JP5481689B2 - Ion measurement optode and ion concentration measurement method using the same - Google Patents

Ion measurement optode and ion concentration measurement method using the same Download PDF

Info

Publication number
JP5481689B2
JP5481689B2 JP2008217172A JP2008217172A JP5481689B2 JP 5481689 B2 JP5481689 B2 JP 5481689B2 JP 2008217172 A JP2008217172 A JP 2008217172A JP 2008217172 A JP2008217172 A JP 2008217172A JP 5481689 B2 JP5481689 B2 JP 5481689B2
Authority
JP
Japan
Prior art keywords
group
optode
lithium
lithium ion
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008217172A
Other languages
Japanese (ja)
Other versions
JP2010054242A (en
Inventor
邦雄 縣
Original Assignee
アクアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクアス株式会社 filed Critical アクアス株式会社
Priority to JP2008217172A priority Critical patent/JP5481689B2/en
Publication of JP2010054242A publication Critical patent/JP2010054242A/en
Application granted granted Critical
Publication of JP5481689B2 publication Critical patent/JP5481689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/04Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups one >CH- group, e.g. cyanines, isocyanines, pseudocyanines

Description

本発明は、溶液中に存在するリチウムイオン濃度を測定するためのオプトード及びそれを用いたリチウムイオン濃度の測定方法に関する。 The present invention relates to an optode for measuring the concentration of lithium ions present in a solution and a method for measuring the concentration of lithium ions using the optode.

リチウムイオンは、工業分野ではボイラ水系、冷却水系等に添加する各種水処理薬剤のトレーサとして利用されており、薬剤濃度を正確に把握し適切な濃度管理を行うためには、トレーサとして混入されている溶液中のリチウムイオン濃度を正確に測定する必要がある。   In the industrial field, lithium ions are used as tracers for various water treatment chemicals added to boiler water systems, cooling water systems, etc. In order to accurately grasp the chemical concentration and perform appropriate concentration management, it is mixed as a tracer. It is necessary to accurately measure the lithium ion concentration in the solution.

現在、溶液中のリチウムイオンを測定する方法として、イオン選択性電極や原子吸光光度法などが用いられている。イオン選択性電極は、様々なイオンの含まれた混合溶液中で、目的イオンに対して選択的に応答して電気化学的情報に変換し、その応答電位からイオン活量を導くセンサーである(特許文献1)。また、原子吸光光度法は、原子蒸気化させた金属原子に特有の波長の光を照射し、その吸収量から定量を行う方法である。   Currently, ion-selective electrodes, atomic absorption spectrophotometry, and the like are used as methods for measuring lithium ions in a solution. An ion selective electrode is a sensor that selectively responds to target ions in a mixed solution containing various ions, converts them into electrochemical information, and derives the ion activity from the response potential ( Patent Document 1). The atomic absorption spectrophotometry is a method of quantifying from the amount of absorption by irradiating light having a wavelength that is characteristic of atomic vaporized metal atoms.

イオン選択性電極は、高感度で精度の高い測定が可能だが、センサの寿命が短く高コストになることが難点である。原子吸光光度法は、測定に大がかりな装置が必要であり、また、試料水をサンプリングしてから測定結果を得るまでに長い時間がかかってしまうため、リアルタイムの測定には適さない。   The ion-selective electrode can measure with high sensitivity and high accuracy, but it has a drawback that the lifetime of the sensor is short and the cost is high. Atomic absorption spectrophotometry requires a large-scale device for measurement, and it takes a long time to obtain the measurement result after sampling the sample water, so it is not suitable for real-time measurement.

このような背景から、リチウムイオンを低コストで、しかも簡便に長期にリアルタイムの測定が可能な、リチウムイオン測定用センサが求められている。   Against this background, there is a need for a sensor for measuring lithium ions that is capable of measuring lithium ions at low cost and easily in real time over a long period of time.

一方、高い光耐久性、高い蛍光量子収率、鋭い吸収スペクトルを持つ優れた蛍光色素として、ボロンジピロメテン骨格を有する色素が知られている(特許文献2)。特許文献2には、ボロンジピロメテン骨格に、測定すべきイオンと選択的に結合し、イオンと選択的に結合することにより色素の光学特性を変化させる基を結合させた色素をプローブとして用いることによりイオンを測定することも示唆されている(もっとも、リチウムイオンに選択的に応答する基は特許文献2には開示も示唆もされていない)。   On the other hand, a dye having a boron dipyrromethene skeleton is known as an excellent fluorescent dye having high light durability, high fluorescence quantum yield, and sharp absorption spectrum (Patent Document 2). Patent Document 2 uses, as a probe, a dye in which a boron dipyrromethene skeleton is selectively bonded to an ion to be measured and a group that selectively binds to the ion and changes the optical properties of the dye. It is also suggested that ions are measured by the above (however, a group that selectively responds to lithium ions is not disclosed or suggested in Patent Document 2).

しかしながら、ボロンジピロメテン色素は、疎水性が高いため均一系での水溶液の測定は困難である。また、この分子は平面的な構造を持つために高濃度の場合に会合体を形成する。さらに、N原子のプロトネーションによって分子が両親媒性を帯びることによっても、ミセルのような会合体を形成する。一般的に、蛍光分子は会合体を形成すると、自己消光により蛍光強度が減少するため、高感度センサには不適である。そこで、この課題を解決してセンサとして実用化するため、従来は、ポリマ膜中に色素を分散させた方式のセンサ用膜デバイスが作成されてきた。しかし、膜デバイスは、色素が化学結合によって膜デバイスに固定化されていないため、色素の溶出が起こりやすかった。また、長時間保存すると、色素分子同士が会合して消光が起こっていた。これらの理由から、膜デバイスは、耐久性が悪く長期観測用センサとしての実用化は難しかった。   However, since boron dipyrromethene dye has high hydrophobicity, it is difficult to measure an aqueous solution in a homogeneous system. Further, since this molecule has a planar structure, it forms an aggregate at a high concentration. Furthermore, when the molecule is amphiphilic by the protonation of the N atom, an association like a micelle is formed. In general, when a fluorescent molecule forms an aggregate, the fluorescence intensity decreases due to self-quenching, which is not suitable for a highly sensitive sensor. Therefore, in order to solve this problem and put it to practical use as a sensor, conventionally, a film device for a sensor in which a dye is dispersed in a polymer film has been created. However, in the membrane device, since the dye is not immobilized on the membrane device by chemical bonding, the dye is likely to be eluted. Further, when stored for a long time, the dye molecules were associated with each other and quenching occurred. For these reasons, the membrane device has poor durability and is difficult to put into practical use as a long-term observation sensor.

特開2004-4045号公報JP 2004-4045 A WO 2007/126052 A1WO 2007/126052 A1

本発明の目的は、水溶液中の、リチウムイオンを簡便に高感度に測定することができ、耐久性に優れた、リチウムイオン測定用オプトード並びにそれを用いたリチウムイオン濃度の測定方法及び水処理薬剤の濃度管理方法を提供することである。 An object of the present invention is to provide a lithium ion measurement optode that can easily measure lithium ions in an aqueous solution with high sensitivity and has excellent durability, a method for measuring lithium ion concentration using the optode, and a water treatment agent. It is to provide a concentration management method.

本願発明者らは、上記目的を達成するべく鋭意研究した結果、ボロンジピロメテン骨格に、測定すべきリチウムイオンと特異的に結合し、リチウムイオンと結合することによりボロンジピロメテン色素の光学特性を変化させる、リチウムイオン応答性基を結合すると共に、ボロンジピロメテン色素を共有結合により基材に結合させたものをオプトードとして用いることにより、水溶液中のリチウムイオンであっても簡便に高感度に測定することが可能であり、かつ、該オプトードは耐久性にも優れていることを見出し本発明を完成した。 As a result of earnest research to achieve the above object, the inventors of the present application specifically bonded to the boron dipyrromethene skeleton with the lithium ion to be measured, and bonded with the lithium ion to improve the optical properties of the boron dipyrromethene dye. Measures lithium ion in aqueous solution easily and with high sensitivity by using as an optode a lithium ion-responsive group to be bonded and a boron dipyrromethene dye covalently bonded to a substrate. The present invention was completed by finding that the optode is excellent in durability.

すなわち、本発明は、下記一般式[I]で表される構造を有するリチウムイオン応答性色素を、共有結合によって基材に固定化したことを特徴とするリチウムイオン測定用オプトードを提供する。 That is, the present invention provides an optode for measuring lithium ions, characterized in that a lithium ion-responsive dye having a structure represented by the following general formula [I] is immobilized on a substrate by covalent bonding.

Figure 0005481689
Figure 0005481689

ここで、
R1及びR2のいずれか一方が、リチウムイオンと結合して前記色素の吸光特性及び/又は蛍光特性を変化させるリチウムイオン応答性基であり、
R1〜R7のうち、前記リチウムイオン応答性基以外のいずれか1つが、前記基材と共有結合する共有結合性基であり、
R1〜R7のうち、前記リチウムイオン応答性基及び前記共有結合性基以外のものは互いに独立して水素又はメチル基であり、
前記リチウムイオン応答性基が下記一般式[II]で表される構造を有するリチウムイオン測定用オプトード

Figure 0005481689
ここで、Xは下記式(1)〜(6)のいずれかで表される基である。
Figure 0005481689
ここで、R 8 〜R 11 は互いに独立して水素または炭素数1〜3のアルキル基である。
Figure 0005481689
here,
Either one of R 1 and R 2 is a lithium ion-responsive group that binds to lithium ions and changes the absorption characteristics and / or fluorescence characteristics of the dye,
Among R 1 to R 7 , any one other than the lithium ion responsive group is a covalent bond group that is covalently bonded to the base material,
Among R 1 to R 7, Ri hydrogen or a methyl group der independently of one another other than the lithium-ion responsive group and the covalent bonding group,
An optode for measuring lithium ions, wherein the lithium ion-responsive group has a structure represented by the following general formula [II] .
Figure 0005481689
Here, X is a group represented by any of the following formulas (1) to (6).
Figure 0005481689
Here, R < 8 > -R < 11 > is hydrogen or a C1-C3 alkyl group mutually independently.
Figure 0005481689

また、本発明は、上記本発明のリチウムイオン測定用オプトードを用いて溶液中のリチウムイオン濃度を測定する方法であって、該溶液と該オプトードとを接触させ、該オプトードの吸光度又は蛍光強度を測定することを含む、リチウムイオン濃度の測定方法を提供する。 The present invention also relates to a method for measuring a lithium ion concentration in a solution using the lithium ion measurement optode of the present invention, wherein the solution and the optode are contacted, and the absorbance or fluorescence intensity of the optode is measured. A method for measuring a lithium ion concentration is provided that includes measuring.

さらに、本発明は、水処理薬剤と共にトレーサ物質としてのリチウムの水溶性塩を被処理水中に添加し、リチウムイオン濃度を上記本発明の方法で測定することにより、被処理水中に添加した前記水処理薬剤の濃度管理を行うことを特徴とする水処理薬剤の濃度管理方法を提供する。   Furthermore, the present invention provides the water added to the water to be treated by adding a water-soluble salt of lithium as a tracer substance together with the water treatment agent to the water to be treated, and measuring the lithium ion concentration by the method of the present invention. Provided is a method for managing the concentration of a water treatment chemical characterized in that the concentration management of the treatment chemical is performed.

本発明によれば、水溶液中の、リチウムイオンを簡便に高感度に測定することができる。本発明のオプトードは、ガラス基板等の基材上に色素が結合されたものであるので、持ち運びが自由であり、また、測定は吸光度や蛍光強度を測定することにより行うことができ、大掛かりな装置を必要としないので、リチウムイオン濃度を測定する現場にオプトードを持ち込んで簡便にイオン濃度を測定することができる。また、色素が基材に共有結合により結合されているので、経時的な色素の会合や離脱が起きず、耐久性に優れている。従って、水処理薬剤の濃度管理のように、リチウムイオン濃度を常時測定することが望まれる用途に好適に適用することができる。また、pHによる影響を受けにくく、この点からも水処理薬剤の濃度管理等に好適である。さらに、リチウムイオン応答性基として、特定のリチウムイオン応答性基を用いており、他の金属イオンの存在下であっても選択的にリチウムイオンを測定可能である。 According to the present invention, lithium ions in an aqueous solution can be easily measured with high sensitivity. Since the optode of the present invention has a dye bonded on a base material such as a glass substrate, it is free to carry, and the measurement can be performed by measuring the absorbance and fluorescence intensity, which is a large scale. Since an apparatus is not required, an optode can be brought to the site where the lithium ion concentration is measured to easily measure the ion concentration. Also, since the dye is covalently bonded to the substrate, the dye does not associate or leave over time, and is excellent in durability. Therefore, it can be suitably applied to applications where it is desired to always measure the lithium ion concentration, such as concentration management of water treatment chemicals. Moreover, it is less susceptible to the influence of pH, and from this point, it is suitable for the concentration management of water treatment chemicals. Furthermore, as the lithium-ion responsive group is it uses a specific lithium-ion responsive group, an optionally lithium ion even in the presence of other metal ions can be measured.

上記の通り、本発明のオプトードは、上記一般式[I]で表される構造を有するリチウムイオン応答性色素を、共有結合によって基材に固定化したものである。一般式[I]中、R1及びR2のいずれか一方が、リチウムイオンと結合して前記色素の吸光特性及び/又は蛍光特性を変化させるリチウムイオン応答性基であり、R1〜R7のうち、前記リチウムイオン応答性基以外のいずれか1つが、前記基材と共有結合する共有結合性基であり、R1〜R7のうち、前記リチウムイオン応答性基及び前記共有結合性基以外のものは互いに独立して水素又はメチル基である。 As described above, the optode of the present invention is obtained by immobilizing a lithium ion-responsive dye having a structure represented by the above general formula [I] on a base material by a covalent bond. In general formula [I], any one of R 1 and R 2 is a lithium ion-responsive group that binds to lithium ions and changes the light absorption characteristics and / or fluorescence characteristics of the dye, and R 1 to R 7 Any one of them other than the lithium ion responsive group is a covalent bond group covalently bonded to the substrate, and among R 1 to R 7 , the lithium ion responsive group and the covalent bond group Other than are independently hydrogen or methyl groups.

測定すべきリチウムイオン濃度に対する感度の観点から、R1リチウムイオン応答性基であることが好ましい。また、基材に共有結合してもできるだけ光学特性が影響を受けないようにする観点から、R3が共有結合性基であることが好ましい。また、R5及びR7がメチル基であり、R2、R4及びR6が水素である場合、合成時の収率が高くなるので好ましい。 From the viewpoint of sensitivity to the lithium ion concentration to be measured, R 1 is preferably a lithium ion responsive group. From the viewpoint of preventing the optical properties from being affected as much as possible even when covalently bonded to the substrate, R 3 is preferably a covalent bond group. In addition, it is preferable that R 5 and R 7 are methyl groups and R 2 , R 4, and R 6 are hydrogen because the yield at the time of synthesis increases.

共有結合性基は、基材表面上の官能基と直接又は他の構造を介して間接的に結合することができる官能基を有する基である。共有結合性基は、特に限定されないが、水酸基、カルボキシル基、アミノ基、スルホン酸基若しくはハロゲン又はこれらの基を有するアルキル基若しくはアルコキシ基であることが好ましい。ここで、アルキル基及びアルコキシ基中のアルキル部分の炭素数は、特に限定されないが、1〜4であることが好ましい。これらのうち、特に下記式で示される2-ヒドロキシエトキシ基が好ましい。   A covalent bond group is a group having a functional group that can be bonded directly or indirectly through another structure to a functional group on the surface of the substrate. The covalent bond group is not particularly limited, but is preferably a hydroxyl group, a carboxyl group, an amino group, a sulfonic acid group, a halogen, or an alkyl group or an alkoxy group having these groups. Here, although carbon number of the alkyl part in an alkyl group and an alkoxy group is not specifically limited, It is preferable that it is 1-4. Of these, a 2-hydroxyethoxy group represented by the following formula is particularly preferable.

Figure 0005481689
Figure 0005481689

基材は、共有結合可能な官能基を表面に有する固体であれば特に限定されず、ガラスや各種プラスチックを好ましく用いることができる。基材上の官能基としてはOH基、アミノ基、カルボキシル基等が好ましい。これらのうち、OH基は、シランカップリング剤を介してイオン応答性色素と容易に共有結合可能であるので特に好ましい。ガラスは、シラノール基中にOH基が存在するので、基材として好適に用いることができる。シランカップリング剤自体は周知であり、種々のものが市販されており、市販のシランカップリング剤を好適に用いることができる。特に、共有結合性基が上記した2-ヒドロキシエトキシ基のような水酸基を有する基である場合には、3-(トリエトキシシリル)プロピルイソシアネートを好ましく用いることができる。   The substrate is not particularly limited as long as it is a solid having a functional group capable of covalent bonding on the surface, and glass or various plastics can be preferably used. As the functional group on the substrate, OH group, amino group, carboxyl group and the like are preferable. Of these, the OH group is particularly preferred because it can be easily covalently bonded to an ion-responsive dye via a silane coupling agent. Glass has an OH group in a silanol group, and therefore can be suitably used as a substrate. Silane coupling agents themselves are well known, and various products are commercially available, and commercially available silane coupling agents can be suitably used. In particular, when the covalent bond group is a group having a hydroxyl group such as the above-mentioned 2-hydroxyethoxy group, 3- (triethoxysilyl) propyl isocyanate can be preferably used.

基材の形状は特に限定されず、板状、薄膜状、ファイバー状、粒子状等、種々の形状のものが利用可能である。また、多孔性の材料も、表面に多量のイオン応答性色素を結合できるので好ましく採用することができる。さらに、基材は、ナノファイバーやナノ粒子のように直径が1μm未満の小さなものであってもよい。このように小さなものであっても、イオン応答性色素の離脱や会合を効果的に防止できるので、基材として好ましく利用可能である。   The shape of the substrate is not particularly limited, and various shapes such as a plate shape, a thin film shape, a fiber shape, and a particle shape can be used. A porous material can also be preferably employed because it can bind a large amount of ion-responsive dye to the surface. Furthermore, the substrate may be a small one having a diameter of less than 1 μm, such as nanofibers or nanoparticles. Even such a small one can be effectively used as a substrate because it can effectively prevent the detachment and association of the ion-responsive dye.

リチウムイオン応答性色素は、基材の表面に共有結合で結合可能な範囲内でできるだけ多量に結合させることが高感度を達成する上で好ましい。基材に共有結合していないリチウムイオン応答性色素は、十分な洗浄操作により洗い流すことができるので、まず、過剰量のリチウムイオン応答性色素を共有結合反応に供し、その後、基材を十分に洗浄することにより、共有結合可能な最大量を結合させることができる。 In order to achieve high sensitivity, it is preferable that the lithium ion-responsive dye is bound to the surface of the substrate in as much amount as possible within a range that can be covalently bonded. Lithium ion-responsive dyes that are not covalently bonded to the substrate can be washed away by sufficient washing operations. Therefore, first, an excess amount of lithium ion-responsive dye is subjected to a covalent bond reaction, and then the substrate is sufficiently removed. By washing, the maximum amount capable of covalent bonding can be bound.

リチウムイオン応答性基は、測定すべきリチウムイオンと結合することができ、かつ、測定すべきリチウムイオンと結合すると、上記リチウムイオン応答性色素の吸光特性及び/又は蛍光特性を変化させることができる基である。本発明では、後述する特定のクラウンエーテル含有基が用いられる。 Lithium-ion responsive group can be coupled with to be measured lithium ion, and, when bound to be measured lithium ion, it is possible to change the absorption characteristics and / or fluorescence properties of the lithium-ion responsive dye It is a group. In this invention, the specific crown ether containing group mentioned later is used.

上記の通り、リチウムイオンは、工業分野ではボイラ水系、冷却水系等に添加する各種水処理薬剤のトレーサとして利用されており、薬剤濃度を正確に把握し適切な濃度管理を行うためには、トレーサとして混入されている溶液中のリチウムイオン濃度を正確に測定する必要がある。イオン応答性基として、リチウムイオン応答性基を有するものは、この用途に好適に利用することができ、好ましい。   As described above, lithium ion is used as a tracer for various water treatment chemicals added to boiler water systems, cooling water systems, etc. in the industrial field, and in order to accurately grasp the chemical concentration and perform appropriate concentration management, Therefore, it is necessary to accurately measure the lithium ion concentration in the solution mixed as follows. Those having a lithium ion responsive group as the ion responsive group can be suitably used for this application, and are preferable.

リチウムイオン応答性基としては、下記一般式[II]で表されるものが用いられるAs the lithium ion responsive group, those represented by the following general formula [II] are used .

Figure 0005481689
Figure 0005481689

ここで、Xは下記式(1)〜(6)のいずれかで表される基である。 Here, X is a group represented by any of the following formulas (1) to (6).

Figure 0005481689
Figure 0005481689

ここで、R8〜R11は互いに独立して水素または炭素数1〜3のアルキル基である。 Here, R < 8 > -R < 11 > is hydrogen or a C1-C3 alkyl group mutually independently.

Figure 0005481689
Figure 0005481689

なお、上記一般式[II]で表される構造を有するリチウムイオン応答性基は、本願発明者らにより創製された新規な構造であり、リチウムイオン応答性基として特に優れた効果を発揮するものである。すなわち、クラウンエーテルの基本骨格部分である14−クラウン−4自体は、リチウムイオンと配位結合することが公知であるが、クラウンエーテル中の2個の酸素原子をベンゼン環に直結させることにより、クラウンエーテル構造自体が堅固となり、リチウムイオンをより確実に、すなわち、高感度に捕捉することが可能となる。また、一般式[II]中のXは、リチウムイオン以外の他のイオンがクラウンエーテル部分に配位することを妨げる機能を発揮し、これによってリチウムイオンとの結合選択性が高くなる。一般式[II]中のXとしては、前記式(1)で表され、前記式(1)中のR8〜R11は全てメチル基であるものが、リチウムイオンとの結合選択性の観点から特に好ましい。 The lithium ion responsive group having the structure represented by the general formula [II] is a novel structure created by the inventors of the present application and exhibits particularly excellent effects as a lithium ion responsive group. It is. That is, 14-crown-4 itself, which is the basic skeleton part of crown ether, is known to coordinate with lithium ions, but by directly connecting two oxygen atoms in the crown ether to the benzene ring, The crown ether structure itself becomes solid, and lithium ions can be captured more reliably, that is, with high sensitivity. Further, X in the general formula [II] exhibits a function of preventing other ions other than lithium ions from coordinating to the crown ether moiety, thereby increasing the bond selectivity with lithium ions. X in the general formula [II] is represented by the formula (1), and R 8 to R 11 in the formula (1) are all methyl groups. Is particularly preferred.

本発明に用いられるリチウムイオン応答性色素の特に好ましいものとして、下記実施例で製造された、下記式(7)で表されるもの(KBL-02と命名)を挙げることができる。 As particularly preferred lithium ion-responsive dyes used in the present invention, those represented by the following formula (7) (named KBL-02) produced in the following Examples can be mentioned.

Figure 0005481689
Figure 0005481689

なお、本明細書及び特許請求の範囲において、例えば上記一般式[II]や式(1)〜(6)のように、基を表す化学式中では、先端に文字が記載されていない直線は、結合手を意味し、上記式(7)のように化合物を表す化学式中では、先端に文字が記載されていない直線はメチル基を意味する。   In addition, in the present specification and claims, for example, in the chemical formulas representing groups such as the above general formula [II] and formulas (1) to (6), a straight line without a letter at the tip is This means a bond, and in a chemical formula representing a compound as in formula (7) above, a straight line without a letter at the tip means a methyl group.

例えば上記式(7)で示されるような、本発明のオプトードに用いられるリチウムイオン応答性色素は新規物質であるが、該色素を構成する各部分は公知の構造であるので、本発明のオプトードに用いられるリチウムイオン応答性色素は、有機合成化学の常識に従い合成可能であり、下記実施例にも上記式(7)のリチウムイオン応答性色素の合成方法が詳細に記載されている。また、リチウムイオン応答性色素の基材への共有結合自体は、例えばシランカップリング剤を用いるような周知の方法により行なうことができ、下記実施例にも具体的に記載されている。なお、上記の通り、リチウムイオン応答性色素は、基材の表面に共有結合で結合可能な範囲内でできるだけ多量に結合させることが好ましいので、まず、過剰量のリチウムイオン応答性色素を共有結合反応に供し、その後、基材を十分に洗浄することにより、共有結合可能な最大量を結合させることが好ましい。この場合の過剰量としては、基材の形状や多孔性か否か等に応じて適宜選択できるが、共有結合反応に供するリチウムイオン応答性色素溶液中のリチウムイオン応答性色素の濃度として例えば5g/L以上、より好ましくは10g/L以上の濃度を選択することができる。共有結合反応後は、超音波洗浄等により、共有結合しなかったリチウムイオン応答性色素を全て洗い流すことができるように、十分に洗浄することが好ましい。 For example, the lithium ion-responsive dye used in the optode of the present invention as represented by the above formula (7) is a novel substance, but since each part constituting the dye has a known structure, the optode of the present invention The lithium ion responsive dye used in the above can be synthesized in accordance with common knowledge of organic synthetic chemistry, and the synthesis method of the lithium ion responsive dye of the above formula (7) is also described in detail in the following examples. Further, the covalent bond itself to the base material of the lithium ion responsive dye can be performed by a known method using, for example, a silane coupling agent, and is specifically described in the following examples. As described above, since it is preferable that the lithium ion-responsive dye is bonded to the surface of the substrate as much as possible within the range that can be covalently bonded, first, an excess amount of the lithium ion-responsive dye is covalently bonded. It is preferable to bond the maximum amount that can be covalently bonded by subjecting to the reaction and then thoroughly washing the substrate. As the excess of cases, can be appropriately selected depending on whether shape or porous substrates such as, for example, 5g as the concentration of the lithium-ion responsive dyes lithium ion responsive dye solution to be fed to the covalent reaction A concentration of not less than / L, more preferably not less than 10 g / L can be selected. After the covalent bond reaction, it is preferable to sufficiently wash so that all lithium ion-responsive dyes that have not covalently bonded can be washed away by ultrasonic cleaning or the like.

上記した本発明のオプトードは、対象となる、測定すべきリチウムイオンと反応して、その吸光特性及び/又は蛍光特性が変化するので、対象となるリチウムイオンを含む溶液と、本発明のオプトードとを接触させ、接触の前後で、又は経時的に吸光度特性又は蛍光特性を測定することにより、溶液中のリチウムイオンの濃度を測定することができる。なお、接触は、常温で行なうことができ、接触時間は、基材の形状にもよるが、通常、10秒間〜10分間程度である。 The optode of the present invention described above reacts with the target lithium ion to be measured and changes its light absorption characteristics and / or fluorescence characteristics. Therefore, the solution containing the target lithium ion and the optode of the present invention The concentration of lithium ions in the solution can be measured by measuring the absorbance characteristics or fluorescence characteristics before and after the contact or over time. The contact can be performed at room temperature, and the contact time is usually about 10 seconds to 10 minutes, depending on the shape of the substrate.

多くの場合、吸光特性及び蛍光特性の変化は、対象となるリチウムイオンの濃度が増大した時に、リチウムイオン応答性色素の吸光度又は蛍光強度が増大する波長域と、吸光度又は蛍光強度が減少する波長域が生じる。このような場合、対象となるリチウムイオンの濃度が増大した時に、リチウムイオン応答性色素の吸光度又は蛍光強度が増大する波長と、減少する波長の2波長でそれぞれ吸光度又は蛍光強度を測定し、その比を求めることにより、より高感度に、より選択的に対象となるリチウムイオンを定量することができる。しかも、上記2波長の比に基づいてリチウムイオン濃度を測定する方法によれば、下記実施例に具体的に記載されるように、長期間に亘って正確な測定が可能になる。測定する2波長としては、対象となるリチウムイオンの濃度変化に応じて、吸光度又は蛍光強度が最も増大する波長と、最も減少する波長を選択することが好ましい。 In many cases, changes in light absorption characteristics and fluorescence characteristics are caused by a wavelength range in which the absorbance or fluorescence intensity of a lithium ion-responsive dye increases and a wavelength at which the absorbance or fluorescence intensity decreases when the concentration of the target lithium ion increases. An area arises. In such a case, when the concentration of the target lithium ion is increased, the absorbance or fluorescence intensity is measured at two wavelengths, ie, the wavelength at which the absorbance or fluorescence intensity of the lithium ion-responsive dye increases and the wavelength at which it decreases, By obtaining the ratio, the target lithium ions can be quantified more selectively with higher sensitivity. In addition, according to the method of measuring the lithium ion concentration based on the ratio of the two wavelengths, accurate measurement can be performed over a long period of time as specifically described in the following examples. As the two wavelengths to be measured, it is preferable to select a wavelength at which the absorbance or fluorescence intensity is most increased and a wavelength at which it is most decreased according to a change in concentration of the target lithium ion.

リチウムイオン濃度既知の標準溶液を複数調製し、各標準溶液について、上記の比を求め、リチウムイオン濃度(その対数でもよい)を横軸に、求めた比を縦軸にプロットすることにより、検量線を得ることができる。濃度未知の試料中のリチウムイオン濃度は、検量線作成時と同じ条件で吸光度又は蛍光強度の測定を行い、上記比を求め、求めた比を検量線に当てはめることにより測定することができる。 The lithium ion concentration known standard solutions plurality prepared for each standard solution, obtains the ratio of the above, the horizontal axis lithium ion concentration (or its logarithm), by plotting the calculated ratio on the vertical axis, calibration You can get a line. The concentration of lithium ions in a sample whose concentration is unknown can be measured by measuring absorbance or fluorescence intensity under the same conditions as those for preparing a calibration curve, obtaining the above ratio, and applying the obtained ratio to the calibration curve.

上記の通り、本発明は、水処理薬剤と共にトレーサ物質としてのリチウムの水溶性塩を被処理水中に添加し、リチウムイオン濃度を上記本発明の方法で測定することにより、被処理水中に添加した前記水処理薬剤の濃度管理を行うことを特徴とする水処理薬剤の濃度管理方法をも提供するものである。この方法において、リチウムの測定として上記した本発明の方法を用いること以外は、通常行なわれている常法である。すなわち、水処理薬剤としては、例えばアクリル酸系、マレイン酸系、メタクリル酸系、スルホン酸系、イタコン酸系、または、イソブチレン系の各重合体やこれらの共重合体、燐酸系重合体、ホスホン酸、ホスフィン酸、あるいはこれらの水溶性塩などのスケール防止剤、例えば、5−クロロ−2−メチル−4−イソチアゾリン−3−オン、2−メチル−4−イソチアゾリン−3−オン、1,2−ベンゾイソチアゾリン−3−オン等のイソチアゾロン系化合物、過酸化水素、ヒドラジン、塩素系殺菌剤(次亜塩素酸ナトリウム等)、臭素系殺菌剤及びヨウ素系殺菌剤、さらにグルタルアルデヒド、フタルアルデヒド等のアルデヒド系化合物、ピリチオン系化合物、ジチオール系化合物、メチレンビスチオシアネート等のチオシアネート系化合物、ヨーネンポリマー、ビス型四級アンモニウム塩、ビス型四級アンモニウム塩以外の四級アンモニウム塩系化合物、四級ホスホニウム塩素化合物等のカチオン系化合物などのスライム防止剤、例えばベンゾトリアゾール、トリルトリアゾール等のアゾール類、例えばエチレンジアミン、ジエチレントリアミン等のアミン系化合物、例えばニトリロ三酢酸、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸等のアミノカルボン酸系化合物、例えばグルコン酸、クエン酸、シュウ酸、ギ酸、酒石酸、フィチン酸、琥珀酸、乳酸等の有機カルボン酸などを単独で、あるいは数種類を混合して製剤化した水処理薬剤等を例示することができ、また、トレーサとして用いられるリチウム塩としては、水酸化リチウム、塩化リチウム、臭化リチウム等の水溶性のリチウム化合物を挙げることができる。   As described above, the present invention adds a water-soluble salt of lithium as a tracer substance together with a water treatment chemical into the water to be treated, and adds the lithium ion concentration to the water to be treated by measuring the lithium ion concentration by the method of the present invention. The present invention also provides a method for managing the concentration of a water treatment chemical, characterized in that the concentration management of the water treatment chemical is performed. In this method, the conventional method is used except that the above-described method of the present invention is used for the measurement of lithium. That is, examples of water treatment chemicals include acrylic acid-based, maleic acid-based, methacrylic acid-based, sulfonic acid-based, itaconic acid-based or isobutylene-based polymers, copolymers thereof, phosphoric acid-based polymers, and phosphones. Scale inhibitors such as acids, phosphinic acids, or water-soluble salts thereof such as 5-chloro-2-methyl-4-isothiazolin-3-one, 2-methyl-4-isothiazolin-3-one, 1,2 -Isothiazolone compounds such as benzoisothiazolin-3-one, hydrogen peroxide, hydrazine, chlorine-based disinfectants (such as sodium hypochlorite), bromine-based and iodine-based disinfectants, and glutaraldehyde, phthalaldehyde, etc. Thiocyanate compounds such as aldehyde compounds, pyrithione compounds, dithiol compounds, and methylenebisthiocyanate Products, ionene polymers, bis-quaternary ammonium salts, quaternary ammonium salts other than bis-quaternary ammonium salts, and anti-slime agents such as cationic compounds such as quaternary phosphonium chlorine compounds, such as benzotriazole and tolyltriazole Such as ethylenediamine, diethylenetriamine, and other amine compounds, such as nitrilotriacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, and other aminocarboxylic acid compounds such as gluconic acid, citric acid, oxalic acid, formic acid, tartaric acid, phytin Examples of water treatment chemicals prepared by formulating organic carboxylic acids such as acid, succinic acid, and lactic acid alone or by mixing several kinds thereof include lithium hydroxide used as a tracer. , Lithium chloride, lithium bromide And water-soluble lithium compound such as beam.

以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.

実施例1 オプトードの作製
1. リチウムイオン応答性色素KBL-02の合成
次のスキームにより、上記式(7)で表されるKBL-02を合成した。
Example 1 Production of optode Synthesis of Lithium Ion Responsive Dye KBL-02 KBL-02 represented by the above formula (7) was synthesized by the following scheme.

Figure 0005481689
Figure 0005481689

Figure 0005481689
Figure 0005481689

以下、各工程について詳細に説明する。   Hereinafter, each step will be described in detail.

Figure 0005481689
Figure 0005481689

2(607mg,5.36mmol)と2-(ベンジルオキシ)エタノール(1.67ml,11.8mmol)の混合物を80℃に加熱した。溶けたオイル状の混合物にメタンスルホン酸を加え、減圧下で4時間攪拌した。その後、反応系を室温に戻し、NaHCO3水溶液を加え、中和した。塩化メチレン−水系で3回、塩化メチレン−飽和NaCl水系で1回抽出し、Na2SO4で乾燥後、減圧濃縮した。これに酢酸エチル10ml、ヘキサン20mlを加えて再結晶した。吸引ろ過し、沈殿を減圧乾燥して、白色粉末状の目的化合物3(468mg,2.01mmol,収率37.4%)を得た。 A mixture of 2 (607 mg, 5.36 mmol) and 2- (benzyloxy) ethanol (1.67 ml, 11.8 mmol) was heated to 80 ° C. Methanesulfonic acid was added to the dissolved oily mixture and stirred for 4 hours under reduced pressure. Then, the reaction system was returned to room temperature and neutralized by adding an aqueous NaHCO 3 solution. The mixture was extracted 3 times with methylene chloride-water system and once with methylene chloride-saturated NaCl aqueous system, dried over Na 2 SO 4 and concentrated under reduced pressure. This was recrystallized by adding 10 ml of ethyl acetate and 20 ml of hexane. Suction filtration was performed, and the precipitate was dried under reduced pressure to obtain the target compound 3 (468 mg, 2.01 mmol, yield 37.4%) as a white powder.

1H-NMR(300mHz,CDCl3)δ(ppm)=3.77-3.81(m,2H,Bn-O-CH2 -),
3.95(s,2H,Ph-CH2 -),4.10-4.13(m,2H,Bn-O-CH2-CH2 -),4.60(s,2H,-NH-CH2-),
5.06(s,1H,-CO-CH=),7.30-7.40(m,5H,-O-CH2-Ph)
1 H-NMR (300 mHz, CDCl 3 ) δ (ppm) = 3.77-3.81 (m, 2H, Bn-O-CH 2- ),
3.95 (s, 2H, Ph-CH 2- ), 4.10-4.13 (m, 2H, Bn-O-CH 2 -CH 2- ), 4.60 (s, 2H, -NH-CH 2- ),
5.06 (s, 1H, -CO-CH =), 7.30-7.40 (m, 5H, -O-CH 2 -Ph)

Figure 0005481689
Figure 0005481689

4mlジメチルスルホキシドに1(247mg,2.01mmol),3(468mg,2.01mmol),5ml 2M水酸化ナトリウム水溶液を加え、60℃に加熱し、17時間攪拌した。これに、過剰の水を加え、再結晶した。吸引ろ過し、沈殿を減圧乾燥して、黄色粉末状の目的化合物4(417mg,1.23mmol,収率61.4%)を得た。 1 (247 mg, 2.01 mmol), 3 (468 mg, 2.01 mmol), 5 ml 2M aqueous sodium hydroxide solution was added to 4 ml dimethyl sulfoxide, heated to 60 ° C. and stirred for 17 hours. To this was added excess water and recrystallized. Suction filtration was performed, and the precipitate was dried under reduced pressure to obtain target compound 4 (417 mg, 1.23 mmol, yield 61.4%) as a yellow powder.

1H-NMR(300mHz,CDCl3)δ(ppm)=2.18(s,3H,-CH3),2.38(s,3H,-CH3),
3.85-3.89(m,2H,Bn-O-CH2 -),4.20-4.23(m,2H,Bn-O-CH2-CH2 -),
4.65(s,2H,Ph-CH2 -),5.08(s,1H,Ar-H),5.82(s,1H,-CO-CH=),6.41(s,1H,Ar-H),
7.29-7.39(m,5H,-O-CH2-Ph)

Figure 0005481689
1 H-NMR (300 mHz, CDCl 3 ) δ (ppm) = 2.18 (s, 3H, -CH 3 ), 2.38 (s, 3H, -CH 3 ),
3.85-3.89 (m, 2H, Bn-O-CH 2- ), 4.20-4.23 (m, 2H, Bn-O-CH 2 -CH 2- ),
4.65 (s, 2H, Ph-CH 2- ), 5.08 (s, 1H, Ar-H), 5.82 (s, 1H, -CO-CH =), 6.41 (s, 1H, Ar-H),
7.29-7.39 (m, 5H, -O-CH 2 -Ph)
Figure 0005481689

Figure 0005481689
Figure 0005481689

Arを流した中で、30ml CH2Cl24(400mg,1.18mmol)を溶解させ、そこに、氷冷下でトリフルオロメタンスルホン酸無水物(0.199ml,1.18mmol)の10ml 塩化メチレン溶液を20分かけて滴下した。滴下終了後、2時間攪拌した。その後、炭酸水素ナトリウム水溶液を加え中和した。塩化メチレン−水系で3回、塩化メチレン−飽和NaCl水系で1回抽出し、Na2SO4で乾燥後、減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(シリカゲル、溶離液変化;ヘキサン:クロロホルム=1:1)で分離精製し、黄色粉末状の目的化合物5(175mg,0.372mmol,収率31.5%)を得た。 In flowing Ar, 4 (400 mg, 1.18 mmol) was dissolved in 30 ml CH 2 Cl 2 , and 10 ml of methylene chloride solution of trifluoromethanesulfonic anhydride (0.199 ml, 1.18 mmol) was added to the solution under ice cooling. Added dropwise over 20 minutes. After completion of dropping, the mixture was stirred for 2 hours. Then, the sodium hydrogencarbonate aqueous solution was added and neutralized. The mixture was extracted 3 times with methylene chloride-water system and once with methylene chloride-saturated NaCl aqueous system, dried over Na 2 SO 4 and concentrated under reduced pressure. The residue was separated and purified by flash column chromatography (silica gel, eluent change; hexane: chloroform = 1: 1) to obtain the target compound 5 (175 mg, 0.372 mmol, yield 31.5%) as a yellow powder.

1H-NMR(300mHz,CDCl3)δ(ppm)=2.23(s,3H,-CH3),2.33(s,3H,-CH3),
3.82-3.85(m,2H,Bn-O-CH2 -),4.17-4.20(m,2H,Bn-O-CH2-CH2 -),
4.63(s,2H,Ph-CH2 -),5.40(s,1H,Ar-H),5.89(s,1H,-CO-CH=),7.12(s,1H,Ar-H),
7.30-7.38(m,5H,-O-CH2-Ph)
1 H-NMR (300mHz, CDCl 3) δ (ppm) = 2.23 (s, 3H, -CH 3), 2.33 (s, 3H, -CH 3),
3.82-3.85 (m, 2H, Bn-O-CH 2- ), 4.17-4.20 (m, 2H, Bn-O-CH 2 -CH 2- ),
4.63 (s, 2H, Ph-CH 2- ), 5.40 (s, 1H, Ar-H), 5.89 (s, 1H, -CO-CH =), 7.12 (s, 1H, Ar-H),
7.30-7.38 (m, 5H, -O-CH 2 -Ph)

Figure 0005481689
Figure 0005481689

ピナコール (30.Og,0.25mol,1.00eq)を窒素気流下、THFに溶解させた。そこに、室温下で水素化ナトリウム(24.4g,1.02mol,4.08eq)のTHF溶液を徐々に加えた。充分に撹拌したあと、滴下ロートからアリルブロミド(122g,1.01mol,4.04eq)のTHF溶液を2.5時間かけて滴下した。滴下終了後、反応系を70℃ に昇温して17時間加熱還流撹拌した。その後、反応系を室温に戻し、メタノールを加えて過剰の水素化ナトリウムをつぶし、反応を終了させた。溶媒を減圧留去し、えられた残渣を酢酸エチルー水(塩酸でpH7に調整)系で3回分液抽出し、さらに酢酸エチル中に溶け込んだ水を除去するために酢酸エチル層を飽和塩化ナトリウム水溶液で1回分液抽出した。芒硝乾燥後、減圧濃縮し、濃縮残渣をシリカゲルクロマトグラフィー(溶離液;ヘキサン:酢酸エチル=1:1)で分離精製し、透明な黄色の液体である目的化合物6(43.7g,収率82.4%)を得た。 Pinacol (30.Og, 0.25mol, 1.00eq) was dissolved in THF under a nitrogen stream. A THF solution of sodium hydride (24.4 g, 1.02 mol, 4.08 eq) was gradually added thereto at room temperature. After sufficiently stirring, a THF solution of allyl bromide (122 g, 1.01 mol, 4.04 eq) was added dropwise from a dropping funnel over 2.5 hours. After completion of the dropwise addition, the reaction system was heated to 70 ° C. and stirred under reflux for 17 hours. Thereafter, the reaction system was returned to room temperature, methanol was added to crush excess sodium hydride, and the reaction was terminated. The solvent was distilled off under reduced pressure, and the resulting residue was subjected to liquid separation and extraction three times with an ethyl acetate-water system (adjusted to pH 7 with hydrochloric acid), and the ethyl acetate layer was saturated with saturated sodium chloride in order to remove the water dissolved in ethyl acetate. Liquid separation extraction was performed once with an aqueous solution. After drying the mirabilite, it is concentrated under reduced pressure, and the concentrated residue is separated and purified by silica gel chromatography (eluent; hexane: ethyl acetate = 1: 1) to give the target compound 6 (43.7 g, yield 82.4%) as a transparent yellow liquid )

TLC (Silica ge1 60 F254,ヘキサン:酢酸エチル=1:1) Rf=0.85
lHNMR(300MHz,CDC13)δ(ppm)=1.20(s,12H,-CH3), 3.98(d,4H,0,CH2 ),
5.04‐5.29(d,4H,=CH2),5,91(m,2H,‐CH=)
TLC (Silica ge1 60 F 254, hexane: ethyl acetate = 1: 1) Rf = 0.85
l HNMR (300MHz, CDC13) δ (ppm) = 1.20 (s, 12H, -CH 3 ), 3.98 (d, 4H, 0, CH 2 ),
5.04-5.29 (d, 4H, = CH2), 5,91 (m, 2H, -CH =)

Figure 0005481689
Figure 0005481689

化合物 6(5.58g,28.1mmol,1.00eq)のTHF溶液にBH3・THF錯体(35ml,35.Ommol,1.25eq)を滴下ロートから約2時間かけて滴下した後、室温で16時間撹拌した。その後、3Nの水酸化ナトリウム(12ml,36.Ommol,1.28eq)を一気に加えた。さらに、氷冷撹拌下30%過酸化水素水(12ml,159mmol,5.65eq)を滴下ロートから約30分かけて滴下した。2時間撹拌した後、溶媒を減圧留去し、えられた残渣をジエチルエーテルー水系で3回分液抽出し、さらにエーテル層を飽和塩化ナトリウム水溶液で1回分液抽出した。芒硝乾燥後、減圧濃縮し、濃縮残渣をシリカゲルクロマトグラフイー(溶離液;ヘキサン:酢酸エチル=1:4)で分離精製し、透明で粘性の高い液体である目的化合物7(3.15g,収率47.8%)を得た。 To a THF solution of compound 6 (5.58 g, 28.1 mmol, 1.00 eq), BH 3 · THF complex (35 ml, 35.O mmol, 1.25 eq) was added dropwise over about 2 hours from a dropping funnel, and then stirred at room temperature for 16 hours. Thereafter, 3N sodium hydroxide (12 ml, 36.Ommol, 1.28 eq) was added all at once. Further, 30% hydrogen peroxide solution (12 ml, 159 mmol, 5.65 eq) was added dropwise from the dropping funnel over about 30 minutes while stirring with ice cooling. After stirring for 2 hours, the solvent was distilled off under reduced pressure, and the obtained residue was subjected to liquid separation extraction with a diethyl ether-water system three times, and the ether layer was subjected to liquid separation extraction with a saturated aqueous sodium chloride solution once. After drying the mirabilite, concentrate under reduced pressure, and separate and purify the concentrated residue by silica gel chromatography (eluent; hexane: ethyl acetate = 1: 4) to obtain the target compound 7 (3.15 g, yield) which is a transparent and highly viscous liquid 47.8%) was obtained.

TLC (Silica ge1 60 F254,ヘキサン:酢酸エチル=1:4) Rf=0.35
1HNMR(270MHz,CDC13)δ (ppm)=1.17(s,12H,-CH3), 1,77(m,4H,-CH2-), 3,58(t,4H,0-CH2-), 3,64(s,2H,-OH),3,74(br,4H,-CH2-0)
TLC (Silica ge1 60 F 254, hexane: ethyl acetate = 1: 4) Rf = 0.35
1 HNMR (270MHz, CDC1 3 ) δ (ppm) = 1.17 (s, 12H, -CH 3 ), 1,77 (m, 4H, -CH 2- ), 3,58 (t, 4H, 0-CH 2 -), 3,64 (s, 2H, -OH), 3,74 (br, 4H, -CH 2 -0)

Figure 0005481689
Figure 0005481689

室温下でTHFに化合物7(1.78g,7.60mmol,1.00eq)を溶解し,そこにトリエチルアミン(4.62g,45.6mmol,6.00eq)加えた。続いて、反応系を0℃に下げてから、そこに少量のTHFに溶かしたメタンスルホン酸クロリド (2.11ml,27.4mmol,3.60eq)を3時間かけて滴下した。その後、反応系を0℃に保ちながら8時間撹拌した。撹幹終了後、溶媒を減圧留去し、えられた残渣を塩化メチレン‐水(塩酸でpH7に調整)系で3回分液抽出し、さらに、飽和塩化ナトリウム水溶液、純水の順で塩化メチレン層を分液抽出した。芒硝乾燥後、減圧濃縮し、濃縮残渣をシリカゲルクロマトグラフィー (溶離液;ヘキサン:酢酸エチル=1:4)で分離精製し、白色の固体である目的化合物8(2,62g,収率88.3%)を得た。 Compound 7 (1.78 g, 7.60 mmol, 1.00 eq) was dissolved in THF at room temperature, and triethylamine (4.62 g, 45.6 mmol, 6.00 eq) was added thereto. Subsequently, after the temperature of the reaction system was lowered to 0 ° C., methanesulfonic acid chloride (2.11 ml, 27.4 mmol, 3.60 eq) dissolved in a small amount of THF was added dropwise thereto over 3 hours. Thereafter, the reaction system was stirred for 8 hours while maintaining at 0 ° C. After completion of the stirring, the solvent was distilled off under reduced pressure, and the resulting residue was extracted three times with a methylene chloride-water (adjusted to pH 7 with hydrochloric acid) system. The layers were separated and extracted. After drying the mirabilite, it is concentrated under reduced pressure, and the concentrated residue is separated and purified by silica gel chromatography (eluent; hexane: ethyl acetate = 1: 4) to give the target compound 8 (2,62 g, yield 88.3%) as a white solid. Got.

TLC(Silica ge1 60 F254,ヘキサン:酢酸エチル=1:4) Rf=0.55
1HNMR(270MHz,CDC13)δ(ppm)=1.14(s,12H,-CH3),1.94(m,4H,-CH2-),3.01(m,6H,-S-CH2), 3.50(t,4H,-0-CH2-),4,33(t,4H,-CH2-OMS)
TLC (Silica ge1 60 F 254, hexane: ethyl acetate = 1: 4) Rf = 0.55
1 HNMR (270MHz, CDC1 3 ) δ (ppm) = 1.14 (s, 12H, -CH 3 ), 1.94 (m, 4H, -CH 2- ), 3.01 (m, 6H, -S-CH 2 ), 3.50 (t, 4H, -0-CH 2- ), 4,33 (t, 4H, -CH 2 -OMS)

Figure 0005481689
Figure 0005481689

Arを流した中で、530ml THF、150ml DMFの混合溶媒にカテコール(1.09g,9.97mol)を溶解させ、そこに、水素化ホウ素ナトリウム(1.9g,47mmol)の40ml THF 溶液(水素化ナトリウムは、石油オイルと混ざった状態で市販されているため、反応系に加える前にヘキサンで洗浄した。)を徐々に加えた。その後、50℃に加熱し、3時間攪拌した。その後、8(3.90g,9.98mmol)の70ml THF溶液を3時間かけてゆっくりと滴下した。滴下終了後、70℃に加熱し、40時間攪拌した。その後、反応系を室温に戻し、メタノールを加えて過剰の水素化ナトリウムをつぶし、反応を終了させた。ろ過をし、沈殿はクロロホルムで洗った。ろ液を減圧濃縮し、えられた残渣を酢酸エチル−水系で3回、酢酸エチル−飽和NaCl水系で1回抽出し、Na2SO4で乾燥後、減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(シリカゲル、溶離液変化;ヘキサン:酢酸エチル=8:1→4:1→1:1)で分離精製し、透明なオイル状の目的化合物9(1.55g,5.02mmol,収率50.7%)を得た。 Catechol (1.09 g, 9.97 mol) was dissolved in a mixed solvent of 530 ml THF and 150 ml DMF in flowing Ar, and 40 ml THF solution of sodium borohydride (1.9 g, 47 mmol) (sodium hydride was Since it is commercially available in a mixture with petroleum oil, it was washed with hexane before being added to the reaction system. Then, it heated at 50 degreeC and stirred for 3 hours. Thereafter, a solution of 8 (3.90 g, 9.98 mmol) in 70 ml THF was slowly added dropwise over 3 hours. After completion of dropping, the mixture was heated to 70 ° C. and stirred for 40 hours. Thereafter, the reaction system was returned to room temperature, methanol was added to crush excess sodium hydride, and the reaction was terminated. Filtration was performed, and the precipitate was washed with chloroform. The filtrate was concentrated under reduced pressure, and the obtained residue was extracted three times with ethyl acetate-water system and once with ethyl acetate-saturated NaCl aqueous system, dried over Na 2 SO 4 and concentrated under reduced pressure. The residue was separated and purified by flash column chromatography (silica gel, eluent change; hexane: ethyl acetate = 8: 1 → 4: 1 → 1: 1), and the target compound 9 (1.55 g, 5.02 mmol, 1.55 g, 5.02 mmol, Yield 50.7%).

1H-NMR(300mHz,CDCl3)δ(ppm)=1.20(s,12H,-CH3),1.99(m,4H,-CH2 -),
3.82(t,4H,-O-CH2,J=6.30Hz),4.08(t,4H,Ar-O-CH2,J=5.37Hz),6.94(m,4H,Ar-H)
1 H-NMR (300 mHz, CDCl 3 ) δ (ppm) = 1.20 (s, 12H, -CH 3 ), 1.99 (m, 4H, -CH 2- ),
3.82 (t, 4H, -O-CH 2 , J = 6.30Hz), 4.08 (t, 4H, Ar-O-CH 2, J = 5.37Hz), 6.94 (m, 4H, Ar-H)

Figure 0005481689
Figure 0005481689

Arを流した中で、四塩化炭素に、9(981mg,3.18mmol)を溶解させ、5g シリカゲル 60(MERCK)、N-ブルモこはく酸イミド(NBS)(572mg,3.21mmol)を加え40℃に加熱し、1日攪拌した。その後、反応系を室温に戻し、ろ過し、沈殿は酢酸エチルで洗った。溶液を減圧濃縮し、得られた残渣を酢酸エチル−チオ硫酸ナトリウム水溶液系で1回抽出し、Na2SO4で乾燥後、減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(シリカゲル、溶離液変化;ヘキサン:クロロホルム=1:1→1:2、クロロホルム)で分離精製し、茶色のオイル状目的化合物10(964mg,2.49mmol,収率78.3%)を得た。 9 (981 mg, 3.18 mmol) was dissolved in carbon tetrachloride in flowing Ar, and 5 g silica gel 60 (MERCK) and N-bromosuccinimide (NBS) (572 mg, 3.21 mmol) were added to 40 ° C. Heated and stirred for 1 day. Thereafter, the reaction system was returned to room temperature, filtered, and the precipitate was washed with ethyl acetate. The solution was concentrated under reduced pressure, and the resulting residue was extracted once with an ethyl acetate-sodium thiosulfate aqueous system, dried over Na 2 SO 4 , and concentrated under reduced pressure. The residue was separated and purified by flash column chromatography (silica gel, eluent change; hexane: chloroform = 1: 1 → 1: 2, chloroform), and the brown target oil 10 (964 mg, 2.49 mmol, yield 78.3%) Got.

1H-NMR(300mHz,CDCl3)δ(ppm)=1.19(s,12H,-CH3),1.92-2.02(m,4H,-CH2 -),
3.75-3.84(m,4H,-O-CH2 -),4.03-4.09(m,4H,Ar-O-CH2 -),
6.84(d,2H,Ar-H,J=8.7Hz),7.02-7.08(m,2H,Ar-H)
1 H-NMR (300mHz, CDCl 3) δ (ppm) = 1.19 (s, 12H, -CH 3), 1.92-2.02 (m, 4H, -CH 2 -),
3.75-3.84 (m, 4H, -O- CH 2 -), 4.03-4.09 (m, 4H, Ar-O-CH 2 -),
6.84 (d, 2H, Ar-H, J = 8.7Hz), 7.02-7.08 (m, 2H, Ar-H)

Figure 0005481689
Figure 0005481689

Arを流した中で、15ml 1,4-ジオキサンに、11(90.2mg,0.233mmol)を溶解させ、ビス(ネオペンチルグリコラート)ジボロン(86.8mg,0.384mmol)、PdCl2(dppf)2・CH2Cl2(47.6mg,0.0333mmol)、KOAc(70mg,0.72mmol)を加え、脱気した。その後、90℃に加熱し、4時間攪拌した。その後、反応系を室温に戻し、セライトを通して吸引ろ過し、沈殿は酢酸エチルで洗った。ろ液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(シリカゲル、溶離液変化;ヘキサン:酢酸エチル=15:1→10:1→3:1)で分離精製し、粘性のある白色固体の目的化合物11(52.7mg,0.124mmol,収率53.8%)を得た。 In flowing Ar, 11 (90.2 mg, 0.233 mmol) was dissolved in 15 ml 1,4-dioxane, and bis (neopentylglycolate) diboron (86.8 mg, 0.384 mmol), PdCl 2 (dppf) 2. CH 2 Cl 2 (47.6 mg, 0.0333 mmol) and KOAc (70 mg, 0.72 mmol) were added and deaerated. Then, it heated at 90 degreeC and stirred for 4 hours. Thereafter, the reaction system was returned to room temperature, suction filtered through celite, and the precipitate was washed with ethyl acetate. The filtrate was concentrated under reduced pressure. The residue was separated and purified by flash column chromatography (silica gel, eluent change; hexane: ethyl acetate = 15: 1 → 10: 1 → 3: 1), and target compound 11 (52.7 mg, 0.124 mmol) as a viscous white solid Yield 53.8%).

1H-NMR(300mHz,CDCl3)δ(ppm)=1.01(s,6H,-B-O-CH2-C(CH3)2),
19(s,12H,-OC(CH3)2),1.95-2.01(m,4H,-CH2-),3.74(s,4H,-B-O-CH2 -),
3.77-3.86(m,4H,-O-CH2 -),4.07-4.12(m,4H,Ar-O-CH2 -),
6.94(d,1H,Ar-H,J=8.1Hz),7.40-7.42(m,1H,Ar-H),7.42(s,1H,Ar-H)
1 H-NMR (300 mHz, CDCl 3 ) δ (ppm) = 1.01 (s, 6H, -BO-CH 2 -C (CH 3 ) 2 ),
19 (s, 12H, -OC (CH 3 ) 2 ), 1.95-2.01 (m, 4H, -CH 2- ), 3.74 (s, 4H, -BO-CH 2- ),
3.77-3.86 (m, 4H, -O- CH 2 -), 4.07-4.12 (m, 4H, Ar-O-CH 2 -),
6.94 (d, 1H, Ar-H, J = 8.1Hz), 7.40-7.42 (m, 1H, Ar-H), 7.42 (s, 1H, Ar-H)

Figure 0005481689
Figure 0005481689

Arを流した中で、16ml トルエン、4ml エタノールの混合溶媒に11(132mg,314mmol)を溶解させ、Pd(PPh3)4(39.0mg,0.0338mg)を加え、脱気した。そこに、5(162mg,0.345mmol)、K2CO3(353ml,2.55mmol)を加え、脱気した。その後、4時間攪拌した。その後、反応系を室温に戻し、セライトを通して、吸引ろ過をし、沈殿は酢酸エチルで洗った。ろ液を減圧濃縮した。残渣をシリカゲルクロマトグラフィー(溶離液変化;ヘキサン:クロロホルム=1:1)で分離精製し、光沢のある黒色フィルム状固体の目的化合物12(132mg,0.202mmol,収率65.3%)を得た。 In a flow of Ar, 11 (132 mg, 314 mmol) was dissolved in a mixed solvent of 16 ml toluene and 4 ml ethanol, and Pd (PPh 3 ) 4 (39.0 mg, 0.0338 mg) was added for deaeration. Thereto, 5 (162 mg, 0.345 mmol) and K 2 CO 3 (353 ml, 2.55 mmol) were added and deaerated. Thereafter, the mixture was stirred for 4 hours. Thereafter, the reaction system was returned to room temperature, suction filtered through celite, and the precipitate was washed with ethyl acetate. The filtrate was concentrated under reduced pressure. The residue was separated and purified by silica gel chromatography (eluent change; hexane: chloroform = 1: 1) to obtain the target compound 12 (132 mg, 0.202 mmol, yield 65.3%) as a glossy black film solid.

1H-NMR(300mHz,CDCl3)δ(ppm)=1.19-1.28(m,12H,-O-C(CH3)2-),
2.00-2.05(m,4H,-CH2 -),2.24(s,3H,-CH3),2.37(s,3H,-CH3),
3.78-3.82(m,2H,Bn-O-CH2 -),3.85-3.90(m,4H,-O-CH2 -)
4.11-4.19(m,4H,Ar-O-CH2 -),4.25(t,2H,Bn-O-CH2-CH2 -,J=4.7Hz),
4.66(s,2H,Ph-CH2 -),5.86(s,1H,Ar-H),6.01(s,1H,-CPh-CH=),
6.96(s,1H,Ar-H),7.00(d,1H,Ar-H,J=8.4Hz),7.30-7.40(m,5H,-O-CH2-Ph),
7.54-7.58(m,1H,Ar-H),7.63-7.64(m,1H,Ar-H)
1 H-NMR (300 mHz, CDCl 3 ) δ (ppm) = 1.19-1.28 (m, 12H, -OC (CH 3 ) 2- ),
2.00-2.05 (m, 4H, -CH 2- ), 2.24 (s, 3H, -CH 3 ), 2.37 (s, 3H, -CH 3 ),
3.78-3.82 (m, 2H, Bn-O-CH 2- ), 3.85-3.90 (m, 4H, -O-CH 2- )
4.11-4.19 (m, 4H, Ar-O-CH 2- ), 4.25 (t, 2H, Bn-O-CH 2 -CH 2- , J = 4.7Hz),
4.66 (s, 2H, Ph-CH 2- ), 5.86 (s, 1H, Ar-H), 6.01 (s, 1H, -CPh-CH =),
6.96 (s, 1H, Ar-H), 7.00 (d, 1H, Ar-H, J = 8.4Hz), 7.30-7.40 (m, 5H, -O-CH 2 -Ph),
7.54-7.58 (m, 1H, Ar-H), 7.63-7.64 (m, 1H, Ar-H)

Figure 0005481689
Figure 0005481689

Arを流した中で、5ml トルエンに12(6.2mg,0.00961mmol)を溶解させ、そこに、0.5m Et3N(0.50ml,3.59mmol)、BF3・Et2O(0.50ml,3.95mmol)を加えた。その後、40℃に加熱し、1時間攪拌した。その後、反応系を室温に戻し、トルエン−0.1M Cs2CO3水溶液系で抽出し、MgSO4で乾燥後、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(溶離液;クロロホルム)で分離精製した。その後、GPC(溶離液;クロロホルム)で精製し、ピンク色のフィルム状固体の目的化合物13(1.2mg,0.00173mmol,収率18.0%)を得た。 While flowing Ar, 12 (6.2 mg, 0.00961 mmol) was dissolved in 5 ml toluene, and 0.5 m Et 3 N (0.50 ml, 3.59 mmol), BF 3 · Et 2 O (0.50 ml, 3.95 mmol) ) Was added. Then, it heated at 40 degreeC and stirred for 1 hour. Thereafter, the reaction system was returned to room temperature, extracted with a toluene-0.1 M Cs 2 CO 3 aqueous solution system, dried over MgSO 4 , and concentrated under reduced pressure. The residue was separated and purified by silica gel chromatography (eluent: chloroform). Thereafter, purification with GPC (eluent: chloroform) gave the target compound 13 (1.2 mg, 0.00173 mmol, yield 18.0%) as a pink film-like solid.

1H-NMR(300mHz,CDCl3)δ(ppm)=1.20-1.21(m,12H,-O-C(CH3)2-),
1.98-2.04(m,4H,-CH2-),2.25(s,3H,-CH3),2.48(s,3H,-CH3),
3.78-3.82(m,2H,Bn-O-CH2 -),3.84-3.87(m,4H,-O-CH2 -),
4.14(t,4H,Ar-O-CH2,J=5.7Hz),4.27-4.30(m,2H,Bn-O-CH2-CH2 -),
4.66(s,2H,Ph-CH2 -),5.93(s,1H,Ar-H),6.04(s,1H, Ar-H ),
6.99(d,1H,Ar-H,J=8.4Hz),7.30-7.37(m,5H,-O-CH2-Ph),7.55-7.60(m,1H,Ar-H),
7.57-7.60(m,1H,Ar-H)
1 H-NMR (300mHz, CDCl 3 ) δ (ppm) = 1.20-1.21 (m, 12H, -OC (CH 3 ) 2- ),
1.98-2.04 (m, 4H, -CH 2- ), 2.25 (s, 3H, -CH 3 ), 2.48 (s, 3H, -CH 3 ),
3.78-3.82 (m, 2H, Bn-O-CH 2- ), 3.84-3.87 (m, 4H, -O-CH 2- ),
4.14 (t, 4H, Ar-O-CH 2, J = 5.7Hz), 4.27-4.30 (m, 2H, Bn-O-CH 2 -CH 2- ),
4.66 (s, 2H, Ph-CH 2- ), 5.93 (s, 1H, Ar-H), 6.04 (s, 1H, Ar-H),
6.99 (d, 1H, Ar-H, J = 8.4Hz), 7.30-7.37 (m, 5H, -O-CH 2 -Ph), 7.55-7.60 (m, 1H, Ar-H),
7.57-7.60 (m, 1H, Ar-H)

Figure 0005481689
Figure 0005481689

7ml 酢酸エチル:エタノール=4:1に13を溶解させ、Pd,5%wt.on activated
carbon、トリフルオロ酢酸を加え、40℃に加熱し、水素下で18時間攪拌した。その後、反応系を室温に戻し、セライトを通して、吸引ろ過をし、沈殿は酢酸エチルで洗った。ろ液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(シリカゲル、溶離液変化;クロロホルム:酢酸エチル=2:3)で分離精製し、ピンク色のフィルム状固体の目的化合物14(1.4mg,0.00239mmol,収率24.0%)を得た。
7ml ethyl acetate: ethanol = 4: 1 dissolve 13 and Pd, 5% wt.on activated
Carbon and trifluoroacetic acid were added, heated to 40 ° C., and stirred for 18 hours under hydrogen. Thereafter, the reaction system was returned to room temperature, suction filtered through celite, and the precipitate was washed with ethyl acetate. The filtrate was concentrated under reduced pressure. The residue was separated and purified by flash column chromatography (silica gel, eluent change; chloroform: ethyl acetate = 2: 3) to obtain the target compound 14 (1.4 mg, 0.00239 mmol, yield 24.0%) as a pink film solid. Obtained.

1H-NMR(300mHz,CDCl3)δ(ppm)=1.20-1.25(m,12H,-O-C(CH3)2-),
1.99-2.04(m,4H,-CH2 -),2.26(s,3H,-CH3),2.49(s,3H,-CH3),
3.78-3.87(m,4H,-O-CH2 -),4.03-4.05(m,2H,-CH2 OH),
4.15(t,4H,Ar-O-CH2,J=5.6Hz),4.22-4.25(m,2H,-CH2 -CH2-OH),
5.96(s,1H,Ar-H),6.05(s,1H, Ar-H ),7.00(d,1H,Ar-H,J=8.4Hz),
7.57-7.61(m,1H,Ar-H),7.61(s,1H,Ar-H)
1 H-NMR (300mHz, CDCl 3 ) δ (ppm) = 1.20-1.25 (m, 12H, -OC (CH 3 ) 2- ),
1.99-2.04 (m, 4H, -CH 2- ), 2.26 (s, 3H, -CH 3 ), 2.49 (s, 3H, -CH 3 ),
3.78-3.87 (m, 4H, -O-CH 2- ), 4.03-4.05 (m, 2H, -CH 2 OH),
4.15 (t, 4H, Ar-O-CH 2, J = 5.6Hz), 4.22-4.25 (m, 2H, -CH 2 -CH 2 -OH),
5.96 (s, 1H, Ar-H), 6.05 (s, 1H, Ar-H), 7.00 (d, 1H, Ar-H, J = 8.4Hz),
7.57-7.61 (m, 1H, Ar-H), 7.61 (s, 1H, Ar-H)

2.多孔質ガラス(基材)への固定化 2. Immobilization to porous glass (base material)

Figure 0005481689
Figure 0005481689

KBL-02を固定化する基板として、VYCOR(登録商標)Porous glass 7930(Corning Incorporated, Lighting & Materials, New York)を使用した。多孔質ガラス内部の表面積は250m2/g、微細孔の平均直径は、4×10-9m。厚さ1mm、13×30mmの大きさにガラスを切った。トリエトキシルプロピルイソシアネート(335mg,1.37mmol)を入れた20ml トルエン溶液を130℃に加熱還流した。そこに、ガラススライドを入れ、20分間ゆっくりと攪拌した。ガラススライドを取り出し、トルエンにつけて超音波で2回洗浄した。KBL-02(0.1mg)を入れた10mlトルエンにガラススライドを浸した。そこに、トリエチルアミン(1mg,0.003mmol)を入れた1ml トルエンを入れ、20時間室温で放置した。その後、トルエンで2回、酢酸エチルで3回、メタノールで3回、水で3回超音波洗浄をし、ピンク色のグラススライドを得た。これを超純水中に保存した。 VYCOR (registered trademark) Porous glass 7930 (Corning Incorporated, Lighting & Materials, New York) was used as a substrate on which KBL-02 was immobilized. The surface area inside the porous glass is 250 m 2 / g, and the average diameter of the micropores is 4 × 10 -9 m. The glass was cut to a size of 1 mm and 13 x 30 mm. A 20 ml toluene solution containing triethoxylpropyl isocyanate (335 mg, 1.37 mmol) was heated to 130 ° C. under reflux. The glass slide was put there and it stirred slowly for 20 minutes. The glass slide was taken out, placed in toluene, and washed twice with ultrasonic waves. The glass slide was dipped in 10 ml toluene containing KBL-02 (0.1 mg). Thereto was added 1 ml toluene containing triethylamine (1 mg, 0.003 mmol) and left at room temperature for 20 hours. Thereafter, ultrasonic cleaning was performed twice with toluene, three times with ethyl acetate, three times with methanol, and three times with water to obtain a pink glass slide. This was stored in ultrapure water.

実施例2 リチウムイオン濃度の測定
1.測定機器
吸光測定装置には、Hitachi U-2001 double beam spectrophotometer (日立製作所製)、蛍光測定装置には、日立F-4500型分光蛍光光度計(日立製作所製)を用いた。測定には、1×1cmのプラスチックセルを用い、色素を結合したガラススライドをセルの対角線上に固定し測定した。
Example 2 Measurement of Lithium Ion Concentration Measuring equipment Hitachi U-2001 double beam spectrophotometer (manufactured by Hitachi, Ltd.) was used as the absorbance measuring apparatus, and Hitachi F-4500 type spectrofluorometer (manufactured by Hitachi, Ltd.) was used as the fluorescence measuring apparatus. For the measurement, a 1 × 1 cm plastic cell was used, and a glass slide to which a dye was bound was fixed on the diagonal of the cell.

2.リチウムイオンに対する応答性
実施例1で作製した、リチウムイオン応答性色素をガラススライド上に結合したオプトード(以下、「ガラスオプトード」)のリチウムイオン応答性を調べた。各種濃度のリチウムイオンを含む水溶液(塩化リチウム)を調製し、実施例1で作製したガラスオプトードを室温下で各水溶液と接触させ、約10分後、上記測定機器を用いて吸収スペクトル及び蛍光(発光)スペクトル(励起光波長525nm)を測定した。
2. Responsiveness to lithium ions The lithium ion responsiveness of the optode (hereinafter referred to as “glass optode”) prepared in Example 1 in which a lithium ion responsive dye was bound on a glass slide was examined. Aqueous solutions containing various concentrations of lithium ions (lithium chloride) were prepared, the glass optode prepared in Example 1 was brought into contact with each aqueous solution at room temperature, and after about 10 minutes, the absorption spectrum and fluorescence were measured using the above measuring instrument. (Emission) spectrum (excitation light wavelength: 525 nm) was measured.

結果を図1及び図2に示す。図1に吸収スペクトル、図2に蛍光スペクトルを示す。図1に示されるように、吸光度は、リチウムイオンの濃度増加と共に波長511nmにおける吸光度が最も増加し、波長541nmにおける吸光度が最も減少した。同様に、蛍光強度は、リチウムイオンの濃度増加と共に波長543nmの蛍光強度が最も増加し、波長561nmにおける蛍光強度が最も減少した。   The results are shown in FIGS. FIG. 1 shows an absorption spectrum, and FIG. 2 shows a fluorescence spectrum. As shown in FIG. 1, the absorbance at the wavelength of 511 nm increased most and the absorbance at the wavelength of 541 nm decreased most as the lithium ion concentration increased. Similarly, with respect to the fluorescence intensity, the fluorescence intensity at the wavelength of 543 nm increased most and the fluorescence intensity at the wavelength of 561 nm decreased most as the lithium ion concentration increased.

そこで、これらの各2波長における吸光度又は蛍光強度の比をそれぞれ算出し、吸光度比(波長541nmにおける吸光度/波長511nmにおける吸光度)及び蛍光強度比(波長561nmの蛍光強度/波長543nmの蛍光強度)を求めた。リチウムイオンの常用対数を横軸に、吸光度比を縦軸にとった図を図3に、リチウムイオンの常用対数を横軸に、蛍光強度比を縦軸にとった図を図4にそれぞれ示す。   Therefore, the ratio of absorbance or fluorescence intensity at each of these two wavelengths was calculated, and the absorbance ratio (absorbance at wavelength 541 nm / absorbance at wavelength 511 nm) and fluorescence intensity ratio (fluorescence intensity at wavelength 561 nm / fluorescence intensity at wavelength 543 nm) were calculated. Asked. FIG. 3 is a graph showing the common logarithm of lithium ions on the horizontal axis and the absorbance ratio on the vertical axis, and FIG. 4 is a graph showing the common logarithm of lithium ions on the horizontal axis and the fluorescence intensity ratio on the vertical axis. .

図3に示されるように、吸光度比は、リチウムイオン濃度が10-3Mから10-1Mの間で概ね直線的に変化しており、この濃度範囲でリチウムイオン濃度が測定可能であることが明らかになった。また、図4に示されるように、蛍光強度比は、リチウムイオン濃度が10-4Mから10-1Mの間で概ね直線的に変化しており、この濃度範囲でリチウムイオン濃度が測定可能であることが明らかになった。 As shown in FIG. 3, the absorbance ratio shows that the lithium ion concentration varies substantially linearly between 10 -3 M and 10 -1 M, and the lithium ion concentration can be measured within this concentration range. Became clear. In addition, as shown in FIG. 4, the fluorescence intensity ratio varies substantially linearly between 10 -4 M and 10 -1 M, and the lithium ion concentration can be measured within this concentration range. It became clear that.

3.光耐久性
励起光として用いる波長525nmの光(キセノンランプで150ワット)を、種々の時間照射し続けた後のガラスオプトードを用い、リチウムイオン濃度が0M(純水)、10-1M、10-2M、10-3Mの水溶液について、上記蛍光強度比(561nm/543nm)を測定した。照射時間を横軸、蛍光強度比を縦軸にとった図を図5に示す。
3. Photo endurance Using glass optode after irradiating light of wavelength 525nm (xenon lamp 150 watts) used as excitation light for various time, lithium ion concentration is 0M (pure water), 10 -1 M, The fluorescence intensity ratio (561 nm / 543 nm) was measured for 10 −2 M and 10 −3 M aqueous solutions. FIG. 5 shows the irradiation time on the horizontal axis and the fluorescence intensity ratio on the vertical axis.

図5に示されるように、光を照射し続けたガラスオプトードを用いて測定しても、蛍光強度比は変化せず、ガラスオプトードの光耐久性が優れていることが明らかになった。   As shown in FIG. 5, the fluorescence intensity ratio did not change even when measured using a glass optode that was continuously irradiated with light, and it was revealed that the light durability of the glass optode was excellent. .

4.リチウムイオンに対する選択性
各種濃度のカルシウムイオン、カリウムイオン、マグネシウムイオン又はナトリウムイオンを含む水溶液(塩化物塩)を調製し、上記と同様にして蛍光強度比を測定した。結果を図6に示す。なお、リチウムイオンについての測定結果も図6に併せて示す。
4). Selectivity against lithium ions Aqueous solutions (chloride salts) containing various concentrations of calcium ions, potassium ions, magnesium ions or sodium ions were prepared, and the fluorescence intensity ratio was measured in the same manner as described above. The results are shown in FIG. In addition, the measurement result about lithium ion is also shown in FIG.

図6に示されるように、蛍光強度比は、リチウムイオンについてのみ濃度依存的に変化したが、他の金属イオンでは、蛍光強度比はイオン濃度に拘らずほぼ一定であった。このことから、ガラスオプトードが、リチウムイオンに対して選択的に応答することが確認された。   As shown in FIG. 6, the fluorescence intensity ratio changed depending on the concentration only for lithium ions, but for other metal ions, the fluorescence intensity ratio was almost constant regardless of the ion concentration. From this, it was confirmed that the glass optode selectively responds to lithium ions.

5.pH依存性
pHが4〜8の水を調製し、上記と同様にして蛍光強度比を測定した。結果を図7に示す。
5. pH dependence
Water having a pH of 4 to 8 was prepared, and the fluorescence intensity ratio was measured in the same manner as described above. The results are shown in FIG.

図7に示されるように、pHが変化しても蛍光強度比はほとんど一定であり、このガラスオプトードを用い、広範囲のpH下で測定が可能であることが明らかになった。   As shown in FIG. 7, the fluorescence intensity ratio is almost constant even when the pH is changed, and it has become clear that measurement can be performed under a wide range of pH using this glass optode.

6.各種イオンを含む水溶液中でのリチウムイオンに対する応答性
リチウムイオンと同濃度のナトリウムイオン、カリウムイオン、マグネシウムイオン及びカルシウムイオンを含む水溶液を調製し、上記と同様にして蛍光強度比を測定した。リチウムイオン濃度の常用対数を横軸にとり、蛍光強度比を縦軸にとった図を図8に示す。
6). Responsiveness to lithium ions in an aqueous solution containing various ions An aqueous solution containing sodium ions, potassium ions, magnesium ions and calcium ions having the same concentration as the lithium ions was prepared, and the fluorescence intensity ratio was measured in the same manner as described above. A graph in which the common logarithm of the lithium ion concentration is taken on the horizontal axis and the fluorescence intensity ratio is taken on the vertical axis is shown in FIG.

図8に示すように、水溶液中に各種イオンが共存する場合であっても、リチウムイオンが単独で存在する場合とほぼ同様な結果が得られ、各種イオンが共存していてもリチウムイオンを選択的に測定可能であることが明らかになった。   As shown in FIG. 8, even when various ions coexist in the aqueous solution, almost the same result as when lithium ions exist alone is obtained, and lithium ions are selected even when various ions coexist. It became clear that it was measurable.

7.再現性
上記6と同じ実験を合計3回行なったところ、ほぼ完全に一致する結果が得られた。これにより、測定の再現性が確認された。
7). Reproducibility When the same experiment as 6 above was performed a total of 3 times, almost completely identical results were obtained. Thereby, the reproducibility of the measurement was confirmed.

実施例で作製した本発明のオプトードの吸光スペクトルを示す図である。It is a figure which shows the absorption spectrum of the optode of this invention produced in the Example. 実施例で作製した本発明のオプトードの蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of the optode of this invention produced in the Example. 実施例で測定された、リチウムイオン濃度と、吸光度比(波長541nmにおける吸光度/波長511nmにおける吸光度)の関係を示す図である。It is a figure which shows the relationship of the lithium ion density | concentration and the light absorbency ratio (absorbance in wavelength 541nm / absorbance in wavelength 511nm) measured in the Example. 実施例で測定された、リチウムイオン濃度と、蛍光強度比(波長561nmの蛍光強度/波長543nmの蛍光強度)の関係を示す図である。It is a figure which shows the relationship of the lithium ion density | concentration and fluorescence intensity ratio (fluorescence intensity of wavelength 561nm / fluorescence intensity of wavelength 543nm) measured in the Example. 実施例で作製したオプトードに光を照射し続けた後、各種イオン濃度の水溶液について蛍光強度比を測定した際の、照射時間と蛍光強度比の関係を示す図である。It is a figure which shows the relationship between irradiation time and fluorescence intensity ratio at the time of measuring fluorescence intensity ratio about the aqueous solution of various ion concentration after continuing irradiating light to the optode produced in the Example. 各種濃度のカルシウムイオン、カリウムイオン、マグネシウムイオン又はナトリウムイオンを含む水溶液について、蛍光強度比を測定した際の各イオンの濃度と蛍光強度比の関係を示す図である。It is a figure which shows the relationship between the density | concentration of each ion at the time of measuring fluorescence intensity ratio, and fluorescence intensity ratio about the aqueous solution containing calcium ion, potassium ion, magnesium ion, or sodium ion of various density | concentrations. 各種pHの水について、蛍光強度比を測定した際のpHと蛍光強度比の関係を示す図である。It is a figure which shows the relationship between pH and fluorescence intensity ratio at the time of measuring fluorescence intensity ratio about water of various pH. リチウムイオンと同濃度のナトリウムイオン、カリウムイオン、マグネシウムイオン及びカルシウムイオンを含む水溶液について蛍光強度比を測定した際の、リチウムイオン濃度と蛍光強度比の関係を示す図である。It is a figure which shows the relationship between a lithium ion density | concentration and a fluorescence intensity ratio when the fluorescence intensity ratio is measured about the aqueous solution containing the sodium ion of the same density | concentration as lithium ion, potassium ion, magnesium ion, and calcium ion.

Claims (14)

下記一般式[I]で表される構造を有するリチウムイオン応答性色素を、共有結合によって基材に固定化したことを特徴とするリチウムイオン測定用オプトード。
Figure 0005481689
ここで、
R1及びR2のいずれか一方が、リチウムイオンと結合して前記色素の吸光特性及び/又は蛍光特性を変化させるリチウムイオン応答性基であり、
R1〜R7のうち、前記リチウムイオン応答性基以外のいずれか1つが、前記基材と共有結合する共有結合性基であり、
R1〜R7のうち、前記リチウムイオン応答性基及び前記共有結合性基以外のものは互いに独立して水素又はメチル基であり、
前記リチウムイオン応答性基が下記一般式[II]で表される構造を有するリチウムイオン測定用オプトード
Figure 0005481689
ここで、Xは下記式(1)〜(6)のいずれかで表される基である。
Figure 0005481689
ここで、R 8 〜R 11 は互いに独立して水素または炭素数1〜3のアルキル基である。
Figure 0005481689
An optode for measuring lithium ions, wherein a lithium ion-responsive dye having a structure represented by the following general formula [I] is immobilized on a base material by a covalent bond.
Figure 0005481689
here,
Either one of R 1 and R 2 is a lithium ion-responsive group that binds to lithium ions and changes the absorption characteristics and / or fluorescence characteristics of the dye,
Among R 1 to R 7 , any one other than the lithium ion responsive group is a covalent bond group that is covalently bonded to the base material,
Among R 1 to R 7, Ri hydrogen or a methyl group der independently of one another other than the lithium-ion responsive group and the covalent bonding group,
An optode for measuring lithium ions, wherein the lithium ion-responsive group has a structure represented by the following general formula [II] .
Figure 0005481689
Here, X is a group represented by any of the following formulas (1) to (6).
Figure 0005481689
Here, R < 8 > -R < 11 > is hydrogen or a C1-C3 alkyl group mutually independently.
Figure 0005481689
前記一般式[I]中、R1が前記リチウムイオン応答性基であり、R3が前記共有結合性基である請求項1記載のオプトード。 2. The optode according to claim 1, wherein, in the general formula [I], R 1 is the lithium ion responsive group, and R 3 is the covalent bond group. 前記一般式[I]中、R5及びR7がメチル基であり、R2、R4及びR6が水素である請求項2記載のオプトード。 The optode according to claim 2 , wherein, in the general formula [I], R 5 and R 7 are methyl groups, and R 2 , R 4 and R 6 are hydrogen. 前記共有結合性基が、水酸基、カルボキシル基、アミノ基、スルホン酸基若しくはハロゲン又はこれらの基を有するアルキル基若しくはアルコキシ基である請求項1〜3のいずれか1項に記載のオプトード。   The optode according to any one of claims 1 to 3, wherein the covalent bond group is a hydroxyl group, a carboxyl group, an amino group, a sulfonic acid group or a halogen, or an alkyl group or an alkoxy group having these groups. 前記共有結合性基が、下記の構造を有する請求項4記載のオプトード。
Figure 0005481689
The optode according to claim 4, wherein the covalent bond group has the following structure.
Figure 0005481689
前記基材が表面にOH基を有する物質であり、該OH基と前記共有結合性基とをシランカップリング剤により結合させた請求項1〜5のいずれか1項に記載のオプトード。   The optode according to any one of claims 1 to 5, wherein the base material is a substance having an OH group on a surface, and the OH group and the covalent bond group are bonded together by a silane coupling agent. 前記シランカップリング剤が3-(トリエトキシシリル)プロピルイソシアネートである請求項6記載のオプトード。   The optode according to claim 6, wherein the silane coupling agent is 3- (triethoxysilyl) propyl isocyanate. 前記基材がガラス又はプラスチックである、請求項1〜7のいずれか1項に記載のオプトード。   The optode according to any one of claims 1 to 7, wherein the substrate is glass or plastic. 前記一般式[II]中のXが前記式(1)で表され、前記式(1)中のR8〜R11は全てメチル基である請求項記載のオプトード。 The optode according to claim 8 , wherein X in the general formula [II] is represented by the formula (1), and R 8 to R 11 in the formula (1) are all methyl groups. 前記リチウムイオン応答性色素が、下記式(7)で表される請求項1〜のいずれか1項に記載のオプトード。
Figure 0005481689
The optode according to any one of claims 1 to 9 , wherein the lithium ion-responsive dye is represented by the following formula (7).
Figure 0005481689
請求項1〜10のいずれか1項に記載のリチウムイオン測定用オプトードを用いて溶液中のリチウムイオン濃度を測定する方法であって、該溶液と該オプトードとを接触させ、該オプトードの吸光度又は蛍光強度を測定することを含む、リチウムイオン濃度の測定方法。 A method for measuring a lithium ion concentration in a solution using the optode for measuring lithium ions according to any one of claims 1 to 10 , wherein the solution and the optode are contacted, and the absorbance of the optode or A method for measuring a lithium ion concentration, comprising measuring fluorescence intensity. 対象となるリチウムイオンの濃度が増大した時に、リチウムイオン応答性色素の吸光度が増大する波長と、吸光度が減少する波長の2波長で吸光度を測定し、その比を求めることにより当該リチウムイオンの濃度を測定する請求項11記載の方法。 When the concentration of lithium ions of interest is increased, the concentration of the lithium ion by the wavelength at which the absorbance of the lithium-ion responsive dye increases, the absorbance at 2 wavelengths at which the absorbance is reduced measure, determine the ratio The method according to claim 11 , wherein: 対象となるリチウムイオンの濃度が増大した時に、リチウムイオン応答性色素の蛍光強度が増大する波長と、蛍光強度が減少する波長の2波長で蛍光強度を測定し、その比を求めることにより当該リチウムイオンの濃度を測定する請求項11記載の方法。 When the concentration of lithium ions of interest is increased, the lithium by a wavelength at which the fluorescence intensity of the lithium-ion responsive dye is increased, the fluorescence intensity at 2 wavelengths which the fluorescence intensity is decreased measures, obtains the ratio The method according to claim 11 , wherein the concentration of ions is measured. 水処理薬剤と共にトレーサ物質としてのリチウムの水溶性塩を被処理水中に添加し、リチウムイオン濃度を請求項1113のいずれか1項に記載の方法で測定することにより、被処理水中に添加した前記水処理薬剤の濃度管理を行うことを特徴とする水処理薬剤の濃度管理方法。 A water-soluble salt of lithium as a tracer substance is added to the water to be treated together with the water treatment agent, and the lithium ion concentration is measured by the method according to any one of claims 11 to 13 and added to the water to be treated. A method for managing the concentration of a water treatment chemical, characterized in that the concentration management of the water treatment chemical is performed.
JP2008217172A 2008-08-26 2008-08-26 Ion measurement optode and ion concentration measurement method using the same Active JP5481689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008217172A JP5481689B2 (en) 2008-08-26 2008-08-26 Ion measurement optode and ion concentration measurement method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008217172A JP5481689B2 (en) 2008-08-26 2008-08-26 Ion measurement optode and ion concentration measurement method using the same

Publications (2)

Publication Number Publication Date
JP2010054242A JP2010054242A (en) 2010-03-11
JP5481689B2 true JP5481689B2 (en) 2014-04-23

Family

ID=42070344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008217172A Active JP5481689B2 (en) 2008-08-26 2008-08-26 Ion measurement optode and ion concentration measurement method using the same

Country Status (1)

Country Link
JP (1) JP5481689B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534868B (en) * 2011-03-10 2016-08-24 国立大学法人京都大学 Organic color material and use its dye-sensitized solar cell
WO2016017464A1 (en) * 2014-07-30 2016-02-04 国立研究開発法人産業技術総合研究所 Photocrosslinked film production apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639656B2 (en) * 2004-06-18 2011-02-23 ダイキン工業株式会社 Film with excellent dirt removal
JP2006162355A (en) * 2004-12-03 2006-06-22 Olympus Corp Wavelength confirming method of apparatus with built in photometer and autoanalyzer
JP4711187B2 (en) * 2006-03-31 2011-06-29 アクアス株式会社 Water treatment chemical injection method and injection system thereof

Also Published As

Publication number Publication date
JP2010054242A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
Jung et al. Hydrazine exposé: the next-generation fluorescent probe
Du et al. Fluorescent chemodosimeters using “mild” chemical events for the detection of small anions and cations in biological and environmental media
Li et al. A novel fluorescence ratiometric pH sensor based on covalently immobilized piperazinyl-1, 8-napthalimide and benzothioxanthene
Li et al. Aromatization of 9, 10-dihydroacridine derivatives: discovering a highly selective and rapid-responding fluorescent probe for peroxynitrite
Chen et al. A large stokes shift fluorescent probe for sensing of thiophenols based on imidazo [1, 5-α] pyridine in both aqueous medium and living cells
CN109096311B (en) Fluorescent probe for detecting water, preparation method and application thereof
Gu et al. Rational construction of a novel ratiometric far-red fluorescent probe with excellent water solubility for sensing mitochondrial peroxynitrite
JPWO2007055364A1 (en) Peroxynitrite fluorescent probe
Nishiyabu et al. Dansyl-containing boronate hydrogel film as fluorescent chemosensor of copper ions in water
CN105385439A (en) Reaction type Rhodamine-class fluorescence probe for mercury ion detection and preparation as well as application thereof
CN103772318A (en) Organic compound for measuring content of metal ions in water environment and application of organic compound
Wang et al. Recyclable DNA-derived polymeric sensor: ultrasensitive detection of Hg (II) ions modulated by morphological changes
Liu et al. Sensitive fluorescence assay for the detection of glyphosate with NACCu2+ complex
JP6958781B2 (en) Fluorescent compound or salt thereof, ionic compound detection agent and ionic compound detection method
Liu et al. Ultra-sensitive fluorescent sensor for Hg2+ based on a donor− acceptor− donor framework
WO2008059910A1 (en) pH-SENSITIVE FLUORESCENT PROBE
JP5481689B2 (en) Ion measurement optode and ion concentration measurement method using the same
Bu et al. A phenanthro [9, 10-d] imidazole-based AIE active fluorescence probe for sequential detection of Ag+/AgNPs and SCN− in water and saliva samples and its application in living cells
CN108610289A (en) A kind of quick high-selectivity hypersensitive hypobromous acid fluorescence probe
Naha et al. Nanomolar colorimetric hypochlorite sensor in water
KR20130077402A (en) Chemosensor having selectivity for hydrazine and method for monitoring hydrazine using the same
Yi et al. Portable AIE hydrogel sensor for rapid and visual field detection of heavy metal residue in food
JP3364313B2 (en) Porphyrin / indium complex and anion-sensitive membrane
Jiao et al. 4-Allyloxy-7-aminocoumarin as a fluorescent carrier for optical sensor preparation and indole-3-acetic acid assay
CN110156858B (en) Water-soluble hydrogen sulfide fluorescent probe, preparation method thereof and application thereof in detection of water quality sulfide and cell hydrogen sulfide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Ref document number: 5481689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250