JP5475341B2 - Multi-wavelength simultaneous absorption spectroscopy apparatus and multi-wavelength simultaneous absorption spectroscopy method - Google Patents
Multi-wavelength simultaneous absorption spectroscopy apparatus and multi-wavelength simultaneous absorption spectroscopy method Download PDFInfo
- Publication number
- JP5475341B2 JP5475341B2 JP2009150148A JP2009150148A JP5475341B2 JP 5475341 B2 JP5475341 B2 JP 5475341B2 JP 2009150148 A JP2009150148 A JP 2009150148A JP 2009150148 A JP2009150148 A JP 2009150148A JP 5475341 B2 JP5475341 B2 JP 5475341B2
- Authority
- JP
- Japan
- Prior art keywords
- interference signal
- unit
- light
- cavity
- frequency comb
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Spectrometry And Color Measurement (AREA)
Description
本発明は、高感度かつ周波数の検出確度の高い多波長同時吸収分光装置に関する。 The present invention relates to a multi-wavelength simultaneous absorption spectrometer having high sensitivity and high frequency detection accuracy.
近年、光周波数コムの周波数を安定化する手法が提案および実現されており、特に、キャリアエンベロープオフセット(以下「CEO」という。)ロックすることによって光周波数コムの波長を安定化した光周波数コム光源が提案されている(特許文献1、非特許文献1〜6参照)。このような、光周波数コムの各モードの波長が正確に定まった光周波数コム光源は、高精度な周波数標準および関連する基礎物理だけではなく、通信、精密計測、量子情報通信などの分野へ応用される技術であると期待されている。
In recent years, methods for stabilizing the frequency of an optical frequency comb have been proposed and realized, and in particular, an optical frequency comb light source in which the wavelength of the optical frequency comb is stabilized by locking a carrier envelope offset (hereinafter referred to as “CEO”). Has been proposed (see
精密計測の分野においては、このCEOロックした光周波数コム光源を用いた超高分解能である吸収分光法による高感度な計測技術が提案されている(非特許文献7,8)。この技術は、光周波数コム光源をキャピタルリングダウン分光法(以下、「CRDS法」という。)に適用した吸収分光法による計測技術である。この光周波数コム光源を利用したCRDS法によると、得られるデータは、高感度で取得でき、かつ、周波数軸上に高確度であるといった特徴がある。 In the field of precision measurement, a highly sensitive measurement technique based on absorption spectroscopy with ultra-high resolution using this CEO-locked optical frequency comb light source has been proposed (Non-patent Documents 7 and 8). This technique is a measurement technique using absorption spectroscopy in which an optical frequency comb light source is applied to capital ring-down spectroscopy (hereinafter referred to as “CRDS method”). According to the CRDS method using this optical frequency comb light source, the obtained data is characterized in that it can be acquired with high sensitivity and has high accuracy on the frequency axis.
このCRDS法は、2枚の高反射率を有するミラーで構成されるキャビティ内に閉じこめられた光の強度減衰を観測することにより、キャビティ内にある分子の吸収を測定する高感度な吸収分光法である。このキャビティの構成例を図6に示す。
図6に示すような高反射率のミラーを2枚対向させたキャビティ内の一方からパルス光を入射すると、キャビティ内に入った光は、2枚のミラー間を少しずつその強度を減衰させながらキャビティ内の往復を繰り返す。このとき、光がミラーにより反射される際、その光の一部はミラーの外に漏れ出す。CRDS法は、この漏れ出た光の波形を計測することにより、高感度な吸収分光計測を実現する方法である。
This CRDS method is a high-sensitivity absorption spectroscopy that measures the absorption of molecules in a cavity by observing the intensity attenuation of light confined in the cavity composed of two high-reflectance mirrors. It is. A configuration example of this cavity is shown in FIG.
When pulse light is incident from one of the cavities in which two high-reflectivity mirrors as shown in FIG. 6 face each other, the light entering the cavity gradually attenuates its intensity between the two mirrors. Repeat round trip in the cavity. At this time, when the light is reflected by the mirror, a part of the light leaks out of the mirror. The CRDS method is a method for realizing a highly sensitive absorption spectroscopy measurement by measuring the leaked light waveform.
CRDS法について、具体的な数式を示しながら詳細に説明する。
ここで、キャビティ内に光を吸収する物質が存在していない、すなわち真空中の場合、ミラーから反射される際に漏れ出る光(以下、「漏れ光」という。)の強度波形は、
I(t)=I0exp(−t/τ0)
と、表される。ここで、I0は光の初期振幅、τ0はキャビティ内に閉じこめられた光の減衰寿命(以下、「リングダウンタイム」という。)である。
次に、キャビティ内に光を吸収する物質が、僅かにでも存在している場合、漏れ光の強度波形は、
I(t)=I0exp{−(1/τ0+σ*n*c)t}
と、表される。ここで、σはキャビティ内に存在する光の吸収物質の吸収断面積(または散乱断面積)、nはこの吸収物質の数密度、cは光速である。
これらの式から、吸収物質が存在する際のリングダウンタイムの逆数と真空中のリングダウンタイムの逆数との差、すなわち(σ*n*c)は、キャビティ内で光吸収した物質の濃度に比例する。したがって、測定対象物の濃度の定量化を実現することができる。
The CRDS method will be described in detail with specific mathematical expressions.
Here, when there is no substance that absorbs light in the cavity, that is, in a vacuum, the intensity waveform of light leaking when reflected from the mirror (hereinafter referred to as “leakage light”) is:
I (t) = I 0 exp (−t / τ 0 )
It is expressed. Here, I 0 is the initial amplitude of light, and τ 0 is the decay lifetime of light confined in the cavity (hereinafter referred to as “ring-down time”).
Next, if there is even a slight amount of light absorbing material in the cavity, the intensity waveform of the leaked light is
I (t) = I 0 exp {− (1 / τ 0 + σ * n * c) t}
It is expressed. Here, σ is the absorption cross section (or scattering cross section) of the light absorbing material present in the cavity, n is the number density of the absorbing material, and c is the speed of light .
From these equations, the difference between the reciprocal of the ring-down time when the absorbing material is present and the reciprocal of the ring-down time in vacuum, ie, (σ * n * c), is the concentration of the light-absorbed material in the cavity. Proportional. Therefore, quantification of the concentration of the measurement object can be realized.
しかしながら、非特許文献7または8に開示されている従来のCEOロックした光周波数コム光源を用いたCRDS法では、リングダウンタイムと測定対象物質固有の減衰係数(光の吸収断面積または散乱断面積、キャビティ内での数密度)とから、キャビティ内に入射された光の減衰寿命が決定される。このために、物質固有の減衰係数に影響されて吸収分光法による計測精度が悪化してしまうといった問題があった。すなわち、物質固有の減衰係数が大きくなるにつれて、キャビティ内の光の減衰寿命が短縮されていき、漏れ光の波形観測が困難となり、計測精度を悪化させてしまう。
本発明は、上述の問題を解決するためになされたものであり、物質固有の減衰係数による影響を軽減して計測精度を向上させた多波長同時吸収分光装置を提供することを目的とする。
However, in the CRDS method using the conventional CEO-locked optical frequency comb light source disclosed in Non-Patent Document 7 or 8, the ring-down time and the attenuation coefficient (light absorption cross section or scattering cross section of the measurement target substance) , Number density in the cavity), the decay lifetime of light incident in the cavity is determined. For this reason, there is a problem that the measurement accuracy by the absorption spectroscopy is deteriorated due to the attenuation coefficient inherent to the substance. That is, as the attenuation coefficient inherent to the substance increases, the attenuation lifetime of the light in the cavity is shortened, making it difficult to observe the leaked light waveform and degrading the measurement accuracy.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a multi-wavelength simultaneous absorption spectroscopic device in which the measurement accuracy is improved by reducing the influence of the attenuation coefficient inherent to a substance.
本発明は、上記目的を達成するために、キャリアエンベロープオフセット(CEO)ロックされた光周波数コム光源部と、この光周波数コム光源から出力されるレーザ光を2つのレーザ光へ分岐する分岐部と、この分岐部によって分岐されたレーザ光のうち一方のレーザ光をプローブ光として測定対象物を設置するキャビティに入射してこのプローブ光の出力波形を抽出するプローブ光抽出部と、前記分岐部によって分岐されたレーザ光のうち他方のレーザ光をリファレンス光として周波数をシフトし、この周波数をシフトしたリファレンス光を前記測定対象物を設置するキャビティと同じ構成でかつ真空状態のキャビティに入射してリファレンス光の出力波形を抽出するリファレンス光抽出部と、前記プローブ光抽出部によって抽出されたプローブ光と前記リファレンス光抽出部によって抽出されたリファレンス光を干渉させる干渉信号導出部と、この干渉信号導出部によって測定された前記干渉信号の光周波数コムのモード毎の光強度を導出する干渉信号調整部とを設けた。 To achieve the above object, the present invention provides a carrier envelope offset (CEO) -locked optical frequency comb light source unit, and a branching unit that branches laser light output from the optical frequency comb light source into two laser beams. A probe light extraction unit for extracting one of the laser beams branched by the branching unit as a probe light and entering the cavity where the measurement object is placed, and extracting an output waveform of the probe light; and the branching unit Of the branched laser light, the other laser light is used as a reference light, the frequency is shifted, and the reference light whose frequency is shifted is incident on the vacuum cavity with the same configuration as the cavity in which the measurement object is installed. A reference light extraction unit that extracts an output waveform of light, and extracted by the probe light extraction unit An interference signal deriving unit for causing interference light to interfere with the reference light extracted by the reference light extracting unit, and an interference signal for deriving the light intensity of each mode of the optical frequency comb of the interference signal measured by the interference signal deriving unit And an adjustment unit.
また、本発明の多波長同時吸収分光装置の前記リファレンス光抽出部は、前記リファレンス光を所定の周波数だけ位相変調することでリファレンス光における光周波数コムの各周波数を所定の周波数だけ周波数シフトする周波数シフタ部と、前記プローブ光抽出部のキャビティと同一のキャビティリングタイムを持つキャビティ部とを備える構成としても良い。 Further, the reference light extraction unit of the multi-wavelength simultaneous absorption spectroscopic device of the present invention performs a frequency shift of each frequency of the optical frequency comb in the reference light by a predetermined frequency by phase-modulating the reference light by a predetermined frequency. It is good also as a structure provided with a shifter part and the cavity part which has the same cavity ring time as the cavity of the said probe light extraction part.
また、本発明の多波長同時吸収分光装置の前記干渉信号導出部は、前記プローブ光抽出部によって出力されたプローブ光と前記リファレンス光抽出部によって出力されたリファレンス光を合波した後に、第1の干渉信号と第2の干渉信号とに再分岐することを特徴としても良い。 Further, the interference signal deriving unit of the multi-wavelength simultaneous absorption spectroscopic device of the present invention first combines the probe light output by the probe light extraction unit and the reference light output by the reference light extraction unit, The signal may be re-branched into the second interference signal and the second interference signal.
また、本発明の多波長同時吸収分光装置の前記干渉信号調整部は、前記第1および第2の干渉信号を光周波数コムのモード毎に分光する干渉信号分光部と、この干渉信号分光部によって光周波数コムのモード毎に分光された前記第1および第2の干渉信号同士の差分を検出する干渉信号強度検知部とを備える構成としても良い。 Further, the interference signal adjusting unit of the multi-wavelength simultaneous absorption spectroscopic device of the present invention includes an interference signal spectroscopic unit that splits the first and second interference signals for each mode of the optical frequency comb, and the interference signal spectroscopic unit. It is good also as a structure provided with the interference signal intensity | strength detection part which detects the difference of the said 1st and 2nd interference signal disperse | distributed for every mode of the optical frequency comb.
本発明によると、CEOロックされた光周波数コム光源をプローブ光とリファレンス光とに2分岐して、測定対象物にCRDS法によって吸収分光させたプローブ光と周波数シフトさせた後に真空状態のキャビティから出力されるリファレンス光とを干渉させ、分岐された干渉信号の差分を導出することによって、測定対象物の減衰時間を引き延ばすことができ、従来のCRDS法では測定困難であった減衰寿命の短い物質に対しても、CEOロックされた光周波数コム光源を利用した多波長同時吸収分光による精密分光測定を可能にする。 According to the present invention, a CEO-locked optical frequency comb light source is bifurcated into a probe light and a reference light, and frequency-shifted with the probe light that is subjected to absorption spectroscopy by the CRDS method on the object to be measured. By interfering with the output reference light and deriving the difference between the branched interference signals, the attenuation time of the measurement object can be extended, and a material with a short attenuation life that has been difficult to measure with the conventional CRDS method In addition, it enables precise spectroscopic measurement by multi-wavelength simultaneous absorption spectroscopy using a CEO-locked optical frequency comb light source.
以下、図面を参照して本発明の実施の形態について詳細に説明する。
なお、以下に説明する本発明の実施の形態にかかる多波長同時吸収分光装置は、本発明の実施の形態の一例であり、具体的な構成はこの実施の形態に限られるものではない。すなわち、本発明の趣旨を逸脱しない範囲での設計の変更は、本発明に含まれるものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
A multi-wavelength simultaneous absorption spectrometer according to an embodiment of the present invention described below is an example of an embodiment of the present invention, and a specific configuration is not limited to this embodiment. In other words, design changes within the scope of the present invention are included in the present invention.
[第1の実施の形態]
本発明の第1の実施の形態にかかる多波長同時吸収分光装置は、光周波数コム安定化光源を用いてキャビティリングダウン分光法(CRDS法)によって精密分光測定を実現するものである。
図1に示すように、本実施の形態にかかる多波長同時吸収分光装置10は、光周波数コム光源部110と、分岐部120と、プローブ光抽出部130と、リファレンス光抽出部140と、干渉信号導出部150と、干渉信号調整部160とから構成されている。
[First Embodiment]
The multi-wavelength simultaneous absorption spectrometer according to the first embodiment of the present invention realizes precise spectroscopic measurement by cavity ring-down spectroscopy (CRDS method) using an optical frequency comb stabilized light source.
As shown in FIG. 1, the multi-wavelength
光周波数コム光源部110は、受動モード同期レーザの繰り返し周波数がGHz以上でキャリアエンベロープオフセット(CEO)ロックされた光周波数コム光源である。
例えば、CW(連続光)光源に位相変調と波長分散を与えてパルス列を発生するCEOロック光周波数コム安定化光源を用いることが望ましい(特許文献1参照)。
The optical frequency comb
For example, it is desirable to use a CEO-locked optical frequency comb stabilized light source that generates a pulse train by applying phase modulation and wavelength dispersion to a CW (continuous light) light source (see Patent Document 1).
分岐部120は、光周波数コム光源部110から出力されるレーザ光を2つのレーザ光へ分岐するビームスプリッタである。例えば、レーザ光を分岐するビームスプリッタは、光カプラを用いることによって実現される。
The branching
プローブ光抽出部130は、分岐部120によって分岐されたレーザ光のうち、一方のレーザ光をプローブ光として測定対象物を設置する光キャビティ131に入射し、この光キャビティ131からのプローブ光の出力波形、すなわち光キャビティ131からの漏れ光の波形を抽出する。
リファレンス光抽出部140は、分岐部120によって分岐されたレーザ光のうち、他方のレーザ光を周波数シフタ141によって周波数シフトし、この周波数シフトしたレーザ光をリファレンス光としてプローブ光抽出部130の光キャビティ131と同一の構成でかつ真空状態の光キャビティ141に入射し、リファレンス光の出力波形(リファレンス光の漏れ光の波形)を抽出する。
The probe
The reference
干渉信号導出部150は、プローブ光抽出部130によって抽出された光キャビティ131から出力されるプローブ光とリファレンス光抽出部140によって抽出された光キャビティ141から出力されるリファレンス光とを合波して、この合波した干渉信号から再び第1の干渉信号と第2の干渉信号とに分岐する。
The interference
干渉信号調整部160は、干渉信号導出部150によって導出された第1の干渉信号と第2の干渉信号とから、干渉信号の信号対雑音比(SNR)を調整して、干渉信号の光強度を導出する。
この干渉信号調整部160は、光強度調整部161と、干渉信号分光部162と、干渉信号強度検知部163とから構成されている。
The interference
The interference
光強度調整部161は、干渉信号導出部150によって導出された第1の干渉信号と第2の干渉信号との光強度比を所定の値となるように光強度を調整する。
干渉信号分光部162は、光強度調整部161によって光強度を調整された第1および第2の干渉信号について、光周波数コムのモード毎に分光する。
干渉信号強度検知部163は、干渉信号分光部162によって光周波数コムのモード毎に分光された第1および第2の干渉信号を、光周波数コムの同一モード毎に電気信号を検出してこの電気信号の差分を数値化する。
The light intensity adjustment unit 161 adjusts the light intensity so that the light intensity ratio between the first interference signal and the second interference signal derived by the interference
The interference signal
The interference signal intensity detecting unit 163 detects the first and second interference signals separated by the interference signal
なお、本実施の形態にかかる多波長同時吸収分光装置10の構成要素は、CPU(中央演算装置)や、メモリ、インターフェースを備えたコンピュータに、コンピュータプログラムをインストールすることにより、上述した多波長同時吸収分光装置10に搭載されたコンピュータ(図示せず)のハードウェア資源と上記コンピュータプログラム(ソフトウェア)とが協働して実現される。
The multi-wavelength simultaneous absorption
次に、プローブ光抽出部130によって抽出される光キャビティ131からの漏れ光の波形とリファレンス光抽出部140によって抽出される光キャビティ141からの漏れ光の波形とに基づいて導出される干渉信号ついて説明すると同時に、本実施の形態にかかる多波長同時吸収分光装置の動作について説明する。
Next, an interference signal derived based on the waveform of leakage light from the optical cavity 131 extracted by the probe
光キャビティ131,141は、ともに同一の構成を有しており、例えば、図6に示すような高反射率ミラー(反射率99.9%)を対向させた構成とする。このとき、光キャビティ131の内部には測定対象物である試料(気体や固体など)が設置され、光キャビティ141の内部は真空状態である。
光周波数コム光源部110から出力されたレーザ光がそれぞれの光キャビティに入射されると、光キャビティからの漏れ光をプローブ光抽出部130とリファレンス光抽出部140は観測して、それぞれの波形を抽出する。これらの波形は、式(1)、式(2)によって表される。
すなわち、プローブ光抽出部130によって抽出される光キャビティ131からの漏れ光の波形は、以下のように式(1)で表される。
The optical cavities 131 and 141 have the same configuration. For example, a high reflectivity mirror (reflectance 99.9%) as shown in FIG. At this time, a sample (gas, solid, or the like) that is an object to be measured is placed inside the optical cavity 131, and the inside of the optical cavity 141 is in a vacuum state.
When the laser light output from the optical frequency comb
That is, the waveform of the leaked light from the optical cavity 131 extracted by the probe
E1exp{−(1/2)(1/τ0+σ*n*c)t}sin(2πfst+φs) 式(1)
ここで、fsはプローブ光の周波数、φsは初期位相を示す。
E 1 exp {- (1/2) (1 /
Here, f s indicates the frequency of the probe light, and φ s indicates the initial phase.
一方、リファレンス光抽出部140によって抽出される光キャビティ141からの漏れ光の波形は、以下のように式(2)で表される。
On the other hand, the waveform of the leakage light from the optical cavity 141 extracted by the reference
E2exp(−t/2τ0)sin(2πfrt+φr) 式(2)
ここで、frはリファレンス光の周波数、φrは初期位相を示す。
E 2 exp (−t / 2τ 0 ) sin (2πf r t + φ r ) Equation (2)
Here, f r represents the frequency of the reference light, and φ r represents the initial phase.
また、リファレンス光は周波数シフタ141によって周波数をシフトされているので、リファレンス光のN番目の光周波数コムの周波数fnは、fn=N*frep+f0±fb(frepは繰り返し周波数、fbは周波数シフト量)と表される。 Further, since the frequency of the reference light is shifted by the frequency shifter 141, the frequency f n of the Nth optical frequency comb of the reference light is f n = N * f rep + f 0 ± f b (f rep is the repetition frequency) , F b are expressed as frequency shift amount).
干渉信号導出部150は、入力された式(1),式(2)で表されるそれぞれの漏れ光を合波する。この2つの漏れ光を合波させる際、干渉信号導出150は、2つの漏れ光にπ/2の位相差を発生させる。2つの漏れ光を合波した後に、干渉信号導出部150は、合波した漏れ光を再び2つに分岐して、第1の干渉信号と第2の干渉信号とを出力する。
干渉信号導出部150によって再び2分岐されたレーザパルス、すなわち第1の干渉信号と第2の干渉信号は、それぞれ以下のように式(3),(4)と表される。
The interference
The laser pulses branched again by the interference
E1exp{-(1/2)(1/τ0+σ*n*c)t}sin(2πfst+φs)
+E2exp(-t/2τ0)sin(2πfrt+φr+π/2) 式(3)
E1exp{-(1/2)(1/τ0+σ*n*c)t}sin(2πfst+φs+π/2)
+E2exp(-t/2τ0)sin(2πfrt+φr) 式(4)
E 1 exp {- (1/2) (1 /
+ E 2 exp (−t / 2τ 0 ) sin (2πf r t + φ r + π / 2) Equation (3)
E 1 exp {- (1/2) (1 /
+ E 2 exp (−t / 2τ 0 ) sin (2πf r t + φ r ) (4)
ここで、式(1)と式(2)で表されるそれぞれの漏れ光を合波させる際には、2つの漏れ光の間にはπ/2の位相差を与える。
また、式(3)で表される第1の干渉信号は、式(1)で表される漏れ光に、式(2)で表される漏れ光を干渉させたもの、式(4)で表される第2の干渉信号は、式(2)で表される漏れ光に、式(1)で表される漏れ光を干渉させたものと考えることができる。
Here, when the leakage lights represented by the expressions (1) and (2) are combined, a phase difference of π / 2 is given between the two leakage lights.
Further, the first interference signal represented by the expression (3) is obtained by causing the leakage light represented by the expression (1) to interfere with the leakage light represented by the expression (1). It can be considered that the second interference signal represented is obtained by causing the leakage light represented by the equation (1) to interfere with the leakage light represented by the equation (2).
干渉信号導出部150によって出力された第1の干渉信号と第2の干渉信号との分岐比を所定の値にするため、干渉信号調整部160の光強度調整部161は、第1および第2の干渉信号の光強度を調整する。このときの第1の干渉信号と第2の干渉信号との分岐比は1:1が好ましいので、光強度調整部161は、分岐比が1:1となるように、それぞれの干渉信号の光強度を調整する。例えば減光フィルタなどを用いて光強度の自動調整をするなどしても良い。
In order to set the branching ratio between the first interference signal and the second interference signal output by the interference
光強度を調整された第1および第2の干渉信号は、干渉信号分光部162によって光周波数コムのモード毎に分光される。例えば、光周波数コムモード分離用光学素子であるアレイ導波路回折格子などを使用して、繰り返し周波数frep毎に周波数軸上に等間隔に並ぶ光周波数コムの1本1本を分離する。
The first and second interference signals whose light intensities are adjusted are split by the interference signal
次に、干渉信号強度検知部162は、第1および第2の干渉信号それぞれについて光周波数コムのモード毎に分離された光強度を検出する。このとき、光周波数コムのモード毎に周波数シフタ141による周波数シフト量fbの周波数の電気信号が検出される。
干渉信号強度検知部162は、検出した第1および第2の干渉信号の光周波数コムの同一モード毎の電気信号の差分を導出して数値化する。この数値化された第1および第2の干渉信号の差分は、干渉信号の光強度Ibに比例し、式(5)のように表される。
Next, the interference
The interference signal
Ib∝E1E2exp{-(1/τ0+σ*n*c/2)t}sin(2πfb+φb) 式(5) I b ∝E 1 E 2 exp {− (1 / τ 0 + σ * n * c / 2) t} sin (2πf b + φ b ) Equation (5)
式(5)において、φbは、φsとφrとの初期位相差である。
従来のレーザ光源を用いた場合では、周波数シフト量fbの揺らぎなどの影響により、式(5)から導出される光強度Ibの精度にばらつきが生じてしまうが、本実施の形態においては、CEOロックされた光周波数コム光源を用いることによって、式(5)から高精度に光強度Ibを導出できる。
さらに、式(5)に示すように、光キャビティ内の光の減衰寿命を決定する物質固有の減衰係数である(σ*n*c)の値が、従来のCRDS法よりも1/2となっており、光キャビティ内の光の減衰時間を引き延ばしていることが分かる。
In Expression (5), φ b is an initial phase difference between φ s and φ r .
In the case of using a conventional laser light source, the accuracy of the light intensity I b derived from the equation (5) varies due to the influence of fluctuation of the frequency shift amount f b , but in this embodiment, By using a CEO-locked optical frequency comb light source, the light intensity I b can be derived with high accuracy from the equation (5).
Furthermore, as shown in Equation (5), the value of (σ * n * c), which is a material-specific attenuation coefficient that determines the attenuation lifetime of light in the optical cavity, is ½ that of the conventional CRDS method. It can be seen that the light decay time in the optical cavity is extended.
ここで、式(5)から導出される干渉信号の光強度Ibを図2に示す。図2は、光キャビティのリング長が1m,反射率99.9%,σ*n*c=5*10-2s-1(σ:試料の吸収断面積、n:試料の数密度、c:光速)であるとき、この光キャビティのミラーの反射だけで観測される漏れ光の光強度を(a)に、本実施の形態におけるプローブ光とリファレンス光を用いた場合の漏れ光の光強度を(b)に示す。また、従来のCRDS法で観測される漏れ光の光強度を(c)に示す。
図2の(b)、(c)から明らかなように、(b)で示される測定結果の方が漏れ光の光強度の減衰時間を引き延ばしており、高感度な精密分光測定であることが分かる。
Here, the optical intensity I b of the interference signal derived from the equation (5) is shown in FIG. Figure 2 is a ring length of the optical cavity is 1 m, the reflectivity 99.9%, σ * n * c = 5 * 10 -2 s - 1 (σ: absorption cross-section of the sample, n: number density of the sample, c : Light speed), the light intensity of the leaked light observed only by the reflection of the mirror of this optical cavity is (a), and the light intensity of the leaked light when the probe light and the reference light in this embodiment are used. Is shown in (b). In addition, the light intensity of the leakage light observed by the conventional CRDS method is shown in (c).
As apparent from FIGS. 2B and 2C, the measurement result shown in FIG. 2B extends the decay time of the light intensity of the leaked light, and is a highly sensitive precision spectroscopic measurement. I understand.
このように、CEOロックされた光周波数コム光源をプローブ光とリファレンス光とに2分岐して、測定対象物にCRDS法によって吸収分光させたプローブ光と周波数シフトさせた後に真空状態のキャビティから出力されるリファレンス光とを干渉さた干渉信号を導出した後に再度干渉信号を分岐する。その後、この分岐した干渉信号の差分を導出することによって、測定対象物の減衰時間を引き延ばすことができる。具体的には、式(5)から明確であるように、物質固有の減衰係数であるσ*n*cの値が、従来のCRDS法のそれよりも半減していることが分かる。
したがって、従来のCRDS法では測定感度が悪化してしまうような減衰係数の大きい、すなわち光キャビティ内の光の減衰寿命が短くなってしまう物質に対しても、減衰係数による測定感度への影響を軽減することができ、CEOロックされた光周波数コム光源を利用した多波長同時吸収分光による精密分光測定を可能にする。
In this way, the CEO-locked optical frequency comb light source is bifurcated into the probe light and the reference light, and is output from the cavity in the vacuum state after frequency-shifting with the probe light absorbed by the CRDS method on the measurement object. After deriving an interference signal obtained by interfering with the reference light, the interference signal is branched again. Thereafter, by deriving the difference between the branched interference signals, the attenuation time of the measurement object can be extended. Specifically, as is clear from the equation (5), it can be seen that the value of σ * n * c, which is a material specific attenuation coefficient, is halved from that of the conventional CRDS method.
Therefore, even for a substance having a large attenuation coefficient that would deteriorate the measurement sensitivity in the conventional CRDS method, that is, a substance that shortens the attenuation lifetime of light in the optical cavity, the influence of the attenuation coefficient on the measurement sensitivity is affected. It can be mitigated and enables precise spectroscopic measurement by multi-wavelength simultaneous absorption spectroscopy using a CEO-locked optical frequency comb light source.
[第2の実施の形態]
図3は、本発明の第2実施の形態にかかる多波長同時吸収分光装置の構成を示す図である。本実施の多波長同時吸収分光装置は、第1の実施の形態において説明した多波長同時吸収分光装置10の干渉信号導出部および干渉信号調整部に遅延機構や光路切替機構などを含んだ光学構成を構成要素として加え、さらに、測定感度特性を向上させるために光学機構などを制御する機能を有するコンピュータを備えるものである。
図3に示すように、本実施の形態にかかる多波長同時吸収分光装置20は、CEOロックした光周波数コム光源部110と、分岐部120と、プローブ光抽出部130と、リファレンス光抽出部140と、干渉信号導出部250と、干渉信号調整部260とから構成されている。
[Second Embodiment]
FIG. 3 is a diagram showing a configuration of a multi-wavelength simultaneous absorption spectrometer according to the second embodiment of the present invention. The multi-wavelength simultaneous absorption spectroscopic device of this embodiment has an optical configuration in which the interference signal deriving unit and the interference signal adjusting unit of the multi-wavelength simultaneous
As shown in FIG. 3, the multi-wavelength
そのうち、干渉信号導出部250は、遅延機構251(例えば、ミラーと1軸ステージで構成)と、光路切替機構252a,252b(例えば、フリッパー)と、光検出器253と、合波する手段(ビームスプリッタ)254とから構成されている。
また、干渉信号調整部260は、可変ND(Neutral Density)フィルタ261−1a,261−1bと光路切替機構261−2a,261−2b(例えば、フリッパー)と光検出器261−3とからなる光強度調整部261と、光バンドパスフィルタ262−1a,262−1bと光周波数コムモード分離部(光学素子と光検出器)262−2a,262−2bと電気信号バンドパスフィルタ262−3a,262−3bとからなる干渉信号分光部262と、コンピュータによって機能を実現する干渉信号強度検知部263とから構成される。
Among them, the interference
Further, the interference
図4は、本発明のCEOロック光周波数コム光源を用いた吸収分光の測定感度特性をさらに高める為に、追加で採用することのできる、コンピュータ263の構成例を示すブロック図である。
コンピュータ263は、光周波数コムモード分離部262−2a,262−2bの光検出器から、同一周波数の光周波数コムごとに電気信号の差分をとり、数値化する。
干渉信号のSNRを最大にするため、はじめに光路切替機構261−1a,261−2bを使用して、ビームスプリッタ254で2分岐したレーザ強度測定を行う。
その後、計測感度特性制御部263−2を使用して遅延機構251を自動調整して干渉信号解析部263−1で算出した信号を最大化する。
続いて、図3の光学構成の場合には可変NDフィルタ261−1a,261−1bを、図4の光学構成の場合には1/2波長板361−1a,361−1bを調整し、光検出器261−3で検出される強度比を均等に自動調整する。
FIG. 4 is a block diagram showing a configuration example of a computer 263 that can be additionally employed to further improve the measurement sensitivity characteristic of absorption spectroscopy using the CEO-locked optical frequency comb light source of the present invention.
The computer 263 takes the difference of the electrical signal for each optical frequency comb of the same frequency from the optical detectors of the optical frequency comb mode separation units 262-2a and 262-2b, and digitizes the difference.
In order to maximize the SNR of the interference signal, first, laser intensity measurement branched into two by the
Thereafter, the measurement sensitivity characteristic control unit 263-2 is used to automatically adjust the
Subsequently, the variable ND filters 261-1a and 261-1b are adjusted in the case of the optical configuration of FIG. 3, and the half-wave plates 361-1a and 361-1b are adjusted in the case of the optical configuration of FIG. The intensity ratio detected by the detector 261-3 is automatically adjusted evenly.
[第3の実施の形態]
図5は、本発明の第3の実施の形態にかかる多波長同時吸収分光装置の構成を示す図である。本実施の形態にかかる多波長同時吸収分光装置は、第2の実施の形態において説明した多波長同時吸収分光装置の構成において、レーザ光を合波して再分岐する手段に偏光ビームスプリッタを利用して干渉信号を導出することとしたものである。
[Third Embodiment]
FIG. 5 is a diagram showing a configuration of a multi-wavelength simultaneous absorption spectrometer according to the third embodiment of the present invention. The multi-wavelength simultaneous absorption spectrometer according to this embodiment uses a polarization beam splitter as means for combining and re-branching laser light in the configuration of the multi-wavelength simultaneous absorption spectrometer described in the second embodiment. Thus, an interference signal is derived.
図5に示すように、多波長同時吸収分光装置30は、2分岐されていたレーザパルスを同時刻に偏光ビームスプリッタ354で再び合波して、再び2分岐する。ここで、分岐比を1:1にするために、1/2波長板361−1a,361−1bとコンピュータ263とでプローブ光強度の自動調整を行う。干渉信号は各光周波数コムで検出され、周波数シフタ141での周波数シフト量fbの周波数で信号検出されるため、電気信号バンドパスフィルタ262−3a,262−3bを使用して、fb以外の周波数成分を除去する。
コンピュータ263に入力された電気信号は2入力ポートの同一周波数の光周波数コムごとに電気信号の差分をとり、それを数値化する。
As shown in FIG. 5, the multi-wavelength simultaneous
The electric signal input to the computer 263 takes the difference of the electric signal for each optical frequency comb of the same frequency at the two input ports and digitizes it.
このように、偏光ビームスプリッタを用いると、検出ノイズレベルが通常のCRDS法よりも50dB程度低減するため、干渉信号の検出における信号対雑音比(SNR)の改善がさらに向上する。
したがって、減衰時間を引き延ばし、かつ、SNRの向上による高感度な吸収分光による精密測定が実現できる。
As described above, when the polarization beam splitter is used, the detection noise level is reduced by about 50 dB as compared with the normal CRDS method, so that the improvement of the signal-to-noise ratio (SNR) in the detection of the interference signal is further improved.
Therefore, it is possible to realize precise measurement by high-sensitivity absorption spectroscopy by extending the decay time and improving the SNR.
このような多波長同時吸収分光装置は、CEOロックされた光周波数コム安定化光源を用いた長高分解能吸収分光法による高感度計測装置に利用できる。 Such a multi-wavelength simultaneous absorption spectroscopic apparatus can be used for a high-sensitivity measurement apparatus based on long-high-resolution absorption spectroscopy using a CEO-locked optical frequency comb stabilized light source.
10,20,30…多波長同時吸収分光装置、110…光周波数コム光源部、120分岐部、130…プローブ光抽出部、131…光キャビティ(試料設置用)、140…リファレンス光抽出部、141…周波数シフタ、142…光キャビティ(真空状態)、150250,350…干渉信号導出部、160,260,360…干渉信号調整部、161,261,361…光強度調整部、162,262…干渉信号分光部、163,263…干渉信号強度検知部、251…遅延機構、252a,252b,261−2a,261−2b…光路切替機構、253,261−3…光検出器、254…ビームスプリッタ(光カプラ)、261−1a,261−1b…可変NDフィルタ、262−1a,262−ab…光バンドパスフィルタ、262−2a,262−2b…光周波数コムモード分離器(光学素子と光検出器)、262−3a,262−3b…電気信号バンドパスフィルタ、263−1…干渉信号解析部、263−2…計測感度特性制御部、354…偏光ビームスプリッタ、361−1a,361−1b…1/2波長板、60…光キャビティ、61高反射率ミラー。
DESCRIPTION OF
Claims (5)
この光周波数コム光源から出力されるレーザ光を2つのレーザ光へ分岐する分岐部と、
この分岐部によって分岐されたレーザ光のうち一方のレーザ光をプローブ光として測定対象物を設置する第1のキャビティに入射してこの第1のキャビティから漏れ出るプローブ光を抽出するプローブ光抽出部と、
前記分岐部によって分岐されたレーザ光のうち他方のレーザ光をリファレンス光として周波数をシフトし、この周波数をシフトした前記リファレンス光を前記測定対象物を設置する第1のキャビティと同じ構成でかつ真空状態の第2のキャビティに入射してこの第2のキャビティから漏れ出るリファレンス光を抽出するリファレンス光抽出部と、
前記プローブ光抽出部によって抽出されたプローブ光と前記リファレンス光抽出部によって抽出されたリファレンス光とを干渉させる干渉信号導出部と、
この干渉信号導出部によって測定された干渉信号を分光して前記干渉信号の光周波数コムのモード毎の光強度を導出する干渉信号調整部と
を備え、
前記干渉信号導出部は、
前記プローブ光抽出部によって抽出されたプローブ光と前記リファレンス光抽出部によって抽出されたリファレンス光とを合波した干渉信号を、第1の干渉信号と第2の干渉信号とに再分岐し、
前記干渉信号調整部は、
前記干渉信号導出部によって導出された前記第1の干渉信号と前記第2の干渉信号とから、前記干渉信号の光周波数コムのモード毎の光強度を導出する
ことを特徴とする多波長同時吸収分光装置。 A carrier envelope offset (CEO) locked optical frequency comb light source;
A branching section for branching the laser beam output from the optical frequency comb light source into two laser beams;
A probe light extraction unit that extracts one of the laser beams branched by the branching unit as a probe light and enters the first cavity in which the measurement object is placed and leaks from the first cavity. When,
The frequency of the laser beam branched by the branching unit is shifted with the other laser beam as a reference beam, and the reference beam with the shifted frequency has the same configuration as that of the first cavity in which the object to be measured is installed, and a vacuum. A reference light extraction unit that extracts the reference light that enters the second cavity in a state and leaks out of the second cavity ;
An interference signal deriving unit that causes interference between the probe light extracted by the probe light extracting unit and the reference light extracted by the reference light extracting unit;
An interference signal adjusting unit that divides the interference signal measured by the interference signal deriving unit to derive the light intensity for each mode of the optical frequency comb of the interference signal , and
The interference signal deriving unit
Re-branching the interference signal obtained by combining the probe light extracted by the probe light extraction unit and the reference light extracted by the reference light extraction unit into a first interference signal and a second interference signal;
The interference signal adjustment unit is
Multi-wavelength simultaneous absorption , wherein light intensity for each mode of an optical frequency comb of the interference signal is derived from the first interference signal and the second interference signal derived by the interference signal deriving unit. Spectrometer.
前記干渉信号調整部は、
前記第1および第2の干渉信号を光周波数コムのモード毎に分光する干渉信号分光部と、
この干渉信号分光部によって光周波数コムのモード毎に分光された前記第1および第2の干渉信号同士の差分を検出する干渉信号強度検知部と
を備えることを特徴とする多波長同時吸収分光装置。 The multi-wavelength simultaneous absorption spectrometer according to claim 1,
The interference signal adjustment unit is
An interference signal spectroscopic unit that splits the first and second interference signals for each mode of an optical frequency comb;
A multi-wavelength simultaneous absorption spectroscopic apparatus comprising: an interference signal intensity detection unit that detects a difference between the first and second interference signals that are spectrally separated for each mode of the optical frequency comb by the interference signal spectroscopic unit. .
前記干渉信号調整部は、
前記干渉信号導出部によって導出された前記第1の干渉信号と前記第2の干渉信号との光強度を調整して前記干渉信号の信号対雑音比を調整する光強度調整部
を備えることを特徴とする多波長同時吸収分光装置。 The multi-wavelength simultaneous absorption spectrometer according to claim 1 or 2 ,
The interference signal adjustment unit is
A light intensity adjusting unit that adjusts a signal-to-noise ratio of the interference signal by adjusting a light intensity between the first interference signal and the second interference signal derived by the interference signal deriving unit.
A multi-wavelength simultaneous absorption spectroscopic device comprising:
前記干渉信号導出部は、偏光ビームスプリッタである
ことを特徴とする多波長同時吸収分光装置。 The multi-wavelength simultaneous absorption spectrometer according to any one of claims 1 to 3 ,
The multi-wavelength simultaneous absorption spectrometer , wherein the interference signal deriving unit is a polarization beam splitter .
CEOロックされた光周波数コム光源から出力されるレーザ光を2つのレーザ光へ分岐する分岐ステップと、
この分岐ステップによって分岐されたレーザ光のうち一方のレーザ光をプローブ光として測定対象物を設置する第1のキャビティに入射してこの第1のキャビティから漏れ出るプローブ光を抽出するプローブ光抽出ステップと、
前記分岐ステップによって分岐されたレーザ光のうち他方のレーザ光をリファレンス光として周波数をシフトし、この周波数をシフトした前記リファレンス光を前記測定対象物を設置する第1のキャビティと同じ構成でかつ真空状態の第2のキャビティに入射してこの第2のキャビティから漏れ出るリファレンス光を抽出するリファレンス光抽出ステップと、
前記プローブ光抽出ステップによって抽出されたプローブ光と前記リファレンス光抽出ステップによって抽出されたリファレンス光とを干渉させる干渉信号導出ステップと、
この干渉信号導出ステップによって導出された干渉信号を分光して前記干渉信号の光周波数コムのモード毎の光強度を導出する干渉信号調整ステップと
を有し、
前記干渉信号導出ステップは、
前記プローブ光抽出ステップによって抽出されたプローブ光と前記リファレンス光抽出ステップによって抽出されたリファレンス光とを合波した干渉信号を、第1の干渉信号と第2の干渉信号とに再分岐し、
前記干渉信号調整ステップは、
前記干渉信号導出ステップによって導出された前記第1の干渉信号と前記第2の干渉信号とから、前記干渉信号の光周波数コムのモード毎の光強度を導出する
ことを特徴とする多波長同時吸収分光方法。 A multi-wavelength simultaneous absorption spectroscopy method using a carrier envelope offset (CEO) locked optical frequency comb light source,
A branching step for branching the laser beam output from the CEO-locked optical frequency comb light source into two laser beams;
A probe light extraction step for extracting one of the laser beams branched by the branching step into the first cavity where the measurement object is placed by using one of the laser beams as the probe light and extracting the probe light leaking from the first cavity. When,
Shifting the frequency of the other laser beam as a reference beam of laser light branched by said branching step, the first and vacuum the same configuration as the cavities of the reference light obtained by shifting the frequency installing the measurement object A reference light extraction step for extracting reference light that enters the second cavity in a state and leaks out of the second cavity ;
An interference signal deriving step for causing the probe light extracted by the probe light extraction step to interfere with the reference light extracted by the reference light extraction step;
The interference signal derived by spectrally interference signal derived by step have a interference signal adjustment step of deriving the intensity of each mode of the optical frequency comb of the interference signal,
The interference signal derivation step includes:
Re-branching the interference signal obtained by combining the probe light extracted in the probe light extraction step and the reference light extracted in the reference light extraction step into a first interference signal and a second interference signal;
The interference signal adjustment step includes:
Multi-wavelength simultaneous absorption , wherein an optical intensity for each mode of an optical frequency comb of the interference signal is derived from the first interference signal and the second interference signal derived by the interference signal deriving step. Spectroscopic method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009150148A JP5475341B2 (en) | 2009-06-24 | 2009-06-24 | Multi-wavelength simultaneous absorption spectroscopy apparatus and multi-wavelength simultaneous absorption spectroscopy method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009150148A JP5475341B2 (en) | 2009-06-24 | 2009-06-24 | Multi-wavelength simultaneous absorption spectroscopy apparatus and multi-wavelength simultaneous absorption spectroscopy method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011007571A JP2011007571A (en) | 2011-01-13 |
JP5475341B2 true JP5475341B2 (en) | 2014-04-16 |
Family
ID=43564425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009150148A Active JP5475341B2 (en) | 2009-06-24 | 2009-06-24 | Multi-wavelength simultaneous absorption spectroscopy apparatus and multi-wavelength simultaneous absorption spectroscopy method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5475341B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5787527B2 (en) | 2011-01-18 | 2015-09-30 | キヤノン株式会社 | Signal processing circuit and ultrasonic diagnostic apparatus |
WO2015045266A1 (en) * | 2013-09-24 | 2015-04-02 | 国立大学法人東京農工大学 | Measurement device |
KR101632269B1 (en) * | 2015-01-19 | 2016-06-21 | 한국표준과학연구원 | Frequency And Intensity Modulation Laser Absorption Spectroscopy Apparatus and The Measuring Method Of The Same |
CN105842193B (en) * | 2016-04-05 | 2018-09-18 | 上海理工大学 | The adaptive exocoel enhanced spectrum detecting system of light comb and method |
CN110411650B (en) * | 2019-07-31 | 2021-06-04 | 中国科学院微电子研究所 | Vacuum measurement method based on optical frequency comb |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050122523A1 (en) * | 2003-12-03 | 2005-06-09 | Wen-Bin Yan | Device and method of trace gas analysis using cavity ring-down spectroscopy |
JP2006138752A (en) * | 2004-11-12 | 2006-06-01 | Picarro Inc | Apparatus and method for maintaining uniform and stable temperature in spectroscopy using high performance cavity |
JP2008209342A (en) * | 2007-02-28 | 2008-09-11 | Nippon Telegr & Teleph Corp <Ntt> | Optical coherence tomography device and interference signal measuring method therefor, variable wavelength light generating device and method therefor, and interference signal measuring device and method therefor |
CA2690910A1 (en) * | 2007-06-26 | 2008-12-31 | Universite Laval | Referencing of the beating spectra of frequency combs |
JP2009025245A (en) * | 2007-07-23 | 2009-02-05 | Optical Comb Inc | Device for observing optical interference |
JP5198833B2 (en) * | 2007-11-09 | 2013-05-15 | 日本電信電話株式会社 | Optical frequency comb stabilized light source |
-
2009
- 2009-06-24 JP JP2009150148A patent/JP5475341B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011007571A (en) | 2011-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5647116B2 (en) | Synchronous interferometer with frequency comb | |
US8693004B2 (en) | Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source | |
Martin-Mateos et al. | Dual-comb architecture for fast spectroscopic measurements and spectral characterization | |
US9903808B2 (en) | Variable-frequency optical combs, heterodyne sensor, and process for performing spectroscopy | |
EP3637069B1 (en) | Spectrum measurement method, spectrum measurement device, and broadband pulse light source unit | |
US9784673B2 (en) | Laser spectroscopic sensor using orbital angular momentum | |
JP3498141B2 (en) | Optical pulse evaluation method, optical pulse evaluation device, and optical communication system | |
JP6386655B2 (en) | Terahertz wave generator and spectroscopic device using the same | |
JP5475341B2 (en) | Multi-wavelength simultaneous absorption spectroscopy apparatus and multi-wavelength simultaneous absorption spectroscopy method | |
CN113281278B (en) | Rapid ultrahigh-resolution transient absorption spectrum measuring device and measuring method | |
US9304058B2 (en) | Measuring modal content of multi-moded fibers | |
JP6470343B2 (en) | Pulse management device in pump-probe spectroscopy | |
Davis et al. | Experimental single-photon pulse characterization by electro-optic shearing interferometry | |
CN114739922A (en) | Multi-optical-frequency-comb dynamic spectrum detection system and method | |
Urabe et al. | Multiheterodyne interference spectroscopy using a probing optical frequency comb and a reference single-frequency laser | |
CN214893682U (en) | Quick ultrahigh-resolution transient absorption spectrum measuring device | |
Mazur et al. | Dual-comb swept wavelength interferometry | |
US20180003560A1 (en) | Methods and apparatus for multi-probe photonic time-stretch spectral measurements | |
Li et al. | Ultra-dense CEO-stabilized broadband optical frequency comb generation through simple, programmable, and lossless 1000-fold frequency-spacing division | |
JP4643705B2 (en) | Electromagnetic wave processing apparatus and electromagnetic wave processing method | |
Martín-Mateos et al. | Optical communication components characterization using electro-optic dual-combs | |
Long et al. | Direct frequency comb saturation spectroscopy with an ultradense tooth spacing of 100 Hz | |
Zhang et al. | Temporal focusing based ultrafast high-resolution spectroscopy | |
Ren et al. | Fast high-resolution spectral sensing with a single frequency comb | |
Roussel et al. | EXTENSION OF EXISTING PULSE ANALYSIS METHODS TO HIGH-REPETITION RATE OPERATION: STUDIES OF THE “TIME-STRETCH STRATEGY” |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111108 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20111109 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20111109 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130312 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130513 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140206 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5475341 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |