium gas supply and recovery device for isotropic pressure pressurization device.
JP2009022573A 2009-02-03 2009-02-03 Pressure medium gas purification device and pressure medium gas supply and recovery device for hot isostatic pressurization device Active JP5486196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009022573A JP5486196B2 (en) 2009-02-03 2009-02-03 Pressure medium gas purification device and pressure medium gas supply and recovery device for hot isostatic pressurization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009022573A JP5486196B2 (en) 2009-02-03 2009-02-03 Pressure medium gas purification device and pressure medium gas supply and recovery device for hot isostatic pressurization device

Publications (2)

Publication Number Publication Date
JP2010179199A JP2010179199A (en) 2010-08-19
JP5486196B2 true JP5486196B2 (en) 2014-05-07

Family

ID=42761158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009022573A Active JP5486196B2 (en) 2009-02-03 2009-02-03 Pressure medium gas purification device and pressure medium gas supply and recovery device for hot isostatic pressurization device

Country Status (1)

Country Link
JP (1) JP5486196B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102570154B1 (en) * 2020-12-28 2023-08-28 (주)일신오토클레이브 Hydrostatic pressure device comprising a hydrogen sulfide gas detector

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106633A (en) * 1979-02-09 1980-08-15 Kobe Steel Ltd Hot hydrostatic press method
JPS5840975Y2 (en) * 1979-02-18 1983-09-16 株式会社神戸製鋼所 Hot isostatic press equipment
JPS6090024A (en) * 1983-10-21 1985-05-21 Jeol Ltd Oxygen removing apparatus
JPH02268807A (en) * 1989-04-10 1990-11-02 Toppan Printing Co Ltd Deoxidation method
JPH10245209A (en) * 1997-03-05 1998-09-14 Katsuteru Araki Cleaning device for inert gas and gas chamber
JPH10305223A (en) * 1997-05-06 1998-11-17 Kobe Steel Ltd Gas pressurizing feeder

Also Published As

Publication number Publication date
JP2010179199A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
JPS60116702A (en) Method and device for hot hydrostatic pressure molding with high efficiency
JPH01157403A (en) Method and device for purifying hydrogen gas
CN103848398B (en) Integral type low-temperature adsorption is adopted to produce ultra-pure hydrogen device
JP2009024222A (en) Apparatus for generating fluorine-based gas and hydrogen gas
JP5486196B2 (en) Pressure medium gas purification device and pressure medium gas supply and recovery device for hot isostatic pressurization device
US6881242B2 (en) Hydrogen reclamation apparatus and method
KR101632441B1 (en) Method of refining carbon parts for production of polycrystalline silicon
CN101724852B (en) Method for preparing solar grade polycrystalline silicon material
KR20170125866A (en) How to purify and cast materials
CN115215327B (en) Device and method for purifying carbon nano tube
JP5584887B2 (en) Ozone gas concentration method and apparatus
JP4124838B2 (en) Pressure gas supply device
JP6130655B2 (en) Periodic table Group 1 and 2 hydride production method, production apparatus and method of use thereof
CN111485113B (en) Alkali metal impurity pretreatment device
JP5461144B2 (en) Noble gas purification method
CN212253648U (en) High-temperature electric heating furnace capable of replacing furnace body and rapidly cooling materials
CN111442645B (en) Heating furnace and heating system for preparing liquid chloride
CN207998627U (en) A kind of vacuum drying oven argon gas circulating cooling system
CN113384992A (en) Helium three-gas purification device
JP2011255253A (en) Circulation purifying apparatus
CN104030289B (en) A kind of graphite member refining plant
JPH0390510A (en) Method and apparatus for recovering gas
JP5148784B1 (en) Silicon purification equipment
CN211147276U (en) Air-cooled silicon carbide ceramic sintering furnace
KR102068253B1 (en) System of high-pressure CO2 vlave maniford box line

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140221

R150 Certificate of patent or registration of utility model

Ref document number: 5486196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150