JP5474515B2 - Visible light communication transmitter - Google Patents

Visible light communication transmitter Download PDF

Info

Publication number
JP5474515B2
JP5474515B2 JP2009280835A JP2009280835A JP5474515B2 JP 5474515 B2 JP5474515 B2 JP 5474515B2 JP 2009280835 A JP2009280835 A JP 2009280835A JP 2009280835 A JP2009280835 A JP 2009280835A JP 5474515 B2 JP5474515 B2 JP 5474515B2
Authority
JP
Japan
Prior art keywords
led
signal
frequency
correction
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009280835A
Other languages
Japanese (ja)
Other versions
JP2011124798A (en
Inventor
文孝 村山
裕之 黒川
Original Assignee
株式会社プランナーズランド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プランナーズランド filed Critical 株式会社プランナーズランド
Priority to JP2009280835A priority Critical patent/JP5474515B2/en
Publication of JP2011124798A publication Critical patent/JP2011124798A/en
Application granted granted Critical
Publication of JP5474515B2 publication Critical patent/JP5474515B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Description

本発明は、空間に照射された可視光を使用して通信を行なう可視光通信用の送信装置に関し、特にOFDM(直交周波数分割多重)方式を用いて大容量の情報を高速で送信可能な可視光通信送信装置に関する。   The present invention relates to a transmission device for visible light communication that performs communication using visible light irradiated to a space, and in particular, visible light capable of transmitting a large amount of information at high speed using an OFDM (Orthogonal Frequency Division Multiplexing) system. The present invention relates to an optical communication transmitter.

電波を通信媒体とした無線通信は、携帯電話網、無線LAN、近距離無線通信など多くの分野で使用されている。   Wireless communication using radio waves as a communication medium is used in many fields such as a cellular phone network, a wireless LAN, and short-range wireless communication.

しかしながら、電波を媒体として使用する無線通信は、人の近くで送受信を行なう場合、電磁波の人体への影響を考慮して、送信電力を上げることができない。また、無線通信に使用される電波の周波数帯域は、既に多くの使用分野において割り振られ、使用されていることもあって、広帯域の周波数帯を自由に使用することはできない。さらに、病院などの特殊な環境下においては、電波の使用に制限が加えられるなどの制約がある。   However, in wireless communication using radio waves as a medium, when transmission / reception is performed near a person, the transmission power cannot be increased in consideration of the influence of electromagnetic waves on the human body. In addition, the frequency band of radio waves used for wireless communication has already been allocated and used in many fields of use, and a wide frequency band cannot be freely used. Furthermore, there are restrictions such as restrictions on the use of radio waves in special environments such as hospitals.

そこで、近年、可視光を通信媒体として通信を行う可視光通信が開発され、下記特許文献1などにおいて、可視光に送信信号を重畳してそれを空間光として放射し、放射された光を受信器側で受光し、受光信号から送信信号を復調して通信を行う可視光通信システムが提案されている。
特開2007−266794号公報
Therefore, in recent years, visible light communication for performing communication using visible light as a communication medium has been developed. In Patent Document 1 and the like, a transmission signal is superimposed on visible light and emitted as spatial light, and the emitted light is received. There has been proposed a visible light communication system in which light is received at the receiver side and communication is performed by demodulating a transmission signal from the received light signal.
JP 2007-266794 A

この従来の可視光通信システムは、照明光として可視光を使用しながら、可視光に高周波信号を重畳させて、照明光による可視光通信を行なうものであり、送信信号を高周波の搬送波に重畳させ、その高周波信号を投光用のLED(発光ダイオード)に入力してLEDを発光動作させ、送信信号を重畳した可視光を受信器側に送信するが、この可視光通信システムでは、通信速度が遅く、音声信号や画像信号などの大容量の情報を高速で送信することは難しい。   This conventional visible light communication system performs visible light communication using illumination light by superimposing a high frequency signal on visible light while using visible light as illumination light, and superimposing a transmission signal on a high frequency carrier wave. The high-frequency signal is input to a light emitting LED (light emitting diode) to cause the LED to emit light, and visible light superimposed with a transmission signal is transmitted to the receiver side. In this visible light communication system, the communication speed is Slowly, it is difficult to transmit a large amount of information such as an audio signal or an image signal at high speed.

一方、ブロードバンドのインターネット接続、デジタルテレビ放送などの広帯域デジタル通信の分野において、OFDM方式を使用し、高速で大容量のデジタル信号の伝送を可能とした通信装置が開発されている。このOFDM方式のデジタル通信は、デジタル信号を多数の搬送波(サブキャリア)に分割して変調し送信する一種のマルチキャリア伝送方式の通信システムであり、特に、多数のサブキャリアは、周波数軸上で重なりが生じる程度に密に配置しても、相互に直交関係にあって干渉しないため、サブキャリアつまりサブチャンネルのスペクトルを密に配置可能で、周波数利用効率を高くし、大容量のパラレルデータをシリアル化して高速で伝送することができる。   On the other hand, in the field of broadband digital communication such as broadband Internet connection and digital television broadcasting, a communication device that uses the OFDM method and enables transmission of a high-capacity digital signal at high speed has been developed. This OFDM digital communication is a type of multi-carrier transmission communication system that divides a digital signal into a large number of carriers (subcarriers), modulates and transmits the signal, and in particular, a large number of subcarriers are on the frequency axis. Even if they are arranged so densely as to overlap, they are orthogonal to each other and do not interfere with each other. Therefore, the spectrum of subcarriers, that is, subchannels, can be densely arranged, frequency utilization efficiency is increased, and large amounts of parallel data are stored. It can be serialized and transmitted at high speed.

そこで、上述の可視光を通信媒体とする可視光通信送信装置において、大容量のデジタル高速通信を実現するために、OFDM方式を用いてデジタル信号の各ビットにより多数のサブキャリアを変調し、それらのサブキャリアを逆高速フーリエ変換のアルゴリズムを用いて合成し、合成したデジタル信号をアナログに変換して変調された高周波信号とし、その高周波信号をLEDに入力してLEDを発光動作させ、LEDから可視光を空間光として放射し、可視光通信を行なう可視光通信送信装置が検討された。   Therefore, in the visible light communication transmitter using the above-mentioned visible light as a communication medium, in order to realize a large-capacity digital high-speed communication, a large number of subcarriers are modulated by each bit of the digital signal using the OFDM method. Subcarriers are synthesized using an inverse fast Fourier transform algorithm, the synthesized digital signal is converted to analog to form a modulated high frequency signal, and the high frequency signal is input to the LED to cause the LED to emit light. A visible light communication transmitter that radiates visible light as spatial light and performs visible light communication has been studied.

OFDM方式を採用する可視光通信システムは、使用する周波数帯域として、例えば200kHz〜400MHzと広帯域の周波数帯が、自然界のノイズや商用電源のノイズの影響を受けにくい良好な状態で使用可能とされるが、通信媒体としての可視光は、電波とは異なり、使用可能な周波数帯が既使用により制限されることがなく、任意の周波数帯を使用することができる。このため、例えば、可視光通信に使用されるキャリア周波数として、例えば4MHz〜34MHzの比較的広い周波数帯域を使用する場合、このような広い周波数領域の高周波信号を重畳した可視光を放射するLEDは、広い周波数領域で安定した周波数特性をもって発光動作する必要がある。   Visible light communication systems adopting the OFDM system can be used in a favorable state in which, for example, a wide frequency band of 200 kHz to 400 MHz is not easily affected by noise in the natural world or noise of commercial power sources. However, visible light as a communication medium is different from radio waves in that the usable frequency band is not limited by the existing use, and an arbitrary frequency band can be used. For this reason, for example, when a relatively wide frequency band of 4 MHz to 34 MHz is used as a carrier frequency used for visible light communication, for example, an LED that emits visible light on which a high-frequency signal in such a wide frequency region is superimposed is used. It is necessary to emit light with stable frequency characteristics in a wide frequency range.

しかし、LEDの周波数特性は、通常、図2に示すように、例えば4MHz〜34MHzの帯域にあっては、周波数が低いほど発光レベルが高く、周波数が高くなるほど発光レベルが低下する特性を有し、LEDの周波数特性におけるひずみはかなり大きく発生する。また、OFDM方式の送信信号のスペクトル分布は、非常に緻密に形成されるため、LEDの周波数特性に伴う非線形要素によりスペクトル分布が変化してひずみが生じた場合、受信器側で正常に信号を復調することが難しくなる。   However, as shown in FIG. 2, the frequency characteristic of the LED usually has a characteristic that, for example, in the band of 4 MHz to 34 MHz, the light emission level is higher as the frequency is lower and the light emission level is lower as the frequency is higher. The distortion in the frequency characteristics of the LED is considerably large. Also, since the spectrum distribution of the OFDM transmission signal is very finely formed, if the spectrum distribution changes due to non-linear elements associated with the frequency characteristics of the LED and distortion occurs, the signal is normally transmitted on the receiver side. It becomes difficult to demodulate.

このため、多数のサブキャリアの合成波である4MHz〜34MHzの帯域に分布した高周波信号を送信するOFDM方式の可視光通信送信装置では、投光用のLEDから照射される可視光に、そのまま広帯域の高周波信号を重畳して送信した場合、LEDの周波数特性の非線形要素(ひずみ)により高速のデジタル通信は困難となる。また、LEDの発光特性(電流電圧特性)が非線形特性を有することから、LEDの発光輝度に振幅方向のひずみが発生し、変調時に発光輝度の振幅方向に重畳した情報を、受信側で正確に受信できなくなり、高速通信の妨げとなってしまう。   For this reason, in the visible light communication transmission apparatus of the OFDM system that transmits a high-frequency signal distributed in a band of 4 MHz to 34 MHz, which is a composite wave of a large number of subcarriers, the visible light irradiated from the LED for projection is broadband as it is. When the high-frequency signal is superimposed and transmitted, high-speed digital communication becomes difficult due to the nonlinear element (distortion) of the frequency characteristic of the LED. In addition, since the light emission characteristics (current-voltage characteristics) of the LED have nonlinear characteristics, distortion in the amplitude direction occurs in the light emission brightness of the LED, and information superimposed in the amplitude direction of the light emission brightness during modulation is accurately received on the receiving side. It becomes impossible to receive and hinders high-speed communication.

本発明は、上記の点に鑑みなされたもので、OFDM方式を用いて可視光による高速通信を実現可能とした可視光通信送信装置を提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a visible light communication transmitter capable of realizing high-speed communication using visible light using the OFDM method.

上記目的を達成するために、本発明の可視光通信送信装置は、
直交周波数分割多重方式により送信データのデジタル信号を多数のサブキャリアに分割して変調し、変調された高周波信号を、LEDの発光動作により照射される可視光に重畳させて、送信データ信号を送信する可視光通信送信装置において、
パケット化された送信データ信号の各ビットを該各サブキャリアに割り当てるように送信データを組み替える送信データ処理部と、
該送信データ処理部から送られる送信データのデジタル信号の各ビットを、各サブキャリアについてデジタル変調する変調部と、
該変調部で変調されたシリアルのデジタル送信信号を、該サブキャリアの数のデータ列にパラレル変換するS/P変換部と、
該S/P変換部でパラレルに変換されたデジタル送信信号を逆高速フーリエ変換する逆離散フーリエ変換部と、
該逆離散フーリエ変換部で逆高速フーリエ変換したデジタル送信信号に対し、前記LEDが有する周波数特性の非線形ひずみに対し、予め該ひずみの逆特性を該信号に加えて補正し、且つ該LEDが有する電流電圧特性の非線形ひずみに対し、予め該ひずみの逆特性を該信号に加えて補正するように補正演算する補正演算部と、
該補正演算部で補正されたデジタル送信信号をアナログ信号に変換するD/A変換器と、
該D/A変換器でアナログ信号に変換された複素データを、サブキャリアの搬送周波数の余弦波と正弦波を用いて直交変調し合成する合成部と、
該合成部で合成されたアナログの高周波信号を増幅し可視光に重畳させるように前記LEDを駆動するLED駆動部と、
を備え
前記LEDは、可視照明光を照射する灯具に設けられ、可視光を照明光としてLEDが照射するように構成され、照明光の調光を行うために前記デジタル送信信号を補正する補正テーブルが前記補正演算部に設けられ、調光操作に応じて該補正テーブルを変えて、調光に伴う周波数特性のひずみを補正することを特徴とする。
In order to achieve the above object, the visible light communication transmitting apparatus of the present invention includes:
Transmits the transmission data signal by dividing the digital signal of the transmission data into a number of subcarriers by the orthogonal frequency division multiplexing method and modulating the modulated high frequency signal to the visible light emitted by the light emitting operation of the LED. In the visible light communication transmitter
A transmission data processing unit for rearranging transmission data so as to assign each bit of the packetized transmission data signal to each subcarrier;
A modulation unit that digitally modulates each bit of the digital signal of transmission data sent from the transmission data processing unit for each subcarrier;
An S / P converter that converts the serial digital transmission signal modulated by the modulator into a data string of the number of subcarriers;
An inverse discrete Fourier transform unit for performing inverse fast Fourier transform on the digital transmission signal converted in parallel by the S / P conversion unit;
The digital transmission signal inversely fast Fourier transformed by the inverse discrete Fourier transform unit corrects in advance the inverse characteristic of the distortion by adding the inverse characteristic of the distortion to the frequency characteristic of the LED, and the LED has A correction calculation unit that performs a correction operation so as to correct in advance the inverse characteristic of the distortion with respect to the nonlinear distortion of the current-voltage characteristic;
A D / A converter that converts the digital transmission signal corrected by the correction calculation unit into an analog signal;
A synthesizing unit that orthogonally modulates and synthesizes the complex data converted into an analog signal by the D / A converter using a cosine wave and a sine wave of the carrier frequency of the subcarrier;
An LED driving unit that drives the LED to amplify and superimpose the analog high-frequency signal synthesized by the synthesizing unit on visible light;
Equipped with a,
The LED is provided in a lamp that emits visible illumination light, the LED is configured to emit visible light as illumination light, and a correction table that corrects the digital transmission signal for dimming the illumination light includes the correction table. It is provided in the correction calculation unit, and the correction table is changed in accordance with the dimming operation to correct frequency characteristic distortion caused by dimming .

この発明の可視光通信送信装置によれば、逆離散フーリエ変換部で逆高速フーリエ変換したデジタル送信信号を、可視光投光用のLEDが有する非線形の周波数特性を線形に補正して帯域をイコライジングし、且つLEDが有する非線形の電流電圧特性を線形に補正するように、予めひずみの逆特性を信号に加えてプリディストーション方式による補正演算を行なうので、例えば4MHz〜34MHzの高周波の周波数帯域を用いて信号を送信する場合、高周波の周波数特性や電流電圧特性による発光特性にひずみを生じやすいLED、つまり周波数が低いほど発光レベルが高く、周波数が高くなるほど発光レベルが低下する周波数特性を有し、且つ、電流電圧特性に非線形ひずみを有するLEDを使用した場合でも、OFDM方式の送信信号のスペクトル分布にひずみを生じさせずに、LEDの可視光に送信信号を重畳させて、大容量の情報を高速で送信することができ、これにより、受信器側でOFDM信号を正常に復調することができる。   According to the visible light communication transmitting apparatus of the present invention, the digital transmission signal obtained by inverse fast Fourier transform by the inverse discrete Fourier transform unit linearly corrects the non-linear frequency characteristic of the visible light projecting LED to equalize the band. In addition, in order to linearly correct the non-linear current-voltage characteristics of the LED, a correction operation using a predistortion method is performed by adding a reverse characteristic of the distortion in advance to the signal, and therefore, for example, a high frequency band of 4 MHz to 34 MHz is used. When transmitting a signal, the LED tends to cause distortion in the light emission characteristics due to high frequency characteristics and current voltage characteristics, that is, the light emission level is higher as the frequency is lower, and the light emission level is lower as the frequency is higher, Even when an LED having nonlinear distortion in the current-voltage characteristics is used, the transmission signal of the OFDM system is used. The transmission signal can be superimposed on the visible light of the LED without distorting the spectral distribution of the LED, so that a large amount of information can be transmitted at high speed, so that the OFDM signal is demodulated normally on the receiver side. be able to.

この発明の可視光通信送信装置によれば、補正演算部が、デジタル送信信号を、LEDの周波数特性をリニアに補正するように演算補正する際、調光操作に応じて補正テーブルを変え、デジタル送信信号の補正値を調光に応じて変化させ、調光に応じたLEDの周波数特性及び電流電圧特性のひずみ、つまりLEDの発光特性のひずみをリニアに補正することができる。   According to the visible light communication transmitting apparatus of the present invention, when the correction calculation unit calculates and corrects the digital transmission signal so as to linearly correct the frequency characteristic of the LED, the correction table is changed according to the dimming operation, The correction value of the transmission signal can be changed according to dimming, and the distortion of the frequency characteristic and current-voltage characteristic of the LED corresponding to dimming, that is, the distortion of the light emission characteristic of the LED can be linearly corrected.

さらに、上記LED駆動部には上記合成部で合成されたアナログの高周波信号を増幅する増幅器が設けられ、調光操作に応じて該増幅器の直流オフセットレベルを調整してLEDの発光レベルの調整を行なう調光回路を、増幅器に接続することができる。   Further, the LED driving unit is provided with an amplifier that amplifies the analog high-frequency signal synthesized by the synthesizing unit, and adjusts the light emission level of the LED by adjusting the DC offset level of the amplifier according to the dimming operation. The dimming circuit to perform can be connected to an amplifier.

この発明によれば、調光操作に応じて増幅器の直流オフセットレベルを調整し、照明光としてのLEDの発光レベルを調光することができる。   According to this invention, the direct current offset level of the amplifier can be adjusted according to the dimming operation, and the light emission level of the LED as the illumination light can be dimmed.

さらに、上記LED駆動部の増幅器には、LEDの温度特性を補償してLEDの温度変化に対し照度を一定にする温度補償回路が接続され、検出されたLEDの電流・電圧及びLEDまたはその近傍の温度を検出する温度センサの温度検出信号に基づき、増幅器に信号を出力して直流オフセットレベルを調整する一方、上記補正演算部に補正信号を送り、LEDの温度変化に対し補正演算部が温度補償を行なうように補正演算を行うことができる。   Further, the amplifier of the LED driving unit is connected with a temperature compensation circuit for compensating the temperature characteristic of the LED to make the illuminance constant with respect to the temperature change of the LED, and the detected current / voltage of the LED and the LED or the vicinity thereof. Based on the temperature detection signal of the temperature sensor that detects the temperature of the LED, a signal is output to the amplifier to adjust the DC offset level, while a correction signal is sent to the correction calculation unit so that the correction calculation unit Correction operations can be performed to compensate.

この発明によれば、例えばLEDの温度が上昇して、その照度が低下したとき、増幅器の直流オフセットレベルを上げて照度を上げる一方、補正演算部においてはLEDの温度変化に対し温度補償を行うように補正演算して、LEDの温度上昇に伴う照度の低下を抑制し、LEDの照度を安定化することができる。   According to the present invention, for example, when the temperature of the LED rises and the illuminance decreases, the DC offset level of the amplifier is increased to increase the illuminance, while the correction calculation unit performs temperature compensation for the LED temperature change. Thus, it is possible to suppress the decrease in illuminance associated with the temperature rise of the LED and stabilize the illuminance of the LED.

さらに、上記LED駆動部には、調光信号に応じてLEDの非線形の電流電圧特性をリニアに補正し、LEDの照度を安定させる照度安定化回路が設けられ、LEDドライバの出力電圧に応じて照度安定化回路から上記増幅器に信号を出力してその直流オフセットレベルを調整する一方、上記補正演算部に補正信号を送り、LEDの電流電圧特性の非線形ひずみを線形に補正するように、予めひずみの逆特性を該信号に加えて補正演算するように構成することができる。   Further, the LED driving unit is provided with an illuminance stabilization circuit that linearly corrects the non-linear current-voltage characteristics of the LED according to the dimming signal and stabilizes the illuminance of the LED, and according to the output voltage of the LED driver. A signal is output from the illuminance stabilization circuit to the amplifier to adjust its DC offset level, while a correction signal is sent to the correction calculation unit so that the nonlinear distortion of the current-voltage characteristic of the LED is linearly corrected in advance. The inverse characteristic can be corrected and added to the signal.

この発明によれば、LEDの電流電圧特性の非線形ひずみに対し、調光により特性曲線部分が変化したとき、その非線形ひずみを補償するように、上記増幅器に信号を出力してその直流オフセットレベルを調整する一方、補正演算部で補正演算を行い、LEDの電流電圧特性のひずみ、つまり発光特性のひずみをリニアに補正することができる。   According to the present invention, when the characteristic curve portion changes due to dimming with respect to the nonlinear distortion of the current-voltage characteristic of the LED, a signal is output to the amplifier so as to compensate for the nonlinear distortion, and the DC offset level is set. On the other hand, the correction calculation unit can perform correction calculation to linearly correct the distortion of the current-voltage characteristic of the LED, that is, the distortion of the light emission characteristic.

このように、上記可視光通信送信装置によれば、LEDが照射する可視光が照明光として使用され、調光操作により可視光の照度が調整された場合であっても、その照明光としての可視光の照度を安定化させつつ、大容量の情報を可視光に重畳して高速で送信することができる。   Thus, according to the visible light communication transmitter, visible light emitted from the LED is used as illumination light, and even when the illuminance of visible light is adjusted by a dimming operation, Large amounts of information can be superimposed on visible light and transmitted at high speed while stabilizing the illuminance of visible light.

さらに、上記補正演算部に代えて、アナログの帯域補正増幅器及びひずみ補償回路をOFDM変調器の出力側に接続し、高周波の帯域補正を行なって、帯域のイコライジングを行い、且つLEDの電流電圧特性のプリディストーション補正を行なうことができる。   Further, instead of the correction calculation unit, an analog band correction amplifier and a distortion compensation circuit are connected to the output side of the OFDM modulator, high frequency band correction is performed, band equalization is performed, and LED current-voltage characteristics Predistortion correction can be performed.

この場合、帯域補正増幅器は、OFDM変調され合成されたアナログの高周波送信信号を、LEDの周波数特性とは逆の傾きの逆特性を付与して増幅するように構成される。また、ひずみ補償回路は、信号回路にアナログ非線形素子を接続し、そのアナログ非線形素子に印加するバイアス電圧を調整して、信号回路に流れる高周波送信信号に対し、LEDの電流電圧特性とは逆の傾きの逆特性を付加し、LEDの発光特性をリニアに補正する。
これにより、LEDの発光特性が、周波数が低くなるほど発光レベルが高く、周波数が高くなるほど発光レベルが低下する周波数特性を有し、且つ、その電流電圧特性に非線形ひずみがある場合でも、OFDM方式の送信信号のスペクトル分布にひずみを生じさせずに、LEDの可視光に送信信号を重畳させて、大容量の情報を高速で送信することができ、これにより、受信器側でOFDM信号を正常に復調することができる。
In this case, the band correction amplifier is configured to amplify the analog high-frequency transmission signal synthesized by OFDM modulation with an inverse characteristic having a slope opposite to the frequency characteristic of the LED. The distortion compensation circuit connects an analog non-linear element to the signal circuit, adjusts the bias voltage applied to the analog non-linear element, and reverses the current-voltage characteristics of the LED with respect to the high-frequency transmission signal flowing through the signal circuit. An inverse characteristic of inclination is added, and the light emission characteristic of the LED is linearly corrected.
As a result, the light emission characteristic of the LED has a frequency characteristic in which the light emission level is higher as the frequency is lower, and the light emission level is lower as the frequency is higher. A large amount of information can be transmitted at high speed by superimposing the transmission signal on the visible light of the LED without causing distortion in the spectrum distribution of the transmission signal, which allows the OFDM signal to be properly transmitted on the receiver side. It can be demodulated.

本発明の可視光通信送信装置によれば、OFDM変調した大容量の送信信号を、空間に照射される可視光に重畳して、安定して高速送信することができる。   According to the visible light communication transmitting apparatus of the present invention, a large-capacity transmission signal modulated by OFDM can be superimposed on the visible light applied to the space and stably transmitted at high speed.

本発明の一実施形態を示す可視光通信送信装置の構成ブロック図である。1 is a configuration block diagram of a visible light communication transmission device showing an embodiment of the present invention. LEDの発光の周波数特性を示すグラフ図である。It is a graph which shows the frequency characteristic of light emission of LED. LEDの周波数特性を補正する補正係数のグラフ図である。It is a graph of the correction coefficient which correct | amends the frequency characteristic of LED. LEDの電流電圧特性を示すグラフ図である。It is a graph which shows the current-voltage characteristic of LED. 他の実施形態の可視光通信送信装置の構成ブロック図である。It is a block diagram of the configuration of a visible light communication transmitter according to another embodiment. 図5のブロック図におけるひずみ補償回路の回路図である。FIG. 6 is a circuit diagram of a distortion compensation circuit in the block diagram of FIG. 5.

以下、本発明の実施形態を図面に基づいて説明する。図1は可視光通信送信装置の構成ブロック図を示している。図1に示すように、可視光通信送信装置は、LANなどのネットワークを通して送られるパケットデータを入力し、OFDM変調用にデータを組み換える入力データ処理部1と、入力データ処理部1から送られた送信データ信号の各ビットを各サブキャリアについてデジタル変調し、デジタル変調したシリアルのデータ列をパラレルに変換した後、パラレルデータを逆高速フーリエ変換して時系列データに変換し、それらの時系列データにひずみ補正を加えた後、アナログ信号に変換すると共に合成して送信データ信号をOFDM用に変調するOFDM変調器2と、OFDM変調器2から送られたOFDM変調された送信データの高周波信号を入力し、その高周波信号を増幅してLEDドライバ33に印加しLEDドライバ33によってLED(発光ダイオード)30を発光動作させるLED駆動部3と、を備えている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration block diagram of a visible light communication transmitter. As shown in FIG. 1, the visible light communication transmitting apparatus receives packet data sent through a network such as a LAN, and receives an input data processing unit 1 that recombines the data for OFDM modulation, and is sent from the input data processing unit 1. Each bit of the transmitted data signal is digitally modulated with respect to each subcarrier, the digitally modulated serial data string is converted into parallel, and then the parallel data is converted into time series data by inverse fast Fourier transform. After applying distortion correction to the data, it is converted into an analog signal and synthesized to modulate the transmission data signal for OFDM, and a high-frequency signal of the OFDM-modulated transmission data sent from the OFDM modulator 2 , The high frequency signal is amplified and applied to the LED driver 33, and the LED driver 33 It includes a LED driver 3 for emitting operation (a light emitting diode) 30, a.

LED30は例えば図示しない照明用の灯具に装着され、LANなどを通して送られた各種の情報信号を照明用の可視光に重畳させて灯具のLED30が照明光を照射し、可視光の到達範囲内に配置される図示しない受信器に対し、情報信号を送信するように構成される。   For example, the LED 30 is mounted on an illumination lamp (not shown), and various information signals transmitted through a LAN or the like are superimposed on the visible light for illumination, and the LED 30 of the lamp irradiates the illumination light. An information signal is transmitted to a receiver (not shown) arranged.

入力データ処理部1のデータ処理部13は、CPU、メモリ、レジスタなどから構成され、イーサネット(登録商標)インタフェース11を通して、LANから送られた送信用のパケットデータを入力する。そして、データバッファ12にそれらのバケットデータを一時格納し、さらに、データ処理部13は、データメモリ14を用いて、パケットデータをOFDM用に組み直し、入出力部15からOFDM変調器2に出力するように構成される。なお、LED30の調光を行なう調光信号が入力データ処理部1を通して送られる場合、入出力部15を通して調光信号が調光回路36に送られる。   The data processing unit 13 of the input data processing unit 1 includes a CPU, a memory, a register, and the like, and inputs packet data for transmission sent from the LAN through the Ethernet (registered trademark) interface 11. Then, the bucket data is temporarily stored in the data buffer 12, and the data processing unit 13 uses the data memory 14 to reassemble the packet data for OFDM and outputs the packet data from the input / output unit 15 to the OFDM modulator 2. Configured as follows. When a dimming signal for dimming the LED 30 is sent through the input data processing unit 1, the dimming signal is sent to the dimming circuit 36 through the input / output unit 15.

OFDM変調器2は、上述のように、送信データ信号の各ビットを各サブキャリアについてデジタル変調するデジタル変調部21を備え、デジタル変調部21の出力側に、デジタル変調したシリアルのデータ列を、つまりデータの各ビットを各サブキャリアに割り当てるように、パラレルに変換するS/P変換部22が接続される。   As described above, the OFDM modulator 2 includes the digital modulation unit 21 that digitally modulates each bit of the transmission data signal for each subcarrier. On the output side of the digital modulation unit 21, a digitally modulated serial data string is In other words, an S / P converter 22 that converts in parallel is connected so that each bit of data is assigned to each subcarrier.

デジタル変調部21は、入力データ処理部1から送られたOFDM用の送信データ信号を、64QAM、16QAM、PSKなどの変調方式により、デジタル変調し、S/P変換部22は、デジタル変調されたデータ列の各ビットを各サブキャリアに割り当てるように、N本(例えば1024本)のサブキャリアを使用する場合、データ列の各ビットをN個のパラレルデータに変換し、そのパラレルデータを逆離散フーリエ変換部23に出力する。   The digital modulation unit 21 digitally modulates the transmission data signal for OFDM sent from the input data processing unit 1 using a modulation scheme such as 64QAM, 16QAM, or PSK, and the S / P conversion unit 22 performs digital modulation. When N (for example, 1024) subcarriers are used so that each bit of the data string is allocated to each subcarrier, each bit of the data string is converted into N parallel data, and the parallel data is inversely discrete. The result is output to the Fourier transform unit 23.

逆離散フーリエ変換部23は、離散化されデジタル変調されたN個のシンボルデータ列を高速で逆フーリエ変換し、その計算結果を実数と虚数からなる時間領域の複素データとして補正演算部24に出力する。   The inverse discrete Fourier transform unit 23 performs inverse Fourier transform on the digitized and digitally modulated N symbol data sequences at high speed, and outputs the calculation result to the correction computation unit 24 as complex data in the time domain composed of real numbers and imaginary numbers. To do.

補正演算部24は、CPU,メモリ、レジスタなどから構成され、LED30がもつ非線形の周波数特性及び電流電圧特性に基づく発光特性をリニアに補正するように、予めひずみの逆特性を信号に加えて帯域のイコライジングを行ない、プレディストーション方式の補正演算を行う。   The correction calculation unit 24 includes a CPU, a memory, a register, and the like, and adds a reverse characteristic of distortion to the signal in advance so as to linearly correct the light emission characteristic based on the nonlinear frequency characteristic and current-voltage characteristic of the LED 30. The equalization is performed and the predistortion type correction operation is performed.

補正演算部24は、概略的にはLED30がもつ非線形の周波数特性をリニアに補正するように、予めひずみの逆特性を信号に加えて補正し、且つLEDが有する電流電圧特性の非線形ひずみに対し、予めひずみの逆特性を信号に加えて補正演算するように構成される。LED30の高周波領域の周波数特性は、図2に示すように、周波数が低いほど発光レベルが高く、周波数が高くなるほど発光レベルが低下する特性を有し、また、LED30の電流電圧特性は、図4に示すように、非線形特性となっている。   The correction calculation unit 24 corrects the inverse characteristic of the distortion in advance by adding the signal to the signal so as to linearly correct the nonlinear frequency characteristic of the LED 30, and against the nonlinear distortion of the current-voltage characteristic of the LED. In addition, it is configured to perform a correction operation in advance by adding an inverse characteristic of distortion to the signal. As shown in FIG. 2, the frequency characteristic of the LED 30 in the high frequency region has a characteristic that the light emission level is higher as the frequency is lower, and the light emission level is lower as the frequency is higher. As shown in FIG.

この可視光通信送信装置では、4MHz〜34MHzの高周波の周波数帯域を用いて、その高周波信号をLED30の発光する可視光に重畳して情報信号を送信するが、LED30の周波数特性は、図2に示すように、この周波数領域において非線形ひずみを有しているので、このようなLED30の周波数特性のひずみを予め補正するように、補正演算部24は帯域のイコライジング補正を加える。   In this visible light communication transmitter, an information signal is transmitted by superimposing the high frequency signal on visible light emitted from the LED 30 using a high frequency band of 4 MHz to 34 MHz. The frequency characteristics of the LED 30 are shown in FIG. As shown, since there is nonlinear distortion in this frequency region, the correction calculation unit 24 applies band equalizing correction so as to correct the distortion of the frequency characteristics of the LED 30 in advance.

補正演算部24は、逆離散フーリエ変換部23から出力される複素データの実数と虚数の成分に対し、各々、図2に示すLED30の周波数特性とは逆の傾きの、周波数に対する補正係数のグラフ曲線(図3)を加えて補正する。これにより、補正後の複素データの実数と虚数の成分は、周波数が低いほど小さく、周波数が高くなるほど大きくなるように、帯域のイコライジング補正を行なう。   The correction calculation unit 24 is a graph of the correction coefficient with respect to the frequency having a slope opposite to the frequency characteristic of the LED 30 shown in FIG. 2 with respect to the real and imaginary components of the complex data output from the inverse discrete Fourier transform unit 23. The curve (FIG. 3) is added for correction. Thus, the equalizing correction of the band is performed so that the real and imaginary components of the complex data after correction are smaller as the frequency is lower and are larger as the frequency is higher.

さらに、補正演算部24は、逆離散フーリエ変換部23から出力される複素データの実数と虚数の成分に対し、各々、図4に示すLED30の電流電圧特性とは逆の傾きの特性曲線Ha,Hbを加えて補正する。これにより、補正後の複素データの実数と虚数の成分は、LED30の持つ電流電圧特性を予め線形に補正するようにプリディストーション補正される。   Further, the correction calculation unit 24 has characteristic curves Ha, having slopes opposite to the current-voltage characteristics of the LED 30 shown in FIG. 4 for the real and imaginary components of the complex data output from the inverse discrete Fourier transform unit 23, respectively. Correct by adding Hb. As a result, the real and imaginary components of the corrected complex data are predistorted so that the current-voltage characteristics of the LED 30 are linearly corrected in advance.

さらに、この補正演算部24には、調光回路36からA/D変換器28を介して調光信号が入力され、LED30の温度特性のひずみを補正する温度補償回路35からA/D変換器29を介して温度補正信号が入力され、調光信号及び温度補正信号によっても、逆離散フーリエ変換部23から出力された複素データの実数と虚数の成分をプリディストーション補正するようになっている。   Further, the dimming signal is input to the correction calculation unit 24 from the dimming circuit 36 via the A / D converter 28, and the temperature compensation circuit 35 corrects the distortion of the temperature characteristic of the LED 30 to the A / D converter. A temperature correction signal is input via the reference numeral 29, and the real and imaginary components of the complex data output from the inverse discrete Fourier transform unit 23 are also predistorted by the dimming signal and the temperature correction signal.

照明光の調光用の調光信号に応じて、及び温度補正信号に応じて複素データの実数と虚数の成分をプリディストーション補正するために、補正テーブルが補正演算部24に設けられ、調光信号及び温度補正信号に応じて補正テーブルを変え、調光と温度変化に伴うLEDの非線形ひずみをリニアに補正する。   In order to predistort the real and imaginary components of the complex data in accordance with the dimming signal for dimming the illumination light and in accordance with the temperature correction signal, a correction table is provided in the correction calculation unit 24, and dimming is performed. The correction table is changed according to the signal and the temperature correction signal, and the nonlinear distortion of the LED due to the light control and the temperature change is linearly corrected.

また、OFDM信号は多数のサブキャリアの合成波であるので、サブキャリアの合成によっては、同時に発生する複数の振幅の高い波が合成され、ピーク値の高いピーク波が現れるが、補正演算部24は、予め閾値を設定し、閾値を超えるピーク波が現れた場合、ピーク波のデータを線形圧縮補正する補正演算を行なうように構成される。   In addition, since the OFDM signal is a combined wave of a large number of subcarriers, a plurality of high-amplitude waves that are generated simultaneously are combined depending on the subcarrier combination, and a peak wave with a high peak value appears. Is configured to perform a correction operation for linear compression correction of peak wave data when a threshold wave is set in advance and a peak wave exceeding the threshold appears.

補正演算部24で補正された実数と虚数の複素データは、各々、D/A変換部25,26に送られてアナログ信号に変換され、この後、各D/A変換部25,26によりアナログ信号に変換された複素データは、合成部27に送られる。合成部27で、1対の複素データはサブキャリアの4MHz〜34MHzの搬送周波数の余弦波と正弦波を用いて直交変調されて合成され、合成部27からOFDM変調された4MHz〜34MHzの高周波送信信号が出力されるようになっている。   The real and imaginary complex data corrected by the correction calculation unit 24 are respectively sent to the D / A conversion units 25 and 26 to be converted into analog signals, and then converted into analog signals by the D / A conversion units 25 and 26, respectively. The complex data converted into the signal is sent to the synthesis unit 27. In the synthesizer 27, a pair of complex data is orthogonally modulated and synthesized using a cosine wave and a sine wave of a carrier frequency of 4 MHz to 34 MHz of the subcarrier, and OFDM modulated from the synthesizer 27 for high frequency transmission of 4 MHz to 34 MHz. A signal is output.

このように、OFDM変調器2は、入力データ処理部1から送られた送信データ信号の各ビットをデジタル変調部21で各サブキャリアについてデジタル変調し、デジタル変調したシリアルのデータ列をS/P変換部22でパラレルに変換した後、パラレルデータを逆離散フーリエ変換部23で逆高速フーリエ変換して時系列データに変換する。   As described above, the OFDM modulator 2 digitally modulates each bit of the transmission data signal transmitted from the input data processing unit 1 for each subcarrier by the digital modulation unit 21, and converts the digitally modulated serial data string into S / P. After conversion into parallel by the conversion unit 22, the parallel data is converted into time-series data by inverse fast Fourier transform at the inverse discrete Fourier transform unit 23.

そして、それらの時系列データを補正演算部24にて、LED30のもつ周波数特性、電流電圧特性などを逆補正するようにひずみ補正を加えた後、複素データの実数と虚数はD/A変換部25,26に送られ、D/A変換部25,26によりアナログ信号に変換される。アナログ信号に変換された複素データは、合成部27に送られ、1対の複素データは合成部27にて、サブキャリアの搬送周波数の余弦波と正弦波を用いて直交変調されて合成され、合成部27から送信信号がLED駆動部3に出力される。   The time series data is subjected to distortion correction so as to reversely correct the frequency characteristics, current voltage characteristics, etc. of the LED 30 in the correction calculation unit 24, and then the real and imaginary numbers of the complex data are converted into D / A conversion units. 25 and 26, and converted into analog signals by the D / A converters 25 and 26. The complex data converted into the analog signal is sent to the synthesizer 27, and the pair of complex data is orthogonally modulated and synthesized by the synthesizer 27 using the cosine wave and sine wave of the carrier frequency of the subcarrier, A transmission signal is output from the combining unit 27 to the LED driving unit 3.

LED駆動部3は、OFDM信号のサブキャリア搬送周波数を持つ送信信号を増幅し、その送信信号によりLEDドライバ33を動作させて、LED30を発光駆動する回路から構成される。合成部27から出力される送信信号はLED駆動部3の増幅器31に入力されて増幅され、増幅器31の出力側はLEDドライバ33に接続される。OFDM信号は厳密なスペクトル分布をした信号となるので、ダイナミックレンジが広く直線性のよい増幅器が必要となる。   The LED drive unit 3 is configured by a circuit that amplifies a transmission signal having a subcarrier carrier frequency of the OFDM signal, operates the LED driver 33 by the transmission signal, and drives the LED 30 to emit light. The transmission signal output from the combining unit 27 is input to the amplifier 31 of the LED driving unit 3 and amplified, and the output side of the amplifier 31 is connected to the LED driver 33. Since an OFDM signal is a signal having a strict spectral distribution, an amplifier having a wide dynamic range and good linearity is required.

LEDドライバ33には、LED30を定電流で駆動する回路が使用されるが、図4に示すように、LED30のIV特性(電流電圧特性)は、LED30の温度の上昇と共に電圧が低下し、調光により電流が低下したとき、電流が高い場合に比べ、IV特性曲線の傾きが大きくなるようにひずむ。このため、LED駆動部3には、LEDの温度補償を行う温度補償回路35、及び照度を安定して調光動作させる照度安定化回路34が設けられている。   As the LED driver 33, a circuit for driving the LED 30 with a constant current is used. As shown in FIG. 4, the IV characteristic (current-voltage characteristic) of the LED 30 decreases as the temperature of the LED 30 increases. When the current is reduced by light, the IV characteristic curve is distorted so that the slope of the IV characteristic curve becomes larger than when the current is high. For this reason, the LED drive unit 3 is provided with a temperature compensation circuit 35 that performs LED temperature compensation, and an illuminance stabilization circuit 34 that performs dimming operation stably.

温度補償回路35は、LED30またはその近傍の温度を検出しその温度に基づき増幅器31の直流オフセットレベルを調整して、LED30のIV特性によるひずみを補正して温度補償を行なう。照度安定化回路34は、調光回路36によりLEDの照度が調光された場合、その調光操作に応じて生じるIV特性のひずみを補正して、照度を安定して調光動作させる。   The temperature compensation circuit 35 detects the temperature of the LED 30 or the vicinity thereof, adjusts the DC offset level of the amplifier 31 based on the temperature, corrects distortion due to the IV characteristic of the LED 30, and performs temperature compensation. When the illuminance of the LED is dimmed by the dimming circuit 36, the illuminance stabilization circuit 34 corrects the distortion of the IV characteristic that occurs according to the dimming operation, and stably performs the dimming operation.

一方、照明光としても使用されるLED30の照度を調整し調光するために、調光回路36が設けられている。調光回路36はLANから送られる調光信号或いは図示しないリモートコントローラなどから送られる調光信号により調光される。調光信号は増幅器31に送られ、増幅器31の直流オフセットレベルを調光信号によって調整し、送信信号のレベルを調整してLED30の照度を変えるようにしている。また、この増幅器31の直流オフセットレベルは、温度補償回路35及び照度安定化回路34からの信号に基づき、LED30の温度によるIV特性のひずみや調光に伴うIV特性のひずみを補正するように調整される。   On the other hand, a dimming circuit 36 is provided to adjust the illuminance of the LED 30 that is also used as illumination light for dimming. The dimming circuit 36 is dimmed by a dimming signal sent from the LAN or a dimming signal sent from a remote controller (not shown). The dimming signal is sent to the amplifier 31, and the direct current offset level of the amplifier 31 is adjusted by the dimming signal, and the illuminance of the LED 30 is changed by adjusting the level of the transmission signal. Further, the DC offset level of the amplifier 31 is adjusted based on the signals from the temperature compensation circuit 35 and the illuminance stabilization circuit 34 so as to correct the distortion of the IV characteristic due to the temperature of the LED 30 and the distortion of the IV characteristic due to dimming. Is done.

図4は、LED30の電流電圧特性を示すグラフであるが、通常、LEDの温度係数は約−2mV/℃であり、高温時のLED電圧は低温時のLED電圧より低くなり、IV特性曲線は電圧の低い方に平行移動して照度が低下し、IV特性曲線の傾きも変化する。このため、LED30の温度またはLED30の近傍の温度を検出する温度センサを設け、この温度センサの検出信号に基づき、LED30の温度と調光に応じて、LED30のIV特性曲線の非線形ひずみを線形に補正するようになっている。   FIG. 4 is a graph showing the current-voltage characteristics of the LED 30. Usually, the temperature coefficient of the LED is about −2 mV / ° C., the LED voltage at high temperature is lower than the LED voltage at low temperature, and the IV characteristic curve is The illuminance decreases as the voltage moves in the lower direction, and the slope of the IV characteristic curve also changes. For this reason, a temperature sensor for detecting the temperature of the LED 30 or the temperature in the vicinity of the LED 30 is provided, and the nonlinear distortion of the IV characteristic curve of the LED 30 is linearized according to the temperature and dimming of the LED 30 based on the detection signal of the temperature sensor. It is to be corrected.

つまり、図4のLEDのIV特性曲線に示すように、LED30の温度が上昇した場合、LED30の端子電圧は低下し、このIV特性曲線はLED30の照度の高さに応じても変化する。このため、送信信号を増幅する増幅器31の直流オフセットレベルを、調光信号と共に温度信号によっても調整するようにし、LED30の動作の温度補償及び照度の安定化を行なっている。   That is, as shown in the IV characteristic curve of the LED in FIG. 4, when the temperature of the LED 30 rises, the terminal voltage of the LED 30 decreases, and this IV characteristic curve changes depending on the illuminance level of the LED 30. For this reason, the DC offset level of the amplifier 31 that amplifies the transmission signal is adjusted by the temperature signal as well as the dimming signal, so that the temperature compensation of the operation of the LED 30 and the illuminance stabilization are performed.

温度補償回路35は、増幅器31に接続され、LED30またはその近傍の温度を検出する温度センサの温度検出信号に基づき、また、調光回路36から送られる調光信号に応じて増幅器31の直流オフセットレベルを調整する。さらに、温度補償回路35から補正演算部24に温度補正信号を送り、LED30の温度変化に対しプレディストーション方式による温度補償を行うようになっている。   The temperature compensation circuit 35 is connected to the amplifier 31 and is based on the temperature detection signal of the temperature sensor that detects the temperature of the LED 30 or the vicinity thereof, and also according to the dimming signal sent from the dimming circuit 36, the DC offset of the amplifier 31. Adjust the level. In addition, a temperature correction signal is sent from the temperature compensation circuit 35 to the correction calculation unit 24 to perform temperature compensation by a predistortion method with respect to a temperature change of the LED 30.

図4のIV特性曲線に示すように、調光信号によりLED30の動作IV領域が変わり照度が高く或いは低く変化した場合、例えば、照度の高い領域aでは、電圧Vの変化に対し電流Iの変化の直線性が比較的良好であるのに対し、照度の低い領域bでは、電圧Vの変化に対し電流Iの変化の直線性が悪くひずみが大きい。このため、LED30が照度の低い領域bで動作中、調光が行われると、照度の高い領域aのときに比べ、調光操作に応じた調光を行なうことができず、また調光幅も小さくなる。   As shown in the IV characteristic curve of FIG. 4, when the operation IV region of the LED 30 changes due to the dimming signal and the illuminance changes high or low, for example, in the high illuminance region a, the change in the current I with respect to the change in the voltage V Is relatively good, but in the region b where the illuminance is low, the linearity of the change in the current I with respect to the change in the voltage V is poor and the distortion is large. For this reason, when light control is performed while the LED 30 is operating in the region b with low illuminance, it is not possible to perform light control according to the light control operation and the light control width as compared with the region a with high illuminance. Becomes smaller.

このため、LED駆動部3には、LED30の非線形の電流電圧特性をリニアに補正してLEDの照度を安定させる照度安定化回路34が設けられる。この照度安定化回路34は、調光回路36からの調光信号により増幅器31の直流オフセットレベルを調整して調光する際、図4に示すように、例えば照度の高い領域aでは、その特性曲線とは逆特性の補正曲線Haをもった補正回路により増幅器31の直流オフセットレベルを補正し、例えば照度の低い領域bでは、その特性曲線とは逆特性の補正曲線Hbをもった補正回路により増幅器31の直流オフセットレベルを補正するようにしている。   For this reason, the LED drive unit 3 is provided with an illuminance stabilization circuit 34 that linearly corrects the nonlinear current-voltage characteristics of the LED 30 to stabilize the illuminance of the LED. When the illuminance stabilization circuit 34 adjusts the direct current offset level of the amplifier 31 by the dimming signal from the dimming circuit 36 and performs dimming, as shown in FIG. The DC offset level of the amplifier 31 is corrected by a correction circuit having a correction curve Ha having a characteristic opposite to that of a curve. For example, in a region b where the illuminance is low, the correction circuit having a correction curve Hb having a characteristic opposite to that of the characteristic curve is used. The DC offset level of the amplifier 31 is corrected.

また、温度補償回路35からは温度に応じた補正信号が、A/D変換器29を通して補正演算部24に送られ、LED30の温度変化に対してプレディストーション方式による温度補償を行う一方、調光回路36からは調光に応じた補正信号がA/D変換器28を通して補正演算部24に送られ、増幅器31における直流オフセットレベルの補正と共に、補正演算部24の補正テーブルを図4の補正曲線Ha,Hbに合わせて選択し、LED30の温度及び調光に応じて、LED30の電流電圧特性をダイナミックにプリディストーション補正し、調光できる範囲を大幅に広くしている。   Further, a correction signal corresponding to the temperature is sent from the temperature compensation circuit 35 to the correction calculation unit 24 through the A / D converter 29 to perform temperature compensation by a predistortion method with respect to the temperature change of the LED 30, while dimming. A correction signal corresponding to the dimming is sent from the circuit 36 to the correction calculation unit 24 through the A / D converter 28, and the correction table of the correction calculation unit 24 is corrected along with the correction curve of FIG. It is selected according to Ha and Hb, and the current-voltage characteristic of the LED 30 is dynamically predistorted in accordance with the temperature and dimming of the LED 30 to greatly widen the dimming range.

次に、上記構成の可視光通信送信装置の動作を説明する。この可視光通信送信装置は、LED30を照明用に使用する一方、可視光通信用の投光器として使用するために、例えば室内の天井部分などに取り付けた灯具にLED30を取り付けて使用される。   Next, the operation of the visible light communication transmitter configured as described above will be described. The visible light communication transmitter uses the LED 30 for illumination, and is used by attaching the LED 30 to a lamp attached to, for example, an indoor ceiling portion in order to use it as a projector for visible light communication.

一方、図示しない受信装置は、LED30の照射する可視光を受光可能な位置に設置される。灯具のLED30は、室内等の照明を行うと共に、LANなどから送られる画像、音声などのデジタル信号を、OFDM変調により可視光に重畳して、後述のように受信装置に送信する。   On the other hand, a receiving device (not shown) is installed at a position capable of receiving visible light emitted from the LED 30. The LED 30 of the lamp illuminates the room or the like, and transmits a digital signal such as an image or sound sent from a LAN or the like to visible light by OFDM modulation and transmits it to the receiving device as described later.

この可視光通信送信装置が起動すると、入力データ処理部1のデータ処理部13は、イーサネットインタフェース11を通してLANから送られた送信用のパケットデータを入力すると、データメモリ14を用いて、パケットデータをOFDM用に組み直し、それらのデータを入出力部15からOFDM変調器2に出力する。   When this visible light communication transmission device is activated, the data processing unit 13 of the input data processing unit 1 inputs the packet data for transmission sent from the LAN through the Ethernet interface 11 and uses the data memory 14 to transmit the packet data. The data is reassembled for OFDM, and the data is output from the input / output unit 15 to the OFDM modulator 2.

OFDM変調器2のデジタル変調部21は、入力データ処理部1から送られたOFDM用の送信データ信号を入力すると、例えば64QAMなどの変調方式により、送信データ信号の各ビットを各サブキャリアについてデジタル変調し、変調したシリアルのデータ信号は、S/P変換部22に送られる。   When the digital modulation unit 21 of the OFDM modulator 2 receives the transmission data signal for OFDM sent from the input data processing unit 1, the digital modulation unit 21 digitally converts each bit of the transmission data signal for each subcarrier using a modulation scheme such as 64QAM. The modulated serial data signal is sent to the S / P converter 22.

S/P変換部22は、デジタル変調されたシリアルデータを入力すると、データ列の各ビットを各サブキャリアに割り当てるように、N本(例えば1024本)のサブキャリアを使用する場合、データ列の各ビットをN個のパラレルデータに変換し、そのパラレルデータを逆離散フーリエ変換部23に出力する。   When the digitally modulated serial data is input, the S / P converter 22 uses N (for example, 1024) subcarriers so that each bit of the data sequence is assigned to each subcarrier. Each bit is converted into N pieces of parallel data, and the parallel data is output to the inverse discrete Fourier transform unit 23.

次に、逆離散フーリエ変換部23は、デジタル変調されデータ列の各ビットを各サブキャリアに割り当てるように構成されたパラレルのシンボルデータ列を、高速で逆フーリエ変換し、その演算結果を、実数と虚数からなる時間領域の複素データとして、補正演算部24に出力する。   Next, the inverse discrete Fourier transform unit 23 performs high-speed inverse Fourier transform on the parallel symbol data sequence that is digitally modulated and configured to assign each bit of the data sequence to each subcarrier, and the operation result is converted to a real number. Are output to the correction calculation unit 24 as time domain complex data consisting of imaginary numbers.

補正演算部24は、逆離散フーリエ変換部23から出力される複素データの実数と虚数の成分を、各々、図2に示すLED30の周波数特性とは逆の傾きの、周波数に対する補正係数のグラフ曲線(図3)または演算式を用いて補正する。これにより、補正後の複素データの実数と虚数の成分は、周波数が低いほど小さく、周波数が高くなるほど大きくなるように、帯域のイコライジング補正が行なわれる。また、この補正演算部24には、調光回路36からの調光信号及びLED30の温度特性のひずみを補正する温度補償回路35からの温度補正信号が入力され、調光信号及び温度補正信号に応じて予め記憶された補正テーブルを選択し、逆離散フーリエ変換部23から出力された複素データの実数と虚数の成分をプリディストーション補正する。   The correction calculation unit 24 is a graph curve of the correction coefficient with respect to the frequency, with the real and imaginary components of the complex data output from the inverse discrete Fourier transform unit 23 having slopes opposite to the frequency characteristics of the LED 30 shown in FIG. (FIG. 3) Or it corrects using a computing equation. As a result, the equalizing correction of the band is performed so that the real and imaginary components of the complex data after correction are smaller as the frequency is lower and larger as the frequency is higher. In addition, the dimming signal from the dimming circuit 36 and the temperature correction signal from the temperature compensation circuit 35 that corrects the distortion of the temperature characteristics of the LED 30 are input to the correction calculation unit 24, and the dimming signal and the temperature correction signal are input to the correction calculation unit 24. Accordingly, a pre-stored correction table is selected, and the real and imaginary components of the complex data output from the inverse discrete Fourier transform unit 23 are predistorted.

補正演算部24で補正された実数と虚数の複素データは、各々、D/A変換部25,26に送られてアナログ信号に変換され、この後、各D/A変換部25,26によりアナログ信号に変換された複素データは、合成部27に送られる。合成部27で、1対の複素データはサブキャリアの例えば4MHz〜34MHzの搬送周波数の余弦波と正弦波を用いて直交変調されて合成され、合成部27からOFDM変調された4MHz〜34MHzの高周波送信信号がLED駆動部3の増幅器31に出力される。   The real and imaginary complex data corrected by the correction calculation unit 24 are respectively sent to the D / A conversion units 25 and 26 to be converted into analog signals, and then converted into analog signals by the D / A conversion units 25 and 26, respectively. The complex data converted into the signal is sent to the synthesis unit 27. In the synthesizer 27, the pair of complex data is orthogonally modulated using a cosine wave and a sine wave of a carrier frequency of, for example, 4 MHz to 34 MHz of the subcarrier, and OFDM-modulated from the synthesizer 27, and the high frequency of 4 MHz to 34 MHz. The transmission signal is output to the amplifier 31 of the LED driving unit 3.

そして、増幅器31は、OFDM信号のサブキャリア搬送周波数を持つ送信信号を増幅し、増幅された送信信号がLEDドライバ33に入力され、LEDドライバ33はLED30を発光駆動する。これにより、LED30が発光し、OFDM変調された高周波の送信信号を重畳した可視光がLED30から可視光通信用及び照明用として照射される。そして、図示しない受信装置の受光器がLED30の照射する可視光を受光し、可視光に重畳されたOFDM信号を取り込み復調することとなる。   Then, the amplifier 31 amplifies the transmission signal having the subcarrier carrier frequency of the OFDM signal, the amplified transmission signal is input to the LED driver 33, and the LED driver 33 drives the LED 30 to emit light. As a result, the LED 30 emits light, and visible light on which an OFDM-modulated high-frequency transmission signal is superimposed is emitted from the LED 30 for visible light communication and illumination. A light receiver of a receiving device (not shown) receives the visible light emitted from the LED 30, and takes in and demodulates the OFDM signal superimposed on the visible light.

このように、上記可視光通信送信装置は、LED30を発光させて可視光を照射し、その可視光にOFDM信号を重畳させて送信するが、図2に示すように、高周波領域で周波数特性にひずみの生じるLEDを使用しても、補正演算部24において逆離散フーリエ変換部23で逆高速フーリエ変換したデジタル送信信号を、LED30の周波数特性の非線形ひずみに対し、予めひずみの逆特性を信号に加えて帯域のイコライジング補正を行う。このため、例えば4MHz〜34MHzのように、高周波の周波数帯域を用いて信号を送信する際、周波数が低いほど発光レベルが高く、周波数が高くなるほど発光レベルが低下する周波数特性のLEDを可視光投光用に使用した場合でも、OFDM方式の送信信号のスペクトル分布にひずみを生じさせずに、LEDの可視光に送信信号を重畳させて、大容量の情報を高速で送信することができる。また、受信器側では、比較的簡単な回路構成の受信器により、OFDM信号を正常に復調することができる。   As described above, the visible light communication transmission device emits the LED 30 to emit visible light, and transmits the visible light by superimposing the OFDM signal on the visible light. However, as shown in FIG. Even if an LED with distortion is used, a digital transmission signal obtained by performing inverse fast Fourier transform in the inverse discrete Fourier transform unit 23 in the correction calculation unit 24 is converted into a signal having an inverse characteristic of the distortion in advance with respect to the nonlinear distortion of the frequency characteristic of the LED 30. In addition, band equalization correction is performed. For this reason, for example, when transmitting a signal using a high frequency band such as 4 MHz to 34 MHz, an LED having a frequency characteristic in which the light emission level is higher as the frequency is lower and the light emission level is lower as the frequency is higher is visible light projection. Even when used for light, a large amount of information can be transmitted at high speed by superimposing the transmission signal on the visible light of the LED without causing distortion in the spectral distribution of the transmission signal of the OFDM system. On the receiver side, the OFDM signal can be normally demodulated by a receiver having a relatively simple circuit configuration.

また、照明光として使用されるLED30の光が調光回路36により調光された場合、図4の電流電圧特性曲線に示すように、調光信号によりLED30の動作IV領域が変わり、照度の高い領域aでは、電圧Vの変化に対し電流Iの変化の直線性が比較的良好であるのに対し、照度の低い領域bでは、電圧Vの変化に対し電流Iの変化の直線性が悪くひずみが大きい。このため、LED30が照度の低い領域bで動作中、調光が行われると、照度の高い領域aのときに比べ、調光操作に応じた高速伝送を行なうことができず、また調光幅も小さくなる。   Further, when the light of the LED 30 used as the illumination light is dimmed by the dimming circuit 36, as shown in the current-voltage characteristic curve in FIG. In the region a, the linearity of the change in the current I is relatively good with respect to the change in the voltage V, whereas in the region b where the illuminance is low, the linearity of the change in the current I is poor with respect to the change in the voltage V. Is big. For this reason, when dimming is performed while the LED 30 is operating in the area b with low illuminance, high-speed transmission according to the dimming operation cannot be performed and the dimming width is larger than in the area a with high illuminance. Becomes smaller.

しかし、LED駆動部3の照度安定化回路34は、調光回路36からの調光信号により増幅器31の直流オフセットレベルを調整して調光する際、図4に示すように、例えば照度の高い領域aでは、その特性曲線とは逆特性の補正曲線Haをもった補正回路により増幅器31の直流オフセットレベルを補正し、例えば照度の低い領域bでは、その特性曲線とは逆特性の補正曲線Hbをもった補正回路により増幅器31の直流オフセットレベルを補正する。これにより、調光信号に応じてLED30の調光を安定して行うと共に重畳信号の補正をダイナミックに行なうことができる。   However, when the illuminance stabilization circuit 34 of the LED drive unit 3 performs dimming by adjusting the DC offset level of the amplifier 31 using the dimming signal from the dimming circuit 36, for example, as shown in FIG. In the area a, the DC offset level of the amplifier 31 is corrected by a correction circuit having a correction curve Ha having a characteristic opposite to that of the characteristic curve. For example, in the area b where the illuminance is low, the correction curve Hb having a characteristic opposite to that of the characteristic curve is corrected. The DC offset level of the amplifier 31 is corrected by a correction circuit having. Thereby, it is possible to stably perform the light control of the LED 30 according to the light control signal and dynamically correct the superimposed signal.

さらに、LED駆動部3の温度補償回路35は、LED30の温度を検出する温度センサの検出信号に基づき、LED30の温度と調光に応じて、LED30のIV特性曲線の非線形ひずみを線形に補正する。   Further, the temperature compensation circuit 35 of the LED driving unit 3 linearly corrects the nonlinear distortion of the IV characteristic curve of the LED 30 according to the temperature and dimming of the LED 30 based on the detection signal of the temperature sensor that detects the temperature of the LED 30. .

上述のように、LEDの温度係数は約−2mV/℃であり、定電流駆動される高温時のLED電圧は低温時のLED電圧より低くなり、IV特性曲線は電圧の低い方に平行移動して照度が低下し、IV特性曲線の傾きも変化する。しかし、温度補償回路35は、LED30の温度またはLED30の近傍の温度を検出する温度センサの検出信号に基づき、LED30の温度と調光に応じて、LED30のIV特性曲線(図4)の非線形ひずみを線形に補正し、図4のIV特性曲線に示す如く、LED30の温度が上昇した場合、LED30の端子電圧は低下するので、増幅器31の直流オフセットレベルを、温度の上昇に応じて上昇させ、温度の下降に応じて増幅器31の直流オフセットレベルを下げるように動作する。これにより、LED30の温度の変化に伴う照度の不安定さを解消し、LEDとその駆動部の温度補償を行なうことができる。   As described above, the temperature coefficient of the LED is about −2 mV / ° C., the LED voltage at high temperature driven by constant current is lower than the LED voltage at low temperature, and the IV characteristic curve moves in parallel to the lower voltage. As a result, the illuminance decreases and the slope of the IV characteristic curve also changes. However, the temperature compensation circuit 35 is based on the detection signal of the temperature sensor that detects the temperature of the LED 30 or the temperature in the vicinity of the LED 30, and nonlinear distortion of the IV characteristic curve (FIG. 4) of the LED 30 according to the temperature and dimming of the LED 30. As shown in the IV characteristic curve of FIG. 4, when the temperature of the LED 30 increases, the terminal voltage of the LED 30 decreases. Therefore, the DC offset level of the amplifier 31 is increased in accordance with the increase in temperature. It operates so as to lower the DC offset level of the amplifier 31 in accordance with the temperature drop. Thereby, the instability of illuminance accompanying the change in the temperature of the LED 30 can be eliminated, and the temperature compensation of the LED and its drive unit can be performed.

また、温度補償回路35からは温度に応じた補正信号が、A/D変換器29を通して補正演算部24に送られ、LED30の温度変化に対してプレディストーション方式による温度補償を行う一方、調光回路36からは調光に応じた補正信号がA/D変換器28を通して補正演算部24に送られる。これにより、増幅器31における直流オフセットレベルの補正と共に、補正演算部24で補正テーブルを図4の補正曲線Ha,Hbに合わせるように選択し、LED30の温度及び調光に応じて、LED30の電流電圧特性をダイナミックにプリディストーション補正し、調光できる範囲を大幅に広くすることができる。   Further, a correction signal corresponding to the temperature is sent from the temperature compensation circuit 35 to the correction calculation unit 24 through the A / D converter 29 to perform temperature compensation by a predistortion method with respect to the temperature change of the LED 30, while dimming. A correction signal corresponding to the light control is sent from the circuit 36 to the correction calculation unit 24 through the A / D converter 28. Thus, along with the correction of the DC offset level in the amplifier 31, the correction calculation unit 24 selects the correction table so as to match the correction curves Ha and Hb of FIG. 4, and the current voltage of the LED 30 according to the temperature and dimming of the LED 30. The characteristics can be dynamically predistorted and the light control range can be greatly widened.

図5は、他の実施形態の可視光通信送信装置の構成ブロック図を示している。この図5の可視光通信送信装置は、アナログ回路により、LEDの発光特性における帯域のイコライジング補正を行なうと共に、LEDのIV特性のプリディクトーション補正を行なうように構成される。   FIG. 5 shows a configuration block diagram of a visible light communication transmitter according to another embodiment. The visible light communication transmitter of FIG. 5 is configured to perform equalization correction of the band in the light emission characteristic of the LED and to correct correction of the IV characteristic of the LED by an analog circuit.

すなわち、この可視光通信送信装置では、図5に示すように、上記デジタル方式の補正演算部24に代えて、図6に示すようなひずみ補償回路44及び帯域補正増幅器32が使用される。このひずみ補償回路44によりLED30の電流電圧特性のプリディストーション補正を行ない、且つ帯域補正増幅器32により周波数特性のひずみのイコライジング補正を行なう。この可視光通信送信装置における上記図1の可視光通信送信装置と同じ構成と作用のブロックについては、図5に図1と同じ符号を付して、その説明を省略する。   That is, in this visible light communication transmitting apparatus, as shown in FIG. 5, a distortion compensation circuit 44 and a band correction amplifier 32 as shown in FIG. 6 are used instead of the digital correction calculation unit 24. The distortion compensation circuit 44 corrects the predistortion of the current-voltage characteristics of the LED 30, and the band correction amplifier 32 corrects the equalization of the distortion of the frequency characteristics. In this visible light communication transmitter, the same configuration and operation blocks as those of the visible light communication transmitter in FIG. 1 are given the same reference numerals as those in FIG. 1 and description thereof is omitted.

図5に示すように、この可視光通信送信装置では、OFDM変調器2Aの合成部27の出力側に、アナログ回路によりひずみのプリディストーション補正を行なうひずみ補償回路44が接続される。LED30の電流電圧特性は、図4に示すように非線形を呈し、これにより、LED30の発光輝度は調光信号に応じてリニアではなく非線形に変化する。このひずみ補償回路44は、LED30と同様な非線形の電流電圧特性を有する、アナログ非線形素子としてのダイオードD(図6)を使用して、合成部27から出力される入力信号に、LED30の電流電圧特性とは逆の傾きの逆特性を付与し、プリディストーション補正を行なうように構成される。   As shown in FIG. 5, in this visible light communication transmitter, a distortion compensation circuit 44 that performs distortion predistortion correction by an analog circuit is connected to the output side of the combining unit 27 of the OFDM modulator 2A. The current-voltage characteristic of the LED 30 exhibits non-linearity as shown in FIG. 4, whereby the light emission luminance of the LED 30 changes non-linearly according to the dimming signal. This distortion compensation circuit 44 uses a diode D (FIG. 6) as an analog nonlinear element having a nonlinear current-voltage characteristic similar to that of the LED 30, and uses the current voltage of the LED 30 as an input signal output from the synthesis unit 27. It is configured to perform a predistortion correction by giving a reverse characteristic having an inclination opposite to the characteristic.

図6に示すように、ひずみ補償回路44は、信号回路にダイオードDのアノードを接続し、ダイオードDのバイアス電圧を、抵抗Rを通して印加するように接続し、信号回路の入力側にコンデンサC1を接続し、出力側はコンデンサC2を介して増幅器31の入力側に接続して構成される。これにより、ダイオードDのバイアス電圧は、入力信号に対しLED30の電流電圧特性とは逆の傾きの逆特性(図4のグラフ曲線Ha,Hb)を付加するように調整される。   As shown in FIG. 6, in the distortion compensation circuit 44, the anode of the diode D is connected to the signal circuit, the bias voltage of the diode D is connected to be applied through the resistor R, and the capacitor C1 is connected to the input side of the signal circuit. The output side is connected to the input side of the amplifier 31 via the capacitor C2. As a result, the bias voltage of the diode D is adjusted so as to add reverse characteristics (graph curves Ha and Hb in FIG. 4) having a slope opposite to the current-voltage characteristics of the LED 30 to the input signal.

これにより、合成部27から出力されOFDM変調された高周波送信信号が、コンデンサC1を通してひずみ補償回路44に入力されると、入力された高周波信号は、ダイオードDの動作により、図4に示すLED30の電流電圧特性とは逆の傾きの特性を生じるように、予め高周波信号の電流電圧特性がプリディストーション補正され、これにより、LED30が発光する際に生じるLED30の電流電圧特性のひずみが補償されるようになっている。なお、図6のひずみ補償回路44ではアナログ非線形素子としてダイオードDを使用しているが、他のトランジスタなどのアナログ非線形素子を使用することもできる。   Thus, when the high frequency transmission signal output from the combining unit 27 and subjected to OFDM modulation is input to the distortion compensation circuit 44 through the capacitor C1, the input high frequency signal is generated by the LED 30 shown in FIG. The predistortion of the current / voltage characteristics of the high frequency signal is preliminarily corrected so as to produce a characteristic having a slope opposite to that of the current / voltage characteristics, so that the distortion of the current / voltage characteristics of the LED 30 generated when the LED 30 emits light is compensated. It has become. Although the diode D is used as the analog nonlinear element in the distortion compensation circuit 44 of FIG. 6, analog nonlinear elements such as other transistors can also be used.

また、LED駆動部3Aでは、増幅器31に帯域補正増幅器32を接続し、帯域補正増幅器32により帯域のイコライジング補正を加えるように高周波送信信号を増幅し、これにより、4MHz〜34MHzのように非常に周波数帯域の広い高周波信号を、良好な直線性をもって増幅するようにしている。帯域補正増幅器32の出力側には、LED30を発光駆動するLEDドライバ33が接続される。   In the LED driving unit 3A, the band correction amplifier 32 is connected to the amplifier 31, and the high frequency transmission signal is amplified by the band correction amplifier 32 so as to apply the equalizing correction of the band. A high frequency signal with a wide frequency band is amplified with good linearity. An LED driver 33 that drives the LED 30 to emit light is connected to the output side of the band correction amplifier 32.

LED30の周波数特性は、図2に示すように、周波数が低いほど発光レベルが高く、周波数が高くなるほど発光レベルが低下するような非線形特性となっている。このために、帯域補正増幅器32は、このようなLED30の周波数特性の逆特性を信号に加えて帯域補正をしつつ高周波送信信号を増幅するように構成される。   As shown in FIG. 2, the frequency characteristics of the LED 30 are nonlinear characteristics such that the lower the frequency, the higher the light emission level, and the higher the frequency, the lower the light emission level. For this purpose, the band correction amplifier 32 is configured to amplify the high-frequency transmission signal while performing band correction by adding the inverse characteristic of the frequency characteristic of the LED 30 to the signal.

これにより、例えば4MHz〜34MHzのように、高周波の周波数帯域を用いて信号を送信する際、周波数が低いほど発光レベルが高く、周波数が高くなるほど発光レベルが低下する周波数特性のLED30を可視光投光用に使用した場合でも、OFDM方式の送信信号のスペクトル分布にひずみを生じさせずに、LEDの可視光に送信信号を重畳させて、大容量の情報を高速で送信することができるようになっている。   Thus, for example, when transmitting a signal using a high frequency band such as 4 MHz to 34 MHz, the LED 30 having a frequency characteristic in which the light emission level is higher as the frequency is lower and the light emission level is lower as the frequency is higher. Even when used for light, the transmission signal is superimposed on the visible light of the LED without distortion in the spectral distribution of the OFDM transmission signal so that a large amount of information can be transmitted at high speed. It has become.

上記構成の可視光通信送信装置は、上記と同様に、逆離散フーリエ変換部23が、デジタル変調されデータ列の各ビットを各サブキャリアに割り当てるように構成されたパラレルのシンボルデータ列を、高速で逆フーリエ変換し、その演算結果を、実数と虚数からなる時間領域の複素データとして出力する。そして、出力された複素データは、各々、D/A変換部25,26に送られてアナログ信号に変換され、この後、各D/A変換部25,26によりアナログ信号に変換された複素データは、合成部27に送られる。   In the visible light communication transmitter configured as described above, in the same manner as described above, the inverse discrete Fourier transform unit 23 converts a parallel symbol data sequence that is digitally modulated and each bit of the data sequence is assigned to each subcarrier at a high speed. And inverse Fourier transform, and the calculation result is output as complex data in the time domain consisting of real and imaginary numbers. The output complex data is sent to the D / A converters 25 and 26, converted into analog signals, and then converted into analog signals by the D / A converters 25 and 26, respectively. Is sent to the synthesis unit 27.

合成部27では、1対の複素データがサブキャリアの例えば4MHz〜34MHzの搬送周波数の余弦波と正弦波を用いて直交変調されて合成され、合成部27からOFDM変調された4MHz〜34MHzの高周波送信信号がひずみ補償回路44に出力される。   In the synthesizer 27, a pair of complex data is orthogonally modulated and synthesized using a cosine wave and a sine wave having a carrier frequency of 4 MHz to 34 MHz, for example, of subcarriers, and the high frequency of 4 MHz to 34 MHz modulated by OFDM from the synthesizer 27. The transmission signal is output to the distortion compensation circuit 44.

ひずみ補償回路44は、その高周波送信信号を入力すると、上述の如く、アナログ非線形素子のダイオードDによって、その高周波送信信号にLED30の周波数特性とは逆の傾きの逆特性が付与され、プリディストーション方式によるひずみ補償を行なう。   When the high-frequency transmission signal is input to the distortion compensation circuit 44, as described above, the analog non-linear element diode D gives the high-frequency transmission signal an inverse characteristic with a slope opposite to the frequency characteristic of the LED 30, and a predistortion system. Compensate for distortion.

この後、ひずみ補償を行なった高周波送信信号はLED駆動部3Aの増幅器31に出力され、増幅器31は、入力した信号つまりOFDM信号のサブキャリア搬送周波数を持つ送信信号を増幅する。さらに、増幅器31で増幅された送信信号は帯域補正増幅器32により増幅されるが、このとき同時に、帯域のイコライジング補正が行なわれる。例えば、4MHz〜34MHzのように非常に周波数帯域の広い高周波信号に対するLED30の周波数特性は、図2に示すように高域で輝度が低下するが、この帯域補正増幅器32による帯域のイコライジング補正により高域を強調し、LED30が良好な直線性をもって発光するように、帯域補正増幅器32において高周波送信信号が増幅される。   Thereafter, the high-frequency transmission signal subjected to distortion compensation is output to the amplifier 31 of the LED drive unit 3A, and the amplifier 31 amplifies the input signal, that is, the transmission signal having the subcarrier carrier frequency of the OFDM signal. Further, the transmission signal amplified by the amplifier 31 is amplified by the band correction amplifier 32. At the same time, the band equalizing correction is performed. For example, the frequency characteristic of the LED 30 with respect to a high frequency signal having a very wide frequency band such as 4 MHz to 34 MHz decreases in luminance at a high frequency as shown in FIG. The band correction amplifier 32 amplifies the high-frequency transmission signal so that the band is emphasized and the LED 30 emits light with good linearity.

増幅された送信信号はLEDドライバ33に送られ、LEDドライバ33はLED30を発光駆動する。これにより、LED30が発光し、OFDM変調された高周波の送信信号を重畳した可視光がLED30から可視光通信用及び照明用に照射される。   The amplified transmission signal is sent to the LED driver 33, and the LED driver 33 drives the LED 30 to emit light. As a result, the LED 30 emits light, and visible light on which a high-frequency transmission signal subjected to OFDM modulation is superimposed is emitted from the LED 30 for visible light communication and illumination.

このように、ひずみ補償回路44は、入力した高周波送信信号に対し、LED30の図4に示すような非線形の電流電圧特性とは、逆の傾きの逆特性を付与して、プリディストーション方式によるひずみ補償を行なうので、LED30の電流電圧特性が非線形であっても、その非線形ひずみを補正し、可視光の輝度レベルを一定に保持することができ、可視光に重畳したOFDM信号を安定して送信することができる。   As described above, the distortion compensation circuit 44 gives a reverse current characteristic having a reverse polarity to the nonlinear high-frequency current characteristic as shown in FIG. Since compensation is performed, even if the current-voltage characteristic of the LED 30 is non-linear, the non-linear distortion can be corrected and the luminance level of visible light can be kept constant, and the OFDM signal superimposed on the visible light can be transmitted stably. can do.

また、帯域補正増幅器32は、LED30の周波数特性の非線形ひずみを補償するように、予めひずみの逆特性を高周波送信信号に付与し、帯域のイコライジング補正を行う。これにより、例えば4MHz〜34MHzのように、高周波の周波数帯域を用いてOFDM信号を送信する際、周波数が低いほど発光レベルが高く、周波数が高くなるほど発光レベルが低下する周波数特性のLEDを可視光投光用に使用した場合でも、OFDM方式の送信信号のスペクトル分布にひずみを生じさせずに、LEDの可視光に送信信号を重畳させて、大容量の情報を高速で送信することができる。   Further, the band correction amplifier 32 applies a reverse characteristic of distortion to the high-frequency transmission signal in advance so as to compensate for the nonlinear distortion of the frequency characteristic of the LED 30, and performs band equalization correction. Accordingly, when transmitting an OFDM signal using a high frequency band such as 4 MHz to 34 MHz, for example, an LED having a frequency characteristic in which the emission level is higher as the frequency is lower and the emission level is lower as the frequency is higher is visible light. Even when used for light projection, a large amount of information can be transmitted at high speed by superimposing the transmission signal on the visible light of the LED without causing distortion in the spectrum distribution of the OFDM transmission signal.

さらに、照明光として使用されるLED30の光が調光された場合には、調光回路36からの調光信号により増幅器31の直流オフセットレベルが調整されて調光されるが、このとき、LED30の動作点の電流と電圧は、図4に示すようにグラフ上を変化し、リニアに調光することが難しくなる。しかし、照度安定化回路34の動作により、LED30の照度(輝度)が不安定になることは防止される。つまり、LED30は、図4に示すように、例えば照度の高い領域aでは、その特性曲線とは逆特性の補正曲線Haをもった補正回路により増幅器31の直流オフセットレベルを補正し、例えば照度の低い領域bでは、その特性曲線とは逆特性の補正曲線Hbをもった補正回路により増幅器31の直流オフセットレベルを補正する。これにより、調光信号に応じてLED30の調光を安定して行うことができる。   Further, when the light of the LED 30 used as the illumination light is dimmed, the dimming signal from the dimming circuit 36 adjusts the direct current offset level of the amplifier 31. At this time, the LED 30 is dimmed. As shown in FIG. 4, the current and voltage at the operating point change on the graph, and it is difficult to perform dimming linearly. However, the operation of the illuminance stabilization circuit 34 prevents the illuminance (luminance) of the LED 30 from becoming unstable. That is, as shown in FIG. 4, the LED 30 corrects the DC offset level of the amplifier 31 by a correction circuit having a correction curve Ha having a characteristic opposite to the characteristic curve, for example, in a high illuminance area a. In the low region b, the DC offset level of the amplifier 31 is corrected by a correction circuit having a correction curve Hb having a characteristic opposite to that of the characteristic curve. Thereby, light control of LED30 can be performed stably according to a light control signal.

さらに、LED駆動部3Aの温度補償回路35は、LED30の温度を検出する温度センサの検出信号に基づき、増幅器31の直流オフセットレベルを、温度の上昇に応じて上昇させ、温度の下降に応じて増幅器31の直流オフセットレベルを下げるように動作し、LED30のIV特性曲線の非線形ひずみを線形に補正するので、LED30の温度の変化に伴う照度の不安定さを解消することができる。   Further, the temperature compensation circuit 35 of the LED drive unit 3A increases the DC offset level of the amplifier 31 according to the temperature rise based on the detection signal of the temperature sensor that detects the temperature of the LED 30, and according to the temperature fall. Since the amplifier 31 operates so as to lower the DC offset level and linearly corrects the non-linear distortion of the IV characteristic curve of the LED 30, the instability of illuminance associated with the change in the temperature of the LED 30 can be eliminated.

なお、上記実施形態では、LED30を灯具に取り付けて照明光とし、照明光としての可視光にOFDM信号を重畳させて情報信号を送信したが、照明光とせずに可視光通信用にのみ使用することもでき、また、調光を行なわずにLEDを使用することも可能である。   In the above-described embodiment, the LED 30 is attached to a lamp as illumination light, and an information signal is transmitted by superimposing an OFDM signal on visible light as illumination light. However, the information signal is not used as illumination light but is used only for visible light communication. It is also possible to use LEDs without dimming.

1 入力データ処理部
2 OFDM変調器
3 LED駆動部
11 イーサネットインタフェース
12 データバッファ
13 データ処理部
14 データメモリ
15 入出力部
21 デジタル変調部
22 S/P変換部
23 逆離散フーリエ変換部
24 補正演算部
25 D/A変換部
27 合成部
30 LED
31 増幅器
32 帯域補正増幅器
33 LEDドライバ
34 照度安定化回路
35 温度補償回路
36 調光回路
DESCRIPTION OF SYMBOLS 1 Input data processing part 2 OFDM modulator 3 LED drive part 11 Ethernet interface 12 Data buffer 13 Data processing part 14 Data memory 15 Input / output part 21 Digital modulation part 22 S / P conversion part 23 Inverse discrete Fourier transform part 24 Correction calculation part 25 D / A converter 27 Composite unit 30 LED
31 Amplifier 32 Band Correction Amplifier 33 LED Driver 34 Illuminance Stabilization Circuit 35 Temperature Compensation Circuit 36 Dimming Circuit

Claims (5)

直交周波数分割多重方式により送信データのデジタル信号を多数のサブキャリアに分割して変調し、変調された高周波信号を、LEDの発光動作により照射される可視光に重畳させて、送信データ信号を送信する可視光通信送信装置において、
パケット化された送信データ信号の各ビットを該各サブキャリアに割り当てるように送信データを組み替える送信データ処理部と、
該送信データ処理部から送られる送信データのデジタル信号の各ビットを、各サブキャリアについてデジタル変調する変調部と、
該変調部で変調されたシリアルのデジタル送信信号を、該サブキャリアの数のデータ列にパラレル変換するS/P変換部と、
該S/P変換部でパラレルに変換されたデジタル送信信号を逆高速フーリエ変換する逆離散フーリエ変換部と、
該逆離散フーリエ変換部で逆高速フーリエ変換したデジタル送信信号に対し、前記LEDが有する周波数特性の非線形ひずみに対し、予め該ひずみの逆特性を該信号に加えて補正し、且つ該LEDが有する電流電圧特性の非線形ひずみに対し、予め該ひずみの逆特性を該信号に加えて補正するように補正演算する補正演算部と、
該補正演算部で補正されたデジタル送信信号をアナログ信号に変換するD/A変換器と、
該D/A変換器でアナログ信号に変換された複素データを、サブキャリアの搬送周波数の余弦波と正弦波を用いて直交変調し合成する合成部と、
該合成部で合成されたアナログの高周波信号を増幅し可視光に重畳させるように前記LEDを駆動するLED駆動部と、
を備え
前記LEDは、可視照明光を照射する灯具に設けられ、可視光を照明光としてLEDが照射するように構成され、照明光の調光を行うために前記デジタル送信信号を補正する補正テーブルが前記補正演算部に設けられ、調光操作に応じて該補正テーブルを変えて、調光に伴う周波数特性のひずみを補正することを特徴とする可視光通信送信装置。
Transmits the transmission data signal by dividing the digital signal of the transmission data into a number of subcarriers by the orthogonal frequency division multiplexing method and modulating the modulated high frequency signal to the visible light emitted by the light emitting operation of the LED. In the visible light communication transmitter
A transmission data processing unit for rearranging transmission data so as to assign each bit of the packetized transmission data signal to each subcarrier;
A modulation unit that digitally modulates each bit of the digital signal of transmission data sent from the transmission data processing unit for each subcarrier;
An S / P converter that converts the serial digital transmission signal modulated by the modulator into a data string of the number of subcarriers;
An inverse discrete Fourier transform unit for performing inverse fast Fourier transform on the digital transmission signal converted in parallel by the S / P conversion unit;
The digital transmission signal inversely fast Fourier transformed by the inverse discrete Fourier transform unit corrects in advance the inverse characteristic of the distortion by adding the inverse characteristic of the distortion to the frequency characteristic of the LED, and the LED has A correction calculation unit that performs a correction operation so as to correct in advance the inverse characteristic of the distortion with respect to the nonlinear distortion of the current-voltage characteristic;
A D / A converter that converts the digital transmission signal corrected by the correction calculation unit into an analog signal;
A synthesizing unit that orthogonally modulates and synthesizes the complex data converted into an analog signal by the D / A converter using a cosine wave and a sine wave of the carrier frequency of the subcarrier;
An LED driving unit that drives the LED to amplify and superimpose the analog high-frequency signal synthesized by the synthesizing unit on visible light;
Equipped with a,
The LED is provided in a lamp that emits visible illumination light, the LED is configured to emit visible light as illumination light, and a correction table that corrects the digital transmission signal for dimming the illumination light includes the correction table. A visible light communication transmitting apparatus provided in a correction calculation unit, which changes the correction table according to a dimming operation and corrects distortion of frequency characteristics accompanying dimming .
前記LED駆動部には前記合成部で合成され出力された高周波信号を増幅する増幅器が設けられ、調光操作に応じて該増幅器の直流オフセットレベルを調整して前記LEDの発光レベルの調整を行なう調光回路を該増幅器に接続したことを特徴とする請求項1記載の可視光通信送信装置。   The LED driving unit is provided with an amplifier that amplifies the high frequency signal synthesized and outputted by the synthesizing unit, and adjusts the light emission level of the LED by adjusting the DC offset level of the amplifier according to the dimming operation. 2. The visible light communication transmitting apparatus according to claim 1, wherein a dimming circuit is connected to the amplifier. 前記LED駆動部の増幅器には、前記LEDの温度特性を補償して該LEDの温度変化に対し照度を一定にする温度補償回路が接続され、該LEDまたはその近傍の温度を検出する温度センサの温度検出信号に基づき、該増幅器に信号を出力して前記直流オフセットレベルを調整する一方、前記補正演算部に補正信号を送り、該LEDの温度変化に対し該補正演算部が温度補償を行うように補正演算することを特徴とする請求項1または2記載の可視光通信送信装置。 A temperature compensation circuit that compensates for the temperature characteristics of the LED and makes the illuminance constant with respect to a temperature change of the LED is connected to the amplifier of the LED driving unit, and a temperature sensor that detects the temperature of the LED or the vicinity thereof is connected. Based on the temperature detection signal, a signal is output to the amplifier to adjust the DC offset level, while a correction signal is sent to the correction calculation unit so that the correction calculation unit performs temperature compensation for a temperature change of the LED. visible light communication transmission apparatus according to claim 1 or 2, wherein the correcting calculation to. 前記LED駆動部には、前記LEDの非線形の電流電圧特性をリニアに補正して該LEDの照度を安定させる照度安定化回路が設けられ、該LED駆動部のLEDドライバの出力電圧に応じて該照度安定化回路から前記増幅器に信号を出力して前記直流オフセットレベルを調整する一方、前記補正演算部に補正信号を送り、該LEDの電流電圧特性の非線形ひずみを線形に補正するように、該補正演算部が予めひずみの逆特性を該信号に加えて補正演算することを特徴とする請求項3記載の可視光通信送信装置。   The LED driving unit is provided with an illuminance stabilization circuit that linearly corrects the nonlinear current-voltage characteristics of the LED to stabilize the illuminance of the LED, and the LED driving unit corresponds to the output voltage of the LED driver of the LED driving unit. A signal is output from the illuminance stabilization circuit to the amplifier to adjust the DC offset level, while a correction signal is sent to the correction calculation unit so that nonlinear distortion of the current-voltage characteristic of the LED is linearly corrected. 4. The visible light communication transmitting apparatus according to claim 3, wherein the correction calculation unit performs correction calculation in advance by adding an inverse characteristic of distortion to the signal. 直交周波数分割多重方式により送信データのデジタル信号を多数のサブキャリアに分割して変調し、変調された高周波信号を、LEDの発光動作により照射される可視光に重畳させて、送信データ信号を送信する可視光通信送信装置において、
パケット化された送信データ信号の各ビットを該各サブキャリアに割り当てるように送信データを組み替える送信データ処理部と、
該送信データ処理部から送られる送信データのデジタル信号の各ビットを、各サブキャリアについてデジタル変調する変調部と、
該変調部で変調されたシリアルのデジタル送信信号を、該サブキャリアの数のデータ列にパラレル変換するS/P変換部と、
該S/P変換部でパラレルに変換されたデジタル送信信号を逆高速フーリエ変換する逆離散フーリエ変換部と、
該逆離散フーリエ変換部で逆高速フーリエ変換したデジタル送信信号をアナログ信号に変換するD/A変換器と、
該D/A変換器でアナログ信号に変換された複素データを、サブキャリアの搬送周波数の余弦波と正弦波を用いて直交変調し合成する合成部と、
該合成部から出力された高周波信号を入力し、アナログ非線形素子を用いて、前記LEDが有する電流電圧特性の非線形ひずみに対し、予め該ひずみの逆特性を該高周波信号に加えてひずみを補償するひずみ補償回路と、
該LEDが有する非線形の周波数特性とは逆の傾きの逆特性を該高周波信号に加え、該LEDの周波数特性をリニアに補正して増幅する帯域補正増幅器と、
該帯域補正増幅器から出力された高周波信号を可視光に重畳させて前記LEDを駆動するLED駆動部と、
を備え
前記ひずみ補償回路には、アナログ非線形素子としてダイオードが接続され、該ダイオードに印加するバイアス電圧を調整して、回路内を流れる高周波信号に対し、前記LEDの周波数特性とは逆の傾きの逆特性を付与して該LEDの周波数特性のひずみを補償することを特徴とする可視光通信送信装置。
Transmits the transmission data signal by dividing the digital signal of the transmission data into a number of subcarriers by the orthogonal frequency division multiplexing method and modulating the modulated high frequency signal to the visible light emitted by the light emitting operation of the LED. In the visible light communication transmitter
A transmission data processing unit for rearranging transmission data so as to assign each bit of the packetized transmission data signal to each subcarrier;
A modulation unit that digitally modulates each bit of the digital signal of transmission data sent from the transmission data processing unit for each subcarrier;
An S / P converter that converts the serial digital transmission signal modulated by the modulator into a data string of the number of subcarriers;
An inverse discrete Fourier transform unit for performing inverse fast Fourier transform on the digital transmission signal converted in parallel by the S / P conversion unit;
A D / A converter for converting a digital transmission signal obtained by inverse fast Fourier transform in the inverse discrete Fourier transform unit into an analog signal;
A synthesizing unit that orthogonally modulates and synthesizes the complex data converted into an analog signal by the D / A converter using a cosine wave and a sine wave of the carrier frequency of the subcarrier;
The high-frequency signal output from the synthesis unit is input, and the non-linear distortion of the current-voltage characteristic of the LED is added to the high-frequency signal in advance by using an analog non-linear element to compensate for the distortion. A strain compensation circuit;
A band correction amplifier that amplifies the frequency characteristics of the LED by linearly correcting the frequency characteristics of the LED by adding an inverse characteristic of a slope opposite to the nonlinear frequency characteristic of the LED to the high-frequency signal;
An LED driving unit that drives the LED by superimposing a high-frequency signal output from the band correction amplifier on visible light;
Equipped with a,
A diode is connected as an analog nonlinear element to the distortion compensation circuit, and a bias voltage applied to the diode is adjusted, and a reverse characteristic with a slope opposite to the frequency characteristic of the LED with respect to a high-frequency signal flowing in the circuit. To compensate for distortion of the frequency characteristics of the LED .
JP2009280835A 2009-12-10 2009-12-10 Visible light communication transmitter Expired - Fee Related JP5474515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009280835A JP5474515B2 (en) 2009-12-10 2009-12-10 Visible light communication transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009280835A JP5474515B2 (en) 2009-12-10 2009-12-10 Visible light communication transmitter

Publications (2)

Publication Number Publication Date
JP2011124798A JP2011124798A (en) 2011-06-23
JP5474515B2 true JP5474515B2 (en) 2014-04-16

Family

ID=44288259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009280835A Expired - Fee Related JP5474515B2 (en) 2009-12-10 2009-12-10 Visible light communication transmitter

Country Status (1)

Country Link
JP (1) JP5474515B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5356277B2 (en) 2010-02-17 2013-12-04 三星電子株式会社 Transmission device and transmission method
JP5539247B2 (en) * 2011-03-15 2014-07-02 株式会社アウトスタンディングテクノロジー Visible light communication device
CN103582262A (en) * 2013-11-12 2014-02-12 中国人民解放军63960部队 Arbitrary waveform white light signal generator
JP6371158B2 (en) 2013-11-14 2018-08-08 ルネサスエレクトロニクス株式会社 LED lamp, projector, data processing method, and collision prevention apparatus
JP2016059032A (en) * 2014-09-04 2016-04-21 株式会社アウトスタンディングテクノロジー Spatial optical communication floodlight projector
JP6502663B2 (en) * 2014-12-24 2019-04-17 日本オクラロ株式会社 Optical communication device
CN107181526B (en) * 2017-06-20 2023-04-18 东北大学 Visible light wireless communication physical layer optical frequency modulator
CN109379135B (en) * 2018-11-28 2023-09-08 桂林电子科技大学 Transmitting device of DCO-OFDM visible light communication system
CN110492938B (en) * 2019-08-28 2022-07-22 兰州理工大学 Method for inhibiting influence of LED nonlinear distortion on visible light communication performance
KR102242355B1 (en) * 2019-12-20 2021-04-19 광운대학교 산학협력단 Internet of Lights- Repeater-based High Speed Transmission Apparatus and Method
CN114422030B (en) * 2022-03-29 2022-08-26 天津七一二移动通信有限公司 Half-duplex audio transmission device based on LIFI technology and implementation method
CN115051753B (en) * 2022-08-15 2022-11-01 南昌大学 LED-based visible light communication transmitting terminal correction method and system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936446A (en) * 1982-08-24 1984-02-28 Matsushita Electric Ind Co Ltd Optical transmitter
JPS61196631A (en) * 1985-02-26 1986-08-30 Mitsubishi Electric Corp Optical transmitter
JPH08213950A (en) * 1995-02-06 1996-08-20 Nippon Telegr & Teleph Corp <Ntt> Optical communication equipment
JP2004319532A (en) * 2003-04-10 2004-11-11 Stanley Electric Co Ltd Drive circuit and drive method of light emitting element and optical communication device
JP4373855B2 (en) * 2004-06-14 2009-11-25 日本放送協会 Optical wireless transmission system and apparatus
TWI330474B (en) * 2004-09-21 2010-09-11 Emcore Corp Method and apparatus for distortion control for optical transmitters
US8112001B2 (en) * 2006-12-20 2012-02-07 Ofidium Pty, Ltd. Non-linearity compensation in an optical transmission
JP2008252444A (en) * 2007-03-30 2008-10-16 Samsung Yokohama Research Institute Co Ltd Optical communication system, optical communication device and optical communication method
US8467687B2 (en) * 2008-12-22 2013-06-18 Hitachi, Ltd. Optical transmitter and optical OFDM communication system
JP2010239350A (en) * 2009-03-31 2010-10-21 Comtech 2000:Kk Visible light communication system, and transmitter and receiver of the same

Also Published As

Publication number Publication date
JP2011124798A (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP5474515B2 (en) Visible light communication transmitter
US9998241B2 (en) Envelope tracking (ET) closed-loop on-the-fly calibration
US10944365B2 (en) Envelope tracking amplifier circuit
JP5548861B2 (en) Visible light communication transmitter and visible light communication receiver
Mossaad et al. Visible light communications using OFDM and multiple LEDs
Khalid et al. 1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation
US20190334626A1 (en) System and Method For Embedding Phase and Amplitude Into A Real-Valued Unipolar Signal
JP4846715B2 (en) Power amplifier linearization method and apparatus using predistortion in frequency domain
US9768739B2 (en) Digital hybrid mode power amplifier system
JP4199680B2 (en) Transmitter
EP3014798B1 (en) An optical orthogonal frequency division multiplexing (o-ofdm) system with pulse-width modulation (pwm) dimming
Chow et al. Adaptive scheme for maintaining the performance of the in-home white-LED visible light wireless communications using OFDM
US6947713B2 (en) Amplitude- and frequency- or phase-modulated radio frequency signal generator and the transmitter incorporating same
JP2009507405A (en) Method and apparatus for optical transmission of digital signals
US9762350B2 (en) Transmitter signal shaping
US20090122911A1 (en) System and Method for Corrected Modulation with Nonlinear Power Amplification
JP2005167541A (en) Transmitter
Lee et al. Visible light wireless communications based on predistorted OFDM
KR100991469B1 (en) Ofdm-modulated-wave output unit and distortion compensating method
TW200838125A (en) Amplifying circuit and wireless communication device
KR20120099745A (en) System and arrangement for optical data transmission
EP1755302A3 (en) Distortion compensation in wireless digital transmitters
US11646799B2 (en) Optical data transmission system and method
Miriyala et al. A nonlinear modelled low-complex ADO-OFDM for Visible light communication systems
US20190058497A1 (en) Transmitter, communication unit and method for reducing harmonic distortion in a training mode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140205

R150 Certificate of patent or registration of utility model

Ref document number: 5474515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees