JP5484264B2 - Building reinforcement structure - Google Patents

Building reinforcement structure Download PDF

Info

Publication number
JP5484264B2
JP5484264B2 JP2010196324A JP2010196324A JP5484264B2 JP 5484264 B2 JP5484264 B2 JP 5484264B2 JP 2010196324 A JP2010196324 A JP 2010196324A JP 2010196324 A JP2010196324 A JP 2010196324A JP 5484264 B2 JP5484264 B2 JP 5484264B2
Authority
JP
Japan
Prior art keywords
building
foundation
transmission beam
bending transmission
new
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010196324A
Other languages
Japanese (ja)
Other versions
JP2012052358A (en
Inventor
雅英 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinki University
Original Assignee
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinki University filed Critical Kinki University
Priority to JP2010196324A priority Critical patent/JP5484264B2/en
Publication of JP2012052358A publication Critical patent/JP2012052358A/en
Application granted granted Critical
Publication of JP5484264B2 publication Critical patent/JP5484264B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

本発明は、建物の補強構造に関する。   The present invention relates to a reinforcing structure for a building.

従来から、耐震性が向上する住宅の外壁補強構造として、筋交い耐力壁や構造用合板による耐力壁の増設の他に、特許文献1に示すようなものが知られている。特許文献1に記載された住宅の外壁の補強構造は、図17に示すように、基礎コンクリート106と天井側の梁110若しくは柱109との間に金属製筋交い部材115が配置され、基礎コンクリート106に金属製補強部材117が固定されて、金属製筋交い部材115の上端部は、天井側の梁110若しくは柱109にラダスクリュー112で固定されるとともに、その下端部は、基礎コンクリート106の金属製補強部材117に、張力調整用部材120〜122を介して固定されている。   2. Description of the Related Art Conventionally, as an outer wall reinforcing structure for a house that improves earthquake resistance, a structure as shown in Patent Document 1 is known in addition to the addition of bracing bearing walls and structural plywood. As shown in FIG. 17, the reinforcement structure of the outer wall of a house described in Patent Document 1 includes a metal bracing member 115 disposed between the foundation concrete 106 and the beam 110 or the column 109 on the ceiling side. The metal reinforcing member 117 is fixed to the upper end of the metal bracing member 115 with the ladder screw 112 to the beam 110 or the column 109 on the ceiling side, and the lower end of the metal reinforcing member 117 is made of the metal of the foundation concrete 106. It is fixed to the reinforcing member 117 via tension adjusting members 120 to 122.

特開2005−133296号公報JP 2005-133296 A

建物の補強工事では、補強効率の観点から補強工事箇所が少ない方がよく、更に壁強さ倍率の高い耐力壁を用いる方がよい。しかしながら、壁強さ倍率の高い耐力壁の反力を確保するためには、通常、鉄筋コンクリート布基礎補強工事をして、壁強さ倍率に応じた接合強度を持つ柱脚金物を設置する必要があるので、無筋コンクリート布基礎の場合、基礎の補強工事費用の増加により耐震補強工事が普及しない問題があった。一方、基礎補強工事をしない場合には、無筋コンクリート布基礎に見合った壁強さ倍率の低い耐力壁を用いることとなる。その場合、耐力確保のためには必要壁長さを確保する必要があり、開口を塞ぐなど住環境や建物用途上の制約を受ける問題があった。特に、住環境や建物用途上が制限されている狭小住宅において、その影響はより深刻に現れる。   In building reinforcement work, it is better that there are few reinforcement works from the viewpoint of reinforcement efficiency, and it is better to use a load-bearing wall with a higher wall strength magnification. However, in order to ensure the reaction force of a load bearing wall with a high wall strength magnification, it is usually necessary to reinforce the reinforced concrete cloth foundation and install column base hardware with joint strength corresponding to the wall strength magnification. Therefore, in the case of unreinforced concrete cloth foundation, there was a problem that seismic reinforcement work did not spread due to an increase in the cost of reinforcement work for the foundation. On the other hand, when the foundation reinforcement work is not performed, a load bearing wall with a low wall strength magnification corresponding to the unreinforced concrete cloth foundation is used. In that case, it is necessary to secure the necessary wall length in order to ensure the proof stress, and there is a problem that the living environment and the building use are restricted such as closing the opening. In particular, the impact appears more serious in small houses where the living environment and building use are restricted.

本発明では、基礎補強工事をしなくても、建物の補強構造に壁強さ倍率の高い耐力壁を用いることができ、コストを低減して耐震性を向上できるとともに、開口を塞ぐなど住環境や建物用途上の制約がない、建物の補強構造を提供することを目的とする。   In the present invention, it is possible to use a load-bearing wall with a high wall strength magnification in the building reinforcement structure without performing foundation reinforcement work, reducing costs and improving earthquake resistance, and closing the opening. The purpose of the present invention is to provide a reinforcing structure for buildings without any restrictions on the use of buildings.

請求項1に記載した建物の補強構造は、梁を備えた建物の補強構造であって、両端部分にスペーサを介して、コンクリート布基礎に着設された曲げ伝達梁と、前記曲げ伝達梁の両端部分において、一方が前記曲げ伝達梁に着設され、他方が既設梁に着設された端部新設柱と、前記曲げ伝達梁の両端部分以外の部分において、一方が前記曲げ伝達梁に着設され、他方が前記既設梁にせん断力のみを伝達する手段により接合された新設柱と、少なくとも垂直方向の一辺が前記新設柱に設置された耐力壁と、を備えたことを特徴とする。   The reinforcing structure of a building according to claim 1 is a reinforcing structure of a building provided with beams, and a bending transmission beam attached to a concrete cloth foundation via spacers at both ends, and the bending transmission beam. At both end portions, one end is attached to the bending transmission beam, and the other end is provided on the existing beam, and the other end of the bending transmission beam is attached to the bending transmission beam. And a new pillar joined to the existing beam by means for transmitting only shearing force, and a load bearing wall having at least one side in the vertical direction installed on the new pillar.

請求項2に記載した建物の補強構造は、梁を備えた建物の補強構造であって、既設軸組に着設された曲げ伝達梁と、前記曲げ伝達梁の両端部分において、一方が前記曲げ伝達梁に着設され、他方がコンクリート布基礎に着設された端部新設柱と、前記曲げ伝達梁の両端部分以外の部分において、一方が前記曲げ伝達梁に着設され、他方がコンクリート布基礎にせん断力のみを伝達する手段により接合された新設柱と、少なくとも垂直方向の一辺が前記新設柱に設置された耐力壁と、を備えたことを特徴とする。   The reinforcing structure of a building according to claim 2 is a reinforcing structure of a building including a beam, and one of the bending transmission beam attached to an existing shaft and one end of the bending transmission beam is bent. At the other end of the bending transmission beam, one end is attached to the bending transmission beam and the other is a concrete cloth. A new column joined to the foundation by means for transmitting only a shearing force, and a load bearing wall having at least one side in the vertical direction installed on the new column.

請求項3に記載した建物の補強構造は、請求項1または2に記載の建物の補強構造であって、コンクリート布基礎が無筋コンクリート布基礎であることを特徴とする。   The building reinforcing structure according to claim 3 is the building reinforcing structure according to claim 1 or 2, wherein the concrete cloth foundation is an unreinforced concrete cloth foundation.

本発明によれば、基礎補強工事をしなくても、建物の補強構造に壁強さ倍率の高い耐力壁を用いることができるので、コストを低減して耐震性を向上できるとともに、開口を塞ぐなど住環境や建物用途上の制約がない、建物の補強構造を提供することができる。   According to the present invention, a load-bearing wall having a high wall strength ratio can be used for a reinforcing structure of a building without performing a foundation reinforcement work, so that the cost can be reduced and the earthquake resistance can be improved, and the opening can be blocked. It is possible to provide a reinforcing structure for a building that does not have restrictions on the living environment and building use.

また、コンクリート布基礎にかかる反力の低減を図ると同時に、コンクリート布基礎を同時に建物の自重で押さえ込んでいるので、コンクリート布基礎に過大な反力が作用しない。つまり、無筋コンクリート基礎を補強しなくても建物の補強構造に壁強さ倍率の高い耐力壁を用いることができるので、コストも低減することができ、また、基礎の種類を問わず汎用的に用いることができる。   In addition, the reaction force applied to the concrete cloth foundation is reduced, and at the same time, the concrete cloth foundation is simultaneously pressed by the weight of the building, so that an excessive reaction force does not act on the concrete cloth foundation. In other words, it is possible to use a load-bearing wall with a high wall strength ratio in the reinforcement structure of a building without reinforcing a non-reinforced concrete foundation, which can reduce costs and is versatile regardless of the type of foundation. Can be used.

本発明の建物の補強構造の断面図である。It is sectional drawing of the reinforcement structure of the building of this invention. 同建物の補強構造の断面図である。It is sectional drawing of the reinforcement structure of the building. 他の実施形態の建物の補強構造の断面図である。It is sectional drawing of the reinforcement structure of the building of other embodiment. 別の実施形態の建物の補強構造の断面図である。It is sectional drawing of the reinforcement structure of the building of another embodiment. さらに別の実施形態の建物の補強構造の断面図である。It is sectional drawing of the reinforcement structure of the building of another embodiment. 新設柱が既設梁にせん断力のみを伝達する具体的な手段の断面図である。It is sectional drawing of the concrete means in which a new pillar transmits only a shearing force to an existing beam. 新設柱が既設梁にせん断力のみを伝達する別の具体的な手段の断面図である。It is sectional drawing of another concrete means in which a new pillar transmits only a shearing force to an existing beam. 本発明の建物の補強構造を適応した住宅の平面図である。It is a top view of the house which applied the reinforcement structure of the building of this invention. 本発明の建物の補強構造を住宅に適応した時の、精密診断法による結果と固有周期との関係を表す図である。It is a figure showing the relationship between the result by a precise diagnosis method, and a natural period when the reinforcement structure of the building of this invention is applied to a house. 曲げ伝達梁付き面材耐力壁にかかるせん断力を計測する方法を示す図である。It is a figure which shows the method of measuring the shearing force concerning a face material bearing wall with a bending transmission beam. 曲げ伝達梁付き面材耐力壁にかかるせん断力を計測した試験結果である。It is the test result which measured the shearing force concerning a face material bearing wall with a bending transmission beam. 試験体の荷重計位置と、荷重―変形角曲線とを示す図である。It is a figure which shows the load cell position of a test body, and a load-deformation angle curve. 曲げ伝達梁の曲げ応力度の検定モデルを示す図である。It is a figure which shows the verification model of the bending stress degree of a bending transmission beam. 固有周期―変位の関係をしめす図である。It is a figure which shows the natural period-displacement relationship. 柱軸力の計測方法とその結果を示す図である。It is a figure which shows the measuring method of a column axial force, and its result. 洋室1の荷重分布を示す図である。It is a figure which shows the load distribution of the western-style room. 従来例の建物の補強構造の断面図である。It is sectional drawing of the reinforcement structure of the building of a prior art example.

以下、図面を参照して本発明の実施形態について説明する。なお、開示する実施形態は、すべての点で例示的であって制限的なものではなく、本発明の範囲は、特許請求の範囲内およびこれと均等の範囲内でのすべての変更が含まれることが意図される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the disclosed embodiments are illustrative and not restrictive in all respects, and the scope of the present invention includes all modifications within the scope of the claims and the equivalent scope thereof. Is intended.

ここで、コンクリート布基礎6に略水平な方向を「水平方向」といい、コンクリート布基礎6に略垂直な方向を「垂直方向」と言うことにする。また、曲げ伝達梁1の両端を「両端部分」と言うことにする。さらに、曲げ伝達梁1の両端部分に着設される新設柱を端部新設柱2bと言う。新設柱2aの両端部分を、「一方」および「他方」と言い、端部新設柱2bの両端部分を、「一方」および「他方」と言うことにする。   Here, a direction substantially horizontal to the concrete cloth foundation 6 is referred to as “horizontal direction”, and a direction substantially perpendicular to the concrete cloth foundation 6 is referred to as “vertical direction”. Further, both ends of the bending transmission beam 1 are referred to as “both end portions”. Further, the new pillars that are attached to both ends of the bending transmission beam 1 are referred to as end new pillars 2b. Both end portions of the new pillar 2a are referred to as “one” and “the other”, and both end portions of the end new pillar 2b are referred to as “one” and “the other”.

<第1実施形態>
図1、および図2を参照して、第1実施形態の建物の補強構造を説明する。本実施形態の建物の補強構造は、曲げ伝達梁1、新設柱2a、端部新設柱2b、耐力壁3、およびスペーサ5を備える。
<First Embodiment>
With reference to FIG. 1 and FIG. 2, the reinforcement structure of the building of 1st Embodiment is demonstrated. The building reinforcing structure of this embodiment includes a bending transmission beam 1, a new pillar 2 a, an end new pillar 2 b, a load bearing wall 3, and a spacer 5.

曲げ伝達梁1は、両端部分にスペーサ5を介して、アンカーボルト19によってコンクリート布基礎6上に着設されている。曲げ伝達梁1の両端部分において、端部新設柱2bの、一方が曲げ伝達梁1に着設され、他方が既設梁4に着設している。言い換えると、端部新設柱2bは、垂直方向に起立した状態で、曲げ伝達梁1と既設梁4とに着設されている。曲げ伝達梁1の両端部分以外の部分において、新設柱2aの、一方が曲げ伝達梁1に着設され、他方が既設梁4にせん断力のみ伝達する手段により接合されている。さらに、耐力壁3の少なくとも垂直方向の一辺が、新設柱2aの垂直方向に沿って接合されている。なお、曲げ伝達梁1の素材は問わないが、特に木製で構成されていることが好適である。   The bending transmission beam 1 is installed on the concrete cloth foundation 6 by anchor bolts 19 via spacers 5 at both ends. At both ends of the bending transmission beam 1, one of the end new columns 2 b is attached to the bending transmission beam 1 and the other is attached to the existing beam 4. In other words, the end new column 2b is attached to the bending transmission beam 1 and the existing beam 4 in a state of standing upright in the vertical direction. In the portions other than both end portions of the bending transmission beam 1, one of the new pillars 2 a is attached to the bending transmission beam 1 and the other is joined to the existing beam 4 by means for transmitting only a shearing force. Furthermore, at least one side of the bearing wall 3 in the vertical direction is joined along the vertical direction of the new pillar 2a. In addition, although the raw material of the bending transmission beam 1 is not ask | required, it is suitable especially that it is comprised with the timber.

図6を参照して、新設柱2aが既設梁4にせん断力のみ伝達する具体的な手段を説明する。新設柱2aの、一方が曲げ伝達梁1に着設されており、他方が水平方向から第1受け材16と第2受け材17とで狭持されている。言い換えると、新設柱2aは、既設梁4にラグスクリュ9で着設された第1受け材16と第2受け材17とにより、水平方向に狭持されており、水平方向の力(せん断力)のみを曲げ伝達梁1に伝達し、軸方向にフリーになるように構成されている。新設柱2aを設置したときに、新設柱2aの他方が既設梁4と接しないように、新設柱2aの長さは決定されている。具体的には、新設柱2aを設置したときに、新設柱2aの他方と既設梁4とが、30mm程度の間隔を有していればよく、30mmの間隔が好適である。   With reference to FIG. 6, the concrete means in which the new pillar 2a transmits only a shearing force to the existing beam 4 is demonstrated. One of the new pillars 2 a is attached to the bending transmission beam 1, and the other is sandwiched between the first receiving member 16 and the second receiving member 17 from the horizontal direction. In other words, the new pillar 2a is sandwiched in the horizontal direction by the first receiving member 16 and the second receiving member 17 that are attached to the existing beam 4 by the lug screw 9, and the horizontal force (shearing force). Is transmitted to the bending transmission beam 1 and is free in the axial direction. The length of the new column 2a is determined so that the other side of the new column 2a does not contact the existing beam 4 when the new column 2a is installed. Specifically, when the new pillar 2a is installed, it is sufficient that the other of the new pillar 2a and the existing beam 4 have an interval of about 30 mm, and an interval of 30 mm is preferable.

また、図7を参照して、新設柱2aが既設梁4にせん断力のみ伝達する別の具体的な手段を説明する。新設柱2aの曲げ伝達梁1に着接しない側にほぞを形成し、既設梁4にほぞ穴を形成して、新設柱2aの曲げ伝達梁1に着接しない側と既設梁4とをほぞ組みで接合する。新設柱2aにほぞが形成されている範囲は、既設梁4のほぞ穴に新設柱2aに形成されたほぞを挿入した時に、既設梁4と、新設柱2aのほぞ非形成領域とが30mm程度接しない範囲であればよく、30mmの間隔が好適である。言い換えると、新設柱2aは、水平方向から既設梁4により狭持されており、水平方向の力(せん断力)のみを曲げ伝達梁1に伝達できるように構成されている。なお、新設柱2aと既設梁4との接合方法は、ほぞ組みに限定されず、新設柱2aが既設梁4にせん断力のみ伝達することができる接合方法であれば他の接合方法を用いることもできる。   Further, with reference to FIG. 7, another specific means for transmitting only the shearing force to the existing beam 4 by the new column 2a will be described. A tenon is formed on the side of the new pillar 2a that does not contact the bending transmission beam 1, a tenon is formed in the existing beam 4, and the side of the new pillar 2a that does not contact the bending transmission beam 1 and the existing beam 4 are tenoned. Join in pairs. The tenon is formed in the new pillar 2a when the tenon formed in the new pillar 2a is inserted into the tenon of the existing beam 4 and the tenon non-formation region of the new pillar 2a is about 30 mm. It may be in a range that does not contact, and an interval of 30 mm is preferable. In other words, the new pillar 2a is sandwiched by the existing beam 4 from the horizontal direction, and is configured to transmit only the horizontal force (shearing force) to the bending transmission beam 1. In addition, the joining method of the new pillar 2a and the existing beam 4 is not limited to the tenon assembly, and other joining methods may be used as long as the new pillar 2a can transmit only the shearing force to the existing beam 4. You can also.

図2を参照して、建物の補強構造にせん断力が加わったときに、コンクリート布基礎6に作用する反力について説明する。建物の補強構造にせん断力が加わったとき、コンクリート布基礎6に作用する力V1は、以下の式(式(1))で表される。
V1=P1・H1/W1 ・・・式(1)
ここで、V1はコンクリート布基礎6に上向きに作用する力、P1は建物の補強構造にかかるせん断力、を表す。また、P1が作用する端部新設柱2bと反対側の端部新設柱2bと曲げ伝達梁1との着設点を原点O1と言うことにして、H1は端部新設柱2bの長さ、W1はV1が作用する点と原点O1との距離(曲げ伝達梁1の長さ)に作用する力をそれぞれ表す。
With reference to FIG. 2, the reaction force which acts on the concrete cloth foundation 6 when a shear force is applied to the reinforcing structure of the building will be described. When a shearing force is applied to the reinforcing structure of the building, the force V1 acting on the concrete cloth foundation 6 is expressed by the following formula (formula (1)).
V1 = P1 · H1 / W1 (1)
Here, V1 represents the force acting upward on the concrete cloth foundation 6, and P1 represents the shearing force applied to the reinforcing structure of the building. Further, the installation point between the end new column 2b opposite to the end new column 2b on which P1 acts and the bending transmission beam 1 is referred to as an origin O1, and H1 is the length of the end new column 2b. W1 represents the force acting on the distance (the length of the bending transmission beam 1) between the point where V1 acts and the origin O1.

式(1)によれば、耐力壁3長さより長い曲げ伝達梁1を使用し、距離W1を十分大きくすれば、コンクリート布基礎6に作用する力V1を低減させることができるので、コンクリート布基礎6に過大な反力が作用するのを避けることができる。具体的には、曲げ伝達梁1の長さWは、耐力壁3の曲げ伝達梁1に接合した辺の長さの3倍以上が好適である。   According to the formula (1), if the bending transmission beam 1 longer than the length of the load bearing wall 3 is used and the distance W1 is made sufficiently large, the force V1 acting on the concrete cloth foundation 6 can be reduced. It is possible to avoid an excessive reaction force acting on 6. Specifically, the length W of the bending transmission beam 1 is preferably at least three times the length of the side of the bearing wall 3 joined to the bending transmission beam 1.

上述した、新設柱2aが既設梁4にせん断力のみ伝達する手段によれば、新設柱2aは、既設梁4にせん断力のみを伝達するので、既設梁4を突き上げない。言い換えれば、端部新設柱2bは、建物の補強構造の垂直方向に作用する力を伝達するが、新設柱2aは、建物の補強構造の垂直方向に作用する力を伝達しない。   According to the above-described means in which the new column 2a transmits only the shearing force to the existing beam 4, the new column 2a transmits only the shearing force to the existing beam 4, so that the existing beam 4 is not pushed up. In other words, the end new column 2b transmits the force acting in the vertical direction of the building reinforcement structure, but the new column 2a does not transmit the force acting in the vertical direction of the building reinforcement structure.

つまり、上述した手段により、建物の補強構造の垂直方向に作用する力は、端部新設柱2bが着接する曲げ伝達梁1の両端部分で伝達するので、距離W1を十分大きくすることにより、コンクリート布基礎6に作用する力V1を低減させることができる。さらに、コンクリート布基礎6を建物の自重が、端部新設柱2bと曲げ伝達梁1との着設点に作用しコンクリート布基礎6を押さえ込んでいるので、コンクリート布基礎6に過大な上向きの反力が作用しないようにできる。従って、基礎補強工事をしなくても、建物の補強構造に壁強さ倍率の高い耐力壁を用いることができ、コストを低減して耐震性を向上することができる。   In other words, the force acting in the vertical direction of the reinforcing structure of the building by the above-mentioned means is transmitted at both end portions of the bending transmission beam 1 to which the end new column 2b is attached. The force V1 acting on the fabric foundation 6 can be reduced. Furthermore, since the weight of the concrete cloth foundation 6 acts on the installation point of the end new pillar 2b and the bending transmission beam 1 to hold down the concrete cloth foundation 6, the concrete cloth foundation 6 is excessively raised. Force can be prevented from acting. Therefore, a bearing wall having a high wall strength magnification can be used for the reinforcing structure of a building without performing foundation reinforcement work, and the cost can be reduced and the earthquake resistance can be improved.

また、コンクリート布基礎6にかかる反力の低減を図ると同時に、コンクリート布基礎6を同時に建物の自重で押さえ込んでいるので、コンクリート布基礎6に過大な上向きの反力が作用しない。つまり、無筋コンクリート基礎を補強しなくても建物の補強構造に壁強さ倍率の高い耐力壁3を用いることができるので、コストも低減することができ、また、基礎の種類を問わず汎用的に用いることができる。   In addition, the reaction force applied to the concrete cloth foundation 6 is reduced, and at the same time, the concrete cloth foundation 6 is simultaneously pressed by the weight of the building, so that an excessive upward reaction force does not act on the concrete cloth foundation 6. In other words, the load-bearing wall 3 having a high wall strength ratio can be used for the reinforcing structure of the building without reinforcing the unreinforced concrete foundation, so that the cost can be reduced and the general-purpose regardless of the type of foundation. Can be used.

また、図3を参照して、本実施形態の建物の補強構造は、耐力壁3の、一辺が端部新設柱2bに接合され、該一辺の対辺が新設柱2aに接合されている構成としてもよい。   Moreover, with reference to FIG. 3, the reinforcement structure of the building of this embodiment has a structure in which one side of the load-bearing wall 3 is joined to the end new pillar 2b and the opposite side of the one side is joined to the new pillar 2a. Also good.

<第2実施形態>
図4を参照して、第2実施形態の建物の補強構造を説明する。本実施形態の建物の補強構造は、曲げ伝達梁1、新設柱2a、端部新設柱2b、および耐力壁3を備える。
Second Embodiment
With reference to FIG. 4, the reinforcement structure of the building of 2nd Embodiment is demonstrated. The building reinforcement structure of this embodiment includes a bending transmission beam 1, a new pillar 2 a, an end new pillar 2 b, and a load bearing wall 3.

水平方向に配設された曲げ伝達梁1は、既設軸組15に着設されている。既設柱18は、一端が既設軸組15に着設され、他端がコンクリート布基礎6に着設されており、垂直方向に起立した状態で既設軸組15とコンクリート布基礎6とに着設されている。曲げ伝達梁1の両端部分において、端部新設柱2bの、一方が曲げ伝達梁1に着設され、他方がコンクリート布基礎6に着設している。言い換えると、端部新設柱2bは、垂直方向に起立した状態で、曲げ伝達梁1とコンクリート布基礎6とに着設されている。曲げ伝達梁1の両端部分以外の部分において、新設柱2aの、一方が曲げ伝達梁1に着設され、他方がコンクリート布基礎6にせん断力のみ伝達する手段により接合されている。さらに、耐力壁3の少なくとも垂直方向の一辺が、新設柱2aの垂直方向に沿って接合されている。   The bending transmission beam 1 disposed in the horizontal direction is attached to the existing shaft set 15. One end of the existing column 18 is attached to the existing shaft set 15 and the other end is attached to the concrete cloth foundation 6, and the existing pillar 18 is attached to the existing shaft set 15 and the concrete cloth foundation 6 in a vertically standing state. Has been. At both ends of the bending transmission beam 1, one of the end new columns 2 b is attached to the bending transmission beam 1 and the other is attached to the concrete cloth foundation 6. In other words, the end new column 2b is attached to the bending transmission beam 1 and the concrete cloth foundation 6 in a state of standing upright in the vertical direction. In the portions other than the both end portions of the bending transmission beam 1, one of the new columns 2a is attached to the bending transmission beam 1, and the other is joined to the concrete cloth foundation 6 by means for transmitting only a shearing force. Furthermore, at least one side of the bearing wall 3 in the vertical direction is joined along the vertical direction of the new pillar 2a.

第2実施形態の、新設柱2aが既設梁4にせん断力のみ伝達する具体的な手段は、新設柱2aの、一方が曲げ伝達梁1に着設されており、他方が水平方向から第1受け材16と第1受け材17とで狭持されている。言い換えると、新設柱2aは、コンクリート布基礎6にアンカーボルト19で着設された第1受け材16と第2受け材17、あるいは土台にラグスクリュ9で着設された第1受け材16と第2受け材17により、水平方向に狭持されており、水平方向の力(せん断力)のみを伝達できるように構成されている。新設柱2aを設置したときに、新設柱2aの他方がコンクリート布基礎6あるいは土台と接しないように、新設柱2aの長さは決定されている。具体的には、新設柱2aを設置したときに、新設柱2aの他方とコンクリート布基礎6とが、30mm程度の間隔を有していればよく、30mmの間隔が好適である(図示せず)。   In the second embodiment, the specific means for the new pillar 2a to transmit only the shearing force to the existing beam 4 is that one of the new pillars 2a is attached to the bending transmission beam 1 and the other is the first from the horizontal direction. It is held between the receiving material 16 and the first receiving material 17. In other words, the new pillar 2a includes the first receiving member 16 and the second receiving member 17 attached to the concrete cloth foundation 6 with the anchor bolts 19 or the first receiving member 16 attached to the base with the lug screw 9 and the first receiving member 16. 2 It is sandwiched by the receiving material 17 in the horizontal direction, and is configured so that only a horizontal force (shearing force) can be transmitted. When the new pillar 2a is installed, the length of the new pillar 2a is determined so that the other side of the new pillar 2a does not contact the concrete cloth foundation 6 or the foundation. Specifically, when the new pillar 2a is installed, the other pillar 2a and the concrete cloth foundation 6 need only have an interval of about 30 mm, and an interval of 30 mm is preferable (not shown). ).

また、第2実施形態の、新設柱2aが既設梁4にせん断力のみ伝達する別の具体的な手段は、新設柱2aの曲げ伝達梁1に着接しない側にほぞを形成し、コンクリート布基礎6上に着設された土台にほぞ穴を形成して、新設柱2aの曲げ伝達梁1に着設しない側と土台とを、ほぞ非形成領域と土台とが30mm程度(好適には30mm)の間隔を有して、ほぞ組みによって接合するように構成されている点を除いて、第1実施形態の新設柱2aが既設梁4にせん断力のみ伝達する具体的な別の手段と同様である(図示せず)。   Further, another specific means of the second embodiment in which the new column 2a transmits only the shearing force to the existing beam 4 is to form a tenon on the side of the new column 2a that does not contact the bending transmission beam 1, A mortise is formed in the foundation installed on the foundation 6, and the side where the new pillar 2a is not attached to the bending transmission beam 1 and the foundation, the tenon non-formation area and the foundation are about 30 mm (preferably 30 mm The new pillar 2a of the first embodiment is similar to another specific means for transmitting only the shearing force to the existing beam 4 except that it is configured to be joined by a tenon assembly with a spacing of (Not shown).

図4を参照して、建物の補強構造にせん断力が加わったときに、コンクリート布基礎6に作用する反力について説明する。建物の補強構造にせん断力が加わったとき、コンクリート布基礎6に作用する力V2は、以下の式(式(2))で表される。
V2=P2・H2/W2 ・・・式(2)
ここで、V2はコンクリート布基礎6に作用する力、P2は建物の補強構造にかかるせん断力、を表す。また、P2が作用する端部新設柱2bと反対側の端部新設柱2bとコンクリート布基礎6との着設点を原点O2と言うことにして、H2は端部新設柱2bの長さ、W2はV2が作用する点と原点O2との距離(曲げ伝達梁1の長さ)に作用する力をそれぞれ表す。
With reference to FIG. 4, the reaction force which acts on the concrete cloth foundation 6 when a shear force is applied to the reinforcing structure of the building will be described. When a shearing force is applied to the reinforcing structure of the building, the force V2 acting on the concrete cloth foundation 6 is expressed by the following formula (formula (2)).
V2 = P2 / H2 / W2 Formula (2)
Here, V2 represents a force acting on the concrete cloth foundation 6, and P2 represents a shearing force applied to the reinforcing structure of the building. Moreover, the installation point of the edge new pillar 2b opposite to the edge new pillar 2b on which P2 acts and the concrete cloth foundation 6 is referred to as an origin O2, and H2 is the length of the edge new pillar 2b. W2 represents the force acting on the distance (the length of the bending transmission beam 1) between the point where V2 acts and the origin O2.

式(2)によれば、耐力壁3長さより長い曲げ伝達梁1を使用し、距離W2を十分大きくすれば、コンクリート布基礎6に作用する力V2を低減させることができるので、コンクリート布基礎6に過大な反力が作用するのを避けることができる。具体的には、曲げ伝達梁1の長さWは、耐力壁3の曲げ伝達梁1に接合した辺の長さの3倍以上が好適である。   According to the formula (2), if the bending transmission beam 1 longer than the length of the load bearing wall 3 is used and the distance W2 is made sufficiently large, the force V2 acting on the concrete cloth foundation 6 can be reduced. It is possible to avoid an excessive reaction force acting on 6. Specifically, the length W of the bending transmission beam 1 is preferably at least three times the length of the side of the bearing wall 3 joined to the bending transmission beam 1.

上述した、新設柱2aがコンクリート布基礎6にせん断力のみ伝達する手段によれば、新設柱2aは、コンクリート布基礎6にせん断力のみを伝達するので、コンクリート布基礎6を突き下げない。言い換えれば、端部新設柱2bは、建物の補強構造の垂直方向に作用する力を伝達するが、新設柱2aは、建物の補強構造の垂直方向に作用する力を伝達しない。   According to the above-described means in which the new pillar 2a transmits only the shearing force to the concrete cloth foundation 6, the new pillar 2a transmits only the shearing force to the concrete cloth foundation 6, so that the concrete cloth foundation 6 is not pushed down. In other words, the end new column 2b transmits the force acting in the vertical direction of the building reinforcement structure, but the new column 2a does not transmit the force acting in the vertical direction of the building reinforcement structure.

つまり、上述した手段により、建物の補強構造の垂直方向に作用する力は、端部新設柱2bが着設する曲げ伝達梁1の両端部分で伝達するので、距離W2を十分大きくでき、コンクリート布基礎6に作用する力V2を低減させることができる。さらに、コンクリート布基礎6を建物の自重が、端部新設柱2bとコンクリート布基礎6との着設点に作用しコンクリート布基礎6を押さえ込んでいるので、コンクリート布基礎6に過大な反力が作用しないようにできる。従って、基礎補強工事をしなくても、建物の補強構造に壁強さ倍率の高い耐力壁を用いることができ、コストを低減して耐震性を向上することができる。   That is, by the means described above, the force acting in the vertical direction of the reinforcing structure of the building is transmitted at both end portions of the bending transmission beam 1 installed by the new end column 2b, so that the distance W2 can be sufficiently increased, and the concrete cloth The force V2 acting on the foundation 6 can be reduced. Furthermore, since the weight of the concrete cloth foundation 6 acts on the attachment point between the end new pillar 2b and the concrete cloth foundation 6 to hold down the concrete cloth foundation 6, an excessive reaction force is exerted on the concrete cloth foundation 6. It can be disabled. Therefore, a bearing wall having a high wall strength magnification can be used for the reinforcing structure of a building without performing foundation reinforcement work, and the cost can be reduced and the earthquake resistance can be improved.

また、コンクリート布基礎6にかかる反力の低減を図ると同時に、コンクリート布基礎6を同時に建物の自重で押さえ込んでいるので、コンクリート布基礎6に過大な上向きの反力が作用しない。つまり、無筋コンクリート基礎を補強しなくても建物の補強構造に壁強さ倍率の高い耐力壁3を用いることができるので、コストも低減することができ、また、基礎の種類を問わず汎用的に用いることができる。   In addition, the reaction force applied to the concrete cloth foundation 6 is reduced, and at the same time, the concrete cloth foundation 6 is simultaneously pressed by the weight of the building, so that an excessive upward reaction force does not act on the concrete cloth foundation 6. In other words, the load-bearing wall 3 having a high wall strength ratio can be used for the reinforcing structure of the building without reinforcing the unreinforced concrete foundation, so that the cost can be reduced and the general-purpose regardless of the type of foundation. Can be used.

また、図5を参照して、本実施形態の建物の補強構造は、耐力壁3の、一辺が端部新設柱2bに接合され、該一辺の対辺が新設柱2aに接合されている構成としてもよい。   Referring to FIG. 5, the building reinforcing structure of the present embodiment has a structure in which one side of the load-bearing wall 3 is joined to the end new column 2 b and the opposite side of the one side is joined to the new column 2 a. Also good.

第1実施形態の建物の補強構造を適用して、平屋建てに2階を増築した築46年の木造住宅(図8参照)の2階直下をコンクリート布基礎6を新設せずに、耐震補強工事を行った。   Applying the reinforcement structure of the building of the first embodiment, seismic reinforcement without newly installing a concrete cloth foundation 6 directly under the second floor of a 46-year-old wooden house (see Fig. 8) that has been expanded to a second floor. Construction was done.

建物の耐震補強工事の実施前と実施後の建物を、精密診断法(財団法人日本建築防災協会:木造住宅の耐震診断と補強方法、2004年発行)により診断した。その結果を表1に示す。補強工事後の建物に実施した診断結果は、上部構造評点が1.00以上となり、本発明の補強工事の実施により耐震性が大きく改善された。   The building was diagnosed before and after the earthquake-proof reinforcement work by the Precise Diagnosis Method (Japan Building Disaster Prevention Association: Seismic diagnosis and reinforcement method for wooden houses, issued in 2004). The results are shown in Table 1. As a result of the diagnosis performed on the building after the reinforcement work, the superstructure score was 1.00 or more, and the earthquake resistance was greatly improved by the reinforcement work of the present invention.

また、図8に示したように、加速度計14a〜14dを設置し、X軸方向およびY軸方向の加速度を計測し、建物の固有周期T(s)を算出した。図9に示すように耐震補強工事の進行に伴い、固有周期Tが短くなり、固有周期Tの観点からも耐震性が大きく改善された。   Moreover, as shown in FIG. 8, the accelerometers 14a-14d were installed, the acceleration of the X-axis direction and the Y-axis direction was measured, and the natural period T (s) of the building was calculated. As shown in FIG. 9, the natural period T is shortened with the progress of the seismic reinforcement work, and the earthquake resistance is greatly improved from the viewpoint of the natural period T.

また、各施行段階のX,Y方向の剛性Kを以下の式(式(3))で算出し、補強による剛性Kの増加量ΔKを調べた。
T=2π・√M/√K ・・・式(3)
ここで、Tは固有周期、Kは剛性を示す。Mは、固有周期Tと固定荷重や積載荷重から積算した当該箇所の1階の階高の1/2より上の建物重量M=135kNを示す。
Further, the rigidity K in the X and Y directions at each implementation stage was calculated by the following formula (formula (3)), and the increase amount ΔK 0 of the rigidity K due to reinforcement was examined.
T = 2π · √M / √K Equation (3)
Here, T represents the natural period, and K represents rigidity. M represents a building weight M = 135 kN above 1/2 of the height of the first floor of the location, which is calculated from the natural period T, the fixed load, and the loaded load.

表2における各番号は、以下の補強工事の工程を示す((ii):計測初期状態、(iii):圧縮筋交い、(iv):全ネジブレース(1階)、(v):基礎梁つき面材耐力壁、(vi):構造用合板、(vii):構造用合板、(viii):構造用合板および全ネジブレース(2階))。   Each number in Table 2 indicates the following reinforcement work process ((ii): initial measurement state, (iii): compression bracing, (iv): all screw braces (1st floor), (v): surface with foundation beam Material bearing wall, (vi): structural plywood, (vii): structural plywood, (viii): structural plywood and all screw braces (2nd floor).

表2に示すように補強工事の進行に伴い、特に本発明の建物の補強構造を組み入れたとき(v)に建物剛性K(kN/m)が著しく向上し、建物剛性Kの観点からも耐震性が大きく改善された。   As shown in Table 2, the building rigidity K (kN / m) is remarkably improved when the reinforcing structure of the present invention is incorporated as the reinforcement work proceeds, and the building rigidity K is also improved from the viewpoint of the building rigidity K. The characteristics were greatly improved.

また、本発明の建物の補強構造、特に耐力要素について、さらに詳細に研究された。   Further, the reinforcing structure of the building of the present invention, particularly the strength element, was studied in more detail.

<耐力要素>
図1のように柱頭柱脚接合部を、金物工法に用いる金物で接合した柱−横架材の両面に12mmの構造用合板を75mmピッチで釘打ちした高耐力要素であり、水平力による浮き上がりを低減できるように、せい330mm、アンカーボルト19間2400mm程度の曲げ伝達梁1(以下、基礎梁1という)を設け、さらに端部新設柱2bは既存柱18とラグスクリュ9で固定して、又、端部新設柱2bは基礎梁1に直接突きつけて建物の鉛直荷重による押さえ込みにより、基礎梁1を固定するアンカーボルト19に作用する引張力を軽減できるのが特徴である。その際、この引張力をアンカーボルト19が負担できるよう、厚み200mm程度の土間コンクリート6を打設する必要はあるが、新たに鉄筋コンクリート造の布基礎6を新設するよりは簡易な工法である。なお、曲げ伝達梁1がたわんでも土間コンクリート6天端に接しないよう、厚さ20mmの基礎パッキン5をアンカー部に設けている。また新設柱2aはこの耐力要素に水平力が作用し1/10rad.まで変形しても既設梁4を突き上げないよう30mm程度の隙間をあけている。B方向の加力では、既設梁4に取り付けられた受け材17からホールダウン金物10(以降、HD金物10)を介して端部新設柱2b側からせん断力が作用するように、A方向の加力では受け材17から直接端部新設柱2bにせん断力が作用するよう、受け材17を既設軸組15に取り付けた。
<Strength element>
It is a high strength element in which 12mm structural plywood is nailed at 75mm pitch on both sides of the pillar-horizontal material joined with the hardware used for hardware construction method as shown in Fig. 1 and lifted by horizontal force The bending transmission beam 1 (hereinafter referred to as the foundation beam 1) having a length of 330 mm and an anchor bolt 19 of about 2400 mm is provided, and the end new column 2b is fixed with the existing column 18 and the lug screw 9, or The end new column 2b is characterized in that the tensile force acting on the anchor bolt 19 for fixing the foundation beam 1 can be reduced by directly abutting against the foundation beam 1 and pressing it by the vertical load of the building. At that time, it is necessary to cast the earth concrete 6 having a thickness of about 200 mm so that the anchor bolt 19 can bear this tensile force, but this is a simpler construction method than newly installing the reinforced concrete cloth foundation 6. A foundation packing 5 having a thickness of 20 mm is provided on the anchor portion so that the bending transmission beam 1 does not contact the top end of the soil concrete 6 even if it bends. In addition, the new column 2a has a horizontal force acting on the load bearing element so that 1/10 rad. A gap of about 30 mm is made so as not to push up the existing beam 4 even if it is deformed. In the applied force in the B direction, a shearing force is applied from the receiving member 17 attached to the existing beam 4 via the hole-down hardware 10 (hereinafter referred to as HD hardware 10) from the end new pillar 2b side. In the applied force, the receiving member 17 was attached to the existing shaft group 15 so that a shearing force was applied directly from the receiving member 17 to the new end column 2b.

<試験方法>
図12に示すとおり、試験体上部の片側を荷重計の有する繋ぎ材で水平移動を拘束し、下部をローラー支持された架台に固定し、架台を10tf用電動アクチュエータで水平移動させ、柱脚固定式による各所定変形角3回正負交番繰返しの漸増載荷とする。なお、基礎梁1付き面材耐力壁の試験のうちMW75−2、3では、基礎梁1両端のアンカーボルト19に作用するせん断力を計測するため、センターホール式の荷重計を2ヵ所設置した。
<Test method>
As shown in FIG. 12, one side of the upper part of the test body is restrained from horizontal movement with a connecting material having a load meter, the lower part is fixed to a base supported by a roller, the base is horizontally moved by a 10 tf electric actuator, and a column base is fixed. It is assumed that the load is gradually increased by repeating the positive and negative alternating times each predetermined deformation angle by the formula. In addition, in MW75-2 and 3 in the test of the bearing material bearing wall with the foundation beam 1, two center-hole type load meters were installed in order to measure the shearing force acting on the anchor bolts 19 at both ends of the foundation beam 1. .

<試験結果及び考察>
図11に各試験における荷重−変形角関係の包絡線一覧を、表3に完全弾塑性評価より得られた各特性値の平均値の一覧を示す。
<Test results and discussion>
FIG. 11 shows a list of envelopes of the load-deformation angle relationship in each test, and Table 3 shows a list of average values of the characteristic values obtained from the complete elastic-plastic evaluation.

<基礎梁付き面材耐力壁>
破壊性状について述べる。初期段階では、面材や釘のずれがみられた。変形が進むにつれてこれらが進展し、最終的には面材が軸材から外れることで耐力低下した。浮き上がり力の算定について述べる。図12(a)に示すように試験体の(I)水平荷重、(II)基礎梁1に作用するせん断力、(III)水平荷重をせん断力に偶力置換した計算結果を図12(b)に示す。図中の(II)と(III)は、概ね一致しており、水平荷重の偶力置換による基礎梁1の支持点でのせん断力の算定が妥当であることがわかった。また、最大耐力以降でも、全試験体で基礎梁1に損傷は見られなかった。基礎梁1の曲げに対する検定について述べる。図13に示すモデルを基に、本試験体の短期及び最大耐力時における基礎梁1の許容曲げ応力度を検定する。基礎梁1の断面係数は、図13に示す通り金物側の座堀り(16mm)と高力ボルト孔(14mm)の断面欠損を考慮して安全側に算定し、使用する木材の強度を短期は基準強度の2/3、最大耐力は基準耐力とした。計算において基礎梁1の曲げ応力を検討した結果、表4に示す通り短期せん断耐力及び最大荷重時ともに安全であることがわかり、実験と計算の両面で基礎梁1が安全であることを確認した。
<Surface bearing wall with foundation beam>
Describe the destructive properties. In the initial stage, slippage of face materials and nails was observed. These progressed as the deformation progressed, and ultimately the face material was detached from the shaft material, resulting in a decrease in yield strength. The calculation of lifting force is described. As shown in FIG. 12 (a), (I) horizontal load of the specimen, (II) shear force acting on the foundation beam 1, and (III) calculation results obtained by substituting the horizontal load with shear force are shown in FIG. ). (II) and (III) in the figure are almost the same, and it was found that the calculation of the shear force at the support point of the foundation beam 1 by replacing the horizontal load with a couple is appropriate. Further, even after the maximum proof stress, no damage was seen in the foundation beam 1 in all the test specimens. The verification for bending of the foundation beam 1 will be described. Based on the model shown in FIG. 13, the allowable bending stress level of the foundation beam 1 in the short-term and maximum proof stress of this specimen is tested. As shown in Fig. 13, the section modulus of the foundation beam 1 is calculated on the safe side taking into account the cross-sectional defect of the hardware side ditch (16mm) and high strength bolt hole (14mm), and the strength of the wood used is short-term. Is 2/3 of the standard strength, and the maximum proof stress is the standard proof strength. As a result of examining the bending stress of the foundation beam 1 in the calculation, it was found that both the short-term shear strength and the maximum load were safe as shown in Table 4, and it was confirmed that the foundation beam 1 was safe in both experiments and calculations. .

<まとめ>
安価に施工できる2種類の耐力要素を開発し、それらの水平加力試験を行うことにより構造性能を実験的に確認できた。
<Summary>
Two kinds of load-bearing elements that can be constructed at low cost were developed, and the structural performance could be confirmed experimentally by conducting a horizontal force test.

また、本発明の建物の補強構造を適用した耐震改修事例について、さらに詳細に効果の検証が行われた。   In addition, the effect of the seismic retrofit example using the reinforcing structure of a building according to the present invention was verified in more detail.

<耐震診断ならびに補強計画>
対象の住宅を図8に示す。この住宅は在来軸組構法で、平屋建てに2階を増築した築46年の住宅である。この住宅を精密診断法により診断した結果を表1に示す。その結果、建築基準法で定める大地震時に倒壊する可能性が高いと診断された。その主な原因として、2階直下に耐力要素が無いことと、洋室1に開口が多いことが考えられる。そこで、補強計画は診断結果と家主の要望に基づき、2階直下を布基礎を新設せずに基礎梁1付き面材耐力壁で補強すること、既存の開口を残すため全ネジブレース耐力壁を設けることを主とした。
<Seismic diagnosis and reinforcement plan>
The target house is shown in FIG. This house is a 46-year-old house with a conventional structure and a two-story building. Table 1 shows the results of diagnosing this house by the precision diagnostic method. As a result, it was diagnosed that there is a high possibility of collapse in the event of a major earthquake as stipulated by the Building Standards Act. The main causes are that there is no load bearing element directly below the second floor and that the Western room 1 has many openings. Therefore, the reinforcement plan is based on the diagnosis results and the request of the landlord, to reinforce the floor directly below the second floor with a face bearing bearing wall with a foundation beam 1 without installing a new fabric foundation, and to provide an existing thread brace bearing wall to leave the existing opening. That was the main thing.

<耐震補強>
主な補強工事を図8の凡例に、補強後の診断結果を表1に示す。その結果、上部構造評点は1.00を上回り、大地震時に一応倒壊しないことを確認した。
<Seismic reinforcement>
The main reinforcement work is shown in the legend of FIG. 8, and the diagnosis results after reinforcement are shown in Table 1. As a result, the superstructure score exceeded 1.00, and it was confirmed that it would not collapse in the event of a major earthquake.

<建物の固有周期T>
各施工段階で人力加振による自由振動で建物の固有周期Tを計測し、建物の固有周期Tの変化と補強効果の関係を確認する。X、Y方向とも2階の2箇所を同時に人力で衝撃的に加力し、これを複数回行って2階の4ヵ所に設置した加速度計で加速度を計測し、FFTにより一次モード成分以外を除去して一次の固有周期Tを算出した。その際、加速度を変位に置換し、回帰直線の平均値で比較する。結果は図14のようになり、施工が進むにつれてY方向では固有周期Tに明確な変化がなかったのに対し、X方向では固有周期Tが短くなっている。さらに、計測初期の段階ではch3とch4の変位の差が大きいことから建物がねじれているのが確認できるが、施工が進むにつれて変位の差が減少していることからねじれがなくなり、固有周期Tからも補強効果を確認できた。
<Natural period T of building>
At each construction stage, the natural period T of the building is measured by free vibration due to human vibration, and the relationship between the change of the natural period T of the building and the reinforcing effect is confirmed. In both the X and Y directions, two places on the second floor are simultaneously shockedly applied by human power, and this is repeated several times to measure acceleration with accelerometers installed at four places on the second floor. The primary natural period T was calculated after removal. At that time, the acceleration is replaced with the displacement, and the average value of the regression line is compared. The result is as shown in FIG. 14. As the construction progressed, the natural period T did not change clearly in the Y direction, whereas the natural period T became shorter in the X direction. Furthermore, at the initial stage of measurement, it can be confirmed that the building is twisted because the difference in displacement between ch3 and ch4 is large. However, since the difference in displacement decreases as the construction progresses, the twist is eliminated, and the natural period T The reinforcing effect was confirmed.

<考察1:基礎梁付き面材耐力壁の必要反力>
基礎梁1付き面材耐力壁の浮上りに対する抵抗機構は、前報で述べた通りである。そこで、実験で計測されたアンカーボルト19に作用する引張力の最大値を必要反力として、コンクリートに埋めたアンカーボルト19に作用する引張力を、図16中のA、Bの箇所での鉛直荷重によりどの程度低減できるか検討する。ここで鉛直荷重は、実際にA、Bの箇所で図15に示すようにジャッキを梁の下端にあてて持ち上げて計測して算出した柱軸力(計測値)と、図16の荷重分布図を用いて、固定荷重や積載荷重と負担面積から算出した柱軸力(計算値)とし、両者の比較も行う。結果を表5に示す。柱軸力の比較は、柱Aでは梁のみが持ち上がったため、計測値よりも計算値の方が2階からの柱の軸力分だけ上回った。一方、柱Bは計測値と計算値が概ね一致した。しかし、柱Aは既存柱18とラグスクリュ9(LS12×240)3本で接合することで、2階からの柱の軸力分も押さえ込みに寄与できるように施工している。一方、柱Bでは、鉛直荷重による押さえ込みが生じ始める荷重は11kN程度であり、必要反力の1/2は少なくとも期待できる。したがって、コンクリートに埋め込まれたアンカーボルト19は最大で10kN程度の引張力に対して抵抗すればよいことが確認できた。
<Consideration 1: Necessary reaction force of bearing wall with foundation beam>
The resistance mechanism against the floating of the bearing material bearing wall with the foundation beam 1 is as described in the previous report. Therefore, the tensile force acting on the anchor bolt 19 buried in the concrete is determined as the required reaction force with the maximum value of the tensile force acting on the anchor bolt 19 measured in the experiment as the vertical force at the points A and B in FIG. Consider how much the load can be reduced. Here, the vertical load is the column axial force (measured value) calculated by actually lifting the jack at the lower end of the beam as shown in FIG. 15 at the locations A and B, and the load distribution diagram of FIG. Is used as a column axial force (calculated value) calculated from a fixed load or a loaded load and a burden area, and the two are also compared. The results are shown in Table 5. As for the comparison of the column axial force, only the beam lifted in the column A, so the calculated value was higher than the measured value by the axial force of the column from the second floor. On the other hand, the measured value and the calculated value of the column B substantially coincided. However, the pillar A is constructed so that the existing pillar 18 and three lug screws 9 (LS12 × 240) are joined so that the axial force of the pillar from the second floor can also contribute to pressing. On the other hand, in the column B, the load at which pressing by the vertical load starts to occur is about 11 kN, and at least ½ of the required reaction force can be expected. Therefore, it was confirmed that the anchor bolt 19 embedded in the concrete only has to resist a tensile force of about 10 kN.

<考察2:固有周期Tと上部構造評点の関係>
各施工段階でのX、Y方向の固有周期Tと精密診断の上部構造評点の関係を調べる。なお、(i)は施工のために荷物を1階から2階へ移動したことで荷重状況が(ii)以降と大きく異なるため、比較対象から除く。結果を図9に示す。1階を補強した時はX、Y方向とも、施工が進むにつれて評点の上昇に伴い固有周期Tが短くなる相関関係が見られ、この関係はX方向で特に基礎梁耐力壁を施工した(v)で顕著に見られた。一方、2階を補強した時は、(vii)−(viii)間のみでこの関係が見られた。
<Discussion 2: Relationship between natural period T and superstructure score>
The relationship between the natural period T in the X and Y directions at each construction stage and the superstructure score of precision diagnosis is examined. Note that (i) is excluded from the comparison target because the load situation is greatly different from that after (ii) because the load is moved from the first floor to the second floor for construction. The results are shown in FIG. When the first floor is reinforced, there is a correlation that the natural period T becomes shorter as the score increases in both the X and Y directions, and this relationship is especially the construction of the foundation beam bearing wall in the X direction (v ). On the other hand, when the second floor was reinforced, this relationship was seen only between (vii)-(viii).

<考察3:固有周期Tに基づく建物剛性Kの算出と比較>
固有周期Tと、固定荷重や積載荷重から算出した当該箇所の1階の階高の1/2より上の建物重量M=135kNを用い、各施工段階のX、Y方向の剛性Kを式(3)で算出し、補強による剛性Kの増加量ΔKを調べる。そして、ΔKと実際に追加した各耐力要素の剛性ΔK、ΔKを比較する。なおΔKは追加した耐力要素の実験結果の包絡線データを完全弾塑性評価で求めた基準剛性、ΔKは各耐力要素の実験結果から求めた自由振動時の変位量(0.1mm〜0.8mm)での割線剛性である。表2より剛性Kは施工が進むにつれて上昇した。剛性の増加量を比較すると、ΔKよりΔKの方がΔKに近くなった。これはΔKを自由振動時の変位量で評価したためと考えられる。また(v)、(viii)の施工時にΔKが大幅に増加した原因は特定できなかったが、Y方向と2階を補強したことが要因の一つと推測される。
<Consideration 3: Calculation and comparison of building stiffness K based on natural period T>
Using the natural period T and the building weight M = 135 kN above the ground floor height of the first floor of the location calculated from the fixed load and the loaded load, the stiffness K in the X and Y directions at each construction stage is expressed by the formula ( Calculated in 3), the increase amount ΔK 0 of the rigidity K due to reinforcement is examined. Then, ΔK 0 is compared with the rigidity ΔK 1 , ΔK 2 of each load bearing element actually added. ΔK 1 is a reference rigidity obtained by complete elasto-plastic evaluation of envelope data of the experimental results of the added strength element, and ΔK 2 is a displacement amount (0.1 mm to 0) obtained from the experimental results of each strength element. Secant stiffness at .8 mm). From Table 2, the rigidity K increased as the construction progressed. Comparing the amount of increase in rigidity, ΔK 2 was closer to ΔK 0 than ΔK 1 . This is considered to be because ΔK 2 was evaluated by the amount of displacement during free vibration. The (v), could not be identified due to [Delta] K 0 increased significantly during application of (viii), it has reinforced the Y direction and the second floor is presumed that one of the factors.

<まとめ>
既存の住宅を対象として精密診断法により耐震診断を行い、開発した耐力要素を用いた補強前後の耐震性能を比較した。また、各施工段階で固有周期が短くなり、固有周期と上部構造評点の関係からも補強効果を確認した。
<Summary>
Seismic diagnosis was performed for existing houses by the precision diagnostic method, and the seismic performance before and after reinforcement using the developed load-bearing elements was compared. In addition, the natural period became shorter at each construction stage, and the reinforcing effect was confirmed from the relationship between the natural period and the superstructure score.

本発明は、建物の補強構造に関して有用である。   The present invention is useful for building reinforcement structures.

1 曲げ伝達梁(基礎梁)
2a 新設柱(柱B)
2b 端部新設柱(柱A)
3 耐力壁
4 既設梁(既存梁)
5 スペーサ(基礎パッキン)
6 コンクリート布基礎(土間コンクリート、布基礎)
7 土台
8 受け材
9 ラグスクリュ
10 ホールダウン金物
11 構造用合板
12 架台
13 荷重計
14a〜d 加速度計
15 既設軸組
16 第1受け材(受け材1)
17 第2受け材(受け材2)
18 既設柱(既存柱)
19 アンカーボルト

105 外壁
106 基礎コンクリート
109 柱
110 梁
112 ラダスクリュー(固定具)
115 金属製筋交い部材
117 金属製補強部材
120,122 ボルト(張力調整用部材)
121 ナット部材(張力調整用部材)
1 Bending transmission beam (foundation beam)
2a New pillar (pillar B)
2b New pillar at the end (pillar A)
3 Bearing walls 4 Existing beams (existing beams)
5 Spacer (Fundamental packing)
6 Concrete cloth foundation (concrete concrete, cloth foundation)
7 base 8 receiving material 9 lug screw 10 hole down hardware 11 structural plywood 12 mount 13 load meter 14a to d accelerometer 15 existing shaft 16 first receiving material (receiving material 1)
17 Second receiving material (receiving material 2)
18 Existing pillars (existing pillars)
19 Anchor bolt

105 outer wall 106 foundation concrete 109 pillar 110 beam 112 ladder screw (fixing tool)
115 Metal bracing member 117 Metal reinforcing member 120, 122 bolt (tension adjusting member)
121 Nut member (Tension adjusting member)

Claims (3)

梁を備えた建物の補強構造であって、
両端部分にスペーサを介して、コンクリート布基礎に着設された曲げ伝達梁と、
前記曲げ伝達梁の両端部分において、一方が前記曲げ伝達梁に着設され、他方が既設梁に着設された端部新設柱と、
前記曲げ伝達梁の両端部分以外の部分において、一方が前記曲げ伝達梁に着設され、他方が前記既設梁にせん断力のみを伝達する手段により接合された新設柱と、
少なくとも垂直方向の一辺が前記新設柱に設置された耐力壁と、
を備えたことを特徴とする建物の補強構造。
A building reinforcement structure with beams,
Bending transmission beams attached to the concrete fabric foundation via spacers at both ends,
At both end portions of the bending transmission beam, one end is installed on the bending transmission beam, and the other is an end new column installed on the existing beam.
In a portion other than both end portions of the bending transmission beam, one is attached to the bending transmission beam, and the other is joined to the existing beam by means for transmitting only a shearing force,
A load-bearing wall having at least one side in the vertical direction installed on the new pillar;
Reinforcement structure of the building characterized by comprising.
梁を備えた建物の補強構造であって、
既設軸組に着設された曲げ伝達梁と、
前記曲げ伝達梁の両端部分において、一方が前記曲げ伝達梁に着設され、他方がコンクリート布基礎に着設された端部新設柱と、
前記曲げ伝達梁の両端部分以外の部分において、一方が前記曲げ伝達梁に着設され、他方がコンクリート布基礎にせん断力のみを伝達する手段により接合された新設柱と、
少なくとも垂直方向の一辺が前記新設柱に設置された耐力壁と、
を備えたことを特徴とする建物の補強構造。
A building reinforcement structure with beams,
A bending transmission beam attached to an existing shaft;
At both end portions of the bending transmission beam, one end is installed on the bending transmission beam, and the other is an end new column installed on the concrete cloth foundation,
In a portion other than both end portions of the bending transmission beam, one is attached to the bending transmission beam, and the other is joined to the concrete cloth foundation by means for transmitting only shearing force,
A load-bearing wall having at least one side in the vertical direction installed on the new pillar;
Reinforcement structure of the building characterized by comprising.
請求項1または2に記載の建物の補強構造であって、
コンクリート布基礎が無筋コンクリート布基礎であることを特徴とする建物の補強構造。
The building reinforcing structure according to claim 1 or 2,
A reinforcing structure for a building, wherein the concrete cloth foundation is an unreinforced concrete cloth foundation.
JP2010196324A 2010-09-02 2010-09-02 Building reinforcement structure Expired - Fee Related JP5484264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010196324A JP5484264B2 (en) 2010-09-02 2010-09-02 Building reinforcement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010196324A JP5484264B2 (en) 2010-09-02 2010-09-02 Building reinforcement structure

Publications (2)

Publication Number Publication Date
JP2012052358A JP2012052358A (en) 2012-03-15
JP5484264B2 true JP5484264B2 (en) 2014-05-07

Family

ID=45905974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010196324A Expired - Fee Related JP5484264B2 (en) 2010-09-02 2010-09-02 Building reinforcement structure

Country Status (1)

Country Link
JP (1) JP5484264B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5856101B2 (en) * 2013-04-26 2016-02-09 大和ハウス工業株式会社 Seismic reinforcement structure for wooden houses
JP6385686B2 (en) * 2014-02-25 2018-09-05 株式会社タナカ Wood frame structure
JP6945341B2 (en) * 2017-05-12 2021-10-06 大成建設株式会社 Expansion foundation structure
CN111042570B (en) * 2020-01-03 2021-11-05 上海市园林工程有限公司 Repairing construction method for fresh water brick wall of ancient building

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3991876B2 (en) * 2003-02-03 2007-10-17 大成建設株式会社 Seismic reinforcement structure
JP3802024B2 (en) * 2003-10-28 2006-07-26 松下電工株式会社 Housing outer wall reinforcement structure
JP4098334B2 (en) * 2006-03-10 2008-06-11 住友不動産株式会社 Seismic reinforcement method and seismic reinforcement structure for buildings

Also Published As

Publication number Publication date
JP2012052358A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
Vidjeapriya et al. Behaviour of precast beam-column mechanical connections under cyclic loading
Riva et al. Cyclic behaviour of a full scale RC structural wall
JP5484264B2 (en) Building reinforcement structure
Sherman Effects of key parameters on the performance of concrete masonry shear walls under in-plane loading
Wang et al. Progressive collapse resistance of reinforced-concrete frames with specially shaped columns under loss of a corner column
Hu et al. Seismic behavior of concrete-filled double-skin steel tube/moment-resisting frames with beam-only-connected precast reinforced concrete shear walls
Reneckis et al. Out-of-plane performance of brick veneer walls on wood frame construction
Dazio The effect of the boundary conditions on the out-of-plane behaviour of unreinforced masonry walls
Lim et al. Exposed column-base plate strong-axis connections for small-size steel construction
Wight et al. Shaketable testing of rectangular post-tensioned concrete masonry walls
Li et al. Seismic design and testing of the bottom vertical boundary elements in steel plate shear walls. Part 2: experimental studies
JP2001164645A (en) Structural calculation method for wooden house and wooden house built using the same
Zhao et al. Cyclic behavior of an innovative steel shear wall system
Krishna et al. Lateral load behaviour of Glass Fibre Reinforced Gypsum walls supported on Reinforced Concrete frames
Guo et al. In-plane behavior of Chuan-Dou style wooden frames with infill under cyclic loading
Reneckis et al. Analysis of brick veneer walls on wood frame construction subjected to out-of-plane loads
Ismail et al. Out-of-plane testing of seismically retrofitted URM walls using posttensioning
Kamanli et al. Seismic improvement of infilled nonductile RC frames with external mesh reinforcement and plaster composite
Mariscal et al. Study of a Slender Masonry Wall Tested in an Innovative Device
Zhao et al. Experimental and analytical studies of a steel plate shear wall system
Kaplan et al. Seismic strengthening of pin-connected precast concrete structures with external shear walls and diaphragms.
Thomas et al. Retrofit options for residential house foundations to resist earthquakes
Kang et al. Early crushing failure of high-rise shear walls with no boundary confinement
Riva et al. Experimental test on a full scale repaired RC structural wall
Aloosi et al. Behavior and Strength of Concrete Shear Walls with Steel Reinforcement and CFRP Retrofitting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140218

R150 Certificate of patent or registration of utility model

Ref document number: 5484264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees