JP5477639B2 - Barometric open-cycle ocean temperature difference power generator with desalination equipment - Google Patents

Barometric open-cycle ocean temperature difference power generator with desalination equipment Download PDF

Info

Publication number
JP5477639B2
JP5477639B2 JP2010055769A JP2010055769A JP5477639B2 JP 5477639 B2 JP5477639 B2 JP 5477639B2 JP 2010055769 A JP2010055769 A JP 2010055769A JP 2010055769 A JP2010055769 A JP 2010055769A JP 5477639 B2 JP5477639 B2 JP 5477639B2
Authority
JP
Japan
Prior art keywords
gas
seawater
height
condenser
generating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010055769A
Other languages
Japanese (ja)
Other versions
JP2010236543A (en
Inventor
雅継 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010055769A priority Critical patent/JP5477639B2/en
Publication of JP2010236543A publication Critical patent/JP2010236543A/en
Application granted granted Critical
Publication of JP5477639B2 publication Critical patent/JP5477639B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

本発明は、表層温海水と深層冷海水の温度差を利用してランキンサイクルを構成した、淡水化装置付きオープンサイクル海洋温度差発電装置に関し、特に、凝縮器内にたまる不用な不凝縮ガスを取り除くための従来の排気ポンプを用いない淡水化装置付きバロメトリック型オープンサイクル海洋温度差発電装置に関する。
なお、以下の説明では、「表層温海水」、「深層冷海水」のことを、それぞれ単に「温海水」、「冷海水」と省略して記すこともある
The present invention relates to an open-cycle ocean thermal power generator with a desalination device that uses a temperature difference between surface seawater and deep cold seawater to form a Rankine cycle, and in particular, waste uncondensed gas that accumulates in a condenser. The present invention relates to a barometric open cycle ocean thermal power generation device with a desalination device that does not use a conventional exhaust pump for removal.
In the following description, “surface warm seawater” and “deep cold seawater” may be simply abbreviated as “warm seawater” and “cold seawater”, respectively .

従来から、例えば特許文献1などに、表層温海水及び深層冷海水をそれぞれ高温源及び冷温源とした、温度差を利用した淡水化装置付きオープンサイクル海洋温度差発電は知られていた。図1に、従来の海洋温度差発電の原理図を示す。図において、1aは蒸発器、1bはタービン翼、1cはタービン及び発電機、1dは凝縮器、1eは排気口、1hは冷海水出口、1iは冷海水入口、1jは温海水入口、1kは温海水出口である。そして、温海水入口1jから入った温海水の一部が蒸発器1aで蒸気となりタービン翼1bを回して発電し、凝縮器1dに入った蒸気は冷海水により冷却されて一部が凝縮して水となり、凝縮器を出た蒸気は排気口1eからポンプPにより排気される。なお、凝縮器1dで凝縮した水をタンクTに溜めておき、淡水取り出し口1fから回収して、淡水として利用する。凝縮水は、少量ずつしか凝縮しないので、タンクTに流れ落ちる際に、排気口1eからの蒸気の排気に支障となることはない。温海水からは水蒸気以外にとけ込んでいたガス(N、O等)が、冷却水温度では不凝縮ガスとして発生する。
この従来装置においては、そのまま運転すると、発生する不凝縮ガスがたまり圧力が高くなってタービン翼がとまり発電が停止してしまう。そこで、従来は、低圧にするための脱気ポンプ(排気ポンプ)が必要であった。また、凝縮器に残った不凝縮ガスが淡水化の効率を悪くしていた。
Conventionally, for example, Patent Document 1 discloses an open-cycle ocean temperature difference power generation with a desalination apparatus using a temperature difference using surface temperature seawater and deep seawater as a high temperature source and a cold temperature source, respectively. FIG. 1 shows a principle diagram of a conventional ocean temperature difference power generation. In the figure, 1a is an evaporator, 1b is a turbine blade, 1c is a turbine and a generator, 1d is a condenser, 1e is an exhaust port, 1h is a cold seawater outlet, 1i is a cold seawater inlet, 1j is a warm seawater inlet, 1k is It is a warm seawater exit. Then, a part of the warm seawater entering from the warm seawater inlet 1j becomes steam in the evaporator 1a to generate power by turning the turbine blade 1b, and the steam entering the condenser 1d is cooled by the cold seawater and partly condensed. The steam that has become water and exits the condenser is exhausted by the pump P from the exhaust port 1e. The water condensed in the condenser 1d is stored in the tank T, collected from the fresh water outlet 1f, and used as fresh water. Since the condensed water is condensed only in small amounts, it does not hinder the exhaust of steam from the exhaust port 1e when it flows down to the tank T. Gases (N 2 , O 2, etc.) that have melted from the warm seawater other than water vapor are generated as non-condensable gases at the cooling water temperature.
In this conventional apparatus, if it is operated as it is, the generated non-condensable gas accumulates and the pressure increases, and the turbine blades stop and power generation stops. Therefore, conventionally, a deaeration pump (exhaust pump) for reducing the pressure has been required. Moreover, the non-condensable gas remaining in the condenser deteriorated the desalination efficiency.

特開平10−159709号公報Japanese Patent Laid-Open No. 10-159709

本発明が解決しようとする課題は、従来の排気ポンプを用いずに、不凝縮ガスを駆逐して効率の良い淡水化装置を可能にすることである。   The problem to be solved by the present invention is to enable an efficient desalination apparatus by removing non-condensable gas without using a conventional exhaust pump.

上記課題を解決するために本発明は、
層温海水が導入され蒸気を発生するとともに、導入された表層温海水が海面下に排水される蒸発器と、蒸発器で発生した蒸気によりタービン翼が駆動されて発電する発電機と、タービン翼を駆動した後の蒸気が導入されるとともに、深層冷海水が導入され、前記蒸気を凝縮させて淡水を生成する凝縮器とを備えた海洋温度差発電装置において、
凝縮器からの排気により深層冷海水排水中に淡水生成後に残る不凝縮ガスの気泡を発生する気泡発生手段、及び、深層冷海水と当該気泡の混合した気液混合液状態で海面下に排出する排出手段を設け
淡水生成後に残る不凝縮ガスの気泡発生手段が、
当該不凝縮ガスと深層冷海水排水との気液混合液状態にする気液混合室からなる気泡発生手段、
および排出手段が、
前記蒸発器内部の液面位置の海面からの高さ[m]は、
大気圧に相当する真水の高さ[m]×(大気圧−蒸発器の飽和水蒸気圧)×(1/表層温海水密度[kg/L])
の値で決まるバランス高さより、排水側に流れが生じるようにわずかに高く設定され、
前記気泡発生手段の気液混合液面位置の海面からの高さ[m]は、
大気圧に相当する真水の高さ[m]×(大気圧−凝縮器の飽和水蒸気圧)×(1/気液混合液密度[kg/L])
の値で決まるバランス高さより、排水側に流れが生じるようにわずかに高く設定され、
当該気泡発生手段と海面(大気圧)と結ぶ配管からなる排出手段からな
淡水生成後に残る不凝縮ガスを、排気ポンプを用いることなく、排気することを特徴とする淡水化装置付きバロメトリック型オープンサイクル海洋温度差発電装置。
または、表層温海水が導入され蒸気を発生するとともに、導入された表層温海水が海面下に排水される蒸発器と、蒸発器で発生した蒸気によりタービン翼が駆動されて発電する発電機と、タービン翼を駆動した後の蒸気が導入されるとともに、深層冷海水が導入され、前記蒸気を凝縮させて淡水を生成する凝縮器とを備えた海洋温度差発電装置において、
凝縮器からの排気により深層冷海水排水中に淡水生成後に残る不凝縮ガスの気泡を発生する気泡発生手段、及び、深層冷海水と当該気泡の混合した気液混合液状態で海面下に排出する排出手段を設け
淡水生成後に残る不凝縮ガスの気泡発生手段が、当該不凝縮ガスと深層冷海水排水との気液混合液状態にするラバールノズルからなる気泡発生手段、
および排出手段が、
前記蒸発器内部の液面位置の海面からの高さ[m]は、
大気圧に相当する真水の高さ[m]×(大気圧−蒸発器の飽和水蒸気圧)×(1/表層温海水密度[kg/L])
の値で決まるバランス高さより、排水側に流れが生じるようにわずかに高く設定され、
前記気泡発生手段の気液混合液面位置の海面からの高さ[m]は、
大気圧に相当する真水の高さ[m]×(大気圧−凝縮器の飽和水蒸気圧)×(1/気液混合液密度[kg/L])
の値で決まるバランス高さより、排水側に流れが生じるようにわずかに高く設定され、
当該気泡発生手段と海面(大気圧)と結ぶ配管からなる排出手段からな
淡水生成後に残る不凝縮ガスを、排気ポンプを用いることなく、排気することを特徴とする淡水化装置付きバロメトリック型オープンサイクル海洋温度差発電装置。
または、深層冷海水排水量の変動に対し、気泡発生手段および排出手段の動作を保証するために、当該気泡発生手段位置よりも上流側から分岐して海面下に排水するバイパス管を有することを特徴とする上記の淡水化装置付きバロメトリック型オープンサイクル海洋温度差発電装置である。
In order to solve the above problems, the present invention
Along with the table bed temperature seawater to generate steam is introduced, a generator introduced surface temperature sea water evaporator drained below sea level, a turbine blade by the steam generated in the evaporator to generate electricity is driven, turbine In the ocean temperature difference power generation device including a steam after driving the blades, a deep cold seawater is introduced, and a condenser that condenses the steam to generate fresh water,
Bubble generating means for generating bubbles of non-condensable gas remaining in the deep cold seawater drainage in the deep cold seawater effluent by exhaust from the condenser, and discharging under the sea surface in a gas-liquid mixed state in which the deep cold seawater and the bubbles are mixed Providing a discharging means ,
The bubble generation means of non-condensable gas remaining after the generation of fresh water
A bubble generating means comprising a gas-liquid mixing chamber in which the non-condensable gas and the deep cold seawater drainage are in a gas-liquid mixed state;
And discharging means,
The height [m] from the sea level of the liquid level inside the evaporator is
Height of fresh water corresponding to atmospheric pressure [m] x (atmospheric pressure-saturated water vapor pressure of evaporator) x (1 / surface temperature seawater density [kg / L])
Is set to be slightly higher than the balance height determined by the value of
The height [m] from the sea surface of the gas-liquid mixed liquid surface position of the bubble generating means is:
Height of fresh water corresponding to atmospheric pressure [m] x (atmospheric pressure-saturated water vapor pressure of condenser) x (1 / gas / liquid mixture density [kg / L])
Is set to be slightly higher than the balance height determined by the value of
Ri Do from the discharge means comprising a pipe connecting with the air bubble generating means and sea level (atmospheric pressure),
A barometric open-cycle ocean temperature difference power generator with a desalination device , characterized in that non-condensable gas remaining after the generation of fresh water is exhausted without using an exhaust pump .
Alternatively, the surface temperature seawater is introduced to generate steam, the introduced surface temperature seawater is drained below the sea level, and the generator that generates power by driving the turbine blades with the steam generated by the evaporator, In the ocean temperature difference power generation device including the steam after driving the turbine blades, the deep cold seawater is introduced, and the condenser that condenses the steam to generate fresh water,
Bubble generating means for generating bubbles of non-condensable gas remaining in the deep cold seawater drainage in the deep cold seawater effluent by exhaust from the condenser, and discharging under the sea surface in a gas-liquid mixed state in which the deep cold seawater and the bubbles are mixed Providing a discharging means ,
A bubble generating means comprising a Laval nozzle that makes a gas-liquid mixed state of the non-condensable gas and the deep cold seawater drainage, the bubble generating means of the non-condensable gas remaining after the generation of fresh water,
And discharging means,
The height [m] from the sea level of the liquid level inside the evaporator is
Height of fresh water corresponding to atmospheric pressure [m] x (atmospheric pressure-saturated water vapor pressure of evaporator) x (1 / surface temperature seawater density [kg / L])
Is set to be slightly higher than the balance height determined by the value of
The height [m] from the sea surface of the gas-liquid mixed liquid surface position of the bubble generating means is:
Height of fresh water corresponding to atmospheric pressure [m] x (atmospheric pressure-saturated water vapor pressure of condenser) x (1 / gas / liquid mixture density [kg / L])
Is set to be slightly higher than the balance height determined by the value of
Ri Do from the discharge means comprising a pipe connecting with the air bubble generating means and sea level (atmospheric pressure),
A barometric open-cycle ocean temperature difference power generator with a desalination device , characterized in that non-condensable gas remaining after the generation of fresh water is exhausted without using an exhaust pump .
Or, in order to guarantee the operation of the bubble generating means and the discharging means against fluctuations in the amount of deep cold seawater drainage, it has a bypass pipe that branches from the upstream side of the bubble generating means position and drains below the sea level. The barometric open-cycle ocean temperature difference power generator with the desalination apparatus.

本発明では、従来の排気ポンプを用いずに、不凝縮ガスを駆逐して効率の良い淡水化装置を提供できる。また、従来の排気ポンプを用いないので、その分メンテナンスも簡略化される効果を持つ。   In the present invention, it is possible to provide an efficient desalination apparatus by removing non-condensable gas without using a conventional exhaust pump. In addition, since a conventional exhaust pump is not used, the maintenance can be simplified accordingly.

図1は、従来のオープンサイクル海洋温度差発電装置の原理図を示す。FIG. 1 shows a principle diagram of a conventional open-cycle ocean temperature difference power generation device. 図2は、本発明の淡水化装置付きバロメトリック型オープンサイクル海洋温度差発電装置の全体構成図である。FIG. 2 is an overall configuration diagram of a barometric open-cycle ocean temperature difference power generation device with a desalination apparatus according to the present invention. 図3は、本発明の特徴である気泡発生手段を、凝縮器後部へ設けた直接接触型凝縮器により構成した例を示す。FIG. 3 shows an example in which the bubble generating means, which is a feature of the present invention, is configured by a direct contact condenser provided at the rear of the condenser. 図4は、本発明の装置を、湾内へ半陸上型に設置する場合の設置例を示す。FIG. 4 shows an example of installation when the apparatus of the present invention is installed in a semi-land type in the bay. 図5は、図3に示された本発明の気泡発生手段の構成を、さらに、詳しく説明した詳細図である。FIG. 5 is a detailed diagram illustrating in further detail the configuration of the bubble generating means of the present invention shown in FIG. 図6は、本発明の気泡発生手段の他の構成例の詳細を示した図である。FIG. 6 is a diagram showing details of another configuration example of the bubble generating means of the present invention. 図7は、本発明の気泡発生手段のさらに他の構成例の詳細を示した図である。FIG. 7 is a diagram showing details of still another configuration example of the bubble generating means of the present invention.

本発明の淡水化装置付きバロメトリック型オープンサイクル海洋温度差発電装置は、装置全体を海面(大気圧)より数メートル高いところに設置し、蒸発器、気泡発生手段をそれぞれの圧力に相応した海面(大気圧)高さへ設置するとともに、気泡発生手段により不凝縮ガスを冷海水排出管途中へ排出することにより実現される。気泡は独立気泡として冷海水排出管(排出手段)により冷海水とともに気液混合液状態で海面下に排出される。   The barometric open cycle ocean thermal power generator with a desalinator of the present invention is installed at a place several meters higher than the sea level (atmospheric pressure), and the evaporator and bubble generating means are at sea level corresponding to each pressure. This is realized by installing at a height of (atmospheric pressure) and discharging non-condensable gas into the cold seawater discharge pipe halfway by the bubble generating means. The air bubbles are discharged as sub-air bubbles under the sea surface in the gas-liquid mixed liquid state together with the cold sea water by the cold sea water discharge pipe (discharge means).

図2は、本発明の淡水化装置付きバロメトリック型オープンサイクル海洋温度差発電装置の全体構成図である。図において、2aは蒸発器、2bはタービン翼、2cはタービン及び発電機、2dは隔壁型の凝縮器、2eは気泡発生手段、2hは冷海水と不凝縮ガスの気液混合液出口、2iは深層冷海水入口、2jは表層温海水入口、2kは温海水出口、2Lは海面、2mはデミスター、2gは蒸発器液面位置の海面(大気圧)からの高さ、2fは凝縮器で凝縮した淡水の液面位置の海面(大気圧)からの高さ、2oは気泡発生手段の気液混合液面位置の海面からの高さ、2pは淡水取り出し口である。
そして、表層温海水入口2jの温海水汲み上げ管は海面(大気圧)下の表層に開口している。なお、図示されていないが、温海水出口2kは排水管により海面(大気圧)下に開口し、深層冷海水入口2iは冷海水汲み上げ管により海面下の深層に開口し、気液混合液出口2hは排水管(気液混合液の排出手段)により海面(大気圧)下に開口しており、また、淡水取り出し口2pからの淡水取り出しは、凝縮器内部の圧力を損なわずに取り出せるようにしてある。
FIG. 2 is an overall configuration diagram of a barometric open-cycle ocean temperature difference power generation device with a desalination apparatus according to the present invention. In the figure, 2a is an evaporator, 2b is a turbine blade, 2c is a turbine and a generator, 2d is a partition type condenser, 2e is a bubble generating means, 2h is a gas-liquid mixture outlet of cold seawater and non-condensable gas, 2i Is the deep cold seawater inlet, 2j is the surface warm seawater inlet, 2k is the warm seawater outlet, 2L is the sea level, 2m is the demister, 2g is the height from the sea level (atmospheric pressure) at the evaporator level, 2f is the condenser The height of the condensed fresh water level from the sea level (atmospheric pressure), 2o is the height from the sea level of the gas-liquid mixed liquid level of the bubble generating means, and 2p is the fresh water outlet.
The warm seawater pumping pipe at the surface warm seawater inlet 2j opens to the surface layer below the sea level (atmospheric pressure). Although not shown, the warm seawater outlet 2k opens below the sea level (atmospheric pressure) by a drain pipe, and the deep cold seawater inlet 2i opens to the deep sea below the seawater by a cold seawater pumping pipe. 2h is opened under the sea level (atmospheric pressure) by a drain pipe (gas / liquid mixture discharging means), and fresh water removal from the fresh water outlet 2p can be taken out without impairing the pressure inside the condenser. It is.

蒸発器及び凝縮器内部の圧力は、表層温海水、深層冷海水の温度によって決まる圧力を有する。そこで、本発明では、蒸発器液面位置の海面からの高さ2gを、蒸発器の圧力に相応する位置に合わせて、高さ2gの温海水の重力による圧力と蒸発器内の液面に作用する圧力の和が大気圧に等しくなるように設定し、気泡発生手段の気液混合液の液面位置の海面からの高さ2oを、高さ2oの気液混合液(冷海水と不凝縮ガスの混合液)の重力による圧力と凝縮器内の気液混合液面に作用する圧力の和が大気圧に等しくなるように設定する。このとき、蒸発器内の液面に作用する圧力は温海水温度における、飽和水蒸気圧となり、気泡発生手段の気液混合液面に作用する圧力は、冷海水温度における飽和水蒸気圧となり、冷海水はすでに飽和状態まで水蒸気が溶存しているものとする。ただし、この状態の海面からの高さは、ちょうどバランスしている状態なので、実際には、このバランスしている状態の高さより若干高めに設定して排水側に流れを生じるようにし、スムーズな排水を可能として、排水のためのポンプ動力及び排気のためのポンプ動力を大幅に低減することができる。なお、バランスする位置以上の高さへは、その分だけの動力が必要となり、また、流れを生じさせる分の動力も実際には必要となる。   The pressure inside the evaporator and the condenser has a pressure determined by the temperature of the surface warm seawater and the deep cold seawater. Therefore, in the present invention, the height of 2 g from the sea level of the evaporator liquid level position is matched with the position corresponding to the pressure of the evaporator, and the pressure due to the gravity of the hot sea water of 2 g in height and the liquid level in the evaporator are set. The sum of the acting pressures is set to be equal to the atmospheric pressure, and the height 2o from the sea level at the liquid level of the gas-liquid mixture of the bubble generating means is set to the height 2o of the gas-liquid mixture (cold seawater and non-cold seawater). The sum of the pressure due to gravity of the condensate gas mixture) and the pressure acting on the gas-liquid mixture surface in the condenser is set to be equal to the atmospheric pressure. At this time, the pressure acting on the liquid level in the evaporator becomes the saturated water vapor pressure at the temperature of the warm seawater, and the pressure acting on the gas-liquid mixed liquid surface of the bubble generating means becomes the saturated water vapor pressure at the temperature of the cold seawater. It is assumed that water vapor has already been dissolved to saturation. However, since the height from the sea level in this state is just balanced, in practice, it is set slightly higher than the height in this balanced state so that a flow is generated on the drain side, and smooth Since drainage is possible, pump power for drainage and pump power for exhaust can be greatly reduced. In addition, to the height beyond the position to balance, the power for that amount is required, and the power for generating the flow is also actually required.

上記のように構成することにより、表層温海水入口2jから蒸発器2a内に入った表層温海水の一部が蒸発して蒸気となりタービン翼2bを回して発電し、隔壁型の凝縮器2dに入った蒸気は冷海水により冷却されて一部が凝縮して凝縮水(淡水)となり、凝縮器を通過した蒸気は、凝縮器から出た冷海水排水管の途中に設けた気泡発生手段2eによって冷海水中に排気され、冷海水とともに気液混合液の状態で海面下に開口した排出管(排出手段)により排出される。このように、排気は大気圧下に直接排気するのではなく、海面より高い位置にある低圧状態の冷海水排水管中に排気するので排気動力が軽減されるとともに、不凝縮ガスが冷海水排水管中に排気されるので、不凝縮ガスの残存による淡水化の効率の悪化も改善できる。
また、上記のように構成することにより、装置全体を海面より数メートル高い位置に設置することができるから、波による外乱の影響を減じることもできる。例えば、図4は、本発明の淡水化装置付きバロメトリック型オープンサイクル海洋温度差発電装置を、湾内に設置した例であり、かなり大きな波浪であっても、装置の主要部分は、海面(大気圧)よりある高さに維持することができる。
なお、淡水取り出し口2pについても、凝縮器内の凝縮液(淡水)の液面位置の海面(大気圧)2Lからの高さ2fを、高さ2fの淡水(冷海水と同じ温度)の重力による圧力と凝縮器内の凝縮液面に作用する圧力(冷海水温度における飽和水蒸気圧)の和が大気圧に等しくなる位置よりも若干高めに設定しておいて淡水の排出ポンプ動力を軽減することもできる。
By configuring as described above, a part of the surface temperature seawater entering the evaporator 2a from the surface temperature seawater inlet 2j is evaporated to become steam, and the turbine blades 2b are rotated to generate power, and the partition type condenser 2d is supplied. The steam that has entered is cooled by cold seawater and partially condensed to become condensed water (fresh water), and the steam that has passed through the condenser is produced by bubble generating means 2e provided in the middle of the cold seawater drain pipe that has come out of the condenser. It is exhausted into the cold seawater and discharged together with the cold seawater in a gas-liquid mixed liquid state through a discharge pipe (discharge means) that opens below the sea surface. In this way, exhaust is not exhausted directly under atmospheric pressure, but is exhausted into a cold seawater drain pipe in a low-pressure state that is higher than the sea level. Since exhausted into the pipe, the deterioration of the desalination efficiency due to the remaining non-condensable gas can be improved.
Moreover, since the whole apparatus can be installed in the position several meters higher than the sea surface by comprising as mentioned above, the influence of the disturbance by a wave can also be reduced. For example, FIG. 4 shows an example in which a barometric open cycle ocean thermal power generation device with a desalination apparatus according to the present invention is installed in a bay. (Atmospheric pressure) can be maintained at a certain height.
Note that the fresh water outlet 2p also has a height 2f from the sea surface (atmospheric pressure) 2L at the liquid surface position of the condensate (fresh water) in the condenser, and the gravity of fresh water (the same temperature as cold sea water) 2f in height. Reduce the fresh water discharge pump power by setting the sum of the pressure due to the pressure on the condensate in the condenser (saturated water vapor pressure at cold seawater temperature) slightly higher than the position where it equals atmospheric pressure. You can also.

(気泡発生手段の具体例)
図3は、本発明の気泡発生手段の具体例を示したものであって、隔壁型の凝縮器3dの後部へ直接接触型の凝縮器3nを接続することにより気液混合手段を構成したものである。図5は、さらにその詳細図である。図3において、3jは蒸発器の温海水入口、3kは蒸発器の温海水出口、3dは隔壁型の凝縮器、3iは隔壁型の凝縮器への冷海水入口、3nは直接接触型の凝縮器で構成される気泡発生手段、3hは冷海水と不凝縮ガスの気液混合液出口、3pは淡水取り出し口、3mはデミスター、3bはタービン翼、3cはタービン及び発電機、3Lは海面(大気圧)、3gは蒸発器液面位置の海面(大気圧)からの高さ、3oは、直接接触型の凝縮器で構成された気泡発生手段3n内の気液混合液面位置の海面(大気圧)からの高さである。また、図示しないが、温海水入口3jは汲み上げ管により海面(大気圧)下表層に開口し、温海水出口3kは排水管により海面下に開口し、冷海水入口3iは汲み上げ管により海面(大気圧)下深層に開口し、気液混合液出口3hは排水管(排出手段)により海面(大気圧)下に開口している。なお、3fは隔壁型の凝縮器3d内の凝縮液(淡水)の液面位置の海面(大気圧)からの高さである。また、図5において、5dは隔壁型の凝縮器(淡水化用)、5eは直接接触型の凝縮器からなる気泡発生手段、5aはタービンからの蒸気入口、5bは凝縮器の冷海水入口、5cは冷海水と不凝縮ガスの気液混合液出口、5hは気液混合液面位置の海面(大気圧)からの高さであり、5fは凝縮液(淡水)の取り出し口である。
(Specific example of bubble generating means)
FIG. 3 shows a specific example of the bubble generating means of the present invention, in which a gas-liquid mixing means is constructed by connecting a contact type condenser 3n directly to the rear part of the partition type condenser 3d. It is. FIG. 5 is a detailed view thereof. In FIG. 3, 3j is a warm seawater inlet of the evaporator, 3k is a warm seawater outlet of the evaporator, 3d is a partition type condenser, 3i is a cold seawater inlet to the partition type condenser, and 3n is a direct contact type condensation. 3h is a fresh water outlet, 3p is a demister, 3b is a turbine blade, 3c is a turbine and a generator, 3L is a sea surface ( 3g is the height from the sea level (atmospheric pressure) of the evaporator liquid level position, 3o is the sea level of the gas-liquid mixed liquid level position in the bubble generating means 3n composed of a direct contact type condenser ( It is the height from (atmospheric pressure). Although not shown, the warm seawater inlet 3j opens to the surface below the sea surface (atmospheric pressure) by a pumping pipe, the warm seawater outlet 3k opens to the sea surface by a drain pipe, and the cold seawater inlet 3i opens to the sea surface (large by a pumping pipe). The gas-liquid mixture outlet 3h is opened below the sea level (atmospheric pressure) by a drain pipe (discharge means). In addition, 3f is the height from the sea level (atmospheric pressure) of the liquid level position of the condensate (fresh water) in the partition condenser 3d. In FIG. 5, 5d is a partition-type condenser (for desalination), 5e is a bubble generating means comprising a direct contact type condenser, 5a is a steam inlet from the turbine, 5b is a cold seawater inlet of the condenser, 5c is a gas-liquid mixture outlet of cold seawater and noncondensable gas, 5h is the height of the gas-liquid mixture liquid surface position from the sea level (atmospheric pressure), and 5f is a condensate (fresh water) outlet.

このように構成された気液混合手段において、タービン翼3bを回した蒸気は、蒸気入口5aから隔壁型の凝縮器5dに入り、並流で下降しながら冷海水で低温に保たれた隔壁に接触して冷やされ、冷やされた蒸気の一部が凝縮して凝縮水(淡水)となり凝縮器5dの底部にたまる。なお、凝縮してたまった淡水は淡水取り出し口5fから取り出せる。下降してきた蒸気は、隔壁型の凝縮器5dの底部に設けたパイプを通って、直接接触型の凝縮器5e(気泡発生手段)内に入る。このとき、隔壁型の凝縮器5dの底部に設けたパイプは、底部にたまった凝縮水(淡水)がパイプを通って流出しない高さを有しており、下降してきた蒸気のみがパイプを通って直接接触型の凝縮器5e内に入る。一方、隔壁型の凝縮器5d内を下降してきた冷海水も、隔壁型の凝縮器5d底部に設けた開口から、直接接触型の凝縮器5e内に入る。直接接触型の凝縮器5e内に入った未凝縮蒸気と不凝縮ガスの混合気体と冷海水とは、ここで混合されて気液混合液となり、気液混合液出口5cから気液混合液として海面(大気圧)下に排水される。
なお、5図において、排気効率を高めるために、冷海水出口と蒸気出口を狭めてあり、冷海水出口と蒸気出口の下部には穴あきプレートが設けてある。また、気液混合液出口5c部には、液面の調整とトラップのために、気液混合液面調整用曲管を設けて効率よく気液混合液として排出できるようにしてある。また、最適な排水速度は、気液混合液の気液混合割合によるため、実験により決められる。
In the gas-liquid mixing means configured as described above, the steam that has rotated the turbine blades 3b enters the partition-type condenser 5d from the steam inlet 5a, and enters the partition wall maintained at a low temperature with cold seawater while descending in parallel flow. It is cooled by contact, and a part of the cooled steam is condensed to become condensed water (fresh water) and accumulates at the bottom of the condenser 5d. The condensed fresh water can be taken out from the fresh water outlet 5f. The descending steam passes through a pipe provided at the bottom of the partition-type condenser 5d and enters the direct contact type condenser 5e (bubble generating means). At this time, the pipe provided at the bottom of the partition-type condenser 5d has such a height that condensed water (fresh water) accumulated at the bottom does not flow out through the pipe, and only the descending steam passes through the pipe. Into the direct contact condenser 5e. On the other hand, the cold seawater that has descended in the partition type condenser 5d also enters the direct contact type condenser 5e through an opening provided at the bottom of the partition type condenser 5d. The mixed gas of uncondensed vapor and non-condensed gas and the cold seawater that have entered the direct contact type condenser 5e are mixed here to become a gas-liquid mixed liquid, and as a gas-liquid mixed liquid from the gas-liquid mixed liquid outlet 5c. Drained at sea level (atmospheric pressure).
In FIG. 5, in order to increase the exhaust efficiency, the cold seawater outlet and the steam outlet are narrowed, and a perforated plate is provided below the cold seawater outlet and the steam outlet. Further, a gas-liquid mixed liquid level adjusting curved pipe is provided at the gas-liquid mixed liquid outlet 5c for adjusting the liquid level and trapping so that the gas-liquid mixed liquid outlet can be efficiently discharged. Moreover, since the optimal drainage speed depends on the gas-liquid mixture ratio of the gas-liquid mixture, it is determined by experiment.

図3において、3g(蒸発器液面位置の海面からの高さ)及び3o(直接接触型の凝縮器で構成された気泡発生手段3n内の気液混合液面位置の海面からの高さ)は、内部圧力により決定される値である。3g及び3oは、実際には、バランスする位置よりも若干高め(例えば数cm)に設定し、最適な排水速度が得られるようにするが、上記バランスする位置の高さは、海面(大気圧)に作用する大気圧を1[atm]、真水の密度を1[kg/L]とすると次式で求めることができる。
3g[m]=1atmに相当する真水の高さ[m]×(1−蒸発器の飽和水蒸気圧[atm])×(1/温海水密度[kg/L])
3o[m]=1atmに相当する真水の高さ[m]×(1−凝縮器の飽和水蒸気圧[atm])×(1/気液混合液密度[kg/L])
ここで、気液混合液密度は、次式で計算される。
気液混合液密度[kg/L]=冷海水密度[kg/L]×冷海水体積[L]/(冷海水密度[kg/L]×冷海水体積[L]+蒸気密度[kg/L]×蒸気体積[L])
例えば、1atmに相当する真水の高さ=10.33m、温海水を30°Cとすると、温海水密度=1.020kg/L、蒸発器の飽和水蒸気圧=0.42atmとなり、上式に代入すれば、3g=10.33×(1−0.42)×(1/1.020)=5.87[m]となる。
さらに、冷海水温度を10°Cとし、気液混合液中に蒸気を15[mL/L]混合するものとすると、冷海水密度=1.025kg/L、気液混合液密度=1.025×0.985/(1.025×0.985+0.001206×0.015)=0.999982[kg/L]となり、凝縮器の飽和水蒸気圧は0.12atmであるから、3o=10.33×(1−0.12)×(1/0.999982)=9.09[m]となる。
なお、上記で求めた、3g=5.87m及び3o=9.09mの値は、ちょうどバランスする位置の高さであるから、実際には、これらの値より若干高くして(例えば数cm)、排水側に流れが生じるように設定する。
In FIG. 3, 3g (the height of the evaporator liquid level position from the sea surface) and 3o (the height from the sea surface of the gas-liquid mixed liquid level position in the bubble generating means 3n constituted by a direct contact type condenser). Is a value determined by the internal pressure. In practice, 3g and 3o are set slightly higher than the balanced position (for example, several centimeters) so that the optimum drainage speed can be obtained, but the height of the balanced position is the sea level (atmospheric pressure). ) Is 1 [atm] and the density of fresh water is 1 [kg / L].
Height of fresh water corresponding to 3 g [m] = 1 atm [m] × (1-saturated water vapor pressure [atm] of evaporator) × (1 / warm seawater density [kg / L])
The height of fresh water corresponding to 3o [m] = 1 atm [m] × (1-saturated water vapor pressure of the condenser [atm]) × (1 / gas-liquid mixture density [kg / L])
Here, the gas-liquid mixture density is calculated by the following equation.
Gas-liquid mixture density [kg / L] = cold seawater density [kg / L] × cold seawater volume [L] / (cold seawater density [kg / L] × cold seawater volume [L] + vapor density [kg / L] ] X steam volume [L])
For example, assuming that the height of fresh water corresponding to 1 atm = 10.33 m and warm seawater at 30 ° C., the density of warm seawater = 1.020 kg / L and the saturated water vapor pressure of the evaporator = 0.42 atm. Then, 3g = 10.33 × (1−0.42) × (1 / 1.020) = 5.87 [m].
Further, assuming that the temperature of the cold seawater is 10 ° C. and the steam is mixed at 15 [mL / L] in the gas-liquid mixture, the density of the cold seawater is 1.025 kg / L and the density of the gas-liquid mixture is 1.025. × 0.985 / (1.025 × 0.985 + 0.001206 × 0.015) = 0.999982 [kg / L] and the saturated water vapor pressure of the condenser is 0.12 atm, 3o = 10.33 X (1-0.12) * (1 / 0.999982) = 9.09 [m].
Note that the values of 3g = 5.87m and 3o = 9.09m obtained above are just the heights of the balanced positions, so in practice they are slightly higher than these values (for example, several centimeters). Set the flow to flow on the drain side.

(気泡発生手段の他の具体例)
図6は、図2の気泡発生手段の他の具体例を説明した詳細図である。この具体例では、気泡発生部及び混合部分が凝縮器とほぼ同一高さに設置した例である。凝縮器からの排気管を気泡発生手段である混合室に連通させる。混合室(気泡発生手段)は凝縮器圧力Pcよりも低圧P1となる高さ5hに設置される。すなわち、Pc≧P1(=気液混合液密度(ρ)×海面(大気圧)からの高さ(5h))を満足する高さ5hに設置する。混合室(気泡発生手段)においては、水噴流により発生した気泡の比較的小さいものは排水とともに下方に流れ、大きいものは再度、噴流により微細化される。排水の流速は排水管径により調整され、気泡の上昇しようとする速度より大きな流速で排気される。
(Other specific examples of bubble generating means)
FIG. 6 is a detailed diagram illustrating another specific example of the bubble generating means of FIG. In this specific example, the bubble generating part and the mixing part are installed at substantially the same height as the condenser. The exhaust pipe from the condenser is communicated with a mixing chamber which is a bubble generating means. The mixing chamber (bubble generating means) is installed at a height of 5 h where the pressure is lower than the condenser pressure Pc. That is, it is installed at a height of 5 h that satisfies Pc ≧ P1 (= gas-liquid mixture density (ρ) × height from the sea surface (atmospheric pressure) (5 h)). In the mixing chamber (bubble generating means), relatively small bubbles generated by the water jet flow downward along with the drainage, and large bubbles are refined again by the jet. The flow rate of drainage is adjusted by the diameter of the drainage pipe, and exhausted at a flow rate greater than the rate at which bubbles are about to rise.

(気泡発生手段のさらに他の具体例)
図7は、気泡発生手段のさらに他の具体例を説明した詳細図である。図7は、図6の混合室をなくし、微細な気泡を発生できるノズルを擁し、不凝縮ガスはノズルのベンチュリー効果により引き込まれ、気泡を発生する。図では、ノズルを有する気泡発生手段の上流で分岐するバイバス排水管を設けているが、バイパス排水管は設けなくてもよい。なお、凝縮器からの排気管が導入されるノズル位置が、凝縮器圧力Pcよりも低圧P1となる高さに設置されることは、図6の例と同様である。
(Another specific example of the bubble generating means)
FIG. 7 is a detailed diagram illustrating still another specific example of the bubble generating means. FIG. 7 eliminates the mixing chamber of FIG. 6 and has a nozzle that can generate fine bubbles, and the non-condensable gas is drawn by the venturi effect of the nozzle to generate bubbles. In the drawing, a bypass drain pipe that branches upstream of a bubble generating means having a nozzle is provided, but a bypass drain pipe may not be provided. In addition, it is the same as that of the example of FIG. 6 that the nozzle position where the exhaust pipe from a condenser is introduce | transduced is set in the height used as the low pressure P1 rather than the condenser pressure Pc.

上記のとおりに蒸発器、気液混合手段の高さを設定すると、不凝縮ガスの排気は冷海水とともに排出され、排気や排水のための動力が軽減され、海洋温度差発電装置の自立が可能となり、また、凝縮器で凝縮しきれなかった不凝縮ガスは排気時に排出されるから淡水化の効率も改善される。   When the height of the evaporator and gas-liquid mixing means is set as described above, the exhaust of non-condensable gas is discharged together with the cold seawater, the power for exhaust and drainage is reduced, and the ocean temperature difference power generator can be independent In addition, since the non-condensable gas that could not be condensed by the condenser is discharged during exhaust, the desalination efficiency is improved.

本発明の淡水化装置付きバロメトリック型オープンサイクル海洋温度差発電装置は、半陸上設置型以外にも、海上設置型あるいは陸上設置型にも適用できる。また、深層冷海水と表層温海水を用いた例で説明したが、冷水と温水を利用することもできる。   The barometric open cycle ocean temperature difference power generation device with a desalination apparatus of the present invention can be applied to a marine installation type or a land installation type in addition to a semi-land installation type. Moreover, although demonstrated with the example using deep-layer cold seawater and surface layer warm seawater, cold water and warm water can also be utilized.

1a,2a 蒸発器
1b,2b,3c タービン翼
1c,2c,3c タービン及び発電機
1d,2d,3d,5d 凝縮器
1j,2j,3j 温海水入口
1k,2k,3k 温海水出口
1i,2i,3i,5b 冷海水入口
1h 冷海水出口
2h,3h,5c 気液混合液出口
2L,3L 海面
2p,3p,5f 淡水取り出し口
2e,3n,5e 気泡発生手段
2g,3g 凝縮器の液面位置の海面からの高さ
2o,3o,5h 気泡発生手段の気液混合液面位置の海面からの高さ
1a, 2a Evaporator 1b, 2b, 3c Turbine blade 1c, 2c, 3c Turbine and generator 1d, 2d, 3d, 5d Condenser 1j, 2j, 3j Warm seawater inlet 1k, 2k, 3k Warm seawater outlet 1i, 2i, 3i, 5b Cold sea water inlet 1h Cold sea water outlet 2h, 3h, 5c Gas-liquid mixed liquid outlet 2L, 3L Sea surface 2p, 3p, 5f Fresh water outlet 2e, 3n, 5e Bubble generating means 2g, 3g Liquid level position of condenser Height from the sea surface 2o, 3o, 5h Height from the sea surface of the gas-liquid mixed liquid surface position of the bubble generating means

Claims (3)

表層温海水が導入され蒸気を発生するとともに、導入された表層温海水が海面下に排水される蒸発器と、蒸発器で発生した蒸気によりタービン翼が駆動されて発電する発電機と、タービン翼を駆動した後の蒸気が導入されるとともに、深層冷海水が導入され、前記蒸気を凝縮させて淡水を生成する凝縮器とを備えた海洋温度差発電装置において、
凝縮器からの排気により深層冷海水排水中に淡水生成後に残る不凝縮ガスの気泡を発生する気泡発生手段、及び、深層冷海水と当該気泡の混合した気液混合液状態で海面下に排出する排出手段を設け
淡水生成後に残る不凝縮ガスの気泡発生手段が、
当該不凝縮ガスと深層冷海水排水との気液混合液状態にする気液混合室からなる気泡発生手段、
および排出手段が、
前記蒸発器内部の液面位置の海面からの高さ[m]は、
大気圧に相当する真水の高さ[m]×(大気圧−蒸発器の飽和水蒸気圧)×(1/表層温海水密度[kg/L])
の値で決まるバランス高さより、排水側に流れが生じるようにわずかに高く設定され、
前記気泡発生手段の気液混合液面位置の海面からの高さ[m]は、
大気圧に相当する真水の高さ[m]×(大気圧−凝縮器の飽和水蒸気圧)×(1/気液混合液密度[kg/L])
の値で決まるバランス高さより、排水側に流れが生じるようにわずかに高く設定され、
当該気泡発生手段と海面(大気圧)と結ぶ配管からなる排出手段からな
淡水生成後に残る不凝縮ガスを、排気ポンプを用いることなく、排気することを特徴とする淡水化装置付きバロメトリック型オープンサイクル海洋温度差発電装置。
An evaporator in which the surface warm seawater is introduced to generate steam, and the introduced surface warm seawater is drained below the sea surface, a generator in which the turbine blades are driven by the steam generated in the evaporator, and a turbine blade. In the ocean temperature difference power generation device provided with a condenser that introduces steam after driving, deep water cold seawater is introduced, and a condenser that condenses the steam to produce fresh water,
Bubble generating means for generating bubbles of non-condensable gas remaining in the deep cold seawater drainage in the deep cold seawater effluent by exhaust from the condenser, and discharging under the sea surface in a gas-liquid mixed state in which the deep cold seawater and the bubbles are mixed Providing a discharging means ,
The bubble generation means of non-condensable gas remaining after the generation of fresh water
A bubble generating means comprising a gas-liquid mixing chamber in which the non-condensable gas and the deep cold seawater drainage are in a gas-liquid mixed state;
And discharging means,
The height [m] from the sea level of the liquid level inside the evaporator is
Height of fresh water corresponding to atmospheric pressure [m] x (atmospheric pressure-saturated water vapor pressure of evaporator) x (1 / surface temperature seawater density [kg / L])
Is set to be slightly higher than the balance height determined by the value of
The height [m] from the sea surface of the gas-liquid mixed liquid surface position of the bubble generating means is:
Height of fresh water corresponding to atmospheric pressure [m] x (atmospheric pressure-saturated water vapor pressure of condenser) x (1 / gas / liquid mixture density [kg / L])
Is set to be slightly higher than the balance height determined by the value of
Ri Do from the discharge means comprising a pipe connecting with the air bubble generating means and sea level (atmospheric pressure),
A barometric open-cycle ocean temperature difference power generator with a desalination device , characterized in that non-condensable gas remaining after the generation of fresh water is exhausted without using an exhaust pump .
表層温海水が導入され蒸気を発生するとともに、導入された表層温海水が海面下に排水される蒸発器と、蒸発器で発生した蒸気によりタービン翼が駆動されて発電する発電機と、タービン翼を駆動した後の蒸気が導入されるとともに、深層冷海水が導入され、前記蒸気を凝縮させて淡水を生成する凝縮器とを備えた海洋温度差発電装置において、
凝縮器からの排気により深層冷海水排水中に淡水生成後に残る不凝縮ガスの気泡を発生する気泡発生手段、及び、深層冷海水と当該気泡の混合した気液混合液状態で海面下に排出する排出手段を設け
淡水生成後に残る不凝縮ガスの気泡発生手段が、当該不凝縮ガスと深層冷海水排水との気液混合液状態にするラバールノズルからなる気泡発生手段、
および排出手段が、
前記蒸発器内部の液面位置の海面からの高さ[m]は、
大気圧に相当する真水の高さ[m]×(大気圧−蒸発器の飽和水蒸気圧)×(1/表層温海水密度[kg/L])
の値で決まるバランス高さより、排水側に流れが生じるようにわずかに高く設定され、
前記気泡発生手段の気液混合液面位置の海面からの高さ[m]は、
大気圧に相当する真水の高さ[m]×(大気圧−凝縮器の飽和水蒸気圧)×(1/気液混合液密度[kg/L])
の値で決まるバランス高さより、排水側に流れが生じるようにわずかに高く設定され、
当該気泡発生手段と海面(大気圧)と結ぶ配管からなる排出手段からな
淡水生成後に残る不凝縮ガスを、排気ポンプを用いることなく、排気することを特徴とする淡水化装置付きバロメトリック型オープンサイクル海洋温度差発電装置。
An evaporator in which the surface warm seawater is introduced to generate steam, and the introduced surface warm seawater is drained below the sea surface, a generator in which the turbine blades are driven by the steam generated in the evaporator, and a turbine blade. In the ocean temperature difference power generation device provided with a condenser that introduces steam after driving, deep water cold seawater is introduced, and a condenser that condenses the steam to produce fresh water,
Bubble generating means for generating bubbles of non-condensable gas remaining in the deep cold seawater drainage in the deep cold seawater effluent by exhaust from the condenser, and discharging under the sea surface in a gas-liquid mixed state in which the deep cold seawater and the bubbles are mixed Providing a discharging means ,
A bubble generating means comprising a Laval nozzle that makes a gas-liquid mixed state of the non-condensable gas and the deep cold seawater drainage, the bubble generating means of the non-condensable gas remaining after the generation of fresh water,
And discharging means,
The height [m] from the sea level of the liquid level inside the evaporator is
Height of fresh water corresponding to atmospheric pressure [m] x (atmospheric pressure-saturated water vapor pressure of evaporator) x (1 / surface temperature seawater density [kg / L])
Is set to be slightly higher than the balance height determined by the value of
The height [m] from the sea surface of the gas-liquid mixed liquid surface position of the bubble generating means is:
Height of fresh water corresponding to atmospheric pressure [m] x (atmospheric pressure-saturated water vapor pressure of condenser) x (1 / gas / liquid mixture density [kg / L])
Is set to be slightly higher than the balance height determined by the value of
Ri Do from the discharge means comprising a pipe connecting with the air bubble generating means and sea level (atmospheric pressure),
A barometric open-cycle ocean temperature difference power generator with a desalination device , characterized in that non-condensable gas remaining after the generation of fresh water is exhausted without using an exhaust pump .
深層冷海水排水量の変動に対し、気泡発生手段および排出手段の動作を保証するために、当該気泡発生手段位置よりも上流側から分岐して海面下に排水するバイパス管を有することを特徴とする請求項1または2に記載の淡水化装置付きバロメトリック型オープンサイクル海洋温度差発電装置。 In order to guarantee the operation of the bubble generating means and the discharging means against fluctuations in the amount of deep cold seawater drainage, it has a bypass pipe that branches from the upstream side of the bubble generating means position and drains below the sea surface. A barometric open-cycle ocean temperature difference power generator with a desalinator according to claim 1 or 2 .
JP2010055769A 2009-03-12 2010-03-12 Barometric open-cycle ocean temperature difference power generator with desalination equipment Expired - Fee Related JP5477639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010055769A JP5477639B2 (en) 2009-03-12 2010-03-12 Barometric open-cycle ocean temperature difference power generator with desalination equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009059169 2009-03-12
JP2009059169 2009-03-12
JP2010055769A JP5477639B2 (en) 2009-03-12 2010-03-12 Barometric open-cycle ocean temperature difference power generator with desalination equipment

Publications (2)

Publication Number Publication Date
JP2010236543A JP2010236543A (en) 2010-10-21
JP5477639B2 true JP5477639B2 (en) 2014-04-23

Family

ID=43091077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010055769A Expired - Fee Related JP5477639B2 (en) 2009-03-12 2010-03-12 Barometric open-cycle ocean temperature difference power generator with desalination equipment

Country Status (1)

Country Link
JP (1) JP5477639B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GT199600032A (en) * 1995-06-07 1997-11-28 OCEAN THERMAL ENERGY CONVERSION SYSTEM (OTEC SISTEMA)
JP2967186B2 (en) * 1996-11-27 1999-10-25 工業技術院長 Fresh water production apparatus and method for open cycle ocean temperature difference power generation
JP4762048B2 (en) * 2006-05-22 2011-08-31 株式会社東芝 Desalination power plant

Also Published As

Publication number Publication date
JP2010236543A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
US5582691A (en) Ocean thermal energy conversion (OTEC) system
EP2222939B1 (en) Oil recovery from an evaporator of an organic rankine cycle (orc) system
JP7115680B2 (en) Desalination and temperature difference power generation system
CN101985369B (en) Plate type sea water desalinating device
JP2007309295A (en) Desalination power generation plant
JP2010270925A (en) Direct-contact type condenser
US20100050636A1 (en) Sea water desalination and thermal energy conversion
JP5477639B2 (en) Barometric open-cycle ocean temperature difference power generator with desalination equipment
WO2001072638A1 (en) Desalination device
FR2958179A1 (en) INSTALLATION OF SEA WATER DESALINATION BY MULTI-EFFECT DISTILLATION
Kapooria et al. Technological investigations and efficiency analysis of a steam heat exchange condenser: conceptual design of a hybrid steam condenser
RU2359917C1 (en) Method of sea water desalination by utilising low-potential heat
CN101659452A (en) Humidification and condensation integrating device and sea water desalinization method thereof
WO2020045662A1 (en) Heat exchanger
CN201864593U (en) Plate-type sea water desalination device
RU45291U1 (en) PLANT FOR CLEANING A HYDROCARBON MIXTURE FROM HYDROGEN HYDROGEN
RU2280011C1 (en) Installation for desalination of the salt water and the method of desalination of the salt water with usage of the installation
JPH08198178A (en) Ship for changing sea water to fresh water
CN104163459A (en) Household water purifier
JPH07317508A (en) Power generation/desalination device utilizing sea water temperature difference
US20220410029A1 (en) Tubeless, multi-effect distillation system and method
JP6362126B2 (en) Methanol plant and gasoline synthesis plant
RU2814347C1 (en) Method for irreversible extraction of carbon dioxide dissolved in sea water, and complex for its implementation
JP2006000851A (en) Vacuum evaporation distillation apparatus
JP3854084B2 (en) Vacuum evaporation desalination equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140129

R150 Certificate of patent or registration of utility model

Ref document number: 5477639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees