JP5477531B2 - Developing apparatus and developing method - Google Patents

Developing apparatus and developing method Download PDF

Info

Publication number
JP5477531B2
JP5477531B2 JP2008325371A JP2008325371A JP5477531B2 JP 5477531 B2 JP5477531 B2 JP 5477531B2 JP 2008325371 A JP2008325371 A JP 2008325371A JP 2008325371 A JP2008325371 A JP 2008325371A JP 5477531 B2 JP5477531 B2 JP 5477531B2
Authority
JP
Japan
Prior art keywords
tank
developing
developer
filtrate
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008325371A
Other languages
Japanese (ja)
Other versions
JP2010145918A (en
Inventor
俊介 中西
達弥 瀬川
究 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2008325371A priority Critical patent/JP5477531B2/en
Publication of JP2010145918A publication Critical patent/JP2010145918A/en
Application granted granted Critical
Publication of JP5477531B2 publication Critical patent/JP5477531B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Optical Filters (AREA)

Description

本発明は、現像装置および現像方法に係り、特に現像液循環方式を用いた、カラーフィルタ製造において、ブラックマトリスク、着色画素などの現像工程で使用される現像装置および現像方法に関する。   The present invention relates to a developing device and a developing method, and more particularly, to a developing device and a developing method used in a developing process of black matrix, colored pixels and the like in color filter manufacturing using a developer circulation system.

カラー液晶表示装置等に用いられるカラーフィルタは、透明ガラス基板を構造的支持体として備え、その画面観察者側の反対側(背面側)は多数の画素領域に区分され、画素領域と画素領域の境界に位置する画素間部位には遮光層(ブラックマトリクス:以下BMと略称する)のパターンが設けられ、画素領域のそれぞれには着色画素が配置されている。着色画素は、画素ごとに透過光を着色するもので、一般に、光の三原色に相当する赤色(R),緑色(G),青色(B)の三色の着色画素を配列している。   A color filter used in a color liquid crystal display device or the like includes a transparent glass substrate as a structural support, and the opposite side (back side) of the screen observer is divided into a large number of pixel areas. A pattern of a light shielding layer (black matrix: hereinafter abbreviated as BM) is provided at an inter-pixel position located at the boundary, and colored pixels are arranged in each of the pixel regions. The colored pixels color the transmitted light for each pixel, and generally, three colored pixels of red (R), green (G), and blue (B) corresponding to the three primary colors of light are arranged.

カラーフィルタ基板の代表的な製造方法として、感光性樹脂に顔料を分散した色材(レジスト)を用いたフォトリソグラフィー技術が用いられている。一般的な製造工程としては、ガラス基板の投入からはじまり、BMの形成、R,G,B各着色画素の形成へと進むが、各色それぞれの工程において、ガラス基板の事前洗浄、感光性樹脂液の塗布、溶剤の乾燥、プレベーク、パターン露光、現像、ポストベーク、検査が繰り返される。以下、カラーフィルタ製造における従来の現像工程について説明する。   As a typical manufacturing method of a color filter substrate, a photolithography technique using a color material (resist) in which a pigment is dispersed in a photosensitive resin is used. As a general manufacturing process, starting from the introduction of a glass substrate, the process proceeds to the formation of BM and the formation of R, G, and B colored pixels. In each color process, pre-cleaning of the glass substrate, photosensitive resin liquid Coating, solvent drying, pre-baking, pattern exposure, development, post-baking, and inspection are repeated. Hereinafter, a conventional developing process in color filter production will be described.

現像工程は、露光後の未硬化レジストの溶解、剥離除去を目的とし、フォトリソグラフィー工程の中でも、形成するパターンの形状を左右する重要な工程である。現像工程で管理される項目としては、現像時間、現像液の温度等があり、現像槽の構成や方式によっても異なるが、全ては使用する現像液の現像力が基準となる。   The development process is aimed at dissolving and removing the uncured resist after exposure, and is an important process that influences the shape of the pattern to be formed in the photolithography process. Items managed in the development process include development time, temperature of the developer, and the like, and all depend on the developing power of the developer to be used, although it varies depending on the configuration and system of the developer tank.

現像液は無機・有機アルカリ成分から構成されるものが多い。現像液中のアルカリ成分は、感光性樹脂組成物中に含まれる高分子の酸価を有する官能基と反応して、露光工程で未硬化であった感光性樹脂組成物を溶解除去する働きがある。また、現像液はアルカリ成分のほかに、界面活性剤を添加されているものが多い。界面活性剤が添加されることで、感光性樹脂組成物への現像液成分の浸透性を向上させ、これによって現像速度の向上、パターン形状の良化といった効果がある。   Many developers are composed of inorganic and organic alkali components. The alkali component in the developer reacts with a functional group having an acid value of a polymer contained in the photosensitive resin composition, and works to dissolve and remove the uncured photosensitive resin composition in the exposure process. is there. In addition, many developers have a surfactant added in addition to the alkali component. By adding the surfactant, the permeability of the developer component into the photosensitive resin composition is improved, and this has the effect of improving the development speed and improving the pattern shape.

従来の現像工程に使用される現像装置において、現像液の使用方法としては、使用した現像液をそのまま廃棄する方法と、使用した現像液を循環させて繰り返し使用する方法がある。   In a developing device used in a conventional developing process, there are two methods of using a developer: a method of discarding a used developer as it is, and a method of repeatedly using a used developer by circulation.

使用した現像液をそのまま廃棄する現像液の使用方法では、液汚染のない現像液(現像新液)を用いるため、現像液濃度が適切に管理されていることで工程管理が容易であり、また、液汚染が無いことで品質不良の発生しにくい方法といえる。しかし、常に現像新液を供給する必要があるため、現像液の使用量は膨大でランニングコストが高いという欠点がある。   In the method of using a developing solution that discards the used developing solution as it is, a developing solution (developing solution) free from liquid contamination is used, so that the process control is easy because the developing solution concentration is appropriately controlled. It can be said that it is a method in which quality defects are unlikely to occur due to the absence of liquid contamination. However, since it is necessary to always supply a new developer, there is a disadvantage that the amount of the developer used is enormous and the running cost is high.

一方、使用した現像液を循環させて繰り返し使用する方法は、使用した現像液をそのまま廃棄する方法と比較して低ランニングコストである。しかし、像液を循環させて繰り返し使用することは、現像液中に溶解した感光性樹脂組成物成分が徐々に増加することを意味しており、現像液中の該成分が許容量を越えると製品不良が発生するという問題がある。また、使用した現像液を循環させて繰り返し使用することによって、液成分が減少するという欠点もある。現像液濃度が適切に管理できないことは現像速度などに影響を与えるため、工程管理が困難になる。   On the other hand, the method in which the used developer is circulated and used repeatedly has a lower running cost than the method in which the used developer is discarded as it is. However, recirculating and repeatedly using the image liquid means that the photosensitive resin composition component dissolved in the developer gradually increases, and if the component in the developer exceeds the allowable amount. There is a problem that product defects occur. In addition, there is a drawback that the liquid component is reduced by repeatedly using the used developer in a circulating manner. Insufficient control of the developer concentration affects the development speed and makes process management difficult.

更にまた、近年、フォトリソグラフィーの製造ラインは大型化の一途をたどっている。この背景には、特に、大画面液晶テレビの普及に伴うガラス基板の大型化が関係している。例えば、マザーガラスの寸法が第6世代(1500×1800mm)あるいは第8世代(2160×2400mm)と呼ばれる大型ガラス基板を使用したカラーフィルタ基板が必要とされている。1mm以下の薄く、かつ一辺が1〜2m以上に達する大型ガラス基板が流れる現像装置の大型化は、ユーティリティー使用量を増大させ、プロセス管理を困難にさせ、装置のメンテナンス性も悪化させている。とりわけ、基板サイズの大型化に伴って、装置も大型化・高価格化し、ランニングコストの削減が求められている。   Furthermore, in recent years, the photolithography production line has been increasing in size. This is particularly related to the increase in the size of glass substrates accompanying the widespread use of large-screen liquid crystal televisions. For example, there is a need for a color filter substrate using a large glass substrate whose mother glass is called the sixth generation (1500 × 1800 mm) or the eighth generation (2160 × 2400 mm). Increasing the size of a developing apparatus in which a large glass substrate having a thickness of 1 mm or less and a side of 1 to 2 m or more flows increases utility usage, makes process management difficult, and deteriorates the maintainability of the apparatus. In particular, as the substrate size is increased, the size and cost of the apparatus is increased, and the running cost is required to be reduced.

そこで、特許文献1には、現像に供せられた現像液を、限外濾過(UF:Ultrafiltration)フィルタにより処理して、濾液を再利用するとともに、濃縮液を循環させることにより、現像液の品質を低下させることなく、ランニングコストを低く抑えることが可能で、且つ、長時間使用時において限界濾過フィルタの目づまりによる濾液量の低下を防止し、メンテナンス性を容易にした現像装置、現像方法が開示されている。また、特許文献2には、特許文献1と同様な装置を用いて、限外濾過ユニットで得られた濾液のアルカリ成分濃度測定結果と、現像タンク中の溶存感光性樹脂組成物濃度に対する高アルカリ濃度液補充量と、濃度回復量との相関に応じて高アルカリ濃度液補充量を決定する現像液濃度調整方法とそれを用いた現像装置が開示されている。   Therefore, in Patent Document 1, the developer supplied for development is processed by an ultrafiltration (UF) filter to recycle the filtrate and circulate the concentrated solution. A developing device and a developing method that can keep running costs low without degrading quality, and prevent a decrease in the amount of filtrate due to clogging of the limit filtration filter when used for a long time, thereby facilitating maintenance. Is disclosed. In Patent Document 2, using the same apparatus as Patent Document 1, the alkali component concentration measurement result of the filtrate obtained by the ultrafiltration unit and the high alkalinity with respect to the concentration of the dissolved photosensitive resin composition in the developing tank are described. A developer concentration adjustment method for determining a high alkaline concentration solution replenishment amount according to the correlation between the concentration solution replenishment amount and the concentration recovery amount, and a developing device using the same are disclosed.

しかしながら、上述した特許文献1および2の現像装置においても、限外濾過装置使用時に、限外濾過フィルタは、現像液に含まれる顔料成分のUF膜表面への吸着、または透液孔を閉塞により、経時的な濾液流量低下を引き起こす。その対策として、逆洗浄動作と呼ばれる自己洗浄を限外濾過フィルタ毎に定期的に実施しているが、逆洗浄動作は限外濾過フィルタの延命処置の1つの手段であって、最終的には、定期的に限外濾過フィルタの交換を行い、取り外した限外濾過フィルタを現像装置のオフライン装置(外部)にて薬品洗浄して再生処理を実施する必要がある。この場合、装置が大型になっているため、限外濾過フィルタの交換ならびに薬品洗浄には多くの作業時間と、作業負荷がかかる。
WO2005/040930号公報 特開2007−241077号公報
However, even in the developing devices of Patent Documents 1 and 2 described above, when the ultrafiltration device is used, the ultrafiltration filter absorbs the pigment component contained in the developer on the surface of the UF membrane or blocks the liquid-permeable holes. Cause a decrease in filtrate flow rate over time. As a countermeasure, self-cleaning called reverse cleaning operation is periodically performed for each ultrafiltration filter, but the reverse cleaning operation is one means for extending the life of the ultrafiltration filter. It is necessary to periodically replace the ultrafiltration filter, and perform the regeneration treatment by cleaning the removed ultrafiltration filter with an off-line device (external) of the developing device. In this case, since the apparatus is large-sized, replacement of the ultrafiltration filter and chemical cleaning require a lot of work time and work load.
WO2005 / 040930 JP 2007-241077 A

本発明は、係る問題点に鑑みてなされたものであり、カラーフィルタ製造に用いられる限外濾過ユニットを備えた循環式現像装置であって、連続稼動・運用時の効率的な限外濾過フィルタの洗浄、再生が可能な現像装置を提供し、かつ、限外濾過フィルタの交換負荷を低減し、濾液流量が安定し、限外濾過ユニット全体の高寿命化が実現できる現像方法を提供することを課題としている。   The present invention has been made in view of the above problems, and is a circulation type developing device including an ultrafiltration unit used for manufacturing color filters, and is an efficient ultrafiltration filter during continuous operation and operation. Providing a developing device capable of cleaning and regenerating, reducing the replacement load of the ultrafiltration filter, stabilizing the flow rate of the filtrate, and realizing a long life of the entire ultrafiltration unit Is an issue.

本発明の請求項1に係る発明は、少なくとも、現像液循環方式を用いたカラーフィルタ製造の現像工程で使用される現像装置であって、
(1)現像液を収容する現像タンクと、
前記現像タンク内の現像液を現像処理が行われる現像槽に送る経路と、
前記現像槽において現像処理に使用された後の現像液を前記現像タンクに戻す経路と、
前記現像タンクに貯留された現像液を限外濾過循環タンクに送液する経路と、
(2)前記限外濾過循環タンク内の現像液を濾過するため、複数の限外濾過フィルタに送液する経路と、
濾液を濾液リザーブタンクに送る経路と、
(3)前記濾液リザーブタンクに送液された濾液の濃度を測定する手段と、
前記濾液の濃度を調整するため現像液原液を原液タンクから前記濾液リザーブタンクに送液する経路と、
(4)原液タンクから調合タンクに現像液原液を供給する経路と、
前記調合タンクを通じて現像液(新液)が供給されているリザーブタンクに、前記濾液リザーブタンクから濃度調整された現像液(濾液)を送液する経路と、
前記リザーブタンクから前記現像タンクに送液する経路と、
前記リザーブタンク内の現像液濃度が一定となるよう測定する手段とを
具備する現像装置であって、
複数の前記限外濾過フィルタが分画分子量1000以上の限外濾過フィルタであることを特徴とする現像装置である。
The invention according to claim 1 of the present invention is at least a developing device used in a developing process of manufacturing a color filter using a developer circulation system,
(1) a developing tank for containing a developing solution;
A path for sending the developer in the developing tank to a developing tank in which a developing process is performed;
A path for returning the developer after being used in the developing process in the developing tank to the developing tank;
A path for sending the developer stored in the developer tank to the ultrafiltration circulation tank;
(2) a path for feeding liquid to a plurality of ultrafiltration filters in order to filter the developer in the ultrafiltration circulation tank;
A path for sending the filtrate to the filtrate reserve tank;
(3) means for measuring the concentration of the filtrate sent to the filtrate reserve tank;
A path for feeding a developer stock solution from the stock solution tank to the filtrate reserve tank to adjust the concentration of the filtrate;
(4) a path for supplying the developer stock solution from the stock solution tank to the preparation tank;
A path for feeding a developer (filtrate) whose concentration is adjusted from the filtrate reserve tank to a reserve tank to which a developer (new solution) is supplied through the preparation tank;
A path for feeding liquid from the reserve tank to the developing tank;
A developing device comprising means for measuring the developer concentration in the reserve tank to be constant,
In the developing device, the plurality of ultrafiltration filters are ultrafiltration filters having a molecular weight cut-off of 1000 or more .

また、本発明の請求項2に係る発明は、請求項1に記載する現像装置を用い、前記現像槽において、前記リザーブタンクから送られた現像液(新液+濾液)を用いて、被現像体の現像処理を行うことを特徴とする現像方法である。
The invention according to claim 2 of the present invention uses the developing device according to claim 1 and uses the developer (new solution + filtrate) sent from the reserve tank in the developing tank, The developing method is characterized in that the development processing of the body is performed .

本発明の現像装置によれば、濾過ユニットの配管系統に、限外濾過フィルタの再生用薬液を供給可能に、薬液供給用配管経路を設けたために、連続稼動・運用時の効率的な限外濾過フィルタの洗浄、再生が可能となる。従来定期的に実施していた限外濾過フィルタの交換作業と、オフライン装置での薬品洗浄処理がほとんど不要となるため、作業時間および作業負荷が低減できる。   According to the developing device of the present invention, since the chemical solution supply piping path is provided in the filtration unit piping system so that the chemical solution for regeneration of the ultrafiltration filter can be supplied, the efficient limit during continuous operation and operation is provided. The filter can be cleaned and regenerated. Since the work of exchanging the ultrafiltration filter and the chemical cleaning process in the off-line apparatus, which are conventionally performed regularly, are almost unnecessary, the working time and work load can be reduced.

また、従来限外濾過フィルタはそれぞれの濾液流量低下とは関係なく、定期的に交換を実施していた為、交換時にはそれぞれの限外濾過フィルタの濾液流量状態に差が生じてしまい、限外濾過ユニット全体の高寿命化及び濾液流量安定化という観点からは適切でなかった。それに対して、本発明の現像装置では、それぞれの限外濾過フィルタの濾液流量値の実績に基づいて、最適な時にそれぞれの限外濾過フィルタの薬品洗浄・再生処理を行うことが可能となるため、濾液流量が安定し、限外濾過ユニット全体の高寿命化が実現できる。   In addition, since the conventional ultrafiltration filters are regularly replaced regardless of the decrease in the filtrate flow rate, there is a difference in the filtrate flow rate state between the ultrafiltration filters at the time of replacement. This was not appropriate from the viewpoint of extending the life of the entire filtration unit and stabilizing the filtrate flow rate. On the other hand, in the developing device of the present invention, it becomes possible to perform chemical cleaning / regeneration processing of each ultrafiltration filter at an optimum time based on the results of the filtrate flow rate value of each ultrafiltration filter. The filtrate flow rate is stable, and the lifetime of the entire ultrafiltration unit can be extended.

また、本発明の現像装置では、薬液供給用配管経路中にエアーパージ用のエアー、純水及び温水供給経路を備えることで、薬液自体の洗浄効果が向上する。また、薬液の供給経路としては、中空糸系、透液孔両側への薬液供給が可能となっており、三方弁を利用し制御することで、複数の限外濾過フィルタの内任意の限外濾過フィルタで濾過を行うか限外濾過フィルタの再生を行うのかの切り替えが簡単に行なえ、三方弁の制御により薬液供給中は本来の配管系統に薬液が混入しないようにできる。   Further, in the developing device of the present invention, the cleaning effect of the chemical solution itself is improved by providing air purge air, pure water, and hot water supply channels in the chemical solution supply piping path. In addition, the chemical solution can be supplied to both sides of the hollow fiber system and the liquid permeation hole, and controlled using a three-way valve to control any one of the ultrafiltration filters. Switching between filtering with a filtration filter and regeneration of an ultrafiltration filter can be easily performed, and the chemical solution can be prevented from being mixed into the original piping system during the supply of the chemical solution by controlling the three-way valve.

以下、本発明の現像装置および現像方法について、一実施形態に基づいて説明する。   Hereinafter, a developing device and a developing method of the present invention will be described based on an embodiment.

図1は、本発明の現像装置の一実施形態の全体構成を説明する概略フロー図である。炭酸ナトリウム(Na2CO3)を現像液主成分とする現像新液は、現像新液供給管路3を通
して現像タンク4に供給される。現像はクリーンルーム内のクローズ化された状態で、現像タンク4から送液経路25を通して現像液吐出機構1から現像液を吐出し、現像槽2で、対象とするアクリル樹脂系感光性樹脂が塗布・パターン露光された被現像ガラス基板に対して実施する。図1中、現像液吐出機構1をシャワーリング工程としているが、この方法に限定されるものではない。現像処理後の現像液は、現像液リターン経路24を経て現像タンク4中に貯留された後、送液経路5によって限外濾過循環タンク6に運ばれる。現像を繰り返すことで現像タンク4内の感光性樹脂組成物濃度が増加し続けることを防ぐため、ドレイン経路7を用いて一定量の現像液をドレインし、減少した分はリザーブタンク40から現像タンク4へ現像新液供給管路3を通して新液が補充される。
FIG. 1 is a schematic flow diagram illustrating the overall configuration of an embodiment of the developing device of the present invention. A new developing solution containing sodium carbonate (Na 2 CO 3 ) as a main developing solution is supplied to the developing tank 4 through the developing new solution supply line 3. Development is performed in a closed state in a clean room, and the developer is discharged from the developer discharge mechanism 1 through the liquid supply path 25 from the developer tank 4, and the target acrylic resin-based photosensitive resin is applied and developed in the developer tank 2. It carries out with respect to the to-be-developed glass substrate exposed to pattern. In FIG. 1, the developer discharge mechanism 1 is a showering step, but the method is not limited to this method. The developing solution after the development processing is stored in the developing tank 4 through the developing solution return path 24, and then is carried to the ultrafiltration circulation tank 6 through the liquid feeding path 5. In order to prevent the photosensitive resin composition concentration in the developing tank 4 from continuing to increase due to repeated development, a certain amount of developer is drained using the drain path 7, and the decreased amount is reduced from the reserve tank 40 to the developing tank. The new solution is replenished to the developer 4 through the developing new solution supply line 3.

限外濾過循環タンク6の現像液は、送液経路8を経て、本実施例では5本の限外濾過フィルタを備え、かつ、各限外濾過フィルタを逆洗浄するための逆洗浄タンク13等の逆洗浄手段を含む濾過ユニット9に送られ、限外濾過を行う。その後、限外濾過フィルタを透過した濾液は送液経路11により濾液リザーブタンク12に送液され、限外濾過フィルタを透過しない成分が増加した残りの濃縮液は限外濾過フィルタ濃縮液循環管路21を通って限外濾過循環タンク6に戻される。本発明の現像装置ではこの濾過ユニット9に、再生用薬液を供給可能に、再生用の薬液タンク10が薬液供給経路50を介して具備され、現像装置を稼動させている最中に任意の限外濾過フィルタを薬品洗浄し、その機能を回復させる手段が付加されている。   The developer in the ultrafiltration circulation tank 6 is provided with five ultrafiltration filters in the present embodiment through the liquid feeding path 8, and the reverse cleaning tank 13 for backwashing each ultrafiltration filter, etc. Are sent to a filtration unit 9 including back-cleaning means for ultrafiltration. Thereafter, the filtrate that has passed through the ultrafiltration filter is sent to the filtrate reserve tank 12 through the liquid sending path 11, and the remaining concentrated liquid in which the components that do not pass through the ultrafiltration filter have increased is the ultrafiltration filter concentrated liquid circulation line. 21 is returned to the ultrafiltration circulation tank 6. In the developing device of the present invention, the regeneration chemical solution tank 10 is provided via the chemical solution supply path 50 so that the regeneration chemical solution can be supplied to the filtration unit 9, and any limit can be applied while the developing device is operating. Means are added to chemically clean the outer filter and restore its function.

ここで、限外濾過フィルタは、現像液の汚染度や溶解している感光性樹脂組成物の種類によって最適な濾過精度のものを選定する。限外濾過フィルタの分画分子量は、循環流量、必要な濾液量等の運用条件の影響を考慮し、かつ現像に有効なアルカリ成分と界面活性剤をトラップしないことが必要であり、本実施形態では、分画分子量1000〜粒径10μmの範囲の限外濾過フィルタを対象としている。濾過精度が分画分子量1000より小さい限外濾過フィルタの場合、溶解イオンの透過も阻止してしまうため、現像液そのものの特すら失う恐れがあり、逆に濾過精度が10μmを超える限外濾過フィルタの場合は、汚染物質をトラップすることができず、濾液のクリーン度が落ちる。   Here, an ultrafiltration filter having an optimum filtration accuracy is selected according to the degree of contamination of the developer and the type of the dissolved photosensitive resin composition. The fractionation molecular weight of the ultrafiltration filter needs to take into account the influence of operating conditions such as the circulation flow rate and the required filtrate amount, and it is necessary not to trap alkali components and surfactants effective for development. Is intended for an ultrafiltration filter having a molecular weight cut-off of 1000 to a particle size of 10 μm. In the case of an ultrafiltration filter having a filtration molecular weight of less than 1000, the permeation of dissolved ions is also blocked, so there is a risk that even the developer itself may be lost. Conversely, the ultrafiltration filter with a filtration accuracy exceeding 10 μm. In this case, contaminants cannot be trapped and the cleanliness of the filtrate is reduced.

濾液リザーブタンク12に送液された濾液の現像主成分(Na2CO3)濃度を測定し、一定の濃度となるように現像液原液を補充して、濃度調整された現像液(濾液)は送液経路22を通してクリーンルーム内のリザーブタンク40へ送られることで、現像液は循環することになる。なお、リザーブタンク40には原液タンク42から調合タンク41を通じて現像液(新液)が供給されており、現像液濃度が一定となるよう測定監視されている。ちなみに、本実施例において炭酸ナトリウム濃度は1.5kg/m3の一定としている。 The developer main component (Na 2 CO 3 ) concentration of the filtrate sent to the filtrate reserve tank 12 is measured, the developer stock solution is replenished so as to be a constant concentration, and the developer (filtrate) whose concentration has been adjusted is The developer is circulated by being sent to the reserve tank 40 in the clean room through the liquid feeding path 22. The reserve tank 40 is supplied with a developing solution (new solution) from the stock solution tank 42 through the preparation tank 41, and is measured and monitored so that the concentration of the developing solution becomes constant. Incidentally, in this embodiment, the sodium carbonate concentration is constant at 1.5 kg / m 3 .

図2は、上記図1で説明した本発明の現像装置の濾過ユニット9の配管系統に、限外濾過フィルタ再生用の薬液供給経路50が具備された状態を示す部分概略図である。この薬液供給経路50には、薬液タンク10に加えて洗浄、再生効果を向上させるために、更に、温水供給経路51、洗浄用の純水供給経路52、エアーパージ用のエアー供給経路53が配管されている。洗浄用薬液の供給経路としては、限外濾過フィルタの中空糸系、または、透液孔両側への薬液供給が可能となっており、薬液供給中は本来の濾過配管系に薬液が混入しない様、三方弁を利用して制御し、洗浄用薬液は排水系統を通って系外に排出され、限外濾過フィルタユニットは純水で洗浄され、必要に応じてエアーパージされて再生される。   FIG. 2 is a partial schematic view showing a state in which the chemical supply path 50 for regenerating the ultrafiltration filter is provided in the piping system of the filtration unit 9 of the developing device of the present invention described in FIG. In addition to the chemical tank 10, the chemical supply path 50 is further provided with a hot water supply path 51, a pure water supply path 52 for cleaning, and an air supply path 53 for air purge in order to improve the cleaning and regeneration effect. Has been. The cleaning chemical solution can be supplied to the hollow fiber of the ultrafiltration filter or to both sides of the liquid permeation hole, so that the chemical solution does not enter the original filtration piping system while the chemical solution is being supplied. The cleaning chemical solution is discharged out of the system through the drainage system, and the ultrafiltration filter unit is washed with pure water, and air-purged and regenerated as necessary.

次に、図3のフロー説明図によって、本発明の現像装置での限外濾過フィルタ再生の具体的な運用フローを説明する。図3(a)は以下に示す運用フロー例で、(STEP1)の状態を示したものである。この場合、5本の限外濾過フィルタUF−1〜UF−5はそ
れぞれ、以下に示す運用フローとなっており、UF−2〜UF−5はUF−2が逆洗浄の通常の運用フローである。UF−1では薬液洗浄が選択され、薬液タンクA側から薬液を送液して、UF−1の循環out側から薬液がフィルタ内に送液されて、循環in側から廃液する。UF−2〜UF−5のサイクルが1周している間にUF−1の薬液洗浄と水洗が行われて、その後、後記する運用フローサイクルの(STEP2)へと移行する。
・UF−1:薬剤洗浄(循環out→循環in)and水洗
・UF−2:逆洗浄→濾液供給→濾液供給→濾液供給
・UF−3:濾液供給→逆洗浄→濾液供給→濾液供給
・UF−4:濾液供給→濾液供給→逆洗浄→濾液供給
・UF−5:濾液供給→濾液供給→濾液供給→逆洗浄
図3(b)は以下に示す運用フロー例で、(STEP2)の状態を示したものである。5本の限外濾過フィルタUF−1〜UF−5はそれぞれ、以下に示す運用フローとなっており、この場合も前記と同様に、UF−2〜UF−5はUF−2が逆洗浄の通常の運用フローである。UF−1では薬液洗浄が選択され、このサイクルでは薬液タンクB側から薬液を送液して、UF−1の濾過out側から薬液がフィルタ内に送液されて、循環out又は循環in側から廃液する。このサイクルを1サイクル以上一定時間行い、充分に水洗して置換を実施した後、次の段階としてUF−2の薬剤洗浄へと移行する。
・UF−1:薬剤洗浄(循環out→循環in)and水洗→薬剤洗浄(濾過out→循環out又は循環in)
・UF−2:逆洗浄→濾液供給→濾液供給→濾液供給→逆洗浄
・UF−3:濾液供給→逆洗浄→濾液供給→濾液供給→濾液供給
・UF−4:濾液供給→濾液供給→逆洗浄→濾液供給→濾液供給
・UF−5:濾液供給→濾液供給→濾液供給→逆洗浄→濾液供給
Next, a specific operation flow of the ultrafiltration filter regeneration in the developing device of the present invention will be described with reference to the flowchart of FIG. FIG. 3A is an example of the operation flow shown below, and shows the state of (STEP 1). In this case, each of the five ultrafiltration filters UF-1 to UF-5 has an operation flow shown below, and UF-2 to UF-5 are normal operation flows in which UF-2 is back-washed. is there. In UF-1, chemical solution cleaning is selected, the chemical solution is sent from the chemical solution tank A side, the chemical solution is sent from the circulation out side of UF-1, and is discharged from the circulation in side. While the cycle of UF-2 to UF-5 makes one round, the chemical solution washing and water washing of UF-1 are performed, and thereafter, the operation flow cycle (STEP 2) described later is performed.
-UF-1: chemical washing (circulation out-> circulation in) and water washing-UF-2: reverse washing-> filtrate supply-> filtrate supply-> filtrate supply-UF-3: filtrate supply-> reverse wash-> filtrate supply-> filtrate supply-UF -4: Filtrate supply-> filtrate supply->backwash-> filtrate supply / UF-5: filtrate supply-> filtrate supply-> filtrate supply-> backwash Figure 3 (b) shows an example of the operational flow shown below, with the state of (STEP2) It is shown. Each of the five ultrafiltration filters UF-1 to UF-5 has the operational flow shown below, and in this case as well, UF-2 to UF-5 are back-washed with UF-2. It is a normal operation flow. In UF-1, chemical cleaning is selected. In this cycle, the chemical is sent from the chemical tank B side, the chemical is sent from the filtration out side of UF-1 into the filter, and from the circulation out or circulation in side. Waste liquid. This cycle is performed for one or more cycles for a certain period of time, followed by sufficient water washing and replacement, and then the next stage is the UF-2 drug washing.
UF-1: chemical washing (circulation out → circulation in) and water washing → chemical washing (filtration out → circulation out or circulation in)
-UF-2: Reverse washing-> Filtration supply-> Filtration supply-> Filtration supply-> Reverse washing-UF-3: Filtrate supply-> Reverse washing-> Filtration supply-> Filtrate supply-> Filtrate supply-UF-4: Filtrate supply-> Filtrate supply-> Reverse Washing → Filtrate supply → Filtrate supply / UF-5: Filtrate supply → Filtrate supply → Filtrate supply → Backwash → Filtrate supply

本発明の現像装置の一実施形態の全体構成を説明する概略フロー図。FIG. 3 is a schematic flow diagram illustrating the overall configuration of an embodiment of the developing device of the present invention. 本発明の現像装置の濾過ユニットに、再生用薬液供給経路が具備された概略図。FIG. 3 is a schematic view in which a filtration chemical unit of the developing device of the present invention is provided with a chemical solution supply path for regeneration. 本発明の現像装置での限外濾過フィルタ再生の運用フロー説明図。Explanatory drawing of the operation | movement flow of the ultrafiltration filter reproduction | regeneration in the image development apparatus of this invention.

符号の説明Explanation of symbols

1・・・現像液吐出機構 2・・・現像槽 3・・・現像新液供給管路
4・・・現像タンク 5・・・送液経路 6・・・限外濾過循環タンク
7・・・ドレイン経路 8・・・送液経路 9・・・濾過ユニット
10・・・薬液タンク 11・・・送液経路 12・・・濾液リザーブタンク
13・・・逆洗浄タンク 21・・・限外濾過フィルタ濃縮液循環管路
22・・・送液経路 24・・・現像液リターン経路 25・・・送液経路
40・・・リザーブタンク 41・・・調合タンク 42・・・原液タンク
50・・・薬液供給経路 51・・・温水供給経路52・・・純水供給経路
53・・・エアー供給経路
DESCRIPTION OF SYMBOLS 1 ... Developer discharge mechanism 2 ... Developer tank 3 ... Developer new solution supply line 4 ... Developer tank 5 ... Liquid feed route 6 ... Ultrafiltration circulation tank 7 ... Drain path 8 ... Liquid feed path 9 ... Filtration unit 10 ... Chemical liquid tank 11 ... Liquid feed path 12 ... Filtrate reserve tank 13 ... Backwash tank 21 ... Ultrafiltration filter Concentrated liquid circulation line 22 ... Liquid feed path 24 ... Developer return path 25 ... Liquid feed path 40 ... Reserve tank 41 ... Preparation tank 42 ... Stock solution tank 50 ... Chemical solution Supply path 51 ... Warm water supply path 52 ... Pure water supply path 53 ... Air supply path

Claims (2)

少なくとも、現像液循環方式を用いたカラーフィルタ製造の現像工程で使用される現像装置であって、
(1)現像液を収容する現像タンクと、
前記現像タンク内の現像液を現像処理が行われる現像槽に送る経路と、
前記現像槽において現像処理に使用された後の現像液を前記現像タンクに戻す経路と、
前記現像タンクに貯留された現像液を限外濾過循環タンクに送液する経路と、
(2)前記限外濾過循環タンク内の現像液を濾過するため、複数の限外濾過フィルタに送液する経路と、
濾液を濾液リザーブタンクに送る経路と、
(3)前記濾液リザーブタンクに送液された濾液の濃度を測定する手段と、
前記濾液の濃度を調整するため現像液原液を原液タンクから前記濾液リザーブタンクに送液する経路と、
(4)原液タンクから調合タンクに現像液原液を供給する経路と、
前記調合タンクを通じて現像液(新液)が供給されているリザーブタンクに、前記濾液リザーブタンクから濃度調整された現像液(濾液)を送液する経路と、
前記リザーブタンクから前記現像タンクに送液する経路と、
前記リザーブタンク内の現像液濃度が一定となるよう測定する手段とを
具備する現像装置であって、
複数の前記限外濾過フィルタが分画分子量1000以上の限外濾過フィルタであることを特徴とする現像装置。
At least a developing device used in a developing process of color filter manufacturing using a developer circulation system,
(1) a developing tank for containing a developing solution;
A path for sending the developer in the developing tank to a developing tank in which a developing process is performed;
A path for returning the developer after being used in the developing process in the developing tank to the developing tank;
A path for sending the developer stored in the developer tank to the ultrafiltration circulation tank;
(2) a path for feeding liquid to a plurality of ultrafiltration filters in order to filter the developer in the ultrafiltration circulation tank;
A path for sending the filtrate to the filtrate reserve tank;
(3) means for measuring the concentration of the filtrate sent to the filtrate reserve tank;
A path for feeding a developer stock solution from the stock solution tank to the filtrate reserve tank to adjust the concentration of the filtrate;
(4) a path for supplying the developer stock solution from the stock solution tank to the preparation tank;
A path for feeding a developer (filtrate) whose concentration is adjusted from the filtrate reserve tank to a reserve tank to which a developer (new solution) is supplied through the preparation tank;
A path for feeding liquid from the reserve tank to the developing tank;
A developing device comprising means for measuring the developer concentration in the reserve tank to be constant,
The developing device , wherein the plurality of ultrafiltration filters are ultrafiltration filters having a molecular weight cut-off of 1000 or more .
請求項1に記載する現像装置を用い、前記現像槽において、前記リザーブタンクから送られた現像液(新液+濾液)を用いて、被現像体の現像処理を行うことを特徴とする現像方法。   A developing method comprising: using the developing device according to claim 1, and performing development processing of a developing object using a developing solution (new solution + filtrate) sent from the reserve tank in the developing tank. .
JP2008325371A 2008-12-22 2008-12-22 Developing apparatus and developing method Expired - Fee Related JP5477531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008325371A JP5477531B2 (en) 2008-12-22 2008-12-22 Developing apparatus and developing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008325371A JP5477531B2 (en) 2008-12-22 2008-12-22 Developing apparatus and developing method

Publications (2)

Publication Number Publication Date
JP2010145918A JP2010145918A (en) 2010-07-01
JP5477531B2 true JP5477531B2 (en) 2014-04-23

Family

ID=42566389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008325371A Expired - Fee Related JP5477531B2 (en) 2008-12-22 2008-12-22 Developing apparatus and developing method

Country Status (1)

Country Link
JP (1) JP5477531B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110577290A (en) * 2018-06-11 2019-12-17 江苏久吾高科技股份有限公司 method and device for recycling development waste liquid
CN110668529A (en) * 2018-07-02 2020-01-10 陈俊吉 Developing solution regeneration system and positive and negative photoresist separation device thereof
KR102406632B1 (en) * 2020-04-08 2022-06-08 주식회사 에이치에스테크놀로지 System for removing photoresist and recycling filter and mixing and method performing thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165835A (en) * 1981-04-06 1982-10-13 Konishiroku Photo Ind Co Ltd Filter for automatically developing apparatus for photographic sensitive material
JP3355837B2 (en) * 1993-12-27 2002-12-09 三菱化学株式会社 Method for regenerating developer for photosensitive material and apparatus for developing photosensitive material
JP2004101999A (en) * 2002-09-11 2004-04-02 Mitsubishi Chemical Engineering Corp Apparatus for recycling and supplying developer solution
TWI371651B (en) * 2003-10-28 2012-09-01 Toppan Printing Co Ltd Developing apparatus, developing method, and method for circulating developing solution
JP4696593B2 (en) * 2005-02-25 2011-06-08 凸版印刷株式会社 Method of using ultrafiltration filter and wet developing device with ultrafiltration filter regeneration mechanism
JP5211431B2 (en) * 2006-03-10 2013-06-12 凸版印刷株式会社 Development device

Also Published As

Publication number Publication date
JP2010145918A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP4696593B2 (en) Method of using ultrafiltration filter and wet developing device with ultrafiltration filter regeneration mechanism
TW200532385A (en) Method and system for immersion lithography process
JP5477531B2 (en) Developing apparatus and developing method
JP2001120963A (en) Method for washing membrane
KR100386438B1 (en) Apparatus and method for recovering photoresist developers and strippers
JP2011141563A (en) Developing device of optical element
WO2019181339A1 (en) Processing liquid supply device, substrate processing device, and processing liquid supply method
JP7269245B2 (en) Reduced flow flexographic printing processing system
JP5428324B2 (en) Developing apparatus and developing method
JP5477532B2 (en) Developing apparatus and developing method
JPWO2010016214A1 (en) Glass substrate recycling equipment
JP2005260179A (en) Filter and semiconductor processing apparatus
KR100613401B1 (en) Developing system for color filter
JP5211431B2 (en) Development device
JP5287459B2 (en) Method for cleaning ultrafiltration filter and developing device using ultrafiltration filter
JP2011192775A (en) Development apparatus
JP2012244096A (en) Development apparatus
JP2009258146A (en) Developing device and developing solution circulation method
JP2010181603A (en) Developing device
JP2012244097A (en) Development apparatus
KR101308398B1 (en) Device for collecting chemical and method to collect chemical thereof
JP2011002630A (en) Developing device
JP2007094061A (en) Spinless coating device having preliminary discharging part and method for manufacturing color filter using same
JP2006267817A (en) Developing device and developing method
JP4665498B2 (en) Developing apparatus and developing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140128

R150 Certificate of patent or registration of utility model

Ref document number: 5477531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees