JP5483523B2 - Electrode active material and secondary battery - Google Patents

Electrode active material and secondary battery Download PDF

Info

Publication number
JP5483523B2
JP5483523B2 JP2008219401A JP2008219401A JP5483523B2 JP 5483523 B2 JP5483523 B2 JP 5483523B2 JP 2008219401 A JP2008219401 A JP 2008219401A JP 2008219401 A JP2008219401 A JP 2008219401A JP 5483523 B2 JP5483523 B2 JP 5483523B2
Authority
JP
Japan
Prior art keywords
group
substituted
active material
unsubstituted
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008219401A
Other languages
Japanese (ja)
Other versions
JP2010055923A (en
Inventor
靖 森田
辰介 西田
武治 工位
正春 佐藤
奈緒 芥川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Osaka University NUC
Osaka City University
Original Assignee
Murata Manufacturing Co Ltd
Osaka University NUC
Osaka City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd, Osaka University NUC, Osaka City University filed Critical Murata Manufacturing Co Ltd
Priority to JP2008219401A priority Critical patent/JP5483523B2/en
Publication of JP2010055923A publication Critical patent/JP2010055923A/en
Application granted granted Critical
Publication of JP5483523B2 publication Critical patent/JP5483523B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は電極活物質及び二次電池に関し、より詳しくは有機化合物を使用した電極活物質、及び該電極活物質の電極反応を利用して充放電を繰り返すリチウム二次電池等の二次電池に関する。   The present invention relates to an electrode active material and a secondary battery, and more particularly to an electrode active material using an organic compound, and a secondary battery such as a lithium secondary battery that repeatedly charges and discharges using an electrode reaction of the electrode active material. .

携帯電話、ノートパソコン、PDA(Personal Data Assistant:携帯情報端末)等の携帯用電子機器の市場拡大に伴い、これら電子機器のコードレス電源としてエネルギー密度が大きく長寿命の二次電池が待望されている。   With the expansion of the market for portable electronic devices such as mobile phones, notebook computers, and PDAs (Personal Data Assistants), secondary batteries with high energy density and long life are expected as cordless power sources for these electronic devices. .

そして、このような要求に応えるべく、リチウムイオン等のアルカリ金属イオンを荷電担体とし、その電荷授受に伴う電気化学反応を利用した二次電池が開発されている。特に、エネルギー密度の大きなリチウムイオン二次電池は、現在では広く普及している。   In response to such demands, secondary batteries have been developed that use an alkali metal ion such as lithium ion as a charge carrier and use an electrochemical reaction associated with the charge exchange. In particular, lithium ion secondary batteries having a high energy density are now widely used.

この種のリチウムイオン二次電池は、正極活物質としてリチウム含有遷移金属酸化物、負極活物質として炭素材料を使用し、これらの活物質に対するリチウムイオンの挿入反応、及び脱離反応を利用して充放電を行っている。   This type of lithium ion secondary battery uses a lithium-containing transition metal oxide as a positive electrode active material and a carbon material as a negative electrode active material, and utilizes lithium ion insertion and desorption reactions with these active materials. Charging / discharging is performed.

しかしながら、リチウムイオン二次電池は、正極におけるリチウムイオンの移動が律速となるため、充放電の速度が制限されるという問題があった。すなわち、上述したリチウムイオン二次電池では、電解質や負極に比べて正極の遷移金属酸化物中でのリチウムイオンの移動速度が遅く、このため正極での電池反応速度が律速となって充放電速度が制限され、その結果、高出力化や充電時間の短時間化には限界があるという問題があった。   However, the lithium ion secondary battery has a problem that the rate of charge and discharge is limited because the movement of lithium ions in the positive electrode is rate-limiting. That is, in the above-described lithium ion secondary battery, the migration rate of lithium ions in the transition metal oxide of the positive electrode is slower than that of the electrolyte and the negative electrode, and therefore the battery reaction rate at the positive electrode becomes the rate-determining rate. As a result, there is a problem that there is a limit to increasing the output and shortening the charging time.

ところで、電極活物質は、充電反応、放電反応という電池電極反応に直接寄与する物質であり、二次電池の中心的役割を有する。すなわち、電池電極反応は、電解質中に配された電極と電気的に接続された電極活物質に対し電圧を印加することにより、電子の授受を伴って生じる反応であり、電池の充放電時に進行する。したがって、上述したように電極活物質は、システム的には、二次電池の中心的役割を有する。   By the way, the electrode active material is a substance that directly contributes to a battery electrode reaction such as a charge reaction and a discharge reaction, and has a central role of a secondary battery. That is, the battery electrode reaction is a reaction that occurs with the transfer of electrons by applying a voltage to an electrode active material that is electrically connected to an electrode disposed in the electrolyte, and proceeds during charging and discharging of the battery. To do. Therefore, as described above, the electrode active material has a central role of the secondary battery in terms of system.

このような観点から電極活物質の研究・開発が、従来より、盛んに行われており、例えば、有機化合物を使用した電極活物質も各種提案されている。   From this point of view, research and development of electrode active materials have been actively conducted. For example, various electrode active materials using organic compounds have been proposed.

例えば、特許文献1には、正極又は負極の活物質に導電性高分子を使用した電池が提案されている。   For example, Patent Document 1 proposes a battery using a conductive polymer as a positive electrode or negative electrode active material.

この特許文献1は、導電性高分子に対する電解質イオンのドープ反応、及び脱ドープ反応を充放電に利用している。ここで、ドープ反応とは、導電性高分子の電気化学的な酸化反応又は還元反応によって生じる荷電ソリトンやポーラロン等を対イオンによって安定化させる反応をいい、脱ドープ反応とは、ドープ反応の逆反応、すなわち、対イオンによって安定化された荷電ソリトンやポーラロンを電気化学的に酸化又は還元する反応をいう。そして、この特許文献1では、活物質として、炭素、水素、窒素等の原子量の小さな元素を構成要素とする有機化合物を使用していることから、電池の軽量化が可能と考えられる。   This patent document 1 uses the doping reaction of the electrolyte ion with respect to a conductive polymer, and the dedoping reaction for charging / discharging. Here, the doping reaction refers to a reaction that stabilizes charged solitons, polarons, and the like generated by the electrochemical oxidation reaction or reduction reaction of the conductive polymer with a counter ion, and the dedoping reaction is the reverse of the doping reaction. A reaction, that is, a reaction that electrochemically oxidizes or reduces charged solitons or polarons stabilized by a counter ion. And in this patent document 1, since the organic compound which uses small elements, such as carbon, hydrogen, and nitrogen, as an active material is used as an active material, it is thought that the weight reduction of a battery is possible.

また、特許文献2及び3には、有機ラジカル化合物を反応出発物(電池電極反応で化学反応を起こす物質)、若しくは生成物(化学反応の結果生じる物質)とする二次電池が提案されている。   Patent Documents 2 and 3 propose secondary batteries in which organic radical compounds are used as reaction starting materials (substances that cause a chemical reaction by battery electrode reactions) or products (substances resulting from chemical reactions). .

すなわち、特許文献2には、ニトロキシルラジカル系化合物、オキシラジカル系化合物、及び窒素原子上にラジカルを有する窒素ラジカル系化合物を使用した二次電池用活物質が開示され、特許文献3には環状ニトロキシルラジカルからなる化合物を電極活物質とする二次電池が開示されている。   That is, Patent Document 2 discloses a secondary battery active material using a nitroxyl radical compound, an oxy radical compound, and a nitrogen radical compound having a radical on a nitrogen atom. Patent Document 3 discloses a cyclic active material. A secondary battery using a compound composed of a nitroxyl radical as an electrode active material is disclosed.

特許文献2及び3の二次電池は、ラジカルの酸化還元反応を利用して充放電を行っており、反応速度が大きいことから、高出力を有し、比較的短時間で充電することが可能と考えられる。   The secondary batteries of Patent Documents 2 and 3 are charged / discharged using a redox reaction of radicals and have a high reaction rate, so that they have a high output and can be charged in a relatively short time. it is conceivable that.

また、特許文献4〜8には、下記一般式(1′)で表される7,7,8,8−テトラシアノキノジメタン(以下、「TCNQ」という。)を正極活物質に使用し、リチウム等のアルカリ金属を負極活物質とした電池が提案され、特許文献9では、TCNQのリチウム塩を正極活物質とするリチウムイオン二次電池が提案されている。   Patent Documents 4 to 8 use 7,7,8,8-tetracyanoquinodimethane (hereinafter referred to as “TCNQ”) represented by the following general formula (1 ′) as a positive electrode active material. In addition, a battery using an alkali metal such as lithium as a negative electrode active material is proposed, and Patent Document 9 proposes a lithium ion secondary battery using a lithium salt of TCNQ as a positive electrode active material.

Figure 0005483523
Figure 0005483523

シアノキノジメタン構造を有する化合物は、代表的な電子アクセプター分子であることが知られており、特許文献4〜9は、TCNQの斯かる特性を利用し、二次電池の活物質材料に適用することが試みられている。   A compound having a cyanoquinodimethane structure is known to be a typical electron acceptor molecule, and Patent Documents 4 to 9 utilize such characteristics of TCNQ and are applied to an active material of a secondary battery. It has been tried to do.

米国特許第4,442,187号公報U.S. Pat. No. 4,442,187 特開2004-207249号公報JP 2004-207249 A 特開2002-304996号公報JP 2002-304996 A 特開昭55-133767号公報JP 55-133767 A 特開昭55-133768号公報JP 55-133768 A 特開昭55-133772号公報Japanese Patent Laid-Open No. 55-133372 特開昭55-161372号公報Japanese Patent Laid-Open No. 55-161372 特開昭57-210567号公報JP-A-57-210567 特開平11-3708号公報Japanese Patent Laid-Open No. 11-3708

しかしながら、特許文献1の導電性高分子は、酸化還元反応によって生じる荷電ソリトンやポーラロンがπ電子共役系の広い範囲に亘って非局在化し、それらが相互作用して電荷反発を招くことから、発生する荷電ソリトンやポーラロンの濃度にも限界がある。すなわち、荷電ソリトンやポーラロンの濃度に限界があるため、結果的に電池容量が制限され、したがって電池の軽量化は可能であっても、大容量を有する電池を得るのは困難である。   However, in the conductive polymer of Patent Document 1, charged solitons and polarons generated by the redox reaction are delocalized over a wide range of π-electron conjugated systems, and they interact to cause charge repulsion. There is a limit to the concentration of charged solitons and polarons that are generated. That is, since there is a limit to the concentration of charged soliton or polaron, the battery capacity is limited as a result. Therefore, even if the battery can be reduced in weight, it is difficult to obtain a battery having a large capacity.

また、特許文献2及び3のような有機ラジカル化合物は、ラジカルを安定化するために、該ラジカルに接続される炭素に対し、嵩高い置換基を結合させる必要がある。このため、分子全体の質量に占めるラジカルの割合が小さくなり、容量密度が低下するという問題があった。   Moreover, in order to stabilize a radical, the organic radical compound like patent document 2 and 3 needs to make a bulky substituent couple | bonded with carbon connected to this radical. For this reason, the ratio of the radical to the mass of the whole molecule | numerator became small, and there existed a problem that capacity density fell.

さらに、特許文献4〜9で使用しているTCNQ又はそのリチウム塩は、サイクル特性が悪く、現在では充放電を繰り返す二次電池には不向きと考えられており、実用化するのは困難な状況にある。   Furthermore, TCNQ or its lithium salt used in Patent Documents 4 to 9 has poor cycle characteristics, and is currently considered unsuitable for secondary batteries that repeat charge and discharge, and is difficult to put into practical use. It is in.

このように従来から種々の活物質を使用した二次電池が提案されているものの、未だ十分なエネルギー密度を有し、高出力で長寿命のサイクル特性が良好な電極活物質は得られていないのが現状である。   Thus, although secondary batteries using various active materials have been proposed in the past, an electrode active material having a sufficient energy density, high output, and long life cycle characteristics has not been obtained yet. is the current situation.

本発明はこのような事情に鑑みなされたものであって、エネルギー密度が大きく高出力で、充放電を繰り返しても容量低下の少ない良好なサイクル特性を得ることができる電極活物質、及びこの電極活物質を使用した二次電池を提供することを目的とする。   The present invention has been made in view of such circumstances, and an electrode active material capable of obtaining good cycle characteristics with a large energy density, high output, and little reduction in capacity even after repeated charge and discharge, and the electrode An object is to provide a secondary battery using an active material.

本発明者らは、共役キノン系を骨格とし、かつ電気を蓄積することができる有機化合物を得るべく鋭意研究したところ、シアノキノジイミン構造を構成単位として含有する特定の有機化合物を電極活物質に使用することにより、電池の容量密度が大きく、高出力で充放電を繰り返しても容量低下の少ない二次電池を安定的に得ることができるという知見を得た。 The present inventors have intensively studied to obtain an organic compound having a conjugated quinone system as a skeleton and capable of accumulating electricity. As a result, a specific organic compound containing a cyanoquinodiimine structure as a structural unit is used as an electrode active material. As a result, it has been found that a secondary battery having a large capacity density of the battery and capable of stably obtaining a secondary battery with little reduction in capacity even after repeated charging and discharging at a high output can be obtained.

本発明はこのような知見に基づきなされたものであって、本発明に係る電極活物質は、電池電極反応によって充放電を繰り返す二次電池の活物質として使用される電極活物質であって、一般式

Figure 0005483523
で表されるシアノキノジイミン構造を構成単位として含有した有機化合物を主体としていることを特徴としている。 The present invention has been made based on such knowledge, the electrode active material according to the present invention is an electrode active material used as an active material of a secondary battery that repeats charge and discharge by a battery electrode reaction, General formula
Figure 0005483523
It is characterized by comprising mainly an organic compound containing a cyanoquinodiimine structure represented by

式中、mは1以上の整数であり、RIn the formula, m is an integer of 1 or more, and R 1 〜R~ R 6 は、水素原子、ハロゲン原子、ヒドロキシル基、ニトロ基、シアノ基、カルボキシル基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のシクロアルケニル基、置換若しくは非置換の芳香族炭化水素基、置換若しくは非置換の芳香族複素環基、置換若しくは非置換のアラルキル基、置換若しくは非置換のアミノ基、置換若しくは非置換のアルコキシ基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアルコキシカルボニル基、置換若しくは非置換のアリールオキシカルボニル基、置換若しくは非置換のアシル基、及び置換若しくは非置換のアシルオキシ基のいずれかを示し、RIs a hydrogen atom, halogen atom, hydroxyl group, nitro group, cyano group, carboxyl group, substituted or unsubstituted alkyl group, substituted or unsubstituted alkenyl group, substituted or unsubstituted cycloalkenyl group, substituted or unsubstituted An aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted amino group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, Any one of a substituted or unsubstituted alkoxycarbonyl group, a substituted or unsubstituted aryloxycarbonyl group, a substituted or unsubstituted acyl group, and a substituted or unsubstituted acyloxy group; R 1 〜R~ R 6 の組み合わせで環構造を形成する場合も含んでいる。The case where a ring structure is formed by a combination of these is also included.

また、本発明の電極活物質は、前記有機化合物が、分子量が200以上であることを特徴としている。   The electrode active material of the present invention is characterized in that the organic compound has a molecular weight of 200 or more.

また、本発明の電極活物質は、前記有機化合物が、1.2〜4.2Vvs.Li/Liの範囲に2つ以上の酸化還元電位を有することを特徴としている。 The electrode active material of the present invention is characterized in that the organic compound has two or more redox potentials in the range of 1.2 to 4.2 V vs. Li / Li + .

また、本発明に係る二次電池は、電池電極反応により充放電を行う二次電池であって、上述した電極活物質が、前記電池電極反応の少なくとも放電反応における反応出発物、生成物及び中間生成物のうちのいずれかに含まれることを特徴としている。   The secondary battery according to the present invention is a secondary battery that performs charge and discharge by a battery electrode reaction, and the electrode active material described above is a reaction starting material, product, and intermediate in at least the discharge reaction of the battery electrode reaction. It is characterized by being included in any of the products.

また、本発明の二次電池は、前記放電反応が、少なくとも2つ以上の放電電圧を有することを特徴としている。   The secondary battery according to the present invention is characterized in that the discharge reaction has at least two discharge voltages.

また、本発明の二次電池は、正極、負極、及び電解質を有し、前記正極が、前記電極活物質を主体としていることを特徴としている。   Moreover, the secondary battery of the present invention has a positive electrode, a negative electrode, and an electrolyte, and the positive electrode is mainly composed of the electrode active material.

本発明の電極活物質によれば、シアノキノジイミン構造を構成単位として含有した上記特定の有機化合物を主体としているので、TCNQ等のシアノキノジメタン構造を有する有機化合物に比べて分子量を小さくすることができる。すなわち、シアノキノジイミン構造は、特性基として(=N−CN)基を有し、シアノキノジメタン構造は特性基として(=C−(CN) )基を有していることから、特性基のみが異なり、他の分子構造が同一であれば、上記特定の有機化合物は、シアノキノジメタン構造を有する有機化合物に比べて分子量を小さくすることができる。したがって電池の容量密度を大きくすることができ、その結果、エネルギー密度を大きくすることが可能なる。また、シアノキノジイミン構造を構成単位とする上記特定の有機化合物は、酸化還元反応の反応速度定数が大きく、大電流で充放電することが可能である。したがって、充放電を繰り返しても長寿命で安定な二次電池を得ることができる。 According to the electrode active material of the present invention , the molecular weight is smaller than that of an organic compound having a cyanoquinodimethane structure, such as TCNQ, because the above-mentioned specific organic compound containing a cyanoquinodiimine structure as a constituent unit is mainly used. it is Ru can be. That is, the cyanoquinodiimine structure has a (= N-CN) group as a characteristic group, and the cyanoquinodimethane structure has a (= C- (CN) 2 ) group as a characteristic group . If only the characteristic group is different and the other molecular structures are the same, the specific organic compound can have a lower molecular weight than an organic compound having a cyanoquinodimethane structure. Therefore, the capacity density of the battery can be increased, and as a result, the energy density can be increased. The specific organic compound having a cyanoquinodiimine structure as a structural unit has a large reaction rate constant for redox reaction, and can be charged and discharged with a large current. Therefore, a stable secondary battery having a long life can be obtained even when charging and discharging are repeated.

しかも、上記特定の有機化合物が、1.2〜4.2Vvs.Li/Liの範囲に2つ以上の酸化還元電位を有するので、シアノキノジイミン構造の単位当たり2個以上の電子が関与する多電子反応も可能であり、したがって、一電子反応を利用する二次電池に比べて2倍以上の容量密度を得ることができ、より大きなエネルギー密度を有する高出力の二次電池を得ることが可能となる。 Moreover, since the specific organic compound has two or more redox potentials in the range of 1.2 to 4.2 V vs. Li / Li + , two or more electrons are involved per unit of the cyanoquinodiimine structure. Therefore, it is possible to obtain a capacity density more than twice that of a secondary battery using a one-electron reaction, and to obtain a high output secondary battery having a larger energy density. Is possible.

また、シアノキノジイミン構造を構成単位とする上記特定の有機化合物は、酸化還元反応を繰り返しても安定で電解質に対する溶解性も小さいので、充放電を繰り返しても容量低下が少なく、長寿命でサイクル特性の良好な二次電池を得ることが可能となる。 In addition, the above-mentioned specific organic compound having a cyanoquinodiimine structure as a structural unit is stable even when the redox reaction is repeated and has low solubility in the electrolyte. A secondary battery with good cycle characteristics can be obtained.

次に、本発明の実施の形態を詳説する。   Next, an embodiment of the present invention will be described in detail.

本発明の電極活物質は、シアノキノジイミン構造を構成単位として含有した特定の有機化合物を主体としている。そしてこれにより電池の容量密度を大きくすることができ、したがって大きなエネルギー密度を有し、高出力で充放電を繰り返しても電池容量の低下が小さい長寿命のサイクル特性が良好な二次電池を得ることができる。 The electrode active material of the present invention is mainly composed of a specific organic compound containing a cyanoquinodiimine structure as a structural unit. As a result, the capacity density of the battery can be increased. Therefore, a secondary battery having a high energy density and a long life cycle characteristic with a small decrease in battery capacity even when charging and discharging are repeated at a high output is obtained. be able to.

上記特定の有機化合物は、具体的には下記一般式(1)で表される。The specific organic compound is specifically represented by the following general formula (1).

Figure 0005483523
Figure 0005483523

一般式(1)中、mは1以上の整数であり、 〜R は、水素原子、ハロゲン原子、ヒドロキシル基、ニトロ基、シアノ基、カルボキシル基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のシクロアルケニル基、置換若しくは非置換の芳香族炭化水素基、置換若しくは非置換の芳香族複素環基、置換若しくは非置換のアラルキル基、置換若しくは非置換のアミノ基、置換若しくは非置換のアルコキシ基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアルコキシカルボニル基、置換若しくは非置換のアリールオキシカルボニル基、置換若しくは非置換のアシル基、及び置換若しくは非置換のアシルオキシ基のいずれかを示し、 〜R の組み合わせで環構造を形成する場合も含んでいる。 In the general formula (1), m is an integer of 1 or more, R 1 to R 6 is a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a cyano group, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted Or an unsubstituted alkenyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, a substituted or unsubstituted aralkyl group, substituted or unsubstituted Amino group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aryloxy group, substituted or unsubstituted alkoxycarbonyl group, substituted or unsubstituted aryloxycarbonyl group, substituted or unsubstituted acyl group, and substituted or it indicates one of unsubstituted acyloxy group, form a ring structure by a combination of R 1 to R 6 Also it includes the case that.

ここで、上記列挙した各置換基は、それぞれの範疇に属するものであれば、特に限定されるものではなく、例えば、アルキル基、アルケニル基、芳香族炭化水素基を例示すると、以下のものを挙げることができる。   Here, each of the above-listed substituents is not particularly limited as long as it belongs to each category. For example, when an alkyl group, an alkenyl group, and an aromatic hydrocarbon group are exemplified, the followings are listed. Can be mentioned.

アルキル基としては、例えばメチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル等の直鎖状アルキル基、イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、イソペンチル基、tert−ペンチル基、neo−ペンチル基、イソヘキシル基、メチルヘキシル基、メチルヘプチル基、ジメチルヘキシル基、2−エチルヘキシル基等の分枝鎖状アルキル基、ベンジル基、フェネチル基等のアリール基で置換されたアルキル基などが挙げられる。   Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and a linear alkyl group such as n-octyl, an isopropyl group. , Isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, tert-pentyl group, neo-pentyl group, isohexyl group, methylhexyl group, methylheptyl group, dimethylhexyl group, 2-ethylhexyl group, etc. Examples thereof include an alkyl group substituted with an aryl group such as a chain alkyl group, a benzyl group, and a phenethyl group.

アルケニル基としては、例えば、ビニル基、アリル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基等が挙げられる。   Examples of the alkenyl group include a vinyl group, an allyl group, an isopropenyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, and an octenyl group.

芳香族炭化水素基としては、フェニル基、ナフチル基、(o-、m-、p-)等の非置換アリール基、クレジル基、(o-、m-、p-)トリル基、(2,3−、2,4−、2,5−、2,6−、3,4−、3,5−)キシリル基、メシチル基、トリメチルフェニル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ニトロフェニル基、メトキシフェニル基等の置換アリール基が挙げられる。   Aromatic hydrocarbon groups include phenyl groups, naphthyl groups, unsubstituted aryl groups such as (o-, m-, p-), cresyl groups, (o-, m-, p-) tolyl groups, (2, 3-, 2,4-, 2,5-, 2,6-, 3,4-, 3,5-) xylyl group, mesityl group, trimethylphenyl group, ethylphenyl group, propylphenyl group, butylphenyl group, Examples thereof include substituted aryl groups such as a nitrophenyl group and a methoxyphenyl group.

そして、一般式(1)の範疇に含まれる有機化合物としては、化学式(1A)〜(1C)で表される物質がある。 And as an organic compound contained in the category of General formula (1), there exists a substance represented by Chemical formula (1A)-( 1C ).

Figure 0005483523
Figure 0005483523

化学式(1A)は、一般式()において、 〜R がH、mが1であり、化学式(1B)は、 〜R がH、mが2であり、化学式(1C)は、化学式(1B)の異性体である。 The chemical formula ( 1A ) is the general formula ( 1 ), R 1 to R 6 are H, m is 1, the chemical formula ( 1B ) is R 1 to R 6 is H, m is 2, and the chemical formula ( 1C ) Is an isomer of the chemical formula ( 1B ).

上記電極活物質は、電極反応に伴って錯塩を形成する。下記化学反応式(2)は、シアノキノジイミン構造を有する有機化合物を電極活物質に使用し、Liを電解質塩のカチオンに用いた場合の充放電反応を示す一例である。 The electrode active material forms a complex salt with the electrode reaction. The following chemical reaction formula (2) is an example showing a charge / discharge reaction when an organic compound having a cyanoquinodiimine structure is used as an electrode active material and Li is used as a cation of an electrolyte salt.

Figure 0005483523
Figure 0005483523

上記電極活物質は、シアノキノジイミン構造を構成単位として含有した有機化合物を主体とするので、例えば、特許文献4〜9に記載されたTCNQ等のシアノキノジメタン構造(化学式(1′))よりも分子量を小さくすることができ、これにより電池の容量密度を相対的に大きくすることが可能となる。   Since the electrode active material mainly comprises an organic compound containing a cyanoquinodiimine structure as a structural unit, for example, a cyanoquinodimethane structure (chemical formula (1 ′) such as TCNQ described in Patent Documents 4 to 9). ), The molecular weight of the battery can be relatively increased.

すなわち、理論容量密度Q(mAh/g)は、分子量をW、反応に関与する電子数をZとすると、数式(1)で表される。   That is, the theoretical capacity density Q (mAh / g) is expressed by the mathematical formula (1), where W is the molecular weight and Z is the number of electrons involved in the reaction.

Figure 0005483523
Figure 0005483523

したがって、理論容量密度Qは、分子量Wが小さく、電子数Zが大きい程大きくなる。   Therefore, the theoretical capacity density Q increases as the molecular weight W decreases and the number of electrons Z increases.

例えば、本発明のシアノキノジイミン構造をシアノキノジメタン構造と比較すると、シアノキノジイミン構造は、特性基として(=N−CN)基を有し、シアノキノジメタン構造は、特性基として(=C−(CN))基を有している。そして、両特性基の分子量は、(=N−CN)基は40であり、(=C−(CN))基は64である。したがって、前記特性基のみが異なり、他の分子構造が同一であれば、電池電極反応に関与する電子数Zは同一と考えられるので、数式(1)から明らかなように、シアノキノジイミン構造を構成単位とする有機化合物は、理論容量密度Qを大きくすることが可能となる。そして、このように電池の容量密度を大きくなることから、エネルギー密度が大きな電極活物質を得ることが可能となる。 For example, when the cyanoquinodiimine structure of the present invention is compared with the cyanoquinodimethane structure, the cyanoquinodiimine structure has a (= N—CN) group as a characteristic group, and the cyanoquinodimethane structure has a characteristic group. (= C- (CN) 2 ) group. The molecular weight of both characteristic groups is 40 for the (= N-CN) group and 64 for the (= C- (CN) 2 ) group. Therefore, if only the above-mentioned characteristic groups are different and the other molecular structures are the same, the number of electrons Z involved in the battery electrode reaction is considered to be the same. Therefore, as is clear from Equation (1), the cyanoquinodiimine structure It is possible to increase the theoretical capacity density Q of an organic compound having a structural unit of. And since the capacity density of a battery becomes large in this way, it becomes possible to obtain an electrode active material with a large energy density.

尚、実際の電池の容量密度は、電極活物質の主体となる有機化合物の合成過程で不純物が混入し、理論容量密度Qに比べ低下するが、適宜の手段で不純物の混入を極力回避することにより、限りなく理論容量密度Qに近付けることが可能である。そして、上述したように特性基のみが異なり、他の分子構造が同一であれば、電極活物質が、シアノキノジイミン構造を有することにより、シアノキノジメタン構造に比べ、相対的に電池の容量密度を大きくすることが可能である。 The capacity density of the actual battery is reduced in comparison with the theoretical capacity density Q due to impurities being mixed in the process of synthesizing the organic compound that is the main component of the electrode active material. Therefore, it is possible to approach the theoretical capacity density Q as much as possible. As described above, if only the characteristic group is different and the other molecular structures are the same , the electrode active material has a cyanoquinodiimine structure, so that the battery has a relatively lower capacity than the cyanoquinodimethane structure. It is possible to increase the capacity density.

また、上記電極活物質を構成する有機化合物の分子量は、特に限定されないが、分子量が小さい場合は、電解質に容易に溶解するおそれがあることから、少なくとも200以上が好ましい。ただし、本発明が所望する作用効果の出現は、シアノキノジイミン構造に依るものであることから、シアノキノジイミン構造以外の部分が大きくなると単位質量当たりに蓄電できる容量、すなわち容量密度が小さくなる。   Further, the molecular weight of the organic compound constituting the electrode active material is not particularly limited. However, when the molecular weight is small, at least 200 or more is preferable because it may be easily dissolved in the electrolyte. However, since the appearance of the desired effect of the present invention depends on the cyanoquinodiimine structure, when the portion other than the cyanoquinodiimine structure becomes large, the capacity that can be stored per unit mass, that is, the capacity density is small. Become.

さらに、本発明では、上記電極活物質を構成する有機化合物が、1.2〜4.2Vvs.Li/Liの範囲に2つ以上の酸化還元電位を有している。 Furthermore, in the present invention, the organic compound constituting the electrode active material, has two or more oxidation-reduction potential in the range of 1.2~4.2Vvs.Li / Li +.

そして、このように少なくとも2つ以上の酸化還元電位を有することにより、エネルギーの異なる2つ以上の反応が生じることとなる。したがって、電池電極反応に関与する電子数Zも1電子の場合に比べ2倍以上となるので、数式(1)からも明らかなように、容量密度も1電子の場合に比べ2倍以上となり、これによりエネルギー密度が大きく、大容量かつ高出力の二次電池を得ることが可能となる。   And by having at least two or more redox potentials in this way, two or more reactions with different energies will occur. Therefore, since the number of electrons Z involved in the battery electrode reaction is twice or more than that in the case of one electron, as is clear from the formula (1), the capacity density is also twice or more than that in the case of one electron. As a result, it is possible to obtain a secondary battery having a large energy density, a large capacity and a high output.

また、上述した本発明の電極活物質は、酸化還元反応を繰り返しても安定で電解質に対する溶解性も小さいので、充放電を繰り返しても容量低下が少なく、長寿命でサイクル特性の良好な二次電池を得ることが可能となる。   In addition, since the electrode active material of the present invention described above is stable even after repeated oxidation-reduction reactions and has low solubility in the electrolyte, there is little decrease in capacity even after repeated charge and discharge, long life, and good cycle characteristics. A battery can be obtained.

尚、2つ以上の酸化還元電位を生じさせる範囲を1.2〜4.2Vvs.Li/Liとしたのは、酸化還元電位が1.2Vvs.Li/Li未満では、エネルギー密度が小さく、実用化が困難であり、一方、酸化還元電位が4.2Vvs.Li/Liを超える領域では、電解質の劣化が激しく、二次電池としての安定性を欠くからである。 Incidentally, the range that causes two or more redox potential was 1.2~4.2Vvs.Li / Li +, the oxidation-reduction potential is less than 1.2Vvs.Li/Li +, energy density is low This is because practical use is difficult, and in the region where the oxidation-reduction potential exceeds 4.2 V vs. Li / Li + , the electrolyte is severely deteriorated and lacks stability as a secondary battery.

このように本発明の電極活物質は、二次電池として安定して駆動する範囲で、2つ以上の酸化還元電位を有する。   As described above, the electrode active material of the present invention has two or more redox potentials within a range where it can be stably driven as a secondary battery.

次に、前記電極活物質を使用した二次電池について詳述する。   Next, a secondary battery using the electrode active material will be described in detail.

図1は、本発明に係る二次電池の一実施の形態としてのコイン型二次電池を示す断面図であって、本実施の形態では、本発明の電極活物質を正極活物質として使用している。   FIG. 1 is a cross-sectional view showing a coin-type secondary battery as an embodiment of a secondary battery according to the present invention. In this embodiment, the electrode active material of the present invention is used as a positive electrode active material. ing.

電池缶1は、正極ケース2と負極ケース3とを有し、該正極ケース2及び負極ケース3は、いずれも円盤状の薄板形状に形成されている。そして、正極集電体を構成する正極ケース2の底部中央には、電極活物質をシート状に形成した正極4が配されている。そして、正極4上にはポリプロピレン等の多孔質フィルムで形成されたセパレータ5が積層され、さらにセパレータ5には負極6が積層されている。負極6としては、例えば、Cuにリチウムの金属箔を重ね合わせたものや、黒鉛やハードカーボン等のリチウム吸蔵材料を前記金属箔に塗布したものを使用することができる。そして、負極6にはCu等で形成された負極集電体7が積層されると共に、該負極集電体7には金属製ばね8が載置されている。そして、電解質9が内部空間に充填されると共に、負極ケース3は金属製ばね8の付勢力に抗して正極ケース2に固着され、ガスケット10を介して封止されている。   The battery can 1 has a positive electrode case 2 and a negative electrode case 3, and both the positive electrode case 2 and the negative electrode case 3 are formed in a disk-like thin plate shape. And the positive electrode 4 which formed the electrode active material in the sheet form is distribute | arranged to the center of the bottom part of the positive electrode case 2 which comprises a positive electrode electrical power collector. A separator 5 made of a porous film such as polypropylene is laminated on the positive electrode 4, and a negative electrode 6 is further laminated on the separator 5. As the negative electrode 6, for example, one obtained by superimposing a lithium metal foil on Cu or one obtained by applying a lithium storage material such as graphite or hard carbon to the metal foil can be used. A negative electrode current collector 7 made of Cu or the like is laminated on the negative electrode 6, and a metal spring 8 is placed on the negative electrode current collector 7. The electrolyte 9 is filled in the internal space, and the negative electrode case 3 is fixed to the positive electrode case 2 against the urging force of the metal spring 8 and sealed with a gasket 10.

次に、上記二次電池の製造方法の一例を詳述する。   Next, an example of a method for manufacturing the secondary battery will be described in detail.

まず、電極活物質を電極形状に形成する。例えば、電極活物質を導電補助剤、及び結着剤と共に混合し、有機溶剤を加えてスラリーとし、該スラリーを正極集電体上に任意の塗工方法で塗工し、乾燥することにより正極を形成する。   First, an electrode active material is formed into an electrode shape. For example, an electrode active material is mixed with a conductive auxiliary agent and a binder, an organic solvent is added to form a slurry, and the slurry is applied on the positive electrode current collector by an arbitrary coating method and dried. Form.

ここで、導電補助剤としては、特に限定されるものでなく、例えば、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子、気相成長炭素繊維、カーボンナノチューブ、カーボンナノホーン等の炭素繊維、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン等の導電性高分子などを使用することができる。また、導電補助剤を2種類以上混合して用いることもできる。尚、導電補助剤の正極4中の含有率は10〜80重量%が好ましい。   Here, the conductive auxiliary agent is not particularly limited, for example, carbonaceous fine particles such as graphite, carbon black, and acetylene black, vapor grown carbon fibers, carbon nanotubes, carbon fibers such as carbon nanohorns, polyaniline, Conductive polymers such as polypyrrole, polythiophene, polyacetylene, and polyacene can be used. Further, two or more kinds of conductive assistants can be mixed and used. In addition, as for the content rate in the positive electrode 4 of a conductive support agent, 10 to 80 weight% is preferable.

また、結着剤も特に限定されるものではなく、ポリエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリテトラフルオロエチレン、ポリエチレンオキサイド、カルボキシメチルセルロース等の各種樹脂を使用することができる。   Further, the binder is not particularly limited, and various resins such as polyethylene, polyvinylidene fluoride, polyhexafluoropropylene, polytetrafluoroethylene, polyethylene oxide, carboxymethylcellulose, and the like can be used.

さらに、有機溶剤についても、特に限定されるものではなく、例えば、ジメチルスルホキシド、ジメチルホルムアミド、N−メチルピロリドン、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、γ−ブチロラクトン等の塩基性溶媒、アセトニトリル、テトラヒドロフラン、ニトロベンゼン、アセトン等の非水溶媒、メタノール、エタノール等のプロトン性溶媒等を使用することができる。   Further, the organic solvent is not particularly limited, and examples thereof include basic solvents such as dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone, propylene carbonate, diethyl carbonate, dimethyl carbonate, and γ-butyrolactone, acetonitrile, tetrahydrofuran, Nonaqueous solvents such as nitrobenzene and acetone, and protic solvents such as methanol and ethanol can be used.

また、有機溶剤の種類、有機化合物と有機溶剤との配合比、添加剤の種類とその添加量等は、二次電池の要求特性や生産性等を考慮し、任意に設定することができる。   Moreover, the kind of organic solvent, the compounding ratio of the organic compound and the organic solvent, the kind of additive and the addition amount thereof can be arbitrarily set in consideration of the required characteristics and productivity of the secondary battery.

次いで、この正極4を電解質9に含浸させて該正極4に前記電解質9を染み込ませ、その後、正極ケース2の底部中央の正極集電体上に正極4を載置する。次いで、前記電解質9を含浸させたセパレータ5を正極4上に積層し、さらに負極6及び負極集電体7を順次積層し、その後内部空間に電解質9を注入する。そして、負極集電体9上に金属製ばね8を載置すると共に、ガスケット10を周縁に配し、かしめ機等で負極ケース3を正極ケース2に固着して外装封止し、これによりコイン型二次電池が作製される。   Next, the positive electrode 4 is impregnated in the electrolyte 9 so that the positive electrode 4 is impregnated with the electrolyte 9, and then the positive electrode 4 is placed on the positive electrode current collector at the bottom center of the positive electrode case 2. Next, the separator 5 impregnated with the electrolyte 9 is laminated on the positive electrode 4, the negative electrode 6 and the negative electrode current collector 7 are sequentially laminated, and then the electrolyte 9 is injected into the internal space. Then, a metal spring 8 is placed on the negative electrode current collector 9 and a gasket 10 is arranged on the periphery, and the negative electrode case 3 is fixed to the positive electrode case 2 by a caulking machine or the like, and the outer casing is sealed. A type secondary battery is produced.

尚、上記電解質9は、正極(電極活物質)4と対向電極である負極6との間に介在して両電極間の荷電担体輸送を行うが、このような電解質9としては、室温で10−5〜10−1S/cmの電気伝導度を有するものを使用することができ、例えば、電解質塩を有機溶剤に溶解させた電解液を使用することができる。 The electrolyte 9 is interposed between the positive electrode (electrode active material) 4 and the negative electrode 6 which is the counter electrode, and transports charge carriers between the two electrodes. Those having an electric conductivity of −5 to 10 −1 S / cm can be used. For example, an electrolytic solution in which an electrolyte salt is dissolved in an organic solvent can be used.

ここで、電解質塩としては、例えば、LiPF、LiClO、LiBF、LiCFSO、Li(CFSO、Li(CSON、Li(CFSOC、Li(CSOC等を使用することができる。 Here, as the electrolyte salt, for example, LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 , Li (C 2 F 5 SO 2 ) 2 N, Li (CF 3 SO 2 ) 3 C, Li (C 2 F 5 SO 2 ) 3 C, or the like can be used.

また、有機溶剤としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、テトラヒドロフラン、ジオキソラン、スルホラン、ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン等を使用することができる。   As the organic solvent, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, tetrahydrofuran, dioxolane, sulfolane, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, etc. are used. be able to.

また、電解質9には、固体電解質を使用してもよい。固体電解質に用いられる高分子化合物としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−モノフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン三元共重合体等のフッ化ビニリデン系重合体、アクリロニトリル−メチルメタクリレート共重合体、アクリロニトリル−メチルアクリレート共重合体、アクリロニトリル−エチルメタクリレート共重合体、アクリロニトリル−エチルアクリレート共重合体、アクリロニトリル−メタクリル酸共重合体、アクリロニトリル−アクリル酸共重合体、アクリロニトリル−ビニルアセテート共重合体等のアクリルニトリル系重合体、さらにはポリエチレンオキサイド、エチレンオキサイド−プロピレンオキサイド共重合体、及びこれらのアクリレート体やメタクリレート体の重合体等を挙げることができる。また、これらの高分子化合物に電解液を含ませてゲル状にしたものを電解質9として使用したり、或いは電解質塩を含有させた高分子化合物のみをそのまま電解質9に使用してもよい。   The electrolyte 9 may be a solid electrolyte. Examples of the polymer compound used for the solid electrolyte include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-monofluoroethylene copolymer, and fluoride. Vinylidene fluoride polymers such as vinylidene-trifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, and acrylonitrile-methyl methacrylate copolymer Polymer, acrylonitrile-methyl acrylate copolymer, acrylonitrile-ethyl methacrylate copolymer, acrylonitrile-ethyl acrylate copolymer, acrylonitrile-methacrylic acid copolymer, acrylonitrile-acrylic Acrylic nitrile polymers such as formic acid copolymers, acrylonitrile-vinyl acetate copolymers, polyethylene oxide, ethylene oxide-propylene oxide copolymers, and polymers of these acrylates and methacrylates Can do. Further, these polymer compounds containing an electrolytic solution in a gel form may be used as the electrolyte 9 or only a polymer compound containing an electrolyte salt may be used as the electrolyte 9 as it is.

そして、二次電池の電極活物質は充放電により可逆的に酸化もしくは還元されるため、充電状態、放電状態、あるいはその途中の状態で異なる構造、状態を取るが、本実施の形態では、前記電極活物質は、少なくとも放電反応における反応出発物、生成物、及び中間生成物のうちのいずれかに含まれており、さらに、放電反応は、少なくとも2つ以上の放電電圧を有している。   And, since the electrode active material of the secondary battery is reversibly oxidized or reduced by charging and discharging, it takes a different structure and state depending on the charged state, discharged state, or intermediate state. The electrode active material is included in at least one of reaction starting materials, products, and intermediate products in the discharge reaction, and the discharge reaction has at least two discharge voltages.

このように本実施の形態によれば、上記電極活物質を使用して二次電池を構成しているので、エネルギー密度が大きく、高出力で大容量の二次電池を得ることができる。しかも、充放電を繰り返しても容量低下が少なく、長寿命でサイクル特性も良好なものとなる。   As described above, according to the present embodiment, since the secondary battery is configured using the electrode active material, a secondary battery having a large energy density, a high output, and a large capacity can be obtained. In addition, even if charging / discharging is repeated, the capacity is hardly reduced, the life is long, and the cycle characteristics are good.

尚、本発明は上記実施の形態に限定されるものではなく、要旨を逸脱しない範囲において種々の変形例が考えられる。例えば、電極活物質の主体となる有機化合物についても、一般式(1)の範疇に属するシアノキノジイミン構造を構成単位として含んでいればよく、上記列挙した化学式(1A)〜(1C)はその一例であって、これらに限定されるものではない。すなわち、本発明は、電極活物質の主体となる有機化合物が、一般式(1)を満たしていることが重要であり、斯かる有機化合物を電極活物質に使用することにより、サイクル特性の向上を図ることができ、エネルギー密度が大きく高出力で充放電を繰り返しても容量低下を極力抑制できる各種二次電池を得ることができる。 In addition, this invention is not limited to the said embodiment, A various modification can be considered in the range which does not deviate from a summary. For example, the organic compound which is the main component of the electrode active material may contain a cyanoquinodiimine structure belonging to the category of the general formula (1) as a structural unit. The chemical formulas (1A) to ( 1C ) listed above are It is an example, and is not limited to these. That is, in the present invention, it is important that the organic compound that is the main component of the electrode active material satisfies the general formula (1). By using such an organic compound as the electrode active material, cycle characteristics are improved. Various secondary batteries can be obtained that have a large energy density and can suppress a decrease in capacity as much as possible even when charging and discharging are repeated at a high output.

また、上記実施の形態では、コイン型二次電池について説明したが、電池形状は特に限定されるものでないのはいうまでもなく、円筒型、角型、シート型等にも適用できる。また、外装方法も特に限定されず、金属ケースや、モールド樹脂、アルミラミネートフイルム等を使用してもよい。   In the above embodiment, the coin-type secondary battery has been described. However, the battery shape is not particularly limited, and can be applied to a cylindrical type, a square type, a sheet type, and the like. Also, the exterior method is not particularly limited, and a metal case, mold resin, aluminum laminate film, or the like may be used.

また、上記実施の形態では、電極活物質を正極活物質に使用したが、負極活物質に使用するのも有用である。   Moreover, in the said embodiment, although the electrode active material was used for the positive electrode active material, using for a negative electrode active material is also useful.

参考例Reference example

本発明に係る電極活物質は、上述したようにシアノキノジアミン構造を構成単位として含有した特定の有機化合物を主体としているが、シアノキノジアミン構造を構成単位として含有した有機化合物としては、下記一般式(10)で表されるものも含まれる。  As described above, the electrode active material according to the present invention is mainly composed of a specific organic compound containing a cyanoquinodiamine structure as a structural unit. As an organic compound containing a cyanoquinodiamine structure as a structural unit, the following general compounds can be used. What is represented by Formula (10) is also included.

Figure 0005483523
Figure 0005483523

ここで、R  Where R 7 〜R~ R 10Ten は、本発明の一般式(1)で示したRRepresents R represented by the general formula (1) of the present invention. 1 〜R~ R 6 と同様であり、また、RAnd R 7 〜R~ R 10Ten の組み合わせで環構造を形成する場合も含んでいる。The case where a ring structure is formed by a combination of these is also included.

以下では上記一般式(10)の範疇に含まれる有機化合物を使用して電池特性を評価し、TCNQ構造を有する有機化合物と比較した。In the following, battery characteristics were evaluated using an organic compound included in the category of the general formula (10), and compared with an organic compound having a TCNQ structure.

〔参考例1〕
〔有機化合物の合成〕
下記合成スキーム()に従い、ジシアノキノジイミン(以下、「DCNQI」という。)二量体(II)を作製した。
[Reference Example 1]
(Synthesis of organic compounds)
A dicyanoquinodiimine (hereinafter referred to as “DCNQI”) dimer (II) was prepared according to the following synthesis scheme ( A ).

Figure 0005483523
Figure 0005483523

すなわち、まず、塩化メチレン(CHCl)100mLを容積200mLの三口フラスコに入れ、次いで、ビス(トリメチルシリル)カルボジイミド((CHSiNCNSi(CH)52mLをこの三口フラスコに入れて溶解させ、さらに四塩化チタン(TiCl)44gを加えて0℃で攪拌した。その後、5gの2,2’−ビス(1,4−ベンゾキノン)(I)を入れた塩化メチレン溶液を三口フラスコに滴下し、0℃の温度で24時間反応させた。得られた黒色の生成物を赤外吸収スペクトルで測定したところ、シアノ基(−CN)に由来する吸収を確認でき、キノイド構造の炭素一窒素二重結合(C=N)に由来する吸収が確認できことから、生成物はDCNQI二量体であると考えられた。 That is, first, 100 mL of methylene chloride (CH 2 Cl 2 ) was put into a three-neck flask having a volume of 200 mL, and then 52 mL of bis (trimethylsilyl) carbodiimide ((CH 3 ) 3 SiNCNSi (CH 3 ) 3 ) was put into the three-neck flask. After dissolution, 44 g of titanium tetrachloride (TiCl 4 ) was further added and stirred at 0 ° C. Thereafter, a methylene chloride solution containing 5 g of 2,2′-bis (1,4-benzoquinone) (I) was dropped into a three-necked flask and reacted at a temperature of 0 ° C. for 24 hours. When the obtained black product was measured by an infrared absorption spectrum, absorption derived from a cyano group (—CN) was confirmed, and absorption derived from a carbon-nitrogen double bond (C═N) having a quinoid structure was observed. From the confirmation, the product was considered to be a DCNQI dimer.

〔二次電池の作製〕
上記DCNQI二量体300mg、導電補助剤としてのグラファイト粉末600mg、結着剤としてのポリテトラフルオロエチレン樹脂100mgをそれぞれ秤量し、秤量物を均一に混合しながら混練した。この混合体を加圧成形し、厚さ約150μmのシート状部材を作製した。次に、このシート状部材を、真空中80℃で1時間乾燥した後、直径12mmの円形に打ち抜き、DCNQI二量体を主体とする正極(正極活物質)を作製した。
[Production of secondary battery]
300 mg of the above DCNQI dimer, 600 mg of graphite powder as a conductive auxiliary agent, and 100 mg of polytetrafluoroethylene resin as a binder were weighed and kneaded while uniformly mixing the weighed material. This mixture was pressure-molded to produce a sheet-like member having a thickness of about 150 μm. Next, this sheet-like member was dried in a vacuum at 80 ° C. for 1 hour, and then punched into a circle having a diameter of 12 mm to produce a positive electrode (positive electrode active material) mainly composed of a DCNQI dimer.

次に、正極を電解液に含浸し、該正極中の空隙に電解液を染み込ませた。電解液としては、モル濃度が1.0mol/LのLiPF(電解質塩)を含有した有機溶剤であるエチレンカーボネート/ジエチルカーボネート混合溶液を使用した。尚、有機溶剤であるエチレンカーボネート/ジエチルカーボネートの混合比率は体積%でエチレンカーボネート:ジエチルカーボネート=3:7であった。 Next, the positive electrode was impregnated with the electrolytic solution, and the electrolytic solution was infiltrated into the voids in the positive electrode. As the electrolytic solution, an ethylene carbonate / diethyl carbonate mixed solution, which is an organic solvent containing LiPF 6 (electrolyte salt) having a molar concentration of 1.0 mol / L, was used. In addition, the mixing ratio of ethylene carbonate / diethyl carbonate as an organic solvent was ethylene carbonate: diethyl carbonate = 3: 7 in volume%.

次に、この正極を正極集電体上に載置し、さらに前記電解液を含浸させたポリプロピレン多孔質フイルムからなる厚さ20μmのセパレータを前記正極上に積層し、さらに銅箔の両面にリチウムを貼着した負極をセパレータ上に積層した。そして、負極上にCu製の負極集電体を積層した後、内部空間に電解液を注入し、その後負極集電体上に金属製ばねを載置すると共に、周縁にガスケットを配置した状態で負極ケースを正極ケースに接合し、かしめ機によって外装封止し、これにより正極活物質としてDCNQI二量体、負極活物質として金属リチウムを有する密閉型のコイン型電池を作製した。   Next, this positive electrode was placed on a positive electrode current collector, and a separator having a thickness of 20 μm made of a polypropylene porous film impregnated with the electrolytic solution was laminated on the positive electrode. The negative electrode to which was attached was laminated on the separator. And after laminating | stacking the negative electrode collector made from Cu on a negative electrode, inject | pouring electrolyte solution into interior space, and mounting a metal spring on a negative electrode collector after that, and having arrange | positioned the gasket to the periphery The negative electrode case was joined to the positive electrode case and sealed with a caulking machine, whereby a sealed coin-type battery having a DCNQI dimer as a positive electrode active material and metallic lithium as a negative electrode active material was produced.

〔二次電池の動作確認〕
以上のように作製した二次電池を、0.1mAの定電流で電圧が4.0Vになるまで充電し、その後、0.1mAの定電流で2.0Vまで放電した。その結果、3.2V及び2.55Vの二箇所で充放電電圧を示し、放電容量が0.4mAhの二次電池であることが確認された。また、電極活物質当たりの放電容量(実容量密度)を求めたところ、200mAh/gであった。
[Confirmation of secondary battery operation]
The secondary battery produced as described above was charged with a constant current of 0.1 mA until the voltage reached 4.0 V, and then discharged to 2.0 V with a constant current of 0.1 mA. As a result, the charge / discharge voltage was shown at two locations of 3.2 V and 2.55 V, and it was confirmed that the secondary battery had a discharge capacity of 0.4 mAh. The discharge capacity (actual capacity density) per electrode active material was determined to be 200 mAh / g.

次いで、4.0〜2.0Vの範囲で充放電を100サイクル繰り返したところ、100サイクル後においても初期の80%以上の容量を確保することができた。すなわち、充放電を繰り返しても容量低下が少ないサイクル特性の良好な二次電池を得ることができた。   Subsequently, when charging and discharging were repeated 100 cycles in the range of 4.0 to 2.0 V, the initial capacity of 80% or more could be secured even after 100 cycles. That is, it was possible to obtain a secondary battery having good cycle characteristics with little decrease in capacity even after repeated charge and discharge.

また、同様に作製した二次電池を0.1mAの定電流で電圧が4.0Vになるまで充電した後、5.0mAの定電流で放電した。その結果、放電容量は0.1mAの定電流で放電した場合に比べて減少したものの、0.1mAで放電したときの放電容量に対して80%以上を確保することができた。すなわち、大電流でも大きな容量を取り出せる高出力密度の二次電池が得られることが分かった。 Further, a similarly manufactured secondary battery was charged at a constant current of 0.1 mA until the voltage reached 4.0 V, and then discharged at a constant current of 5.0 mA. As a result, although the discharge capacity decreased as compared with the case of discharging at a constant current of 0.1 mA, it was possible to ensure 80% or more of the discharge capacity when discharged at 0.1 mA. That is, it was found that a secondary battery having a high output density capable of taking out a large capacity even with a large current can be obtained.

〔理論容量密度の算出〕
DCNQI二量体とTCNQ二量体について、数式(1)に従い、理論容量密度Qを算出し、両者を比較した。
[Calculation of theoretical capacity density]
For the DCNQI dimer and the TCNQ dimer, the theoretical capacity density Q was calculated according to the formula (1), and the two were compared.

Figure 0005483523
Figure 0005483523

ここで、Zは電池電極反応に関与した電子数、Wは電極活物質の分子量である。   Here, Z is the number of electrons involved in the battery electrode reaction, and W is the molecular weight of the electrode active material.

DCNQI二量体の分子量Wは310.3であり、TCNQ二量体の分子量Wは406.3であるから、電池電極反応に関与する電子数Zを4とすると、数式(1)より、理論容量密度Qは、DCNQI二量体が345mAh/gであり、TCNQ二量体は264mAh/gである。   Since the molecular weight W of the DCNQI dimer is 310.3 and the molecular weight W of the TCNQ dimer is 406.3, assuming that the number of electrons Z involved in the battery electrode reaction is 4, the formula (1) shows that The capacity density Q is 345 mAh / g for the DCNQI dimer and 264 mAh / g for the TCNQ dimer.

したがって、DCNQI二量体はTCNQ二量体に比べ、容量密度を約31%向上させることが可能であることが分かった。   Therefore, it was found that the DCNQI dimer can improve the capacity density by about 31% compared to the TCNQ dimer.

尚、実容量密度が200mAh/gであり、理論容量密度の約58%であるが、これはDCNQI二量体の合成過程で不純物が混入したためと考えられる。したがって、適宜の手段で斯かる不純物の混入を回避することにより、実容量密度を理論容量密度Qに近付けることが可能と考えられる。   The actual capacity density is 200 mAh / g, which is about 58% of the theoretical capacity density. This is probably because impurities were mixed in the synthesis process of the DCNQI dimer. Therefore, it is considered possible to bring the actual capacity density closer to the theoretical capacity density Q by avoiding the mixing of such impurities by appropriate means.

〔参考例2〕
この参考例2では、〔参考例1〕で作製したDCNQI二量体を使用し、工業的手法で二次電池を作製し、動作確認した。
[Reference Example 2]
In Reference Example 2 , the DCNQI dimer prepared in [ Reference Example 1] was used, a secondary battery was manufactured by an industrial method, and operation was confirmed.

まず、小型ホモジナイザ容器に有機溶剤としてのN−メチルピロリドン10gを秤量し、結着剤としてのポリフッ化ビニリデン400mgを加え、30分間攪拌して完全に溶解させた。これにDCNQI二量体0.5gを加え、均一になるまで攪拌した。次いで、0.5gの導電性補助剤としてのグラファイト粉末を加え、攪拌して黒色のスラリーを得た。このスラリーを高純度アルミニウム箔上に塗布し、120℃で乾燥させ、これによりDCNQI二量体を主体とする膜厚95μmの正極を作製した。これを、直径12mmの円形に打ち抜き、その後は〔参考例1〕と同様の方法で二次電池を作製した。 First, 10 g of N-methylpyrrolidone as an organic solvent was weighed in a small homogenizer container, 400 mg of polyvinylidene fluoride as a binder was added, and stirred for 30 minutes to completely dissolve. To this, 0.5 g of DCNQI dimer was added and stirred until uniform. Next, 0.5 g of graphite powder as a conductive auxiliary agent was added and stirred to obtain a black slurry. This slurry was applied onto a high-purity aluminum foil and dried at 120 ° C., thereby producing a positive electrode having a thickness of 95 μm mainly composed of DCNQI dimer. This was punched out into a circle with a diameter of 12 mm, and then a secondary battery was produced in the same manner as in [ Reference Example 1].

以上のように作製した二次電池を、〔参考例1〕と同様、0.1mAの定電流で電圧が4.0Vになるまで充電し、その後、0.1mAの定電流で2.0Vまで放電を行った。その結果、3.2V及び2.6Vの二箇所で充放電電圧を示し、放電容量が0.42mAhの二次電池であることが確認された。また、電極活物質当たりの放電容量(実容量密度)を求めたところ、210mAh/gであった。 As in [ Reference Example 1], the secondary battery manufactured as described above was charged with a constant current of 0.1 mA until the voltage reached 4.0 V, and then with a constant current of 0.1 mA to 2.0 V. Discharge was performed. As a result, charging / discharging voltage was shown at two locations of 3.2V and 2.6V, and it was confirmed that the secondary battery had a discharge capacity of 0.42 mAh. Moreover, it was 210 mAh / g when the discharge capacity (actual capacity density) per electrode active material was calculated | required.

次いで、4.0〜2.0Vの範囲で充放電を100サイクル繰り返した。その結果、100サイクル後においても初期の80%以上の容量を確保することができた。すなわち、充放電を繰り返しても容量低下が少ないサイクル特性の良好な二次電池を得ることができた。   Next, charging and discharging were repeated 100 cycles in the range of 4.0 to 2.0 V. As a result, the initial capacity of 80% or more could be secured even after 100 cycles. That is, it was possible to obtain a secondary battery having good cycle characteristics with little decrease in capacity even after repeated charge and discharge.

また、同様に試作したコイン型電池を0.1mAの定電流で電圧が4.0Vになるまで充電し、その後、5.0mAの定電流で放電を行った。その結果、放電容量は0.1mAの定電流で放電した場合に比べて減少したものの、0.1mAで放電したときの放電容量に対して80%以上を確保することができた。すなわち、この参考例2においても、大電流でも大きな容量を取り出せる高出力密度の二次電池が得られることが確認された。 Similarly, a prototype coin-type battery was charged with a constant current of 0.1 mA until the voltage reached 4.0 V, and then discharged with a constant current of 5.0 mA. As a result, although the discharge capacity decreased as compared with the case of discharging at a constant current of 0.1 mA, it was possible to ensure 80% or more of the discharge capacity when discharged at 0.1 mA. That is, it was confirmed that a high power density secondary battery capable of extracting a large capacity even with a large current can be obtained in Reference Example 2.

すなわち、製造方法によっては特性上の差異は殆ど生じないことが確認された。   That is, it was confirmed that there was almost no difference in characteristics depending on the manufacturing method.

〔参考例3〕
〔有機化合物の合成〕
合成スキーム()に従い、ジシアノキノジイミンの高分子(以下、「DCNQIポリマー」という。)を作製した。
[Reference Example 3]
(Synthesis of organic compounds)
In accordance with the synthesis scheme ( B ), a polymer of dicyanoquinodiimine (hereinafter referred to as “DCNQI polymer”) was produced.

Figure 0005483523
Figure 0005483523

窒素気流中、1,4−ビス(アミノメチル)−2,5−ジメトキシベンゼン(I)5gを過剰量のマロン酸ジメチル((COOCHCH)に溶解させて150℃の温度で5時間攪拌した。そして、反応混合物に水100mLを加えて塩化メチレンで抽出し、無水硫酸ナトリウム上で乾燥させた後、濃縮乾固した、得られた固体(II)を窒素気流中でテトラヒドロフラン(THF)300mLに溶解させ、水素化リチウムアルミニウム(LiAlH)4gを添加し、室温で4時間攪拌した。次に、反応混合物を氷水中に注いで攪拌した後、酢酸エチルで抽出し、無水硫酸ナトリウム上で乾燥させた後、濃縮乾固した、得られた無色の油状物(III)を塩化メチレン300mLに溶解させ、硝酸二アンモニウムセリウム(II)(Ce(NH(NO)56gを加え、生成した黄色固体をろ取し、洗浄してベンゾキノンの高分子(IV)を得た。そして、このベンゾキノンの高分子(IV)をデシケーター中で十分に乾燥させた。 In a nitrogen stream, 5 g of 1,4-bis (aminomethyl) -2,5-dimethoxybenzene (I) was dissolved in an excess amount of dimethyl malonate ((COOCH 3 ) 2 CH 2 ), and a temperature of 150 ° C. Stir for hours. The reaction mixture was added with 100 mL of water, extracted with methylene chloride, dried over anhydrous sodium sulfate, and concentrated to dryness. The resulting solid (II) was dissolved in 300 mL of tetrahydrofuran (THF) in a nitrogen stream. 4 g of lithium aluminum hydride (LiAlH 4 ) was added and stirred at room temperature for 4 hours. Next, the reaction mixture was poured into ice water, stirred, extracted with ethyl acetate, dried over anhydrous sodium sulfate, and concentrated to dryness. The resulting colorless oil (III) was dissolved in 300 mL of methylene chloride. Into the solution, 56 g of diammonium cerium nitrate (II) (Ce (NH 4 ) 2 (NO 3 ) 6 ) was added, and the resulting yellow solid was collected by filtration and washed to obtain a benzoquinone polymer (IV). . The benzoquinone polymer (IV) was sufficiently dried in a desiccator.

一方、塩化メチレン(CHCl)100mLを容積200mLの三口フラスコに入れ、次いで、ビス(トリメチルシリル)カルボジイミド((CHSiNCNSi(CH)52mLをこの三口フラスコに入れて溶解させ、さらに四塩化チタン(TiCl)44gを加えて0℃で攪拌した。 On the other hand, 100 mL of methylene chloride (CH 2 Cl 2 ) is put into a three-necked flask having a volume of 200 mL, and then 52 mL of bis (trimethylsilyl) carbodiimide ((CH 3 ) 3 SiNCNSi (CH 3 ) 3 ) is put into this three-necked flask and dissolved. Further, 44 g of titanium tetrachloride (TiCl 4 ) was added and stirred at 0 ° C.

その後、ベンゾキノンの高分子(IV)を含有させた塩化メチレン溶液を前記三口フラスコに滴下し、0℃の温度で24時間反応させた。得られた黒色の生成物を赤外吸収スペクトルで測定したところ、シアノ基(−CN)に由来する吸収を確認でき、キノイド構造の炭素一窒素二重結合(C=N)に由来する吸収が確認できたことから、生成物はDCNQIポリマー(V)であると考えられる。   Thereafter, a methylene chloride solution containing the polymer (IV) of benzoquinone was dropped into the three-necked flask and reacted at a temperature of 0 ° C. for 24 hours. When the obtained black product was measured by an infrared absorption spectrum, absorption derived from a cyano group (—CN) was confirmed, and absorption derived from a carbon-nitrogen double bond (C═N) having a quinoid structure was observed. From the confirmation, the product is considered to be DCNQI polymer (V).

〔二次電池の作製〕
電極活物質にDCNQIポリマーを使用した以外は、〔参考例1〕と同様の方法で二次電池を作製した。
[Production of secondary battery]
A secondary battery was fabricated in the same manner as in [ Reference Example 1] except that a DCNQI polymer was used as the electrode active material.

〔二次電池の動作確認〕
参考例1〕と同様、この二次電池を、0.1mAの定電流で電圧が4.0Vになるまで充電し、その後、0.1mAの定電流で2.0Vまで放電した。その結果、この二次電池は3.1V及び2.5Vの二箇所で充放電電圧を示し、放電容量が0.19mAhの二次電池であることが確認された。また、電極活物質当たりの放電容量(実容量密度)を求めたところ、180mAh/gであった。
[Confirmation of secondary battery operation]
As in [ Reference Example 1], this secondary battery was charged with a constant current of 0.1 mA until the voltage reached 4.0 V, and then discharged with a constant current of 0.1 mA to 2.0 V. As a result, this secondary battery showed a charge / discharge voltage at two locations of 3.1 V and 2.5 V, and was confirmed to be a secondary battery having a discharge capacity of 0.19 mAh. Further, when the discharge capacity (actual capacity density) per electrode active material was determined, it was 180 mAh / g.

次いで、4.0〜2.0Vの範囲で充放電を100サイクル繰り返した。その結果、100サイクル後においても初期の80%以上の容量を確保することができた。すなわち、充放電を繰り返しても容量低下が少ないサイクル特性の良好な二次電池を得ることができた。   Subsequently, charge and discharge were repeated 100 cycles in the range of 4.0 to 2.0 V. As a result, the initial capacity of 80% or more could be secured even after 100 cycles. That is, it was possible to obtain a secondary battery having good cycle characteristics with little decrease in capacity even after repeated charge and discharge.

また、同様に作製した二次電池を0.1mAの定電流で電圧が4.0Vになるまで充電した後、5.0mAの定電流で放電した。その結果、〔参考例1〕と同様、放電容量は0.1mAの定電流で放電した場合に比べて減少したものの、0.1mAで放電したときの放電容量に対して80%以上を確保することができた。すなわち、大電流でも大きな容量を取り出せる高出力密度の二次電池が得られることが分かった。 In addition, a secondary battery produced in the same manner was charged at a constant current of 0.1 mA until the voltage reached 4.0 V, and then discharged at a constant current of 5.0 mA. As a result, as in [ Reference Example 1], the discharge capacity was reduced compared with the case of discharging at a constant current of 0.1 mA, but 80% or more was secured relative to the discharge capacity when discharging at 0.1 mA. We were able to. That is, it was found that a secondary battery having a high output density capable of taking out a large capacity even with a large current can be obtained.

〔理論容量密度の算出〕
DCNQIポリマーとTCNQポリマーについて、理論容量密度Qを上記数式(1)に基づいて算出し、両者を比較した。尚、TCNQポリマーは、DCNQI構造をTCNQ構造にした点を除き、同一の高分子構造を有している。
[Calculation of theoretical capacity density]
For the DCNQI polymer and the TCNQ polymer, the theoretical capacity density Q was calculated based on the above formula (1), and the two were compared. The TCNQ polymer has the same polymer structure except that the DCNQI structure is changed to the TCNQ structure.

DCNQIポリマーの分子量Wは310.3であり、TCNQポリマーの分子量Wは304.3であるから、電池電極反応に関与する電子数Zを2とすると、数式(1)より、理論容量密度Qは、DCNQIポリマーが209mAh/gであり、TCNQポリマーは176mAh/gである。   Since the molecular weight W of the DCNQI polymer is 310.3 and the molecular weight W of the TCNQ polymer is 304.3, assuming that the number of electrons Z involved in the battery electrode reaction is 2, the theoretical capacity density Q is DCNQI polymer is 209 mAh / g and TCNQ polymer is 176 mAh / g.

したがって、DCNQIポリマーはTCNQポリマーに比べ、容量密度を約19%向上させることが可能であることが分かった。   Accordingly, it was found that the DCNQI polymer can improve the capacity density by about 19% compared to the TCNQ polymer.

尚、実容量密度が180mAh/gであり、理論容量密度の約86%であるのは、〔参考例1〕と同様、DCNQIポリマーの合成過程で不純物が混入したためと考えられ、したがって、適宜の手段で斯かる不純物の混入を回避することにより、実容量密度を理論容量密度に近付けることが可能と考えられる。 The actual capacity density is 180 mAh / g and about 86% of the theoretical capacity density is considered to be because impurities were mixed in the synthesis process of the DCNQI polymer as in [ Reference Example 1]. It is considered that the actual capacity density can be brought close to the theoretical capacity density by avoiding such contamination by means.

〔参考例4〕
ジシアノキノジイミン構造を構成単位とする有機化合物として、化学式(C)で示される2,5−ジメチル−N,N’-ジシアノキノジイミン(以下、「DCNQI−OMe2」という。)を用意した。尚、このDCNQI−OMe2は市販のもの(東京化成工業社製)を使用した。
[Reference Example 4]
As an organic compound having a dicyanoquinodiimine structure as a structural unit, 2,5-dimethyl-N, N′-dicyanoquinodiimine (hereinafter referred to as “DCNQI-OMe2”) represented by the chemical formula (C) was prepared. . In addition, this DCNQI-OMe2 used the commercially available thing (made by Tokyo Chemical Industry Co., Ltd.).

Figure 0005483523
Figure 0005483523

〔二次電池の作製〕
正極活物質としてDCNQI−OMe2を使用した以外は、〔参考例1〕と同様の方法で二次電池を作製した。
[Production of secondary battery]
A secondary battery was fabricated in the same manner as in [ Reference Example 1] except that DCNQI-OMe2 was used as the positive electrode active material.

〔二次電池の動作確認〕
参考例1〕と同様、この二次電池を、0.1mAの定電流で電圧が4.0Vになるまで充電し、その後、0.1mAの定電流で2.0Vまで放電した。その結果、この二次電池は3.3V及び2.8Vの二箇所で充放電電圧を示し、放電容量が0.45mAhの二次電池であることが確認された。また、電極活物質当たりの放電容量(実容量密度)を求めたところ、180mAh/gであった。
[Confirmation of secondary battery operation]
As in [ Reference Example 1], this secondary battery was charged with a constant current of 0.1 mA until the voltage reached 4.0 V, and then discharged with a constant current of 0.1 mA to 2.0 V. As a result, this secondary battery showed a charge / discharge voltage at two locations of 3.3V and 2.8V, and was confirmed to be a secondary battery having a discharge capacity of 0.45 mAh. Moreover, it was 180 mAh / g when the discharge capacity per electrode active material (real capacity density) was calculated | required.

次いで、3.6〜2.0Vの範囲で充放電を100サイクル繰り返した。その結果、100サイクル後においても容量の低下は少なく、充放電を繰り返しても容量低下が少ない長サイクル寿命の二次電池であることがわかった。   Next, charging and discharging were repeated 100 cycles in the range of 3.6 to 2.0 V. As a result, it was found that the secondary battery had a long cycle life with little reduction in capacity even after 100 cycles and little reduction in capacity even after repeated charge and discharge.

また、同様に試作した二次電池を0.1mAの定電流で電圧が3.6Vになるまで充電し、その後、5.0mAの定電流で放電した。その結果、〔参考例1〕と同様、放電容量は0.1mAの定電流で放電した場合に比べて減少したものの、0.1mAで放電したときの放電容量に対して80%以上を確保することができた。すなわち、大電流でも大きな容量を取り出せる高出力密度の二次電池が得られることが分かった。 Similarly, a prototype secondary battery was charged with a constant current of 0.1 mA until the voltage reached 3.6 V, and then discharged with a constant current of 5.0 mA. As a result, as in [ Reference Example 1], although the discharge capacity was reduced compared to the case of discharging at a constant current of 0.1 mA, 80% or more was secured relative to the discharge capacity when discharging at 0.1 mA. We were able to. That is, it was found that a secondary battery having a high output density capable of taking out a large capacity even with a large current can be obtained.

〔理論容量密度の算出〕
DCNQI−OMe2と2,5−ジメチル−N,N’-ジシアノキノジメタン(以下、「TCNQ−OMe2」という。)について、理論容量密度Qを上記数式(1)に基づいて算出し、両者を比較した。
[Calculation of theoretical capacity density]
For DCNQI-OMe2 and 2,5-dimethyl-N, N′-dicyanoquinodimethane (hereinafter referred to as “TCNQ-OMe2”), the theoretical capacity density Q is calculated based on the above formula (1), Compared.

DCNQI−OMe2の分子量Wは216.2であり、TCNQ−OMe2の分子量Wは264.2であるから、電池電極反応に関与する電子数Zを2とすると、数式(1)より、理論容量密度Qは、DCNQI−OMe2が248mAh/gであり、TCNQ−OMe2が203mAh/gである。   Since the molecular weight W of DCNQI-OMe2 is 216.2 and the molecular weight W of TCNQ-OMe2 is 264.2, if the number of electrons Z involved in the battery electrode reaction is 2, the theoretical capacity density can be calculated from Equation (1). For Q, DCNQI-OMe2 is 248 mAh / g, and TCNQ-OMe2 is 203 mAh / g.

したがって、DCNQI−OMe2はTCNQ−OMe2に比べ、容量密度を約22%向上させることが可能であることが分かった。   Therefore, it was found that DCNQI-OMe2 can improve the capacity density by about 22% compared with TCNQ-OMe2.

尚、実容量密度が180mAh/gであり、したがって理論容量密度の約38%であるのは、〔参考例1〕と同様、DCNQI−OMe2の合成過程で不純物が混入したためと考えられ、したがって、適宜の手段で斯かる不純物の混入を回避することにより、実容量密度を理論容量密度に近付けることが可能と考えられる。 The actual capacity density is 180 mAh / g, and therefore about 38% of the theoretical capacity density is considered to be because impurities were mixed in the synthesis process of DCNQI-OMe2 as in [ Reference Example 1]. It is considered that the actual capacity density can be brought close to the theoretical capacity density by avoiding the mixing of such impurities by appropriate means.

このように各参考例のDCNQI構造とTCNQ構造との比較から明らかなように、TCNQ構造の有機化合物は、対応するDCNQI構造の有機化合物に比べ、分子量が大きく、このため理論容量密度Qも小さくなる。したがって充放電の繰り返しによって電池容量の低下も大きくなるため、二次電池用の電極活物質には適さないことが確認された。 Thus, as is clear from the comparison between the DCNQI structure and the TCNQ structure of each reference example, the organic compound having the TCNQ structure has a larger molecular weight than the corresponding organic compound having the DCNQI structure, and thus the theoretical capacity density Q is also small. Become. Accordingly, it is confirmed that the battery capacity is greatly reduced by repeated charging and discharging, and is not suitable for an electrode active material for a secondary battery.

〔参考例5〕
正極活物質としてTCNQを使用した以外は、〔参考例1〕と同様の方法で二次電池を作製した。尚、TCNQは市販のもの(東京化成工業社製)を使用した。
[Reference Example 5]
A secondary battery was fabricated in the same manner as in [ Reference Example 1] except that TCNQ was used as the positive electrode active material. As TCNQ, a commercially available product (manufactured by Tokyo Chemical Industry Co., Ltd.) was used.

次いで、この二次電池を、0.1mAの定電流で電圧が4.0Vになるまで充電し、その後、0.1mAの定電流で2.0Vまで放電した。その結果、1回目の放電で3.1V及び2.5Vに電圧平坦部を有し、放電容量は0.2mAhを示したが、2回目以降は、充電容量、放電容量共に0.1mAh以下に減少した。   Next, this secondary battery was charged with a constant current of 0.1 mA until the voltage reached 4.0 V, and then discharged to 2.0 V with a constant current of 0.1 mA. As a result, the first discharge had voltage flat portions at 3.1 V and 2.5 V, and the discharge capacity showed 0.2 mAh. However, after the second discharge, both the charge capacity and the discharge capacity were reduced to 0.1 mAh or less. Diminished.

本発明に係る二次電池としてのコイン型電池の一実施の形態を示す断面図である。It is sectional drawing which shows one Embodiment of the coin-type battery as a secondary battery which concerns on this invention.

Claims (6)

電池電極反応によって充放電を繰り返す二次電池の活物質として使用される電極活物質であって、
一般式
Figure 0005483523
[式中、mは1以上の整数であり、R 〜R は、水素原子、ハロゲン原子、ヒドロキシル基、ニトロ基、シアノ基、カルボキシル基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のシクロアルケニル基、置換若しくは非置換の芳香族炭化水素基、置換若しくは非置換の芳香族複素環基、置換若しくは非置換のアラルキル基、置換若しくは非置換のアミノ基、置換若しくは非置換のアルコキシ基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアルコキシカルボニル基、置換若しくは非置換のアリールオキシカルボニル基、置換若しくは非置換のアシル基、及び置換若しくは非置換のアシルオキシ基のいずれかを示し、R 〜R の組み合わせで環構造を形成する場合も含む。]
で表されるシアノキノジイミン構造を構成単位として含有した有機化合物を主体としていることを特徴とする電極活物質。
An electrode active material used as an active material of a secondary battery that repeats charging and discharging by a battery electrode reaction,
General formula
Figure 0005483523
[Wherein, m is an integer of 1 or more, and R 1 to R 6 are a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a cyano group, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted group. Alkenyl group, substituted or unsubstituted cycloalkenyl group, substituted or unsubstituted aromatic hydrocarbon group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted aralkyl group, substituted or unsubstituted amino group Substituted or unsubstituted alkoxy group, substituted or unsubstituted aryloxy group, substituted or unsubstituted alkoxycarbonyl group, substituted or unsubstituted aryloxycarbonyl group, substituted or unsubstituted acyl group, and substituted or unsubstituted Including a case where a ring structure is formed by a combination of R 1 to R 6. Mu ]
An electrode active material comprising mainly an organic compound containing a cyanoquinodiimine structure represented by
前記有機化合物は、分子量が200以上であることを特徴とする請求項1記載の電極活物質。 The electrode active material according to claim 1 , wherein the organic compound has a molecular weight of 200 or more. 前記有機化合物は、1.2〜4.2Vvs.Li/Liの範囲に2つ以上の酸化還元電位を有することを特徴とする請求項1又は請求項2記載の電極活物質。 The electrode active material according to claim 1 , wherein the organic compound has two or more oxidation-reduction potentials in a range of 1.2 to 4.2 V vs. Li / Li + . 電池電極反応により充放電を行う二次電池であって、
請求項1乃至請求項3のいずれかに記載の電極活物質が、前記電池電極反応の少なくとも放電反応における反応出発物、生成物及び中間生成物のうちのいずれかに含まれることを特徴とする二次電池。
A secondary battery that charges and discharges by a battery electrode reaction,
The electrode active material according to any one of claims 1 to 3 is included in any one of a reaction starting material, a product, and an intermediate product in at least a discharge reaction of the battery electrode reaction. Secondary battery.
前記放電反応は、少なくとも2つ以上の放電電圧を有することを特徴とする請求項4記載の二次電池。 The secondary battery according to claim 4 , wherein the discharge reaction has at least two discharge voltages. 正極、負極、及び電解質を有し、前記正極が、前記電極活物質を主体としていることを特徴とする請求項4又は請求項5記載の二次電池。 The secondary battery according to claim 4 , comprising a positive electrode, a negative electrode, and an electrolyte, wherein the positive electrode is mainly composed of the electrode active material.
JP2008219401A 2008-08-28 2008-08-28 Electrode active material and secondary battery Expired - Fee Related JP5483523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008219401A JP5483523B2 (en) 2008-08-28 2008-08-28 Electrode active material and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008219401A JP5483523B2 (en) 2008-08-28 2008-08-28 Electrode active material and secondary battery

Publications (2)

Publication Number Publication Date
JP2010055923A JP2010055923A (en) 2010-03-11
JP5483523B2 true JP5483523B2 (en) 2014-05-07

Family

ID=42071619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008219401A Expired - Fee Related JP5483523B2 (en) 2008-08-28 2008-08-28 Electrode active material and secondary battery

Country Status (1)

Country Link
JP (1) JP5483523B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012105439A1 (en) * 2011-02-01 2014-07-03 株式会社村田製作所 Electrode active material, electrode, and secondary battery
JP5700371B2 (en) * 2011-03-08 2015-04-15 学校法人早稲田大学 Dicyanoanthraquinone diimine polymer, charge storage material, electrode active material, electrode and battery
KR101989660B1 (en) 2013-07-09 2019-06-14 에보니크 데구사 게엠베하 Electroactive polymers, manufacturing process thereof, electrode and use thereof
DE102014003300A1 (en) 2014-03-07 2015-09-10 Evonik Degussa Gmbh New tetracyanoanthraquinone dimethyne polymers and their use
DE102014004760A1 (en) 2014-03-28 2015-10-01 Evonik Degussa Gmbh New 9,10-bis (1,3-dithiol-2-ylidene) -9,10-dihydroanthracene polymers and their use
EP3262668B1 (en) 2015-08-26 2018-12-05 Evonik Degussa GmbH Use of certain polymers as a charge store
EP3135704A1 (en) 2015-08-26 2017-03-01 Evonik Degussa GmbH Use of certain polymers as charge storage
EP3136410A1 (en) 2015-08-26 2017-03-01 Evonik Degussa GmbH Use of certain polymers as charge storage
US10756348B2 (en) 2015-08-26 2020-08-25 Evonik Operations Gmbh Use of certain polymers as a charge store
EP3349278B1 (en) * 2015-09-10 2022-09-07 Shin-Etsu Chemical Co., Ltd. Method for producing negative electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing nonaqueous electrolyte secondary battery, method for producing negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP6762474B2 (en) 2015-09-11 2020-09-30 学校法人早稲田大学 Charge storage material, electrode active material and secondary battery
US10326138B2 (en) 2015-09-11 2019-06-18 Waseda University Charge storage material, electrode active material and secondary battery
JP6857787B2 (en) 2015-09-11 2021-04-14 学校法人早稲田大学 Ion conductive condensed quinone polymer, electrode active material and secondary battery
US9871253B2 (en) 2015-09-11 2018-01-16 Waseda University Ion-conductive fused-ring quinone polymer, electrode active material and secondary battery
JP6721906B2 (en) 2015-10-08 2020-07-15 学校法人早稲田大学 Fused quinone-substituted polynorbornene, electrode active material, and secondary battery
EP3279223A1 (en) 2016-08-05 2018-02-07 Evonik Degussa GmbH Use of polymers containing thianthrene as charge storage
TWI686415B (en) 2016-08-05 2020-03-01 德商贏創運營有限公司 Use of thianthrene-containing polymers as charge storage means
DE102017005924A1 (en) 2017-06-23 2018-12-27 Friedrich-Schiller-Universität Jena Use of benzotriazinyl-containing polymers as charge storage

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3522232A1 (en) * 1985-06-21 1987-01-02 Basf Ag RADIKALION SALTS
JP3309475B2 (en) * 1993-03-12 2002-07-29 東ソー株式会社 Method for producing aromatic polyester or aromatic polyamide

Also Published As

Publication number Publication date
JP2010055923A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP5483523B2 (en) Electrode active material and secondary battery
JP5531424B2 (en) Electrode active material and secondary battery using the same
JP2010080343A (en) Electrode active material and secondary battery
JP5488799B2 (en) Electrode active material and secondary battery
JP5483521B2 (en) Electrode active material and secondary battery
WO2012121145A1 (en) Electrode active material, electrode, and secondary battery
JP5527882B2 (en) Electrode active material and secondary battery using the same
JP5808067B2 (en) Secondary battery
JP5692741B2 (en) Electrode active material and secondary battery
US20130344385A1 (en) Electrode active material, electrode, and secondary cell
JP5645319B2 (en) Secondary battery
JP5818689B2 (en) Lithium ion secondary battery
JP2013134947A (en) Electrode active material and secondary battery containing the same
JP6179233B2 (en) Non-aqueous electrolyte secondary battery
WO2012105439A1 (en) Electrode active material, electrode, and secondary battery
EP2782171B1 (en) Electrode active material, production method for said electrode active material, electrode, and secondary battery
JP5534589B2 (en) Electrode active material and secondary battery
JP5536519B2 (en) Electrode active material and secondary battery
JP2010113840A (en) Electrode active material and battery
JP5800443B2 (en) Secondary battery and secondary battery charging / discharging method
EP2782172B1 (en) Electrode active material, electrode, and secondary battery
JP5716934B2 (en) Electrode active material, electrode, and secondary battery
WO2012105438A1 (en) Electrode active material, electrode, and secondary battery
CN115298858A (en) Electrode active material, electrode, and secondary battery
WO2014073562A1 (en) Secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131119

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140214

R150 Certificate of patent or registration of utility model

Ref document number: 5483523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees