JP5481653B2 - Nanocomposite, nanodispersion, method for producing the same, and various agents comprising the dispersion - Google Patents

Nanocomposite, nanodispersion, method for producing the same, and various agents comprising the dispersion Download PDF

Info

Publication number
JP5481653B2
JP5481653B2 JP2013035117A JP2013035117A JP5481653B2 JP 5481653 B2 JP5481653 B2 JP 5481653B2 JP 2013035117 A JP2013035117 A JP 2013035117A JP 2013035117 A JP2013035117 A JP 2013035117A JP 5481653 B2 JP5481653 B2 JP 5481653B2
Authority
JP
Japan
Prior art keywords
group
solvent
nanocomposite
fluorine
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013035117A
Other languages
Japanese (ja)
Other versions
JP2013155375A (en
Inventor
英夫 沢田
大樹 高島
勝久 滝下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Chemical Co Ltd
Hirosaki University NUC
Original Assignee
Ishihara Chemical Co Ltd
Hirosaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Chemical Co Ltd, Hirosaki University NUC filed Critical Ishihara Chemical Co Ltd
Priority to JP2013035117A priority Critical patent/JP5481653B2/en
Publication of JP2013155375A publication Critical patent/JP2013155375A/en
Application granted granted Critical
Publication of JP5481653B2 publication Critical patent/JP5481653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)

Description

本発明は、含フッ素系化合物とシランカップリング剤とを含むナノコンポジット、ナノ分散液、その製造方法及び該分散液からなる各種剤に関するものである。  The present invention relates to a nanocomposite containing a fluorine-containing compound and a silane coupling agent, a nanodispersion, a production method thereof, and various agents comprising the dispersion.

近年の環境問題という観点から、汚れがついたら洗剤で洗い流すということから、予め汚れをつきにくくするという目的で、ガラスをはじめとする様々な基材へのコーティング剤として、撥水・親水・撥油効果を有する防汚剤が研究・開発されている(例えば特許文献1および2参照)。それらコーティング剤はナノ物質やナノコンポジット、あるいはナノ分散液であることで、様々な機能が発現でき、特に溶液分散性に優れ、各種基材へコーティングした場合、透明性に優れており外観を損なうことが無い。ガラスなど透明基材へのコーティングで、問題視されているムラ、曇り、不透明性等を解消することが出来る。  From the viewpoint of environmental problems in recent years, it is necessary to wash away with a detergent if it gets dirty, and as a coating agent for various substrates such as glass, water repellent, hydrophilic Antifouling agents having an oil effect have been researched and developed (see, for example, Patent Documents 1 and 2). Since these coating agents are nanomaterials, nanocomposites, or nanodispersions, they can exhibit various functions, and are particularly excellent in solution dispersibility, and when coated on various substrates, they are excellent in transparency and impair the appearance. There is nothing. By coating a transparent substrate such as glass, problems such as unevenness, cloudiness, and opacity can be solved.

特開2007−99793JP2007-99793 特開2008−40171JP2008-40171

本発明の課題は、このような事情の下、新規なナノコンポジットやナノ分散液、特に撥水・撥油効果や親水・撥油効果に優れるこれらのものを提供することにある。  Under such circumstances, it is an object of the present invention to provide novel nanocomposites and nanodispersions, particularly those having excellent water / oil repellency and hydrophilic / oil repellency.

本発明者らは、上記課題を解決すべく鋭意研究したところ、含フッ素末端鎖基を有し、主鎖骨格に特定の親媒性基を有する含フッ素系化合物がそれ自体で分子集合体化し、ナノ物質を形成しうること、また、この含フッ素系化合物はシランカップリング剤とコンポジットを形成しうることを見出し、さらに、これらのナノ物質やコンポジットはナノサイズの粒子であって、含フッ素系化合物の親媒性に追従して水性溶媒、非水性溶媒や疎水性溶媒、或いはこれらの混合溶媒に親媒性であり、これらのナノ粒子をこれら溶媒中に分散させうることや、この分散液で硬表面を改質しうること、また、塗料や樹脂への添加でその表面を改質しうることを見出し、これらの知見に基づいて本発明をなすに至った。  As a result of intensive research to solve the above-mentioned problems, the present inventors have found that a fluorine-containing compound having a fluorine-containing terminal chain group and having a specific amphiphilic group in the main chain skeleton itself forms a molecular assembly. It has been found that nanomaterials can be formed, and that this fluorine-containing compound can form a composite with a silane coupling agent. Furthermore, these nanomaterials and composites are nano-sized particles and contain fluorine-containing compounds. It is amphiphilic in aqueous solvents, non-aqueous solvents, hydrophobic solvents, or mixed solvents that follow the amphipathic properties of these compounds, and these nanoparticles can be dispersed in these solvents. The inventors have found that the hard surface can be modified with a liquid, and that the surface can be modified by addition to a paint or resin, and the present invention has been made based on these findings.

すなわち、本発明は以下に示すとおりのものである。
(1) 一般式(I)
[式中、Rfはパーフルオロアルキル基、パーフルオロオキサアルキル基または一般式
(式中、Afはパーフルオロアルキレン基、Af′はAfと同一または異なるパーフルオロアルキレン基、mは1〜10である)
で示される基、Rはアルキル基、アルコキシアルキル基または水素原子、nは2〜100である。]
で表わされる含フッ素系化合物と一般式(III)
[式中、Xはビニル基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基、四級アンモニウム基、ウレイド基、スルフィド基、イソシアナート基、アルコキシ基、スルホ基およびリン酸基からなる群から選ばれる官能基であり、Aは二価の炭化水素基であり、酸素原子、窒素原子、硫黄原子を含んでいてもよく、Rは水酸基であり、Rはアルキル基、アルコキシアルキル基または水素原子であり、mは1または2である。]
で表されるシランカップリング剤とを含んでなるナノコンポジット。
(2) 含フッ素系化合物が式(II)
[式中、Rは−(CF)pFまたは−CF(CF)O(CFCFCFO)qC(pは1〜10、qは0〜5である)で示される基、R′はアルキル基、nは2〜3である。]
で表わされるものである前記(1)記載のナノコンポジット。
(3) 前記(1)または(2)に記載のナノコンポジットが溶媒に分散されてなるナノ分散液。
(4) 溶媒が非水性溶媒、疎水性溶媒である前記(3)に記載のナノ分散液。
(5) 前記(1)または(2)に記載の含フッ素系化合物と前記(1)に記載のシランカップリング剤とを溶媒中で混合させることを特徴とする前記(3)または(4)に記載のナノ分散液の製造方法。
(6) 前記(3)または(4)に記載のナノ分散液からなるコーティング剤。
(7) 前記(3)または(4)に記載のナノ分散液からなる添加剤。
That is, the present invention is as follows.
(1) General formula (I)
[Wherein Rf is a perfluoroalkyl group, a perfluorooxaalkyl group or a general formula
(In the formula, Af is a perfluoroalkylene group, Af ′ is the same or different perfluoroalkylene group as Af, and m is 1 to 10).
R is an alkyl group, an alkoxyalkyl group or a hydrogen atom, and n is 2 to 100. ]
And a fluorine-containing compound represented by the general formula (III)
[Wherein X is selected from the group consisting of vinyl group, styryl group, methacryloxy group, acryloxy group, amino group, quaternary ammonium group, ureido group, sulfide group, isocyanate group, alkoxy group, sulfo group and phosphate group. A is a divalent hydrocarbon group which may contain an oxygen atom, a nitrogen atom or a sulfur atom, R 1 is a hydroxyl group, R 2 is an alkyl group, an alkoxyalkyl group or hydrogen An atom and m is 1 or 2; ]
A nanocomposite comprising a silane coupling agent represented by:
(2) The fluorine-containing compound is represented by the formula (II)
[Wherein, R F is represented by — (CF 2 ) pF or —CF (CF 3 ) O (CF 2 CFCF 3 O) qC 3 F 7 (p is 1 to 10, q is 0 to 5). Group, R 'is an alkyl group, n is 2-3. ]
The nanocomposite as described in (1) above, which is represented by:
(3) A nano-dispersed liquid obtained by dispersing the nano-composite according to (1) or (2) in a solvent.
(4) The nanodispersion according to (3), wherein the solvent is a non-aqueous solvent or a hydrophobic solvent.
(5) The (3) or (4), wherein the fluorine-containing compound according to (1) or (2) and the silane coupling agent according to (1) are mixed in a solvent. A method for producing the nano-dispersion described in 1.
(6) A coating agent comprising the nanodispersion according to (3) or (4).
(7) An additive comprising the nanodispersion according to (3) or (4).

以下、本発明を具体的に説明する。
本発明のナノコンポジットは、上記式(I)の含フッ素系化合物と上記式(III)のシランカップリング剤とのナノ粒子複合体を含んでなり、好ましくは該ナノ粒子複合体のみからなるものである。
Hereinafter, the present invention will be specifically described.
The nanocomposite of the present invention comprises a nanoparticle composite of the fluorine-containing compound of the above formula (I) and the silane coupling agent of the above formula (III), and preferably comprises only the nanoparticle composite. It is.

式(I)中、Rのアルキル基としてはメチル基またはエチル基が好ましく、nは1〜20であるのが好ましい。また、Rf基については、パーフルオロアルキル基の例としてはC、C13、C15などが挙げられ、パーフルオロオキサアルキル基の例としては−CF(CF)OCが挙げられ、両末端のRf基は互いに異なっていてもよく、また分子間で互いにRf基が異なっていてもよい。
上記含フッ素系化合物としては、特に上記式(II)で表わされるものが好ましい。具体的には、Rで示されるフルオロアルキル基は−CF(CF)OCで表される基が特に好ましく、Rで示される基はメチル基、つまり−Si(OCHが特に好ましい。
In formula (I), the alkyl group of R is preferably a methyl group or an ethyl group, and n is preferably 1-20. As for the Rf group, examples of the perfluoroalkyl group include such as C 3 F 7, C 6 F 13, C 7 F 15, -CF (CF 3) Examples of perfluoroalkyl oxaalkyl group OC 3 F 7 is mentioned, Rf groups at both terminals may be different from each other, and Rf groups may be different between molecules.
As the fluorine-containing compound, those represented by the above formula (II) are particularly preferable. Specifically, fluoroalkyl group is particularly preferably groups represented by -CF (CF 3) OC 3 F 7 represented by R F, groups represented by R are methyl groups, i.e. -Si (OCH 3) 3 Is particularly preferred.

上記含フッ素化合物の製法は特に制限されないが、好ましくは、該目的物に相応するオレフィン系モノマーを、上記Rf基を含む有機過酸化物の存在下で反応させる方法、例えば該過酸化物をラジカル重合開始剤として、該モノマーの重合や共重合反応によればよい。
Rf基を含む有機過酸化物としては、上記に例示するような対応するRf基を両末端に有する過酸化物が好ましく、このような過酸化物にはRf−CO−OO−OC−Rfで示される化合物(式中のRf基は、互いに同一でもよいし、また異なっていてもよい)が挙げられる。
含フッ素化合物は、全末端に上記Rf基が導入された化合物とともに、片末端のみに上記Rf基が導入された化合物を含んでいてもよく、さらに、ラジカルの連鎖移動により溶媒などに由来する基や不均化反応によるラジカル停止反応に由来する基が片末端に導入されたものを含んでいてもよい。
The production method of the fluorine-containing compound is not particularly limited, but preferably, a method of reacting an olefin monomer corresponding to the target product in the presence of the organic peroxide containing the Rf group, for example, the peroxide is a radical. As a polymerization initiator, the polymerization or copolymerization reaction of the monomer may be used.
As the organic peroxide containing an Rf group, a peroxide having a corresponding Rf group at both ends as exemplified above is preferable, and such a peroxide is represented by Rf—CO—OO—OC—Rf. And the compounds shown (wherein the Rf groups may be the same as or different from each other).
The fluorine-containing compound may include a compound in which the Rf group is introduced at all ends together with a compound in which the Rf group is introduced only at one end, and further a group derived from a solvent or the like by radical chain transfer. Or a group derived from a radical termination reaction by a disproportionation reaction may be included at one end.

式(III)のシランカップリング剤は、ビニル基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基、四級アンモニウム基、ウレイド基、スルフィド基、イソシアナート基、アルコキシ基、スルホ基、リン酸基からなる群から選択される官能基を有し、例えば下記化学式に示すようなスルホン酸基を有するシランカップリング剤が好ましい。  The silane coupling agent of formula (III) is vinyl group, styryl group, methacryloxy group, acryloxy group, amino group, quaternary ammonium group, ureido group, sulfide group, isocyanate group, alkoxy group, sulfo group, phosphate group A silane coupling agent having a functional group selected from the group consisting of, for example, a sulfonic acid group as shown in the following chemical formula is preferable.

式(IV)
Formula (IV)

本発明のナノコンポジットは、通常数nmから数百nm、好ましくは10〜500nmの平均粒径を有し、種々の溶媒にナノ粒子として分散させることができ、このようにしてナノ分散液を調製しうる。  The nanocomposite of the present invention usually has an average particle size of several nm to several hundred nm, preferably 10 to 500 nm, and can be dispersed as nanoparticles in various solvents, thus preparing a nano-dispersed liquid Yes.

本発明のナノコンポジットは、次のようにして製造することができる。
本発明のナノコンポジットは、上記式(I)の含フッ素系化合物と上記式(III)のシランカップリング剤を、溶媒中、酸性またはアルカリ性下で混合させ、ナノ分散液を調製し、ナノ分散液から溶媒を除去することによって得ることができる。
この製造法に用いられる溶媒としては水と有機溶媒との混合溶媒が好ましく、このような溶媒は酢酸、塩酸、硫酸、硝酸等の酸などでpHを酸性に、アンモニア、水酸化ナトリウムなどの無機塩基、トリエチルアミン、トリエタノールアミンなどの有機塩基でpHをアルカリ性に調製され、有機溶媒として、好ましくはメタノール、エタノール、プロピルアルコール等のアルコール系溶媒、エチレングリコールやプロピレングリコールなどのグリコール系溶媒、テトラヒドロフラン、ジオキサン、アセトン、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、3−メトキシ−3−メチルブタノールなどの親水性溶媒が挙げられるが、操作性、安全性等からpH調製には塩酸、アンモニア水を、有機溶媒にはイソプロピルアルコールを用いるのが好ましい。
なお、上記式(III)のシランカップリング剤は、それ自身が酸性を示すため、酸性下での混合の場合は、上記酸を用いなくてもよい。
溶媒のpHは、酸性側で1〜6、アルカリ性側で8〜14が好ましく、2〜4および9〜12がより好ましい。
水と有機溶媒との混合比率は、任意に変更できるが、水:有機溶媒=0.1:9.9〜5:5が好ましく、含フッ素化合物の溶解性などを考慮すると水:有機溶媒=1:9〜3:7(w/w)がより好ましい。
含フッ素化合物とシランカップリング剤との混合割合は任意に決定できるが、目的の撥油性および親水性を示すためには、シランカップリング剤は含フッ素化合物の2〜100倍重量が好ましく、2〜10倍がより好ましい。
混合は、通常5℃から溶媒の沸点未満の該沸点付近までの温度、好ましくは常温、常圧で行われる。
ナノ分散液から溶媒を除去するには、例えば溶媒を留去したり、蒸発させるなどすればよい。
本発明のナノ分散液は、上記ナノコンポジットの製造法において、溶媒を除去する最終工程の前の段階までで止めることによって得られ、また、ナノコンポジットを溶媒に分散させることによっても調製される。
The nanocomposite of the present invention can be produced as follows.
The nanocomposite of the present invention is prepared by mixing a fluorine-containing compound of the above formula (I) and a silane coupling agent of the above formula (III) in a solvent under acidic or alkaline conditions to prepare a nanodispersion, It can be obtained by removing the solvent from the liquid.
As a solvent used in this production method, a mixed solvent of water and an organic solvent is preferable, and such a solvent is acidified with an acid such as acetic acid, hydrochloric acid, sulfuric acid, nitric acid, etc., and an inorganic such as ammonia, sodium hydroxide or the like. The pH is adjusted to be alkaline with an organic base such as a base, triethylamine, or triethanolamine, and the organic solvent is preferably an alcohol solvent such as methanol, ethanol, or propyl alcohol, a glycol solvent such as ethylene glycol or propylene glycol, tetrahydrofuran, Hydrophilic solvents such as dioxane, acetone, acetonitrile, dimethylformamide, dimethyl sulfoxide, and 3-methoxy-3-methylbutanol can be mentioned. In terms of operability and safety, hydrochloric acid and aqueous ammonia are used as organic solvents for pH adjustment. Is isopropyl alcohol Preferably used Le.
In addition, since the silane coupling agent of the said Formula (III) itself shows acidity, in the case of mixing under acidic condition, it is not necessary to use the said acid.
The pH of the solvent is preferably 1 to 6 on the acidic side, preferably 8 to 14 on the alkaline side, and more preferably 2 to 4 and 9 to 12.
The mixing ratio of water and organic solvent can be arbitrarily changed, but water: organic solvent = 0.1: 9.9 to 5: 5 is preferable, and considering the solubility of the fluorine-containing compound, water: organic solvent = 1: 9 to 3: 7 (w / w) is more preferable.
The mixing ratio of the fluorine-containing compound and the silane coupling agent can be arbitrarily determined. In order to exhibit the desired oil repellency and hydrophilicity, the silane coupling agent is preferably 2 to 100 times the weight of the fluorine-containing compound. 10 to 10 times is more preferable.
Mixing is usually carried out at a temperature from 5 ° C. to near the boiling point below the boiling point of the solvent, preferably at ordinary temperature and normal pressure.
In order to remove the solvent from the nano-dispersion, for example, the solvent may be distilled off or evaporated.
The nano-dispersion of the present invention can be obtained by stopping the process up to the stage before the final step of removing the solvent in the above-described method for producing a nano-composite, and can also be prepared by dispersing the nano-composite in a solvent.

ナノ分散液は、硬表面に塗布し、乾燥させて、該表面に被膜を形成させることができ、また、塗料や樹脂へ添加することで、その乾燥表面にナノ物質またはナノコンポジットが配向した被膜を形成させることができ、この被膜はドデカン等の有機系媒体に対する接触角が大きく、撥油性を示し、また、コンポジット化させる対象を選択することで水に対する接触角をコントロールでき、撥水性および親水性を示す。これら防汚性を示すことから、ナノ分散液は、撥水・撥油剤や防汚剤やコーティング剤、添加剤等として利用しうる。  The nano-dispersed liquid can be applied to a hard surface and dried to form a film on the surface, and by adding to a paint or resin, the nano-material or nano-composite is oriented on the dry surface. This film has a large contact angle with organic media such as dodecane and exhibits oil repellency, and the contact angle with water can be controlled by selecting an object to be composited. Showing gender. Since these antifouling properties are exhibited, the nano-dispersed liquid can be used as a water / oil repellent, an antifouling agent, a coating agent, an additive, and the like.

本発明のナノコンポジットは、分散性に優れ、有機溶媒に分散させた分散液として使用することができ、この分散液は、ドデカンのような高級炭化水素に対する接触角が高く、撥油性を示すとともに、コンポジット化させる対象を選択することで水に対する接触角をコントロールでき、撥水性および親水性を示す。
本発明のナノ分散液は、硬表面、例えばガラス、金属、セラミックス、プラスチック、車体等の塗装板等に撥水・撥油性、親水・撥油性を付与することができ、高い防汚効果を示すコーティング剤等として利用しうる。また、塗料や樹脂へ添加することで、その乾燥表面にナノ物質またはナノコンポジットを配向させることが出来るため、乾燥後の塗膜や樹脂表面に撥水・撥油、親水・撥油性を付与することができ、高い防汚効果を示す添加剤等として利用しうる。
The nanocomposite of the present invention has excellent dispersibility and can be used as a dispersion dispersed in an organic solvent. This dispersion has a high contact angle with higher hydrocarbons such as dodecane and exhibits oil repellency. The contact angle to water can be controlled by selecting the object to be composited, and it exhibits water repellency and hydrophilicity.
The nano dispersion liquid of the present invention can impart water repellency / oil repellency, hydrophilicity / oil repellency to a hard surface such as glass, metal, ceramics, plastic, a coated plate of a vehicle body, etc., and exhibits a high antifouling effect. It can be used as a coating agent. In addition, by adding to paints and resins, nanomaterials or nanocomposites can be oriented on the dry surface, thus imparting water and oil repellency, hydrophilic and oil repellency to the dried coating film and resin surface. It can be used as an additive or the like showing a high antifouling effect.

実施例4で得られたナノコンポジット分散液でコーティング処理されたガラスに対する拡張・収縮法による水の接触角の測定写真(収縮後)。The measurement photograph (after shrinkage | contraction) of the water contact angle by the expansion / contraction method with respect to the glass coated with the nanocomposite dispersion liquid obtained in Example 4. FIG. 比較例4で得られたナノコンポジット分散液でコーティング処理されたガラスに対する拡張・収縮法による水の接触角の測定写真(収縮後)。The photograph of the contact angle of water measured by the expansion / contraction method on the glass coated with the nanocomposite dispersion obtained in Comparative Example 4 (after contraction).

次に実施例により本発明を実施するための形態を説明するが、本発明はこれらの例により何ら限定されるものではない。
なお、実施例、比較例における平均粒径は、ダイナミック光散乱光度計(大塚電子株式会社製「DLS−7000H」)を用いて測定した。
Next, modes for carrying out the present invention will be described by way of examples, but the present invention is not limited to these examples.
In addition, the average particle diameter in an Example and a comparative example was measured using the dynamic light-scattering photometer ("DLS-7000H" by Otsuka Electronics Co., Ltd.).

含フッ素系化合物[上記式(II)において、Rf=CF(CF)OC、n=2である化合物を0.1(wt)%になるようにイソプロパノールと水の混合溶媒に溶解させ、室温で1日攪拌することで、ナノ物質の透明分散液を得た。なお、混合溶媒はイソプロパノール:水=8:2(w/w)である。Fluorine-containing compound [in the above formula (II), a compound in which Rf = CF (CF 3 ) OC 3 F 7 , n = 2 is dissolved in a mixed solvent of isopropanol and water so as to be 0.1 (wt)% The mixture was stirred at room temperature for 1 day to obtain a transparent dispersion of nanomaterials. The mixed solvent is isopropanol: water = 8: 2 (w / w).

実施例1において、混合溶媒の水を0.1N塩酸でpH2に調製した水に置き換えて同様の操作を行った。  In Example 1, the mixed solvent water was replaced with water adjusted to pH 2 with 0.1N hydrochloric acid, and the same operation was performed.

実施例1において、混合溶媒の水を28%アンモニア水でpH10に調製した水に置き換えて同様の操作を行った。  In Example 1, the same operation was performed by replacing the mixed solvent water with water adjusted to pH 10 with 28% aqueous ammonia.

(比較例1〜3)
実施例1〜3において、含フッ素系化合物をトリフルオロプロピルトリメトキシシランに代えて同様の操作を行った。
(Comparative Examples 1-3)
In Examples 1 to 3, the same operation was performed by replacing the fluorinated compound with trifluoropropyltrimethoxysilane.

<接触角測定>
上記実施例および比較例の透明分散液に、表面をイソプロパノールで脱脂したプレパラート(76mm×26mm)をディップ処理したのち、室温で1日乾燥させ、水およびドデカンに対する接触角を、協和界面科学社製のDM700型全自動接触角計を用い測定した。
測定結果を表1に示す。
<Contact angle measurement>
The transparent dispersions of the above Examples and Comparative Examples were prepared by dip-treating a preparation (76 mm × 26 mm) whose surface was degreased with isopropanol, followed by drying at room temperature for 1 day, and the contact angles for water and dodecane were determined by Kyowa Interface Science Co., Ltd. The DM700 type fully automatic contact angle meter.
The measurement results are shown in Table 1.

<平均粒子径測定>
実施例1から3において、透明分散液について、その中の微細粒子の平均粒径を動的光散乱法によって測定した。その結果、該平均粒径は約180〜670nmであり、含フッ素系化合物のナノ粒子の生成が確認された。
<Average particle size measurement>
In Examples 1 to 3, the average particle size of fine particles in the transparent dispersion was measured by a dynamic light scattering method. As a result, the average particle size was about 180 to 670 nm, and the production of nanoparticles of the fluorine-containing compound was confirmed.

含フッ素系化合物[上記式(II)において、Rf=CF(CF)OC、n=2である化合物]0.02gをイソプロパノール2mlに溶解させ、そこにシランカップリング剤[上記式(III)において、XがSOH、AがC、RがOH、RがH、mが1である化合物]0.18gを溶解させ、室温で1日攪拌することで、ナノコンポジットの透明分散液を得た。
このナノコンポジット分散液でコーティング処理されたガラスに対する拡張・収縮法による水の接触角の測定写真(収縮後)を図1に示す。
これより、一旦基材表面に水滴を作成しておき、シリンジから水を吸い上げたときに、基材表面が親水性であるため、表面が濡れている状態を呈することが分かる。
0.02 g of a fluorine-containing compound [compound in which Rf = CF (CF 3 ) OC 3 F 7 , n = 2 in the above formula (II)] is dissolved in 2 ml of isopropanol, and then a silane coupling agent [the above formula In (III), X is SO 3 H, A is C 3 H 6 , R 1 is OH, R 2 is H, and m is 1] 0.18 g is dissolved and stirred at room temperature for 1 day A transparent dispersion of nanocomposites was obtained.
A photograph (after shrinkage) of the contact angle of water by the expansion / shrinkage method on the glass coated with the nanocomposite dispersion is shown in FIG.
From this, it can be seen that when a water droplet is once created on the surface of the base material and water is sucked up from the syringe, the surface of the base material is hydrophilic, and therefore the surface is wet.

(比較例4)
実施例4において、シランカップリング剤の添加分をイソプロパノールに置き換えて同様の操作を行った。
得られた分散液でコーティング処理されたガラスに対する拡張・収縮法による水の接触角の測定写真(収縮後)を図2に示す。
これより、基材表面が撥水性であるため、シリンジから水を吸い上げても表面が濡れていない状態を呈することが分かる。
(Comparative Example 4)
In Example 4, the same operation was performed by replacing the added amount of the silane coupling agent with isopropanol.
A measurement photograph (after shrinkage) of the contact angle of water by the expansion / shrinkage method for the glass coated with the obtained dispersion is shown in FIG.
From this, it can be seen that since the surface of the base material is water repellent, the surface is not wet even when water is sucked up from the syringe.

<接触角測定>
上記実施例および比較例の透明分散液に、表面をイソプロパノールで脱脂したプレパラート(76mm×26mm)をディップ処理したのち、室温で1日乾燥させ、ドデカンに対する接触角を、協和界面科学社製のDM700型全自動接触角計を用い測定した。また、水に対する接触角を拡張・収縮法により測定した。
測定結果を表2に示す。
<Contact angle measurement>
The transparent dispersions of the above examples and comparative examples were dip-treated with a preparation (76 mm × 26 mm) whose surface was degreased with isopropanol, dried at room temperature for 1 day, and the contact angle with respect to dodecane was determined by DM700 manufactured by Kyowa Interface Science Co., Ltd. Measurement was performed using a fully automatic contact angle meter. The contact angle with water was measured by the expansion / contraction method.
The measurement results are shown in Table 2.

<平均粒子径測定>
実施例4の透明分散液について、その中の微細粒子の平均粒径を動的光散乱法によって測定した。その結果、該平均粒径は約225nmであり、含フッ素系化合物ナノコンポジットの生成が確認された。
<Average particle size measurement>
About the transparent dispersion liquid of Example 4, the average particle diameter of the fine particle in it was measured by the dynamic light scattering method. As a result, the average particle diameter was about 225 nm, and the production of a fluorine-containing compound nanocomposite was confirmed.

実施例4で得られたナノコンポジット透明分散液1gをウレタン塗料(RETAN PG80111BASE)1gに添加し、さらに硬化促進剤0.1g(RETAN PG80III HARDENER)を添加した後、ポリプロピレンプレートに塗布し、105℃で20分間乾燥させた。20分後室温になるまで放冷し、ナノコンポジットが施された塗膜を得た。  1 g of the nanocomposite transparent dispersion obtained in Example 4 was added to 1 g of urethane paint (RETAN PG80111BASE), 0.1 g of curing accelerator (RETAN PG80III HARDENER) was added, and then applied to a polypropylene plate at 105 ° C. And dried for 20 minutes. After 20 minutes, the mixture was allowed to cool to room temperature to obtain a coating film on which the nanocomposite had been applied.

実施例5において実施例4のシランカップリング剤の添加分をイソプロパノールに置き換えて得られた分散液を使用すること以外は、同様の操作を行った。  In Example 5, the same operation was performed except that the dispersion obtained by replacing the added amount of the silane coupling agent of Example 4 with isopropanol was used.

(比較例5)
実施例5においてナノコンポジット1gをイソプロパノール1gに置き換えて同様の操作を行った。
(Comparative Example 5)
In Example 5, 1 g of nanocomposite was replaced with 1 g of isopropanol, and the same operation was performed.

<接触角測定>
上記実施例および比較例で得られた乾燥塗膜表面の水およびドデカンに対する接触角を、協和界面科学社製のDM700型全自動接触角計を用い測定した。また、乾燥塗膜をセロテープでポリプロピレン樹脂から剥がし、プレート側(乾燥塗膜裏面)についても同様に水およびドデカンの接触角を測定した。
<Contact angle measurement>
The contact angles of water and dodecane on the surfaces of the dried coating films obtained in the above Examples and Comparative Examples were measured using a DM700 type fully automatic contact angle meter manufactured by Kyowa Interface Science Co., Ltd. Moreover, the dry coating film was peeled off from the polypropylene resin with a cello tape, and the contact angles of water and dodecane were similarly measured on the plate side (the back surface of the dry coating film).

実施例4で得られたナノコンポジット透明分散液1gをアクリル樹脂(S−744)0.5gと蒸留水0.5gの混合溶液に添加した後、ポリプロピレンプレートに塗布し、105℃で50分間乾燥させた。50分後室温になるまで放冷し、ナノコンポジットが施された樹脂被膜を得た。  1 g of the nanocomposite transparent dispersion obtained in Example 4 was added to a mixed solution of 0.5 g of acrylic resin (S-744) and 0.5 g of distilled water, and then applied to a polypropylene plate and dried at 105 ° C. for 50 minutes. I let you. After 50 minutes, the mixture was allowed to cool to room temperature to obtain a resin coating to which the nanocomposite was applied.

実施例7において実施例4のシランカップリング剤の添加分をイソプロパノールに置き換えて得られた分散液を使用すること以外は、同様の操作を行った。  In Example 7, the same operation was performed except that the dispersion obtained by replacing the added amount of the silane coupling agent of Example 4 with isopropanol was used.

(比較例6)
実施例7においてナノコンポジット1gをイソプロパノール1gに置き換えて同様の操作を行った。
(Comparative Example 6)
In Example 7, 1 g of nanocomposite was replaced with 1 g of isopropanol, and the same operation was performed.

<接触角測定>
上記実施例および比較例で得られた樹脂被膜表面のドデカンに対する接触角を、協和界面科学社製のDM700型全自動接触角計を用い測定した。また、樹脂被膜をセロテープでポリプロピレン樹脂から剥がし、プレート側(樹脂被膜裏面)についても同様にドデカンの接触角を測定した。水に対する接触角は拡張・収縮法により測定した。
<Contact angle measurement>
The contact angle with respect to dodecane on the surface of the resin coating obtained in the above Examples and Comparative Examples was measured using a DM700 fully automatic contact angle meter manufactured by Kyowa Interface Science Co., Ltd. Moreover, the resin film was peeled off from the polypropylene resin with a cello tape, and the contact angle of dodecane was similarly measured on the plate side (the back surface of the resin film). The contact angle with water was measured by the expansion / contraction method.

以上より、実施例では容易に所望のナノ物質またはナノコンポジットを生成させることができることが分かる。
また、本発明に係る含フッ素系化合物を用いてなる実施例1〜3の分散液は、ドデカンに対する接触角が比較例1〜3のそれよりも遥かに高く、撥油性に優れるうえに、水に対する接触角も高く、撥水性にも優れることが分かる。
また、上記含フッ素系化合物とシランカップリング剤とのナノコンポジットを用いてなる実施例4の分散液においては、親水性を付加させることが可能であることが分かる。さらに、本シランカップリング剤はスルホ基を有すため、例えばナトリウムイオン等を含む水溶液を用いてそのコーティング表面を処理することで、イオン交換が生じ親水性能をさらに向上させることができる。
これらより、本発明のナノ物質またはナノコンポジットを用いてなる分散液は、それで表面処理することで、硬表面、例えばガラス、金属、セラミックス、プラスチック、車体等の塗装板等に撥水・撥油性、親水・撥油性を付与することができ、高い防汚効果を奏することが分かる。
一方、実施例5および6において乾燥塗膜表面は裏面よりも撥油効果が高く、その効果は比較例5よりも遥かに高い。さらに、水に対しては実施例5では親水性、実施例6では撥水性を示している。よって、ナノ物質またはナノコンポジットは塗膜表面側に効率よく配向していることが分かる。また、同様に実施例7および8において樹脂表面は裏面よりも撥油効果が高く、その効果は比較例6よりも遥かに高い。さらに、水に対しては実施例7で親水性、実施例8で撥水性を示している。よって、樹脂中においてもナノ物質またはナノコンポジットは表面側により多く配向している。
これらより、本発明のナノ物質またはナノコンポジットを用いてなる分散液は、塗料や樹脂等および骨再生・修復材料や歯科材料に添加することによって、それら乾燥被膜表面に撥水・撥油性、親水・撥油性を付与することが出来、高い防汚効果を奏することが分かる。
From the above, it can be seen that a desired nanomaterial or nanocomposite can be easily generated in the examples.
In addition, the dispersions of Examples 1 to 3 using the fluorine-containing compound according to the present invention have a contact angle with respect to dodecane that is much higher than that of Comparative Examples 1 to 3, excellent oil repellency, and water. It can be seen that the contact angle is high and the water repellency is also excellent.
Moreover, it turns out that hydrophilicity can be added in the dispersion liquid of Example 4 which uses the nanocomposite of the said fluorine-containing compound and a silane coupling agent. Furthermore, since the present silane coupling agent has a sulfo group, for example, by treating the coating surface with an aqueous solution containing sodium ions, ion exchange occurs and the hydrophilic performance can be further improved.
From these, the dispersion using the nanomaterial or nanocomposite of the present invention is subjected to surface treatment, thereby providing water / oil repellency to hard surfaces such as glass, metals, ceramics, plastics, painted plates of car bodies, etc. It can be seen that hydrophilicity and oil repellency can be imparted and a high antifouling effect is achieved.
On the other hand, in Examples 5 and 6, the surface of the dried coating film has a higher oil repellency effect than the back surface, and the effect is much higher than that of Comparative Example 5. Further, Example 5 shows hydrophilicity in water, and Example 6 shows water repellency. Therefore, it turns out that the nanomaterial or nanocomposite is efficiently oriented to the coating film surface side. Similarly, in Examples 7 and 8, the resin surface has a higher oil repellency effect than the back surface, and the effect is much higher than that of Comparative Example 6. Furthermore, Example 7 shows hydrophilicity in water and Example 8 shows water repellency. Therefore, more nanomaterials or nanocomposites are oriented in the surface side even in the resin.
From these, the dispersion using the nanomaterial or nanocomposite of the present invention can be added to paints, resins, etc., bone regeneration / restoration materials and dental materials, thereby providing water and oil repellency, hydrophilicity on the surfaces of these dry films. -It can be seen that oil repellency can be imparted and a high antifouling effect is achieved.

Claims (7)

一般式(I)
[式中、Rfはパーフルオロアルキル基、パーフルオロオキサアルキル基または一般式
(式中、Afはパーフルオロアルキレン基、Af′はAfと同一または異なるパーフルオロアルキレン基、mは1〜10である)
で示される基、Rはアルキル基、アルコキシアルキル基または水素原子、nは2〜100である。]
で表わされる含フッ素系化合物と一般式(III)
[式中、Xはビニル基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基、四級アンモニウム基、ウレイド基、スルフィド基、イソシアナート基、アルコキシ基、スルホ基およびリン酸基からなる群から選ばれる官能基であり、Aは二価の炭化水素基であり、酸素原子、窒素原子、硫黄原子を含んでいてもよく、Rは水酸基であり、Rはアルキル基、アルコキシアルキル基または水素原子であり、mは1または2である。]
で表されるシランカップリング剤とを含んでなるナノコンポジット。
Formula (I)
[Wherein Rf is a perfluoroalkyl group, a perfluorooxaalkyl group or a general formula
(In the formula, Af is a perfluoroalkylene group, Af ′ is the same or different perfluoroalkylene group as Af, and m is 1 to 10).
R is an alkyl group, an alkoxyalkyl group or a hydrogen atom, and n is 2 to 100. ]
And a fluorine-containing compound represented by the general formula (III)
[Wherein X is selected from the group consisting of vinyl group, styryl group, methacryloxy group, acryloxy group, amino group, quaternary ammonium group, ureido group, sulfide group, isocyanate group, alkoxy group, sulfo group and phosphate group. A is a divalent hydrocarbon group which may contain an oxygen atom, a nitrogen atom or a sulfur atom, R 1 is a hydroxyl group, R 2 is an alkyl group, an alkoxyalkyl group or hydrogen An atom and m is 1 or 2; ]
A nanocomposite comprising a silane coupling agent represented by:
含フッ素系化合物が式(II)
[式中、Rは−(CF)pFまたは−CF(CF)O(CFCFCFO)qC(pは1〜10、qは0〜5である)で示される基、R′はアルキル基、nは2〜3である。]
で表わされるものである請求項1記載のナノコンポジット。
The fluorine-containing compound is represented by the formula (II)
[Wherein, R F is represented by — (CF 2 ) pF or —CF (CF 3 ) O (CF 2 CFCF 3 O) qC 3 F 7 (p is 1 to 10, q is 0 to 5). Group, R 'is an alkyl group, n is 2-3. ]
The nanocomposite according to claim 1, which is represented by:
請求項1または2に記載のナノコンポジットが溶媒に分散されてなるナノ分散液。  A nano-dispersed liquid in which the nanocomposite according to claim 1 or 2 is dispersed in a solvent. 溶媒が非水性溶媒、疎水性溶媒である請求項3に記載のナノ分散液。  The nano-dispersion according to claim 3, wherein the solvent is a non-aqueous solvent or a hydrophobic solvent. 請求項1または2に記載の含フッ素系化合物と請求項1に記載のシランカップリング剤とを溶媒中で混合させることを特徴とする請求項3または4に記載のナノ分散液の製造方法。  The method for producing a nano-dispersion according to claim 3 or 4, wherein the fluorine-containing compound according to claim 1 or 2 and the silane coupling agent according to claim 1 are mixed in a solvent. 請求項3または4に記載のナノ分散液からなるコーティング剤。  A coating agent comprising the nanodispersion according to claim 3 or 4. 請求項3または4に記載のナノ分散液からなる添加剤。  An additive comprising the nanodispersion according to claim 3 or 4.
JP2013035117A 2013-02-07 2013-02-07 Nanocomposite, nanodispersion, method for producing the same, and various agents comprising the dispersion Active JP5481653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013035117A JP5481653B2 (en) 2013-02-07 2013-02-07 Nanocomposite, nanodispersion, method for producing the same, and various agents comprising the dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013035117A JP5481653B2 (en) 2013-02-07 2013-02-07 Nanocomposite, nanodispersion, method for producing the same, and various agents comprising the dispersion

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008335984A Division JP5365907B2 (en) 2008-12-11 2008-12-11 Various agents consisting of nano-dispersions

Publications (2)

Publication Number Publication Date
JP2013155375A JP2013155375A (en) 2013-08-15
JP5481653B2 true JP5481653B2 (en) 2014-04-23

Family

ID=49050877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013035117A Active JP5481653B2 (en) 2013-02-07 2013-02-07 Nanocomposite, nanodispersion, method for producing the same, and various agents comprising the dispersion

Country Status (1)

Country Link
JP (1) JP5481653B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6346456B2 (en) 2013-02-22 2018-06-20 国立研究開発法人産業技術総合研究所 Water / oil repellent coating and method for producing the same
JP6704854B2 (en) 2014-10-31 2020-06-03 住友化学株式会社 Transparent film
CN107109123A (en) 2014-10-31 2017-08-29 住友化学株式会社 Transparent coating
KR102500899B1 (en) 2014-10-31 2023-02-16 스미또모 가가꾸 가부시키가이샤 Water-repellant/oil-repellant coating composition
CN107109128B (en) 2014-11-12 2021-05-25 住友化学株式会社 Water-and oil-repellent coating composition and transparent coating film
JP2021143312A (en) * 2020-03-13 2021-09-24 株式会社Lixil Hydrophilic treatment coating composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4285730B2 (en) * 2003-05-27 2009-06-24 藤倉ゴム工業株式会社 Surface treatment composition and rubber surface treatment method
JP4857528B2 (en) * 2004-06-11 2012-01-18 旭硝子株式会社 Silane coupling group-containing fluorine-containing ether compound, solution composition, coating film and article
JP4611673B2 (en) * 2004-06-28 2011-01-12 藤倉ゴム工業株式会社 Relief valve and manufacturing method thereof
JP5187476B2 (en) * 2006-03-13 2013-04-24 石原薬品株式会社 Nanocomposite

Also Published As

Publication number Publication date
JP2013155375A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5365907B2 (en) Various agents consisting of nano-dispersions
JP5481653B2 (en) Nanocomposite, nanodispersion, method for producing the same, and various agents comprising the dispersion
JP5795840B2 (en) Silica particle material, silica particle material-containing composition, and silica particle surface treatment method
US20160333188A1 (en) Hydrophobic fluorinated coatings
WO2014188924A1 (en) Metal oxide porous particles, method for producing same, and use of same
WO2021088198A1 (en) Electronic telecommunications articles comprising crosslinked fluoropolymers and methods
JP2016191053A (en) Sulfonate-functional coatings and methods
TWI639627B (en) Hollow particles and uses thereof
KR20170030532A (en) Metal oxide particle dispersion, composition containing metal oxide particles, coating film, and display device
Goto et al. Creation of coating surfaces possessing superhydrophobic and superoleophobic characteristics with fluoroalkyl end-capped vinyltrimethoxysilane oligomeric nanocomposites having biphenylene segments
KR101949204B1 (en) Hard coating composition
WO2017163439A1 (en) Hollow particles and use of same
CN110945090A (en) Curable high refractive index ink compositions and articles prepared from the ink compositions
KR20200131825A (en) Hollow particle dispersion
JP5865466B2 (en) Silica particle material and filler-containing resin composition
CN110770284A (en) Film having primer layer containing composite particles comprising organic polymer portion and silicon-containing portion
Sawada et al. Preparation and properties of fluoroalkyl end-capped vinyltrimethoxysilane oligomeric nanoparticles—A new approach to facile creation of a completely superhydrophobic coating surface with these nanoparticles
JP2008056776A (en) Nano-oxide particle and its manufacturing method
Chang et al. Preparation of highly transparent 13F-modified nano-silica/polymer hydrophobic hard coatings on plastic substrates
JP5655193B2 (en) Nanocomposite, nanodispersion, method for producing the same, and various agents comprising the dispersion
Mülazim et al. Properties of thiol–ene photocurable highly hydrophobic and oleophobic nanocomposite coatings on abs and hips substrates
JP5687785B2 (en) Method for surface treatment of silica particles
JP5894742B2 (en) Composition for surface coating and method for producing the same
Çakmakçı et al. UV-curable fluorine-containing hybrid coatings via thiol-ene “click” reaction and an in situ sol–gel method
KR102201593B1 (en) UV-curable high transparency, amphiphilic fluorinated silica hybrid material with anti-fingerprint and anti-fouling properties

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140121

R150 Certificate of patent or registration of utility model

Ref document number: 5481653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250