JP5478127B2 - Plunge capsule and manufacturing method thereof - Google Patents

Plunge capsule and manufacturing method thereof Download PDF

Info

Publication number
JP5478127B2
JP5478127B2 JP2009143972A JP2009143972A JP5478127B2 JP 5478127 B2 JP5478127 B2 JP 5478127B2 JP 2009143972 A JP2009143972 A JP 2009143972A JP 2009143972 A JP2009143972 A JP 2009143972A JP 5478127 B2 JP5478127 B2 JP 5478127B2
Authority
JP
Japan
Prior art keywords
fiber
fiber cloth
capsule
yarn
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009143972A
Other languages
Japanese (ja)
Other versions
JP2011000921A (en
Inventor
研一 平井
宏 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Aerospace Co Ltd
Original Assignee
IHI Aerospace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Aerospace Co Ltd filed Critical IHI Aerospace Co Ltd
Priority to JP2009143972A priority Critical patent/JP5478127B2/en
Publication of JP2011000921A publication Critical patent/JP2011000921A/en
Application granted granted Critical
Publication of JP5478127B2 publication Critical patent/JP5478127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、惑星(例えば地球や火星)の大気圏に突入させる突入カプセル、およびの製造方法に関する。 The present invention is planet (eg Earth and Mars) rush capsule Le is enter the atmosphere, and relates to manufacturing method of it.

突入カプセルが、惑星の大気圏に突入する時、大気(空気)は、突入カプセルに対し速度を持つ。この速度で、大気が、突入カプセルに衝突するため、大気の運動エネルギーが熱エネルギーに変換され、高温化する。従って、大気は、高温化して突入カプセルの外表面を加熱する。これを、いわゆる空力加熱現象という。   When the rush capsule enters the planet's atmosphere, the atmosphere (air) has a velocity relative to the rush capsule. At this speed, the atmosphere collides with the rush capsule, so that the kinetic energy of the atmosphere is converted into heat energy and the temperature rises. Accordingly, the atmosphere is heated to heat the outer surface of the rush capsule. This is called a so-called aerodynamic heating phenomenon.

そのために、突入カプセルには、熱防御系が設けられる。熱防御系は、突入カプセルが大気中を高速飛翔している時に、空力加熱現象から、内部のペイロードや電装品を保護する。   For this purpose, the rush capsule is provided with a heat protection system. The thermal protection system protects the internal payload and electrical components from the aerodynamic heating phenomenon when the rush capsule is flying at high speed in the atmosphere.

熱防御系として、炭化アブレータを用いることが一般的である。炭化アブレータは、フェノール樹脂等の熱硬化性樹脂を、積層した炭素繊維布(即ち、炭素繊維クロス)で補強したものである。この炭化アブレータは、加熱されると、樹脂の熱分解反応により、強固な炭化層が形成される。炭化層は、ほぼ炭素からなるので、耐熱温度が高く、輻射放熱能力が優れている。一方、熱分解反応により発生したガスは、その圧力により、積層された炭素繊維布の層間剥離を引き起こす可能性がある。炭素繊維は、流体抵抗となるからである。   As a thermal protection system, it is common to use a carbonized ablator. The carbonized ablator is obtained by reinforcing a thermosetting resin such as a phenol resin with a laminated carbon fiber cloth (that is, carbon fiber cloth). When this carbonized ablator is heated, a strong carbonized layer is formed by the thermal decomposition reaction of the resin. Since the carbonized layer is substantially made of carbon, the heat resistant temperature is high and the radiation heat radiation capability is excellent. On the other hand, the gas generated by the thermal decomposition reaction may cause delamination of the laminated carbon fiber cloth due to its pressure. This is because carbon fiber provides fluid resistance.

層間剥離の問題を解決するために、下記の特許文献1では、積層する炭素繊維布に、ガス抜き用のスリットを形成している。   In order to solve the problem of delamination, in Patent Document 1 below, a slit for degassing is formed in a carbon fiber cloth to be laminated.

特開2000−289700号公報JP 2000-289700 A

しかし、積層する炭素繊維布に、ガス抜き用のスリットを多数形成した場合には、その分、強度が低下する可能性もあり得る。そのため、ガス抜き用のスリットを形成することなく、積層された炭素繊維布に層間剥離が生じる問題を解決することが望まれる。   However, when a large number of gas venting slits are formed in the laminated carbon fiber cloth, the strength may be reduced accordingly. Therefore, it is desired to solve the problem of delamination in the laminated carbon fiber cloth without forming a slit for venting.

そこで、本発明の目的は、ガス抜き用のスリットを形成しなくても、積層された炭素繊維布の層間剥離を防止でき、かつ、断熱性を高めることができる突入カプセルを提供することにある。また、本発明の別の目的は、前記突入カプセルの製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a rush capsule capable of preventing delamination of laminated carbon fiber cloths and improving heat insulation properties without forming a gas vent slit. . Another object of the present invention is to provide a manufacturing method of the entry capsule.

上記目的を達成するため、本発明によると、惑星の大気圏に突入する突入カプセルであって、
繊維強化複合材料により形成される頭頂部と、
前記頭頂部の外周側に位置する外側積層部と、を有し、
前記繊維強化複合材料は、
前記頭頂部の外表面に垂直な方向に積層された繊維布と、
前記繊維布の熱伝導率よりも熱伝導率が低く複数層の前記繊維布を貫通する繊維糸と、
前記繊維布および前記繊維糸の繊維間に充填されることで、前記繊維布および前記繊維糸と一体化した樹脂と、を有し、
前記繊維布は、ピッチ系の連続糸により形成され、
前記繊維糸は、前記繊維布の熱伝導率より低いピッチ系の糸であり、
前記外側積層部は、前記突入カプセルの軸線から外周側に向く方向において、前記突入カプセルの外表面に対して鋭角で交差する方向に延びて積層する外側積層部用の繊維布を有し、
前記頭頂部と前記外側積層部とは、それぞれ別個に成形された後に互いに接合される、ことを特徴とする突入カプセルが提供される。
To achieve the above object, according to the present invention, a rush capsule for rushing into the planet's atmosphere,
A top formed by a fiber-reinforced composite material ;
An outer laminated portion located on the outer peripheral side of the crown , and
The fiber reinforced composite material is
A fiber cloth laminated in a direction perpendicular to the outer surface of the top of the head;
A fiber thread having a thermal conductivity lower than the thermal conductivity of the fiber cloth and penetrating the fiber cloth of a plurality of layers;
The fabric and that is filled between the fibers of the fiber yarn, have a, a resin integrated with the fabric and the fiber yarn,
The fiber cloth is formed of pitch-based continuous yarns,
The fiber yarn is a pitch-based yarn lower than the thermal conductivity of the fiber cloth,
The outer laminated portion has a fiber cloth for an outer laminated portion that extends and laminates in a direction intersecting at an acute angle with the outer surface of the rush capsule in a direction from the axis of the rush capsule toward the outer peripheral side,
The ridge capsule is characterized in that the top portion and the outer laminated portion are separately molded and then joined to each other .

本発明の突入カプセルでは、繊維布が、前記頭頂部の外表面に垂直な方向に積層されるので、断熱性を高めることができる。即ち、繊維布の熱伝導率は、樹脂の熱伝導率よりも高いため、熱は、繊維布の積層方向(前記頭頂部の外表面に垂直な方向)よりも、繊維布に沿った方向に分散・伝達しやすくなる。これにより、頭頂部の断熱性が高まる。
また、本発明の突入カプセルでは、前記頭頂部の外表面に垂直な方向に、繊維布を積層しても、繊維布の層間剥離を防止できる。即ち、従来では、前記頭頂部の外表面に垂直な方向に繊維布を積層した場合、繊維布が流体抵抗となるので、繊維布の層間での熱分解ガス圧により、繊維布の層間剥離が生じやすい。これに対し、本発明では、繊維糸が、複数層の前記繊維布を貫通するので、樹脂から発生する熱分解ガスが、繊維糸に沿って繊維布の層間を通過しやすくなり、これにより、熱分解ガスの圧力による繊維布の層間剥離を防止できる。
In the rush capsule of the present invention, since the fiber cloth is laminated in a direction perpendicular to the outer surface of the top of the head, the heat insulation can be improved. That is, since the thermal conductivity of the fiber cloth is higher than the thermal conductivity of the resin, the heat is more in the direction along the fiber cloth than in the lamination direction of the fiber cloth (direction perpendicular to the outer surface of the top of the head). Easy to disperse and communicate. Thereby, the heat insulation of a head top part increases.
Moreover, in the rush capsule of this invention, even if it laminates | stacks a fiber cloth in the direction perpendicular | vertical to the outer surface of the said top part, delamination of a fiber cloth can be prevented. That is, conventionally, when a fiber cloth is laminated in a direction perpendicular to the outer surface of the top of the head, the fiber cloth becomes a fluid resistance. Therefore, the delamination of the fiber cloth is caused by the pyrolysis gas pressure between the layers of the fiber cloth. Prone to occur. On the other hand, in the present invention, since the fiber yarn penetrates the plurality of layers of the fiber cloth, the pyrolysis gas generated from the resin easily passes between the fiber cloth layers along the fiber yarn. Delamination of the fiber cloth due to the pressure of the pyrolysis gas can be prevented.

この構成により、次のように、突入カプセルの耐熱性を高く維持できる。
頭頂部の外表面に沿う方向に延びている前記繊維布の熱伝導率を、前記繊維糸の熱伝導率よりも高くすることで、頭頂部の外表面に沿って熱が伝わりやすくなる。従って、頭頂部の外表面において、高温となる箇所が局所的に発生することを防止できるので、突入カプセルの耐熱性を高く維持できる。
さらに、前記繊維糸の熱伝導率を、前記繊維布の熱伝導率よりも低くすることで、突入カプセルの厚み方向(頭頂部の外表面と垂直な方向)に熱が伝わり難くなる。従って、突入カプセルにおいて、樹脂が熱分解する厚み方向範囲を抑えることができるので、この観点からも、突入カプセルの耐熱性を高く維持できる。
With this configuration, the heat resistance of the rush capsule can be maintained high as follows.
Heat is easily transmitted along the outer surface of the top of the head by setting the thermal conductivity of the fiber cloth extending in the direction along the outer surface of the top of the head to be higher than the thermal conductivity of the fiber yarn. Therefore, it is possible to prevent local occurrence of a high-temperature portion on the outer surface of the top of the head, so that the heat resistance of the rush capsule can be maintained high.
Furthermore, by making the thermal conductivity of the fiber yarn lower than the thermal conductivity of the fiber cloth, it becomes difficult for heat to be transmitted in the thickness direction of the rush capsule (direction perpendicular to the outer surface of the top of the head). Therefore, in the rush capsule, the range in the thickness direction in which the resin is thermally decomposed can be suppressed. From this viewpoint, the heat resistance of the rush capsule can be maintained high.

また、上記別の目的を達成するため、本発明によると、突入カプセルの製造方法であって、
繊維強化複合材料により形成される頭頂部と、該頭頂部の外周側に位置する外側積層部とは、それぞれ別個に成形された後に互いに接合され、
前記頭頂部の製造方法は、頭頂部の原型となる繊維構造体を、繊維強化複合材料により形成する繊維構造体形成ステップと、
前記繊維構造体に樹脂を含浸させる含浸ステップと、を有し、
前記繊維構造体形成ステップは、
前記頭頂部の外表面に垂直となる方向にピッチ系の連続糸により形成された繊維布を積層する積層ステップと、
複数層の繊維布を貫通するように前記繊維布の熱伝導率よりも熱伝導率が低いピッチ系の糸である繊維糸を配置する糸配置ステップと、を有し、
前記外側積層部は、前記突入カプセルの軸線から外周側に向く方向において、外側積層部用の繊維布を前記突入カプセルの外表面に対して鋭角で交差する方向に延ばして積層されて成形される、ことを特徴とする突入カプセルの製造方法が提供される。
To achieve the another object, according to the present invention, there is provided a manufacturing method of entry capsule,
The top part formed by the fiber reinforced composite material and the outer laminated part located on the outer peripheral side of the top part are joined to each other after being separately molded,
The method for manufacturing the top of the head includes a fiber structure forming step of forming a fiber structure as a prototype of the top of the head with a fiber reinforced composite material,
An impregnation step of impregnating the fiber structure with resin,
The fiber structure forming step includes
A laminating step of laminating a fiber cloth formed of pitch-based continuous yarns in a direction perpendicular to the outer surface of the top of the head;
A yarn placement step of thermal conductivity than the thermal conductivity of the fabric so as to penetrate through the fabric of the plurality of layers is disposed a fiber yarn is a yarn of low pitch system, possess,
The outer laminated portion is formed by laminating the fiber fabric for the outer laminated portion in a direction crossing at an acute angle with the outer surface of the rush capsule in a direction from the axis of the rush capsule toward the outer peripheral side. , manufacturing method of entry capsule, characterized in that there is provided.

本発明の突入カプセルの製造方法では、積層ステップにおいて、前記頭頂部の外表面に垂直な方向に繊維布を積層するので、上述のように断熱性を高めることができる。
また、糸配置ステップにおいて、複数層の繊維布を貫通するように繊維糸を配置するので、上述のように、樹脂から発生する熱分解ガスが、繊維糸に沿って繊維布の層間を通過しやすくなり、これにより、熱分解ガスの圧力による繊維布の層間剥離を防止できる。
In the manufacturing method of the rush capsule of this invention, since a fiber cloth is laminated | stacked on the direction perpendicular | vertical to the outer surface of the said top part in a lamination | stacking step, heat insulation can be improved as mentioned above.
Further, since the fiber yarn is arranged so as to penetrate through the plurality of layers of the fiber cloth in the yarn arrangement step, as described above, the pyrolysis gas generated from the resin passes between the fiber cloth layers along the fiber yarn. This makes it easier to prevent delamination of the fiber cloth due to the pressure of the pyrolysis gas.

繊維強化複合材料を用いた突入カプセルの頭頂部において、ガス抜き用のスリットを形成しなくても、積層された炭素繊維布の層間剥離を防止でき、かつ、断熱性を高めることができる。   Even if the slit for degassing is not formed at the top of the rush capsule using the fiber reinforced composite material, delamination of the laminated carbon fiber cloth can be prevented and the heat insulation can be improved.

本発明の実施形態による突入カプセルの断面図である。It is sectional drawing of the rush capsule by embodiment of this invention. 図1における頭頂部の拡大図である。It is an enlarged view of the top part in FIG. 本発明の実施形態による突入カプセルの頭頂部の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the top part of the rush capsule by embodiment of this invention.

本発明を実施するための最良の実施形態を図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   The best mode for carrying out the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

図1は、本発明の実施形態の突入カプセルの底部20の断面図である。即ち、図1は、突入カプセルの軸線Cを含む平面による断面図である。突入カプセルの底部20は、図1に示すように、その外表面が下方に突出した概略球面状をなしている。なお、図1の断面図は、前記軸線Cを含む平面の向きによらない。即ち、前記軸線Cを含むいずれの平面による突入カプセルの断面図であっても、図1に示す構成となる。図2は、図1における頭頂部10の拡大図である。以下、図1、図2に基づいて、突入カプセルの構造(材料や配置や材料の数など)を説明する。   FIG. 1 is a cross-sectional view of a bottom 20 of a rush capsule according to an embodiment of the present invention. That is, FIG. 1 is a cross-sectional view of a plane including the axis C of the rush capsule. As shown in FIG. 1, the bottom 20 of the rush capsule has a substantially spherical shape with the outer surface protruding downward. 1 does not depend on the orientation of the plane including the axis C. That is, even if it is sectional drawing of the rush capsule by any plane containing the said axis C, it becomes a structure shown in FIG. FIG. 2 is an enlarged view of the crown 10 in FIG. Hereinafter, the structure (material, arrangement, number of materials, etc.) of the rush capsule will be described with reference to FIGS.

図1に示すように、突入カプセルの頭頂部10(即ち、先端部)は、前記底部20の中央部に位置し、繊維強化複合材料により形成される。この繊維強化複合材料は、繊維布3、繊維糸5および樹脂7からなる。   As shown in FIG. 1, the top 10 (that is, the tip) of the rush capsule is located at the center of the bottom 20 and is formed of a fiber-reinforced composite material. This fiber reinforced composite material is composed of a fiber cloth 3, fiber yarn 5 and resin 7.

繊維布3は、縦横に織ったクロスであり、頭頂部10の外表面10aに垂直な方向に積層される強化材である。従って、各層の繊維布3の面は、曲面状(この例では球面状)の外表面10aに沿った方向(言い換えると、軸線Cを回る周方向と、該周方向と直交する外表面10aに沿った方向)に延びる。即ち、図1、図2の断面図において、各層の繊維布3の面を示す実線は、頭頂部10の外表面10aを示す破線(曲線)と平行となっている。
繊維布3の熱伝導率は、好ましくは、繊維糸5の熱伝導率よりも高い。即ち、繊維布3は、高い熱伝導率を持つのがよい。例えば、高い弾性率を持つ連続糸は、一般に高い熱伝導率を持つので、繊維布3は、高い弾性率(即ち、高い熱伝導率)を持つPAN系やピッチ系の連続糸により形成されたものである。このように、繊維布3が、高い熱伝導率を持つことで、頭頂部10の外表面10aに沿って燃焼ガス熱が伝達しやすくなり、頭頂部10の外表面10aにおいて、高温となる箇所が局所的に発生することが防止される。従って、例えば、乱流等により、外表面10aにおいて加熱率に分布が生じても、熱負荷の平準化を図れる。
The fiber cloth 3 is a cross woven in the vertical and horizontal directions, and is a reinforcing material that is laminated in a direction perpendicular to the outer surface 10 a of the crown 10. Therefore, the surface of the fiber cloth 3 of each layer is in a direction along the curved outer surface 10a (in other words, a spherical shape in this example) (in other words, a circumferential direction around the axis C and an outer surface 10a orthogonal to the circumferential direction). (Direction along). That is, in the cross-sectional views of FIGS. 1 and 2, the solid line indicating the surface of the fiber cloth 3 of each layer is parallel to the broken line (curve) indicating the outer surface 10 a of the top 10.
The thermal conductivity of the fiber cloth 3 is preferably higher than the thermal conductivity of the fiber yarn 5. That is, the fiber cloth 3 should have a high thermal conductivity. For example, since a continuous yarn having a high elastic modulus generally has a high thermal conductivity, the fiber cloth 3 is formed of a PAN-based or pitch-based continuous yarn having a high elastic modulus (that is, a high thermal conductivity). Is. As described above, the fiber cloth 3 has a high thermal conductivity, so that the combustion gas heat is easily transmitted along the outer surface 10a of the crown 10, and the temperature of the outer surface 10a of the crown 10 becomes high. Is prevented from occurring locally. Therefore, for example, even if the heating rate is distributed on the outer surface 10a due to turbulence or the like, the heat load can be leveled.

繊維糸5は、複数層の繊維布3を貫通する。本実施形態では、多数の繊維糸5が、頭頂部10(即ち、繊維強化複合材料)の全体にわたって適切な密度で(好ましくは、密に)配置される。各繊維糸5は、複数層の繊維布3を貫通するように、前記垂直な方向に延びている。好ましくは、各繊維糸5の一端は、最下層(図1、図2の最も下側の層)の繊維布3の位置にあるか、または、該繊維布3よりも突入カプセルの前方側(図1の下側)の位置にあり、各繊維糸5の他端は、最上層(図1、図2の最も上側の層)の繊維布3の位置にあるか、または、該繊維布3よりも突入カプセルの後方側(図1の上側)の位置にある。また、好ましくは、繊維糸5は、前記垂直な方向に直線的に又はほぼ直線的に延びている。
繊維糸5の熱伝導率は、好ましくは、繊維布3の熱伝導率よりも低い。即ち、繊維糸5は、低い熱伝導率を持つのがよい。例えば、低い熱伝導率を持つ繊維糸5は、ピッチ系のXN−05である。このように、繊維糸5が、低い熱伝導率を持つことで、前記垂直な方向に熱が伝達し難くなるので、前記垂直な方向(即ち、頭頂部10の厚み方向)において、燃焼ガス熱による樹脂7が熱分解される範囲が小さく抑えられる。
The fiber yarn 5 penetrates the multiple layers of fiber cloth 3. In the present embodiment, a large number of fiber yarns 5 are arranged at an appropriate density (preferably densely) over the entire top 10 (that is, a fiber-reinforced composite material). Each fiber yarn 5 extends in the perpendicular direction so as to penetrate through a plurality of layers of fiber cloth 3. Preferably, one end of each fiber yarn 5 is at the position of the fiber cloth 3 of the lowermost layer (the lowermost layer in FIGS. 1 and 2), or the front side of the entry capsule with respect to the fiber cloth 3 ( The lower end of each fiber yarn 5 is located at the position of the uppermost layer (uppermost layer in FIGS. 1 and 2) of the fiber cloth 3, or the fiber cloth 3 It is in the position of the back side (upper side of Drawing 1) of the rush capsule. Preferably, the fiber yarn 5 extends linearly or substantially linearly in the perpendicular direction.
The thermal conductivity of the fiber yarn 5 is preferably lower than the thermal conductivity of the fiber cloth 3. That is, the fiber yarn 5 should have a low thermal conductivity. For example, the fiber yarn 5 having a low thermal conductivity is pitch-based XN-05. Thus, since the fiber yarn 5 has a low thermal conductivity, it becomes difficult for heat to be transferred in the vertical direction, so in the vertical direction (that is, the thickness direction of the top 10), the combustion gas heat The range in which the resin 7 is thermally decomposed is reduced.

樹脂7は、繊維布3および繊維糸5の繊維間に充填されることで、繊維布3および繊維糸5と一体化される。後述するように、樹脂7は、繊維布3および繊維糸5で形成されたプリフォーム(繊維構造体)に含浸させられるので、プリフォームに含浸させる時(即ち、硬化前)の樹脂7の粘度は、プリフォームの内部全体に含浸する程度に低い。このような低粘度の樹脂7として、例えば、フラン樹脂を用いることができる。なお、図1、図2において、破線は、樹脂7の表面を示し、下側の樹脂7の表面は、頭頂部10の外表面10aでもある。   The resin 7 is integrated with the fiber cloth 3 and the fiber yarn 5 by being filled between the fibers of the fiber cloth 3 and the fiber yarn 5. As will be described later, since the resin 7 is impregnated into a preform (fiber structure) formed of the fiber cloth 3 and the fiber yarn 5, the viscosity of the resin 7 when impregnating the preform (that is, before curing). Is low enough to impregnate the entire interior of the preform. As such a low viscosity resin 7, for example, a furan resin can be used. 1 and 2, the broken line indicates the surface of the resin 7, and the surface of the lower resin 7 is also the outer surface 10 a of the top 10.

図3は、上述した構造を有する繊維強化複合材料で形成された頭頂部10の製造方法を示すフローチャートである。本発明の実施形態による突入カプセルの製造方法は、繊維構造体形成ステップS1および含浸ステップS2を有する。   FIG. 3 is a flowchart showing a method for manufacturing the crown 10 formed of the fiber-reinforced composite material having the above-described structure. The manufacturing method of the rush capsule by embodiment of this invention has fiber structure formation step S1 and impregnation step S2.

繊維構造体形成ステップS1では、頭頂部10の原型となる繊維構造体(プリフォーム)を、繊維強化複合材料により形成する。繊維構造体形成ステップS1は、積層ステップS11と糸配置ステップS12とからなる。
積層ステップS11では、例えば、頭頂部10の外表面10aに垂直となる方向に繊維布3を積層する。具体的には、頭頂部10の外表面10aと整合した外表面を有する頭頂部10の型を用意し、該型の該外表面に、繊維布3を、複数枚、積層する。これにより、頭頂部10の外表面10aに垂直となる方向に繊維布3を積層できる。
糸配置ステップS12では、複数層の繊維布3を貫通するように繊維糸5を配置する。即ち、複数層の繊維布3を前記垂直な方向に繊維糸5が貫通した状態に繊維糸5を配置する。具体的には、多数本の繊維糸5を、所定の密度で、複数層の繊維布3を前記垂直な方向に貫通した状態に配置する。
In the fiber structure forming step S1, a fiber structure (preform) that is a prototype of the top 10 is formed of a fiber reinforced composite material. The fiber structure forming step S1 includes a lamination step S11 and a yarn placement step S12.
In the lamination step S11, for example, the fiber cloth 3 is laminated in a direction perpendicular to the outer surface 10a of the top 10. Specifically, a mold of the crown 10 having an outer surface aligned with the outer surface 10a of the crown 10 is prepared, and a plurality of fiber cloths 3 are laminated on the outer surface of the mold. Thereby, the fiber cloth 3 can be laminated in a direction perpendicular to the outer surface 10a of the crown 10.
In the yarn arranging step S12, the fiber yarn 5 is arranged so as to penetrate the plurality of layers of the fiber cloth 3. That is, the fiber yarn 5 is arranged in a state in which the fiber yarn 5 penetrates the plurality of layers of the fiber cloth 3 in the perpendicular direction. Specifically, a large number of fiber yarns 5 are arranged at a predetermined density in a state of penetrating a plurality of layers of fiber fabrics 3 in the perpendicular direction.

含浸ステップS2では、前記繊維構造体に樹脂7を含浸させて硬化させる。例えば、含浸ステップS2を、RTM等のLCM(Liquid Composite Molding)により行う。即ち、LCMでは、繊維構造体形成ステップS1で形成した繊維構造体(プリフォーム)を、バキュームバッグで密閉し、バキュームバッグ内を真空にし、この状態で、バキュームバッグ内へ樹脂7を流入させ繊維構造体に含浸させ、繊維構造体に含浸させられた樹脂7を加熱により硬化させる。これにより、頭頂部10が製造される。   In the impregnation step S2, the fiber structure is impregnated with the resin 7 and cured. For example, the impregnation step S2 is performed by LCM (Liquid Composite Molding) such as RTM. That is, in the LCM, the fiber structure (preform) formed in the fiber structure forming step S1 is sealed with a vacuum bag, the vacuum bag is evacuated, and in this state, the resin 7 is allowed to flow into the vacuum bag. The structure 7 is impregnated, and the resin 7 impregnated in the fiber structure is cured by heating. Thereby, the crown 10 is manufactured.

なお、図3に示す製造方法で使用される繊維布3、繊維糸5および樹脂7の材料や配置や数などは、図1、図2を参照して上述したものと同じであってよい。   In addition, the material, arrangement | positioning, number, etc. of the fiber cloth 3, the fiber yarn 5, and the resin 7 used with the manufacturing method shown in FIG. 3 may be the same as what was mentioned above with reference to FIG.

上述した本発明の実施形態によると以下の効果(1)〜(7)が得られる。   According to the embodiment of the present invention described above, the following effects (1) to (7) are obtained.

(1)繊維布3が、頭頂部10の外表面10aに垂直な方向に積層されるので、断熱性を高めることができる。即ち、繊維布3の熱伝導率は、繊維糸5の熱伝導率よりも高いため、熱は、繊維布3の積層方向(頭頂部10の外表面10aに垂直な方向)よりも、繊維布3に沿った方向に分散・伝達しやすくなる。これにより、頭頂部10の断熱性が高まる。 (1) Since the fiber cloth 3 is laminated | stacked in the direction perpendicular | vertical to the outer surface 10a of the top part 10, the heat insulation can be improved. That is, since the thermal conductivity of the fiber cloth 3 is higher than the thermal conductivity of the fiber yarn 5, the heat is higher than that of the fiber cloth 3 in the stacking direction (the direction perpendicular to the outer surface 10 a of the top 10). It becomes easy to disperse and transmit in the direction along 3. Thereby, the heat insulation of the crown part 10 increases.

(2)頭頂部10の外表面10aに垂直な方向に、繊維布3を積層しても、繊維布3の層間剥離を防止できる。即ち、従来では、頭頂部10の外表面10aに垂直な方向に、繊維布3を積層した場合には、繊維布3が流体抵抗となるので、繊維布3の層間でのガス圧により、繊維布3の層間剥離が生じやすいのに対し、上述の実施形態では、繊維糸5が、複数層の繊維布3を貫通するので、樹脂7から発生する熱分解ガスが、繊維糸5に沿って繊維布3の層間を通過しやすくなり、これにより、熱分解ガスの圧力による繊維布3の層間剥離を防止できる。 (2) Even if the fiber cloth 3 is laminated in a direction perpendicular to the outer surface 10 a of the top 10, delamination of the fiber cloth 3 can be prevented. That is, conventionally, when the fiber cloth 3 is laminated in a direction perpendicular to the outer surface 10a of the crown 10, the fiber cloth 3 becomes fluid resistance, and therefore the fiber pressure is increased by the gas pressure between the layers of the fiber cloth 3. While the fabric 3 is likely to be delaminated, in the above-described embodiment, the fiber yarn 5 penetrates the plurality of layers of the fiber fabric 3, so that pyrolysis gas generated from the resin 7 flows along the fiber yarn 5. It becomes easy to pass between the layers of the fiber cloth 3, thereby preventing delamination of the fiber cloth 3 due to the pressure of the pyrolysis gas.

(3)頭頂部10の外表面10aに沿う方向に延びている繊維布3の熱伝導率を、繊維糸5の熱伝導率よりも高くすることで、頭頂部10の外表面10aに沿って熱が伝わりやすくなる。従って、頭頂部10の外表面10aにおいて、高温となる箇所が局所的に発生することを防止できるので、突入カプセルの耐熱性を高く維持できる。
さらに、繊維糸5の熱伝導率を、繊維布3の熱伝導率よりも低くすることで、突入カプセルの厚み方向(頭頂部10の外表面10aと垂直な方向)に熱が伝わり難くなる。従って、突入カプセルにおいて、樹脂7が熱分解する厚み方向範囲を抑えることができるので、この観点からも、突入カプセルの耐熱性を高く維持できる。
(3) By making the thermal conductivity of the fiber cloth 3 extending in the direction along the outer surface 10 a of the top 10 higher than the thermal conductivity of the fiber yarn 5, along the outer surface 10 a of the top 10. Heat is easily transmitted. Therefore, since it can prevent that the location which becomes high in the outer surface 10a of the top part 10 generate | occur | produces locally, the heat resistance of a rush capsule can be maintained highly.
Furthermore, by making the thermal conductivity of the fiber yarn 5 lower than the thermal conductivity of the fiber cloth 3, it becomes difficult for heat to be transmitted in the thickness direction of the rush capsule (the direction perpendicular to the outer surface 10a of the top 10). Therefore, in the rush capsule, the range in the thickness direction in which the resin 7 is thermally decomposed can be suppressed. From this viewpoint, the heat resistance of the rush capsule can be maintained high.

(4)頭頂部10の外表面10aに沿って繊維布3の面が延びているので、外表面10aに沿って高速に流れる高温外気によって頭頂部10が機械的に損耗する量を低減することができる。 (4) Since the surface of the fiber cloth 3 extends along the outer surface 10a of the crown 10, the amount of mechanical wear of the crown 10 due to high-temperature outside air flowing at high speed along the outer surface 10a is reduced. Can do.

(5)さらに、繊維糸5が、積層された繊維布3を貫通するように配置されているので、繊維糸5により、繊維布3の積層方向における頭頂部10の強度が高まる。 (5) Furthermore, since the fiber yarn 5 is disposed so as to penetrate the laminated fiber cloth 3, the strength of the crown 10 in the lamination direction of the fiber cloth 3 is increased by the fiber yarn 5.

(6)本実施形態では、頭頂部10の原型となるプリフォームに含浸させる樹脂7として、低粘度の樹脂7を用いるので、プリフォームの内部全体に樹脂7を十分に含浸させることができる。 (6) In this embodiment, since the low-viscosity resin 7 is used as the resin 7 to be impregnated into the preform that is the prototype of the top 10, the entire interior of the preform can be sufficiently impregnated.

(7)LCMにより、プリフォームへの樹脂7含浸を行うので、製造コストのかさむオートクレーブ等の加圧硬化過程が不要になる。 (7) Since the preform is impregnated with the resin 7 by LCM, a pressure curing process such as an autoclave, which is expensive to manufacture, becomes unnecessary.

なお、突入カプセルの底部20は、頭頂部10の外周側に、外側積層部9を備える。外側積層部9は、軸線Cから外周側に向く方向において、底部20の外表面に対して鋭角θ(図1を参照)で交差する方向に延びる繊維布8を積層してなる。外側積層部9は、例えば.熱硬化性樹脂を含浸した繊維布8を積層し、その後、加圧および加熱後による硬化処理を施すことで、CFRP(炭素繊維強化プラスチック)化したものである。また、外側積層部9は、頭頂部10と別個に成形した後、頭頂部10に、例えば硬化処理(即ち、外側積層部9と頭頂部10の接合面の樹脂を加熱で溶かした後、硬化させる)により接合してよい。外側積層部9と頭頂部10により、内部空間11が形成され、この内部空間11には、搭載機器が収容される。また。図1に示すように、断熱材13が、頭頂部10と外側積層部9の内側面に接触するように設けられる。   The bottom 20 of the rush capsule includes an outer laminated portion 9 on the outer peripheral side of the top 10. The outer laminated portion 9 is formed by laminating fiber fabrics 8 extending in a direction intersecting the outer surface of the bottom portion 20 at an acute angle θ (see FIG. 1) in a direction from the axis C toward the outer peripheral side. The outer laminated portion 9 is, for example,. A fiber cloth 8 impregnated with a thermosetting resin is laminated and then subjected to a curing treatment after pressurization and heating to form CFRP (carbon fiber reinforced plastic). Further, the outer laminated portion 9 is molded separately from the top portion 10, and then, for example, a hardening treatment (that is, the resin on the joint surface between the outer laminated portion 9 and the top portion 10 is melted by heating and then cured) May be joined. An inner space 11 is formed by the outer laminated portion 9 and the crown portion 10, and the mounted device is accommodated in the inner space 11. Also. As shown in FIG. 1, the heat insulating material 13 is provided so as to contact the top surface 10 and the inner side surfaces of the outer laminated portion 9.

本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更を加え得ることは勿論である。   The present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention.

3 繊維布、5 繊維糸、7 樹脂、9 外側積層部、
10 突入カプセルの頭頂部、10a 頭頂部の外表面、
11 内部空間、13 断熱材、20 突入カプセルの底部
3 fiber cloth, 5 fiber yarn, 7 resin, 9 outer laminated part,
10 top of the rush capsule, 10a outer surface of the top of the capsule,
11 Internal space, 13 Thermal insulation, 20 Bottom of rush capsule

Claims (2)

惑星の大気圏に突入する突入カプセルであって、
繊維強化複合材料により形成される頭頂部と、
前記頭頂部の外周側に位置する外側積層部と、を有し、
前記繊維強化複合材料は、
前記頭頂部の外表面に垂直な方向に積層された繊維布と、
前記繊維布の熱伝導率よりも熱伝導率が低く複数層の前記繊維布を貫通する繊維糸と、
前記繊維布および前記繊維糸の繊維間に充填されることで、前記繊維布および前記繊維糸と一体化した樹脂と、を有し、
前記繊維布は、ピッチ系の連続糸により形成され、
前記繊維糸は、前記繊維布の熱伝導率より低いピッチ系の糸であり、
前記外側積層部は、前記突入カプセルの軸線から外周側に向く方向において、前記突入カプセルの外表面に対して鋭角で交差する方向に延びて積層する外側積層部用の繊維布を有し、
前記頭頂部と前記外側積層部とは、それぞれ別個に成形された後に互いに接合される、ことを特徴とする突入カプセル。
A rush capsule that plunges into the planet's atmosphere,
A top formed by a fiber-reinforced composite material ;
An outer laminated portion located on the outer peripheral side of the crown , and
The fiber reinforced composite material is
A fiber cloth laminated in a direction perpendicular to the outer surface of the top of the head;
A fiber thread having a thermal conductivity lower than the thermal conductivity of the fiber cloth and penetrating the fiber cloth of a plurality of layers;
The fabric and that is filled between the fibers of the fiber yarn, have a, a resin integrated with the fabric and the fiber yarn,
The fiber cloth is formed of pitch-based continuous yarns,
The fiber yarn is a pitch-based yarn lower than the thermal conductivity of the fiber cloth,
The outer laminated portion has a fiber cloth for an outer laminated portion that extends and laminates in a direction intersecting at an acute angle with the outer surface of the rush capsule in a direction from the axis of the rush capsule toward the outer peripheral side,
The top capsule and the outer laminated part are formed separately, and then joined to each other .
突入カプセルの製造方法であって、
繊維強化複合材料により形成される頭頂部と、該頭頂部の外周側に位置する外側積層部とは、それぞれ別個に成形された後に互いに接合され、
前記頭頂部の製造方法は、頭頂部の原型となる繊維構造体を、繊維強化複合材料により形成する繊維構造体形成ステップと、
前記繊維構造体に樹脂を含浸させる含浸ステップと、を有し、
前記繊維構造体形成ステップは、
前記頭頂部の外表面に垂直となる方向にピッチ系の連続糸により形成された繊維布を積層する積層ステップと、
複数層の繊維布を貫通するように前記繊維布の熱伝導率よりも熱伝導率が低いピッチ系の糸である繊維糸を配置する糸配置ステップと、を有し、
前記外側積層部は、前記突入カプセルの軸線から外周側に向く方向において、外側積層部用の繊維布を前記突入カプセルの外表面に対して鋭角で交差する方向に延ばして積層されて成形される、ことを特徴とする突入カプセルの製造方法。
A manufacturing method of entry capsule,
The top part formed by the fiber reinforced composite material and the outer laminated part located on the outer peripheral side of the top part are joined to each other after being separately molded,
The method for manufacturing the top of the head includes a fiber structure forming step of forming a fiber structure as a prototype of the top of the head with a fiber reinforced composite material,
An impregnation step of impregnating the fiber structure with resin,
The fiber structure forming step includes
A laminating step of laminating a fiber cloth formed of pitch-based continuous yarns in a direction perpendicular to the outer surface of the top of the head;
A yarn placement step of thermal conductivity than the thermal conductivity of the fabric so as to penetrate through the fabric of the plurality of layers is disposed a fiber yarn is a yarn of low pitch system, possess,
The outer laminated portion is formed by laminating the fiber fabric for the outer laminated portion in a direction crossing at an acute angle with the outer surface of the rush capsule in a direction from the axis of the rush capsule toward the outer peripheral side. , manufacturing method of entry capsule, characterized in that.
JP2009143972A 2009-06-17 2009-06-17 Plunge capsule and manufacturing method thereof Active JP5478127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009143972A JP5478127B2 (en) 2009-06-17 2009-06-17 Plunge capsule and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009143972A JP5478127B2 (en) 2009-06-17 2009-06-17 Plunge capsule and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011000921A JP2011000921A (en) 2011-01-06
JP5478127B2 true JP5478127B2 (en) 2014-04-23

Family

ID=43559267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009143972A Active JP5478127B2 (en) 2009-06-17 2009-06-17 Plunge capsule and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5478127B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6253871B2 (en) * 2012-01-17 2017-12-27 三菱重工業株式会社 Insulating material, spacecraft equipped with the same, and method of manufacturing the insulating material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189124A (en) * 1986-12-27 1987-08-18 Toho Rayon Co Ltd Manufacture of three-dimensional fiber reinforced resin composite material
JP2534936B2 (en) * 1991-02-23 1996-09-18 サカセ・アドテック株式会社 4-axis three-dimensional orientation material and composite material
IL125473A (en) * 1996-01-30 2002-02-10 Textron Systems Corp Three dimensionally reinforced ablative/insulative composite
JP3525090B2 (en) * 2000-03-31 2004-05-10 川崎重工業株式会社 Ablator structure
JP4062879B2 (en) * 2000-12-11 2008-03-19 株式会社豊田自動織機 Three-dimensional fiber structure
JP3784658B2 (en) * 2001-03-30 2006-06-14 川崎重工業株式会社 Manufacturing method of thermal protection material
JP2002309008A (en) * 2001-04-18 2002-10-23 Tochigi Prefecture Plate requiring heat radiation and made of carbon fiber- reinforced plastic using multiple woven fabric woven form carbon fiber as substrate
JP2003020542A (en) * 2001-07-06 2003-01-24 Toray Ind Inc Carbon fiber fabric, method for molding using the same, carbon fiber-reinforced plastic and aircraft structural member
JP4759303B2 (en) * 2005-04-06 2011-08-31 帝人テクノプロダクツ株式会社 Composite material using multiaxial fabric

Also Published As

Publication number Publication date
JP2011000921A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
US10180069B2 (en) Method of fabricating a composite material blade having internal channels, and a composite material turbine engine blade
US10723090B2 (en) Method of manufacturing a composite laminate structure
US7758313B2 (en) Carbon-glass-hybrid spar for wind turbine rotorblades
EP1353885B1 (en) Thermal protection system having a variable density of fibers
EP3393767B1 (en) A method of manufacturing a composite laminate structure of a wind turbine blade part and related wind turbine blade part
US11376812B2 (en) Shock and impact resistant structures
JP5920471B2 (en) Three-dimensional fiber reinforced composite material and method for producing three-dimensional fiber reinforced composite material
CN107225773A (en) Method for assembling the composite construction strengthened
JP3766694B2 (en) 3D reinforced ablative / thermal insulation composite
US20100196654A1 (en) Process for producing composite laminate structures and composite laminate structures formed thereby
JP2017128705A (en) Carbon fiber sheet material, prepreg, laminate, molded body and method for manufacturing them
US10427361B2 (en) Fiber-reinforced sheet and structure
EP3648957A1 (en) Enhanced through-thickness resin infusion for a wind turbine composite laminate
JP5478127B2 (en) Plunge capsule and manufacturing method thereof
KR101173147B1 (en) Fabric reinforcement for composites and fiber reinforced composite prepreg having the fabric reinforcement
EP4263207A1 (en) Composite materials and structures
JP2011000750A (en) Rocket nozzle and manufacturing method therefor
US20090239434A1 (en) Method for producing a fiber-reinforced carbide ceramic component and carbide ceramic component
JP6122377B2 (en) Heat-resistant composite material with enhanced surface and method for producing the same
CN105269841B (en) Device for absorbing heat
JP4236328B2 (en) Heat-resistant structure and manufacturing method thereof
JP6568445B2 (en) Manufacturing method of fiber reinforced sheet and manufacturing method of structure
KR101901870B1 (en) Method of forming fiber reinforced ceramic composite channels for regenerative cooling, fiber reinforced ceramic composite, and engine nozzle
JP2018168789A (en) Windmill blade
CN116247363A (en) Preparation method of battery box cover and battery box cover

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R150 Certificate of patent or registration of utility model

Ref document number: 5478127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250